BAB III PERAMALAN
3.1
Landasan Teori Peramalan Menurut Gaspersz (2004), aktivitas peramalan merupakan
suatu fungsi bisnis yang berusaha memperkirakan permintaan dan penggunaan produk sehingga produk-produk itu dapat dibuat dalam
kuantitas
yang
tepat.
Dengan
demikian
peramalan
merupakan suatu dugaan terhadap permintaan yang akan datang berdasarkan pada beberapa variabel peramal, sering berdasarkan data deret waktu historis. Menurut
Supranto
(1984),
forecasting atau
peramalan
adalah memperkirakan sesuatu pada waktu-waktu yang akan datang berdasarkan data masa lampau yang dianalisis secara ilmiah, khususnya menggunakan metode statistika. Menurut Sofjan Assauri (1993), peramalan merupakan seni dan ilmu dalam memprediksikan kejadian yang mungkin dihadapi pada masa yang akan datang. Dengan digunakannya peralatan metode-metode peramalan maka akan memberikan hasil peramalan yang lebih dapat
dipercaya
ketetapannya.
Oleh
karena
masing-masing
metode peramalan berbeda-beda, maka penggunaannya harus hati-hati terutama dalam pemilihan metode untuk penggunaan dalam kasus tertentu. Peramalan dapat menggunakan teknik-teknik peramalan yang bersifat formal maupun informal. Aktivitas peramalan ini biasa dilakukan oleh departemen pemasaran dan hasil-hasil dari peramalan ini sering disebut sebagai ramalan permintaan. Bagian permintaan biasanya melakukan perencanaan berdasarkan hasilhasil ramalan permintaan, sehingga informasi yang dikirim dari
III-1
III-2
bagian permintaan ke bagian Production Planning and Inventory Control (PPIC) semestinya memisahkan antara permintaan yang dikembangkan berdasarkan rencana permintaan yang umumnya masih bersifat tidak pasti dan pesanan-pesanan yang bersifat pasti. Sistem peramalan memiliki sembilan langkah yang harus diperhatikan untuk menjamin efektifitas dan efisiensi. Langkahlangkah tersebut termasuk dalam manajemen permintaan yang disebut juga sebagai konsep dasar sistem peramalan, yaitu (Gaspersz 2004): a. Menentukan tujuan dari peramalan. b. Memilih item independent demand yang akan diramalkan. c. Menentukan horison waktu dari peramalan (jangka pendek, menengah, dan panjang). d. Memilih model-model peramalan. e. Memperoleh data yang dibutuhkan untuk melakukan peramalan. f. Validasi model peramalan. g. Membuat peramalan. h. Implementasi hasil-hasil peramalan. i. Memantau keandalan hasil peramalan.
3.2
Metode Peramalan Yang Digunakan Penyelesaian peramalan memiliki beberapa metode yang
umum
seperti
metode
weight
moving
average,
exponential
smoothing, dan regresi linier. Berikut ini adalah penjelasan dari metode tersebut (Gaspersz, 2004). a.
Metode Weight Moving Average (WMA) Model rata-rata begerak terbobot lebih responsif terhadap
perubahan, karena data dari periode yang baru biasanya diberi
III-3
bobot lebih besar. Suatu model rata-rata bergerak n-periode terbobot, weighted MA(n), dinyatakan sebagai berikut: Weighted MA(n) =
pembobot untuk periode n permintaan aktual dalam periode n pembobot
Selanjutnya untuk mengetahui sejauh mana keandalan dari model
peramalan
weighted
moving
average
(WMA),
maka
diharuskan untuk membuat peta kontrol tracking signal. Cara untuk bisa mendapatkan nilai tracking signal harus dicari terlebih dahulu nilai MAD yang didapat dari rumus matematis adalah sebagai berikut (Gaspersz, 2004).
MAD =
absolut dari forecast errors n
Tracking Signal =
b.
RSFE MAD
Metode Exponential Smoothing (ES) Metode
peramalan
dengan
pemulusan
eksponensial
biasanya digunakan untuk pola data yang tidak stabil atau perubahannya besar dan bergejolak. Metode permalan ini bekerja hampir serupa dengan alat thermostat. Apabila galat ramalan (forecast error) adalah positif, yang berarti nilai aktual permintaan lebih
tinggi
daripada
nilai
ramalan
(A–F>0),
maka
model
pemulusan eksponensial akan secara otomatis meningkatkan nilai ramalannya. Sebaliknya, apabila galat ramalan (forecast error) adalah negatif, yang berarti nilai aktual permintaan lebih rendah daripada nilai ramalan (A – F < 0), maka metode pemulusan eksponensial akan secara otomatis menurunkan nilai ramalan.
III-4
Proses penyesuaian ini berlangsung secara terus-menerus, kecuali galat ramalan telah mencapai nol. Peramalan menggunakan metode pemulusan eksponensial dilakukan berdasarkan formula seperti di bawah ini (Gaspersz, 2004).
Ft = Ft-1 + (A t-1 - Ft-1 ) Keterangan Ft
: nilai ramalan untuk periode waktu ke-t
Ft-1 : nilai ramalan untu satu periode waktu yang lalu, t-1 At-1 : nilai aktual untuk satu periode waktu yang lalu, t-1
: konstanta pemulusan (smoothing constant) Cara yang digunakan untuk mengetahui sejauh mana
keandalan
dari
model
peramalan
berdasarkan
pemulusan
eksponensial harus menggunakan peta kontrol tracking signal dan membandingkan
apakah
nilai-nilai
ramalan
itu
telah
menggambarkan atau sesuai dengan pola historis dari data aktual permintaan (Gaspersz, 2004). c.
Metode Regresi Linier Metode
regresi
linier
sering
sekali
dipakai
untuk
memecahkan masalah-masalah dalam penaksiran tentunya hal ini berlaku juga dalam peramalan sehingga metode regresi linier menjadi suatu metode yang mempunyai taksiran terbaik diantara metode-metode yang lain. Metode regresi linier dipergunakan sebagai metode peramalan apabila pola historis dari data aktual permintaan menunjukkan adanya suatu kecenderungan menaik dari waktu ke waktu. Istilah regresi linier berarti, bahwa rataan (y|x) berkaitan linier dengan x dalam bentuk persamaan linier populasi (Hasan, 1999).
III-5
y|x = + x, Koefisien regresi dan merupakan dua parameter yang akan ditaksir dari data sampel. Bila taksiran untuk kedua parameter itu masing-masing dinyatakan dengan a dan b maka y|x dapat ditaksir dengan ŷ dari bentuk garis regresi berdasarkan sampel atau garis kecocokan regresi (Hasan, 1999). ŷ = a + bx Keterangan Ŷ : nilai ramalan permintaan pada peiode ke-t a : intersept b :slope dari garis kecenderungan,merupakan tingkat perubahan dalam permintaan. x : indeks waktu ( t = 1,2,3,...,n) ; n adalah banyaknya periode waktu Dengan taksiran a dan b masing-masing menyatakan perpotongan dengan sumbu y dan kenaikannya. Lambang ŷ digunakan di sini untuk membedakan antara taksiran atau nilai prediksi yang diberikan oleh garis regresi sampel dan nilai y amatan percobaan yang sesungguhnya untuk suatu nilai x. Slope dan intersept dari persamaan regresi linier dihitung dengan menggunakan formula berikut (Hasan, 1999): b=
n . xy - x .
y n . x - x 2
2
a=
Keterangan b
: slope dari persamaan garis lurus
a
: intersept dari persamaan garis lurus
x
: index waktu
x - b . x n
III-6
x-bar : nilai rata-rata dari x y
: variabel permintaan (data aktual permintaan)
y-bar : nilai rata-rata permintaan per periode waktu, rata-rata dari y Menurut Pangestu (1986), forecasting adalah peramalan (perkiraan)
mengenai
sesuatu
yang
belum
terjadi.
Metode
peramalan terdiri atas metode peramalan kualitatif dan metode peramalan kuantitatif. Peramalan kualitatif bersifat subjektif dipengaruhi oleh intuisi, emosi, pendidikan, dan pengalaman seseorang. Oleh karena itu hasil peramalan dari satu orang dengan orang lain dapat berbeda. Meskipun demikian, peramalan dengan metode kualitatif tidak berarti hanya menggunakan intuisi melainkan
mengikutsertakan
model
statistik
sebagai
bahan
masukan dalam melakukan judgment (pendapat, keputusan) dan dapat
dilakukan
secara
perseorangan
Peramalan kualitatif menggunakan
ataupun
kelompok.
empat metode yang umum
dipakai, yaitu (Herjanto, 1999): 1. Juri Opini Eksekutif Metode ini cukup banyak digunakan.
Pendekatan ini
merupakan pendekatan peramalan yang paling sederhana dan banyak digunakan dalam peramalan bisnis. 2. Metode Delphi Metode
ini,
serangkaian
kuesioner
disebarkan
kepada
responden. Langkah berikut jawabannya diringkas dan diberikan ke panel ahli untuk dibuat perkiraan. 3. Gabungan Tenaga Penjualan Metode
ini
cukup
banyak
digunakan,
karena
tenaga
penjualan (sales force) merupakan sumber informasi yang baik mengenai
permintaan
meramalkan
tingkat
konsumen. penjualan
Setiap di
tenaga
penjualan
daerahnya,
kemudian
III-7
digabungkan pada tingkat provinsi dan seterunya sampai ke tingkat nasional untuk mencapai peramalan yang menyeluruh. 4. Survei Pasar Masukan diperoleh dari konsumen atau konsumen potensial terhadap rencana pembelian di masa datang. Survei dapat dilakukan dengan kuesioner, telepon, atau wawancara langsung. Pendekatan
ini
membantu
tidak
hanya
dalam
menyiapkan
peramalan, tetapi juga dalam meningkatkan desain produk dan perencanaan untuk suatu produk baru. Metode ini memiliki kekurangan, yaitu memerlukan waktu yang cukup lama, metode ini juga mahal dan sulit. Metode kuantitatif yang digunakan dalam memperkirakan atau meramalkan dapat dikelompokkan dalam dua jenis, yaitu metode serial waktu dan kausal. Berikut ini akan diuraikan dari jenis-jenis metode kuantitatif (Herjanto, 1999). a. Metode Serial Waktu Metode serial waktu (deret berkala, time series) adalah metode yang digunakan untuk menganalisis serangkaian data yang merupakan fungsi dari waktu. Analisis serial waktu dimulai dengan memplotkan data pada suatu skala waktu, mempelajari pola tersebut, dan akhirnya mencari suatu bentuk atau pola yang konsisten atas data. b. Metode Kausal Metode
Kausal
atau
disebut
juga
dengan
metode
eksplanatori mengasumsikan adanya hubungan sebab akibat antara
variabel
bebas
dan
variabel
tidak
bebas
yang
dipengaruhinya, atau dalam bentuk lain antara input dan output dari suatu sistem. Sistem itu dapat berbentuk makro (seperti perekonomian nasional) atau mikro (seperti dalam perusahaan atau rumah tangga).
III-8
3.3
Ukuran Akurasi Peramalan Validasi metode peramalan terutama dengan menggunakan
metode-metode di atas tidak dapat lepas dari indikator-indikator dalam
pengukuran
terdapat
akurasi
sejumlah
peramalan.
indikator
dalam
Bagaimanapun pengukuran
juga
akurasi
peramalan, tetapi yang paling umum digunakan adalah mean absolute deviation, mean absolute percentage error, dan mean squared error. a. Mean Absolute Deviation (MAD) Akurasi peramalan akan tinggi apabila nilai-nilai MAD, mean absolute percentage error, dan mean squared error semakin kecil. MAD merupakan nilai total absolut dari forecast error dibagi dengan data. Atau yang lebih mudah adalah nilai kumulatif absolut error dibagi dengan periode. Jika diformulasikan maka formula untuk menghitung MAD adalah sebagai berikut: MAD =
absolut dari forecast error n
b. Mean Squared Error (MSE) Menurut Gaspersz (2004), mean squared error biasa disebut juga galat peramalan. Galat peramalan ini juga dapat berfungsi untuk menghitung nilai MAD yang telah dibahas pada sub bab sebelumnya. Galat
ramalan
tidak
dapat
dihindari
dalam
sistem
peramalan, namun galat ramalan itu harus dikelola dengan benar. Pengelolaan terhadap galat ramalan akan menjadi lebih efektif apabila peramal mampu mengambil tindakan mengambil tindakan yang tepat berkaitan dengan alasan-alasan terjadinya galat ramalan itu. Dalam sistem peramalan, penggunaan berbagai
III-9
model peramalan akan memberikan nilai ramalan yang berbeda dan derajat dari galat ramalan yang berbeda pula. Rata-rata kesalahan kuadrat memperkuat pengaruh angkaangka kesalahan besar, tetapi memperkecil angka kesalahan prakiraan yang lebih kecil dari satu unit. MSE
ei n
c. Mean Absolute Percentage Error (MAPE) Rata-rata
persentase
kesalahan
kuadrat
merupakan
pengukuran ketelitian dengan cara persentase kesalahan absolute. MAPE menunjukkan rata-rata kesalahan absolut prakiraan dalam bentuk persentasenya terhadap data aktualnya.
MAPE
e x 100 i
n
d. Tracking Signal Menurut Gaspersz (2004), suatu ukuran bagaimana baiknya suatu ramalan memperkirakan nilai-nilai aktual suatu ramalan diperbaharui setiap minggu, bulan atau triwulan, sehingga data permintaan yang baru dibandingkan terhadap nilai-nilai ramalan. Tracking signal dihitung sebagai running sum of the forecast errors dibagi dengan mean absolute deviation.
Tracking Signal =
RSFE MAD
Tracking signal yang positif menunjukkan bahwa nilai aktual permintaan lebih besar daripada ramalan, sedangkan apabila negatif berarti nilai aktual permintaan lebih kecil daripada ramalan.
Pada
setiap
peramalan,
tracking signal
terkadang
III-10
digunakan untuk melihat apakah nilai-nilai yang dihasilkan berada di dalam atau di luar batas-batas pengendalian dimana nilai-nilai tracking signal itu bergerak antara -4 sampai +4. e. Moving Range (MR) Moving range dibuat untuk membandingkan nilai-nilai observasi atau data aktual dengan nilai peramalan dari kebutuhan yang sama. Dapat dikatakan bahwa moving range adalah peta kontrol statistik yang digunakan pada pengendalian kualitas. Peta moving range memiliki batasan-batasan yang terdiri dari batas kontrol atas dan batas kontrol bawah. Jika ada sebuah titik atau data yang berada di luar batas tersebut maka ada beberapa data yang harus dihilangkan atau mencari metode peramalan yang lain. Moving Range digunakan untuk mengetahui sejauh mana arah pergerakan (misal: permintaan) bergerak. Perhitungan Moving Range menggunakan rumus:
MR = Ft 1 At 1 Ft At
3.4.
Pembahasan Peramalan Pembahasan pada modul peramalan ini dimana akan
melakukan
perhitungan
atas
ketiga
metode,
yaitu
metode
Weighted Moving Average (WMA), Single Exponential Smoothing (SES), dan
metode regresi linier. Masing-masing dari metode-
metode tersebut dapat meramalkan penjualan lemari tas untuk periode yang telah ditentukan peramalan. Data penjualan aktual ini merupakan syarat digunakan sebagai peramalan, karena untuk ketiga
metode
kuantitatif
tersebut
sehingga
merupakan
data
yang
metode
akan
yang
digunakan
bersifat untuk
meramalkan penjualan di periode selanjutnya ialah data historis. Data penjualan aktual lemari tas dapat dilihat pada tabel 3.1.
III-11
Tabel 3.1 Data Penjualan Aktual Lemari Tas Bulan
Indeks Waktu (t)
Penjualan Aktual (A)
Januari
1
542
Februari
2
538
Maret
3
541
April
4
543
Mei
5
538
Juni
6
537
Juli
7
541
Agustus
8
540
September
9
542
Oktober
10
540
November
11
538
Desember
12
541
3.4.1 Perhitungan Metode Weighted Moving Averages (WMA) Perhitungan pada metode Weighted Moving Averages (WMA) dimana suatu nilai bobot tersebut telah ditentukan ialah 3. Nilai tersebut dapat meramalkan berdasarkan indeks waktu yang diramalkan dengan syarat minimal untuk nilai bobot tersebut ialah 2. Hasil peramalan penjualan lemari tas dengan metode WMA dapat dilihat pada tabel 3.2. Tabel 3.2 Peramalan Penjualan Lemari Tas Metode Weight Moving Averages Indeks Waktu
Penjualan
(t)
Aktual (A)
Januari
1
542
-
Februari
2
538
-
Maret
3
541
-
April
4
543
540,16
541
Mei
5
538
541,5
542
Juni
6
537
540,16
541
Juli
7
541
538,33
539
Agustus
8
540
539,16
540
September
9
542
539,83
540
Bulan
Ramalan Berdasarkan MA = 3
III-12
Tabel 3.2 Peramalan Penjualan Lemari Tas Metode Weight Moving Averages (lanjutan) Indeks Waktu
Penjualan
(t)
Aktual (A)
Oktober
10
540
541,16
542
November
11
538
540,67
541
Desember
12
541
539,33
540
Januari
13
539,83
540
Bulan
Ramalan Berdasarkan MA = 3
Contoh perhitungan untuk WMA: Σ(Timbangan untuk periode-n)(Penjualan dalam periode-n) ΣTimbangan
Ft =
=
[(3×541)+(2×538)+(1×542)] 6
= 540,16 = 541
3.4.2 Perhitungan metode Single Exponential Smoothing (SES) Berdasarkan hasil perhitungan software, maka diketahui hasil MAD terkecil adalah sebesar 1,857 pada perhitungan metode SES dengan konstanta pemulusan (α) 0,2. Rangkuman hasil perhitungan dapat dilihat pada tabel 3.3. Tabel 3.3 Hasil Peramalan dengan Software WinQSB (Metode SES)
MAD
0,1
1,862
0,2
1,857
0,3
1,939
0,4
2,082
0,5
2,206
0,6
2,309
0,7
2,388
0,8
2,488
0,9
2,571
III-13
Perhitungan manual terhadap peramalan penjualan lemari tas akan dilakukan pada nilai α sebesar 0,2. Data dapat dilihat pada tabel 3.4 untuk perhitungan SES dengan α sebesar 0,2. Tabel 3.4 Peramalan Lemari Tas (Metode SES = 0,2)
Januari
Indeks Waktu (t) 1
Penjualan Aktual (A) 542
540,08
541
Februari
2
538
540,46
541
Maret
3
541
539,97
540
April
4
543
540,18
541
Bulan
Ramalan
Mei
5
538
540,74
541
Juni
6
537
540,19
541
Juli
7
541
539,55
540
Agustus
8
540
539,84
540
September
9
542
539,87
540
Oktober
10
540
540,30
541
November
11
538
540,24
541
Desember
12
541
539,79
540
Januari
13
540,03
541
Ramalan indeks waktu ke-1 =
=
∑A n 6481 = 540,08 ≈ 541 12
Ramalan indeks waktu ke-2 = 540,08 + 0,2 (542-540,08) = 540,08 + 0,2 (1,92) = 540,46 ≈ 541
3.4.3 Perhitungan Metode Regresi Linier Pembahasan pada motode regresi linier dilakukan dua perhitungan peramalan penjualan lemari tas, yaitu dengan metode regresi linier dilakukan secara manual dan menggunakan software WinQSB. Perhitungan regresi linier secara manual untuk lemari tas ini dapat dilihat pada tabel 3.5.
III-14
Tabel 3.5 Peramalan Metode Regresi Linier Bulan
Periode (X)
PenjualanAktual (Y)
X2
X.Y
Januari
1
542
1
542
Februari
2
538
4
1076
Maret
3
541
9
1623
April
4
543
16
2172
Mei
5
538
25
2690
Juni
6
537
36
3222
Juli
7
541
49
3787
Agustus
8
540
64
4320
September
9
542
81
4878
Oktober
10
540
100
5400
November
11
538
121
5918
Desember
12
541
144
6492
Jumlah(∑)
78
6481
650
42120
b= =
n . ∑XY - ∑X . ∑Y n . ∑X2 - (∑X)2 12 . 42120 - 78 . 6481 12 . 650 - (78)2
∑Y – b . ∑X n 6481 - (-0,045) . 78 = 12
a=
= 540,37
-78 = = -0,045 1716 Hasil yang didapat dari perhitungan yang telah dilakukan tersebut dilakukan pembulatan ke atas. Pembulatan bilangan tersebut dapat dimaksudkan dimana dalam sebuah permintaan lemari tas tidak ada dalam bentuk koma. Perhitungan untuk regresi linier secara keseluruhan dapat dilihat rangkumannya pada tabel 3.6.
III-15
Tabel 3.6 Hasil Peramalan dengan Metode Regresi Linier Bulan
Indeks
Ramalan
Waktu (t)
Januari
1
539,78
540
Februari
2
539,74
540
Maret
3
539,69
540
April
4
539,65
540
Mei
5
539,6
540
Juni
6
539,56
540
Juli
7
539,51
540
Agustus
8
539,47
540
September
9
539,42
540
Oktober
10
539,38
540
November
11
539,33
540
Desember
12
539,29
540
Januari
13
539,78
540
Februari
14
539,74
540
Maret
15
539,69
540
April
16
539,65
540
Mei
17
539,6
540
Juni
18
539,56
540
Juli
19
539,51
540
Agustus
20
539,47
540
September
21
539,42
540
Oktober
22
539,38
540
November
23
539,33
540
Desember
24
539,29
540
Berikut ini adalah contoh perhitungan nilai Y dengan metode regresi linier. Y = a + bX = 540,37 + (-0,045) . 13 = 539,78 = 540
III-16
3.4.4. Perhitungan Akurasi Hasil Peramalan Hasil-hasil peramalan dapat dihitung dengan metodemetode akurasi peramalan. Metode-metode tersebut terdiri dari tracking signal dan moving range.
3.4.4.1 Perhitungan Tracking Signal Hasil-hasil peramalan dengan metode WMA, SES, dan regresi linier dapat diukur ketepatannya dengan menggunakan Tracking signal (TS). Perhitungan tracking signal dapat dilihat pada tabel 3.7 untuk metode WMA. Tabel 3.7 Tracking Signal Metode WMA (Bobot = 3) Periode
Forecast
Aktual
Error
RSFE
Absolute
Kumulatif
(f)
(A)
(e=A-f)
Kumulatif
Error
Absolute
MAD
Tracking Signal
Error 1 2 3 4 5 6 7 8 9
541 542 541 539 540 540 542 541 540
543 538 537 541 540 542 540 538 541
2 -4 -4 2 0 2 -2 -3 1
2 -2 -6 -4 -4 -2 -4 -7 -6
2 4 4 2 0 2 2 3 1
2 6 10 12 12 14 16 19 20
2 3 3,33 3 2,4 2,33 2,28 2,37 2,22
Berdasarkan tabel di atas merupakan rangkuman untuk menghitung tracking signal. Perhitungan itu termasuk secara keseluruhan dari metode Weighted Moving Averages (WMA). Berikut ini adalah contoh perhitungan MAD dan tracking signal untuk periode pertama. Contoh Perhitungan untuk Tracking Signal: MAD =
∑|Forecast Errors| n
Tracking Signal =
RSFE MAD
= =
2 1 2 2
=2 =2
1 -0,66 -1,80 -1,33 -1,66 -0,85 -1,75 -2,95 -2,70
III-17
Perhitungan hasil tracking signal metode Weighted Moving Averages
(WMA)
ditampilkan
juga
dalam
bentuk
grafik.
Perhitungan yang telah dilakukan tersebut, hasil dalam bentuk grafik dimana grafik ini akan menunjukan keakuratan sebuah peramalan permintaan pada lemari tas. Grafik tracking signal dari metode WMA dengan bobot = 3 dapat dilihat pada gambar 3.1.
Peta Kontrol Tracking Signal Metode WMA Tracking Signal
6 4 2
BKA
0 -2
1
2
3
4
5
6
7
8
9
Tracking SIgnal BKB
-4 -6
Periode Gambar 3.1 Grafik Tracking Signal dengan Metode WMA (Bobot = 3)
Hasil perhitungan peramalan metode SES dapat diukur ketepatannya dengan menggunakan tracking signal. Berikut ini adalah tabel yang dirangkum pada tabel 3.8 metode single exponential smoothing (SES). Periode
Forecast (f)
Tabel 3.8 Tracking Signal Metode SES dengan α = 0,2 Aktual Error RSFE Absolute Kumulatif MAD (A)
(e=A-f)
Kumulatif
Error
Absolute
Tracking Signal
Error 1 2 3 4 5 6 7 8 9 10 11 12
541 541 540 541 541 541 540 540 540 541 541 540
542 538 541 543 538 537 541 540 542 540 538 541
1 -3 1 2 -3 -4 1 0 2 -1 -3 1
1 -2 -1 1 -2 -6 -5 -5 -3 -4 -7 -6
1 3 1 2 3 4 1 0 2 1 3 1
1 4 5 7 10 14 15 15 17 18 21 22
1,00 2,00 1,67 1,75 2,00 2,33 2,14 1,88 1,89 1,80 1,91 1,83
1,00 -1,00 -0,60 0,57 -1 -2,58 -2,34 -2,66 -1,59 -2,22 -3,66 -3,28
III-18
Perhitungan tersebut dapat dilihat pada contoh perhitungan untuk tracking signal pertama.
∑|Forecast Errors| 1 = =1 n 1 RSFE 1 Tracking Signal = = =1 MAD 1 MAD =
Perhitungan hasil tracking signal metode SES ditampilkan juga dalam bentuk grafik. Berikut ini adalah grafik tracking signal dari metode SES dengan konstanta pemulusan (α) 0,2.
Tracking Signal
Peta Kontrol Tracking Signal SES α = 0,2 6 4 2
BKA
0 -2
1
2
3
4
5
6
7
8
9 10 11 12
Tracking SIgnal BKB
-4 -6
Periode
Gambar 3.2 Grafik Tracking Signal dengan Metode SES (α = 0,2)
Hasil perhitungan peramalan dengan metode regresi linier dapat diukur ketepatannya dengan menggunakan tracking signal. Berikut ini adalah tabel yang merangkum perhitungan tracking signal metode regresi linier. Tabel 3.9 Tracking Signal dengan Metode Regresi Linier Periode
Forecast
Aktual
Error
RSFE
Absolute
Kumulatif
(f)
(A)
(e=A-f)
Kumulatif
Error
Absolute
MAD
Tracking Signal
Error 1
540
542
2
2
2
2
2
1
2
540
538
-2
0
2
4
2
0
3
540
541
1
1
1
5
1,67
0,6
4
540
543
3
4
3
8
2
2
5
540
538
-2
2
2
10
2
1
III-19
Tabel 3.9 Tracking Signal dengan Metode Regresi Linier (lanjutan) Periode
Forecast
Aktual
Error
RSFE
Absolute
Kumulatif
(f)
(A)
(e=A-f)
Kumulatif
Error
Absolute
MAD
Tracking Signal
Error 6
540
537
-3
-1
3
13
2,17
-0,46
7
540
541
1
0
1
14
2
0
8
540
540
0
0
0
14
1,75
0
9
540
542
2
2
2
16
1,78
1,12
10
540
540
0
2
0
16
1,6
1,25
11
540
538
-2
0
2
18
1,64
0
12
540
541
1
1
1
19
1,58
0,63
Gambar 3.3 Peta Kontrol Tracking Signal Metode Regresi Linier
3.4.4.2 Perhitungan peta Moving Range dan Grafik dari metode dengan MAD terkecil. Hasil selanjutnya
perhitungan dibandingkan
peramalan
dari
keakuratannya.
seluruh Metode
metode yang
menghasilkan nilai Mean Absolute Deviation (MAD) terendah akan diukur akurasinya dengan membuat peta kontrol moving range (MR). Metode yang menghasilkan nilai MAD terendah adalah metode regresi linier.
III-20
Tabel 3.10 Tabulasi Perhitungan Moving Range dengan Metode Regresi Linier Bulan
Peramalan
Penjualan Aktual
A-F
MR Absolute
Januari
540
542
2
-
Februari
540
538
-2
4
Maret
540
541
1
3
April
540
543
3
2
Mei
540
538
-2
5
Juni
540
537
-3
1
Juli
540
541
1
4
Agustus
540
540
0
1
September
540
542
2
2
Oktober
540
540
0
2
November
540
538
-2
2
Desember
540
541
1
3
Total
29
Pembuatan peta kontrol moving range memerlukan nilai rata-rata Moving Range (MR), Batas Kontrol Atas (BKA), dan Batas Kontrol Bawah (BKB). Perhitungan MR, BKA, dan BKB serta gambar peta kontrol moving range adalah sebagai berikut:
MR =
29 12-1
MR = 2,64
Perhitungan hasil dari keseluruhan tracking signal dapat diketahui pula untuk metode moving range. Moving range ini juga menampilkan juga dalam bentuk grafik. Grafik yang ditunjukkan dalam moving range dimana ditunjukkan dengan besaran A-f. A-f menunjukan selisih antara penjualan actual dengan peramalan regresi linier. Berikut ini adalah grafik moving range.
III-21
Gambar 3.4 Grafik Moving Range Berdasarkan Metode Regresi Linier
3.4.5 Perhitungan dengan metode Weight Moving Averages dengan WinQSB. Hasil dari pengolahan software WinQSB untuk metode weighted moving average (WMA) pada forecasting method. Hasil tersebut dapat dilihat pada gambar 3.5. Software ini juga dapat menunjukkan grafik hasil peramalan yang dapat dilihat pada Gambar 3.6.
Gambar 3.5 Output Software WinQSB Metode WMA
III-22
Gambar 3.6 Output Grafik Weight Moving Average
3.4.6 Perhitungan dengan metode Single Exponential dengan WinQSB. Hasil dari pengolahan software WinQSB untuk metode single exponential smoothing (SES) pada forecasting method. Hasil tersebut dapat dilihat pada gambar 3.7. Software ini juga dapat menunjukkan grafik hasil peramalan yang dapat dilihat pada Gambar 3.8.
Gambar 3.7 Perhitungan Software WinQSB Metode SES (α = 0,2)
III-23
Gambar 3.8 Output Grafik Single Exponential Smoothing α = 0,2
3.4.7 Perhitungan dengan metode Regresi Linier dengan WinQSB. Hasil dari pengolahan software WinQSB untuk metode regresi linier pada forecasting method. Hasil tersebut dapat dilihat pada gambar 3.9. Software ini juga dapat menunjukkan grafik hasil peramalan yang dapat dilihat pada Gambar 3.10.
Gambar 3.9 Perhitungan Software WinQSB Metode Regresi Linier
III-24
Gambar 3.10 Output Grafik Regresi Linier
3.4.8 Analisis Peramalan Peramalan suatu produk diharuskan menggunakan data produksi terdahulu. Peramalan untuk produk lemari tas ini dilakukan selama 12 periode atau satu tahun. Perhitungan peramalan dilakukan dengan cara manual dan software. Metode yang digunakan ada 3, yaitu metode weight moving average, single exponential smoothing, dan regresi linier. Metode Weight Moving Average (WMA) memakai rata-rata bobot sebesar 3 untuk peramalan produk lemari tas. Nilai tersebut dapat meramalkan berdasarkan indeks waktu yang diramalkan dengan syarat minimal untuk nilai bobot tersebut ialah 2 dan menunjukkan bahwa peramalan pada bulan 1 sampai dengan bulan 3 telah dilakukan peramalan di tahun sebelumnya. Hasil peramalan untuk periode ke 4 dilakukan pertama kali karena memakai rata-rata bobot 3, yaitu sebesar 540,16 atau dibulatkan menjadi 541 unit yang berarti produksi lemari tas pada periode 4 adalah sebesar 541 unit. Periode berikutnya sampai periode ke 12 dapat dilihat pada Tabel 3.2. Pada tracking signal metode WMA ada 9 periode yang digunakan perhitungannya karena WMA
III-25
memiliki bobot 3 bulan maka 3 bulan awal tidak ada peramalan. Mean Absolute Deviation (MAD) atau rata-rata penyimpangan absolut pada metode WMA yang dilakukan dengan pengolahan data secara manual didapat hasil sebesar 2,22. Nilai MAD 2,22 diperoleh dari nilai absolut error dari nilai error. Nilai error sendiri merupakan nilai aktual dikurangi nilai peramalan. Gambar 3.1 peta kontrol tracking signal metode WMA menunjukkan bahwa data-data hasil peramalan tersebut dapat dikatakan baik karena tidak ada yang melewati ketetapan nilai BKA dan BKB, yaitu 4 dan -4. Berdasarkan perhitungan software nilai MAD dengan metode WMA didapatkan hasil sebesar 2,14. Jika dibandingkan dengan perhitungan manual terdapat selisih 0,08. Perbedaan 0,08 tidak terlalu
signifikan
bagi
peramalan.
Perbedaan
nilai
tersebut
dikarenakan pembulatan angka dibelakang koma yang dilakukan pada perhitungan manual dan perhitungan software berbeda. Peramalan dengan menggunakan metode single exponential smoothing atau lebih singkatnya SES menggunakan nilai = 0,2. Nilai tersebut didapat dari perhitungan dengan menggunakan software WinQSB yang mencari nilai MAD paling kecil diantara nilai = 0,1 sampai = 0,9. Peramalan dengan menggunakan metode SES ini dilakukan dengan menggunakan nilai aktual data penjualan satu tahun sebelumnya. Hasil peramalan untuk periode 4 dengan menggunakan metode SES didapat hasil sebesar 540,18 atau dibulatkan menjadi 541 unit yang berarti produksi lemari tas pada periode 4 adalah sebesar 541 unit. Selengkapnya untuk peramalan dengan menggunakan metode SES dapat dilihat pada tabel
3.4.
Metode
SES
juga
dibuat
tracking signal untuk
mengetahui nilai MAD. Nilai MAD untuk = 0,2 adalah sebesar 1,83 merupakan MAD dengan nilai terkecil. Nilai MAD 1,83 diperoleh dari nilai absolut error dari nilai error. Nilai error sendiri
III-26
merupakan nilai aktual dikurangi nilai peramalan. Gambar 3.2 peta kontrol tracking signal metode SES menunjukkan bahwa data-data hasil peramalan tersebut dapat dikatakan baik karena tidak ada yang melewati ketetapan nilai BKA dan BKB yaitu 4 dan -4. Berdasarkan perhitungan software nilai MAD dengan metode SES = 0,2
didapatkan hasil sebesar 1,85. Jika dibandingkan
dengan perhitungan manual terdapat selisih 0,02. Perbedaan 0,02 tidak terlalu signifikan bagi peramalan. Perbedaan nilai tersebut dikarenakan pembulatan angka di belakang koma yang dilakukan pada perhitungan manual dan perhitungan software berbeda. Hasil perhitungan manual dengan menggunakan metode regresi linier digunakan untuk mengetahui nilai peramalan untuk 24 periode secara langsung. Hasil peramalan untuk periode 16 adalah sebesar 539,65 unit yang dibulatkan menjadi 540 unit yang berarti produksi lemari tas pada periode 16 adalah sebesar 540 unit. Selengkapnya untuk peramalan dengan menggunakan metode regresi linier dapat dilihat pada tabel 3.5. Metode regresi linier juga dibuat tracking signal untuk mengetahui nilai MAD. Nilai MAD untuk metode regresi linier adalah sebesar 1,58. Nilai MAD 1,58 diperoleh dari nilai absolut error dari nilai error. Nilai error sendiri merupakan nilai aktual dikurangi nilai peramalan. Gambar 3.3 peta kontrol tracking signal metode regresi linier menunjukkan bahwa tidak ada data yang melewati batas kontrol baik atas maupun bawah. Berdasarkan perhitungan software nilai MAD dengan metode regresi linier didapatkan hasil sebesar 1,57. Jika dibandingkan dengan perhitungan manual terdapat selisih 0,01. Perbedaan 0,01 tidak terlalu signifikan bagi peramalan. Perbedaan nilai tersebut dikarenakan pembulatan angka di belakang koma yang dilakukan pada perhitungan manual dan perhitungan software berbeda.
III-27
Moving range merupakan suatu ukuran akurasi peramalan. Data-data yang digunakan untuk perhitungan moving range berdasarkan data peramalan dengan nilai MAD terkecil. Hasil peramalan berdasarkan tiga metode yang sebelumnya telah dihitung dan didapatkan hasil MAD terkecil yang terdapat pada metode regresi linier, yaitu sebesar 1,58. Tabel 3.10 moving range menunjukkan nilai peramalan berdasarkan metode regresi linier dengan data penjualan aktual. Kolom A-F merupakan kolom pengurangan nilai aktual dengan nilai peramalannya. Mencari nilai MR absolute setiap periodenya dengan perhitungan selisih forecasting t-1 dengan aktual t-1 dikurangi selisih forecasting t dengan aktual t. Lalu MR absolute dijumlahkan keseluruhnya didapat nilai sebesar 29, dari nilai tersebut dicari nilai BKA dan BKB yang masing-masing bernilai 7,02 dan -7,02. Grafik moving range digunakan agar memperjelas dan mempertegas hasil peramalan yang diplotkan pada grafik. Berdasarkan grafik moving range dapat disimpulkan bahwa tidak ada nilai yang keluar dari BKA dan BKB yang artinya data hasil peramalan yang dibuat antara data aktual dan data peramalan tidak ada perbedaan yang signifikan. Perhitungan pun memiliki hasil yang berbeda dari hasil grafik yang dibentuk berdasarkan hasil perhitungan dari masingmasing metode, seperti metode weight moving average, single exponential smoothing, dan regresi linier. Hasil yang ditunjukkan dalam grafik untuk metode weight moving average, yaitu bersifat fluktuatif dimana peramalan akan diprediksi atau diramalkan untuk bulan ke 4 sampai ke bulan yang 13 karena memiliki bobot 3. Bobot 3 tersebut menunjukkan bahwa peramalan pada bulan 1 sampai dengan bulan 3 telah dilakukan peramalan di tahun sebelumnya. Hal ini menunjukkan bahwa peramalan dalam
III-28
metode weight moving average di bulan-bulan tertentu pun diramalkan atau diprediksi akan mengalami penurunan di bulan ke 8 dan kenaikan di bulan ke 10. Penyebab terjadinya penurunan pada bulan ke 8 disebabkan oleh faktor lain, seperti permintaan pasar akan menurun sehingga dalam hal ini permintaan pasar akan menurun 2 unit dari data aktual yang 8 bulan yang lalu dimana berjumlah 540 unit, sedangkan kenaikan yang terjadi pada bulan ke 10 dimana permintaan naik sebanyak 1 unit dari data aktual yang berjumlah 541 unit. Hasil yang ditunjukkan dalam grafik dengan metode single exponential smoothing, yaitu bersifat fluktuatif dimana data peramalan untuk bulan ke 2 sampai ke bulan yang 12 tidak selalu sama dengan data peramalan sebelumnya (data aktual). Hal ini menyatakan bahwa peramalan yang ditunjukkan di bulan 1 telah dilakukan peramalan di tahun sebelumnya. Hal ini menunjukkan bahwa peramalan dalam metode single exponential smoothing di bulan-bulan tertentu pun diramalkan atau diprediksi akan mengalami penurunan di bulan yang ditentukan grafik metode single exponential smoothing. Penurunan permintaan yang akan diramalkan tersebut sebanyak 2 unit sedangkan permintaan akan menaikkan sampai 3 unit, sehingga peramalan yang dilakukan dalam
metode
single
exponential
smoothing
sangat
bersifat
fluktuatif atau kejadian ini memiliki persentase yang cukup besar, yaitu 0,3% maka dalam hal ini masih belum dapat ditentukan. Hasil yang ditunjukkan dalam grafik dengan metode regresi linier, yaitu bersifat linier dimana data peramalan untuk bulan ke 1 sampai ke bulan yang 12 merata atau linier dengan data peramalan sebelumnya (data aktual). Hal ini menyatakan bahwa peramalan dilakukan selama 12 bulan penuh. Grafik untuk peramalan regresi linier di bulan tertentu bersifat merata sehingga
III-29
menunjukkan bahwa ramalan tidak jauh dari permintaan 12 bulan lalu (data aktual). Peramalan untuk metode regresi linier dimana permintaan sebanyak 540 unit,
dengan
persentase
peramalan sebesar, yaitu 0,2%. Hal ini dalam suatu peramalan dapat
dikatakan
metode
persentase yang lebih kecil,
yang
terbaik,
yaitu
jika
memiliki
maka metode yang terpilih adalah
metode regresi linier. Peramalan untuk lemari tas ini dimana metode yang terpilih adalah regresi linier, karena regresi linier merupakan peramalan yang dilakukan selama 12 bulan penuh. Perbandingan dengan metode lain pun dimana peramalan hanya dilakukan di bulan tertentu atau bulan yang sudah ditentukan dalam peramalan sehingga dalam keakuratannya untuk metode regresi linier cukup baik, yaitu bernilai 0,2%.