81 Diktat Rekayasa Trafik
BAB VIII PENDIMENSIAN JARINGAN 8.1 Data yang diperlukan Data yang diperlukan untuk pendimensian jaringan adalah : 1. matriks trafik (trafik yang ditawarkan) 1 2 3 4
1 A2.1 A3.1 A4.1
2 A1.2 A3.2 A4.2
3 A1.3 A2.3 A4.3
4 A1.4 A2.4 A3.4 -
2. matrik biaya (biaya per saluran) 1 2 3 4 1 C1.2 C1.3 C1.4 2 C2.1 C2.3 C2.4 3 C3.1 C3.2 C3.4 4 C4.1 C4.2 C4.3 3. ruting dan control penyambungan untuk menggambarkan ruting dan control penyambungan ini dipakai “PATH LOSS SEQUENCE” (PLS) atau TABEL. Tabel Ruting dan Kontrol Penyambungan sbb: OD Direct route Rute-rute selanjutnya dan route luap dan rute luap 1,2 1,2 A,2 1,A (A,L) (1,L) 1,3
1,3 1,B 1,A (1,L)
B,3 (B,L) A,B B,3 (A,L) (B,L) 1,B B,4 1,A (B,L) (1,L)
2,1
Sofia Naning Hertiana Sekolah Tinggi Teknologi Telkom
A,B B,4 (A,L) (B,L)
82 Diktat Rekayasa Trafik
Contoh struktur jaringan sebagai berikut :
B
A
1
2
3
4
gambar 8.1 : contoh struktur jaringan 4. Unjuk kerja jaringan(performance) yang diinginkan Untuk telepon, derajat pelayanan berupa GOS atau B Ada dua macam perencanaan : Derajat pelayanan untuk rute terakhir (final rute) Perencanaan dengan dasar GOS di final route. Misal B=1%. Contoh: N4
3
T N3 A1.3 1
N2 A1.2
N1
2
gambar 8.2 : contoh struktur jaringan
OD[1,2] :
A1.2 dan A1.3 adalah trafik random A1.2 diambil dari elemen matriks trafik dan misalnya N1 diketahui, maka trafik luap (m1.2 dan v 1.2) dapat dihitung. m 1.2 = harga rata-rata trafik luap V 1.2 = variansi trafik luap Berkas n merupakan berkas akhir (final route, jadi trafik yang tak dapat dimuat disini akan hilang. Trafik yang ditawarkan ke N2 : A= 1.3 : (M1.3 dan V1.3) dan M1.3=V1.3 (random poisson) a = m1 ≠ v1 (non random dan dalam hal ini v1 >m1
Sofia Naning Hertiana Sekolah Tinggi Teknologi Telkom
83 Diktat Rekayasa Trafik
sekarang harus direncanakan : B di N2 = 1% ini berarti bahwa R2 = trafik yang hilang di N 2 = 1%(M 1.3 + m1 ) . Jelas bahwa untuk A1.2, trafik yang hilang lebih kecil dari 1 %. Misalnya : m1=30% x A1.2, maka trafik yang hilang untuk A1.2, kira-kira = 1% x 30 % x A1.2 =0,3 % jadi untung buat A1.2 ( tetapi tidak adil untuk A1.3). dasar pendimensian dengan cara ini biasanya dipakai cara yang dibuat oleh Pratt.
Derajat pelayanan untuk ujung ke ujung (end to end GOS/ NNGOS) dari pasangan OD. Misalnya NNGOS 1%-2% ## yang biasa dipakai adalah cara yang pertama, yaitu perencanaan dengan dasar GOS di “final route”. note: masih ada data lain-lain yang diperlukan dalam pendimensian jaringan ini, misalnya kondisi yang ada (existing condition: sentral, jaringan, dll), tetapi dalam tinjauan ini tak dilihat. 8.2. Optimasi Menurut PRATT 8.2.1 Dasar rutingnya: Dasar ruting optimasi Pratt adalah fixed hierarchical alternate routing
T Alternatif route P asal
Tandem 3
2
Direct route 1
Q Tujuan
Gambar 8.4: Dasar ruting optimasi Pratt 8.2.2 Optimasi : Asumsi: A = trafik yang ditawarkan dari P ke Q n1,n2,n3 = jumlah saluran yang diperlukan di bekas saluran 1,2 dan 3 c1,c2,c3 = biaya persaluran di berkas saluran 1,2 dan3 Trafik A pertama kali ditawarkan ke berkas 1 (PQ) dan trafik yang tak dapat dimuat di berkas 1, diluapkan dan ditawarkan ke pilihan jalan ke-2: PTQ ( berkas 2 dan 3 secara seri). Sofia Naning Hertiana Sekolah Tinggi Teknologi Telkom
84 Diktat Rekayasa Trafik
Berkas PTQ (n2 dan n3) ini selian ditawarkan trafik luap dari berkas n1 juga menerima tawaran darai aliran trafik yang lain yang disebut background traffic. Biaya untuk ruting trafik A dari P ke Q = C C = c1 n1 + c 2 n 2 + c3 n3
bila n1 diketahui (tertentu) maka n2 dan n3 dapat dihitung ( dengan harga c1,c2 dan c3 diketahui serta harga B di berkas “final choice”: 1 dan 2 diketahui). Jadi untuk mendapatkan C yang minimum: C diturunkan terhadap n1. ∂n ∂n ∂C = c1 + c 2 2 + c3 2 ∂n1 ∂n1 ∂n1
Penurunan n2 dan n3 terhadap n1 dapat ditulis sbb: ∂n 2 ∂n 2 ∂m1 = ∂n1 ∂m1 B ∂n1 A
Dengan margianal occupancy ∂y H = ∂n A
= Pertambahan trafik yang dimuat per pertambahan saluran bila trafik yang ditawarkan tetap Dan marginal capacity ∂A
β = ∂n B = Pertambahan trafik yang dimuat per pertambahan saluran bila GOS yang ditawarkan tetap
Maka biaya yang minimum didapat dari relasi: c1 H1
=
c2
β2
+
c3
β3
Perhitungan jumlah saluran dilakukan secara iterasi: 1. ambil harga β2 dan β3 sebesar kira-kira antara 0,5 s/d 0,8. misalnya ambil sebesar 0,8 2. hitung harga H1 dengan mempergunakan harga biaya saluran (per saluran) yang diketahui 3. cari harga n1 yang memenuhi harga H1 tsb 4. hitung harga trafik luap m1 (atau a) dan setelah digabung dengan “back ground traffic” hitung n2 dan n3 dengan GOS : B2=B3=B yang diketahui (diinginkan) Sofia Naning Hertiana Sekolah Tinggi Teknologi Telkom
85 Diktat Rekayasa Trafik
5. cari harga β2 dan β3 dengan n2 dan n3 yang sudah diketahui. Bila harga-harga tersebut berbeda dengan hatga yang diambil pada langkah 1, pakai harga baru ini untuk mengulangi mulai dengan langkah 2 dst. Note: Makin kompleks struktur jaringnnya, makin kompleks pula cara menghitungnya 8.2.3 Contoh-contoh
T1 3
T2
4
5
a2
2 a1
I
J 1
A1 Gambar 8.5:
C = C1 N 1 + C 2 N 2 + C 3 N 3 + C 4 N 4 + C 5 N 5
(a). ∂C ∂N 1
N2
∂a = 0 = C1 + C 3 1 ∂ N 1 A1 ∂a + C5 1 ∂ N 1 A1
= C1 + C3 (− H1 ) ⋅ γ 2 ⋅
∂a 1 ∂N 3 ∂a ⋅ 2 ⋅ + C4 a a ∂ ∂ ∂ N 1 A1 1 N 2 2 B3
∂Y ∂N 5 ⋅ 2 ⋅ ∂ a 1 N 2 ∂ Y 2 B5
1
β3
+ C4 (− H1 ) ⋅ γ 2 ⋅
1
β4
+ C5 (− H 1 )(1 − γ 2 ) ⋅
C C C C = γ 2 ⋅ 3 + γ 2 ⋅ 4 + (1 − γ 2 ) ⋅ 5 H β3 β4 β5 Catatan: 1.
∂ Y2 =1− γ 2 ∂ a1
2.
∂ Y2 = H1 ∂ N2
∂N 4 ∂a ⋅ 2 ⋅ a ∂ 1 N 2 ∂a 2 B4
Sofia Naning Hertiana Sekolah Tinggi Teknologi Telkom
1
β5
86 Diktat Rekayasa Trafik
(b) ∂C ∂N 2
N1
∂Y ∂N ∂a ∂N ∂a ∂N = 0 = C 2 + C3 2 ⋅ 3 + C 4 2 ⋅ 4 + C5 2 ⋅ 5 ∂N 2 a1 ∂Y2 B5 ∂N 2 a1 ∂a 2 B4 ∂N 2 a1 ∂a 2 B3 = C 2 + C 3 (− H 2 ).
1
β3
+ C 4 (− H 2 ) ⋅
1
β4
+ C 5 (H 2 ) ⋅
C 2 C3 C 4 C5 = + − H 2 β3 β4 β5
Sofia Naning Hertiana Sekolah Tinggi Teknologi Telkom
1
β5