BAB II LANDASAN TEORI
II.1.
Konsep Biaya Dan Beban Pada umunya penetapan harga produk tergantung dari banyaknya penawaran dan permintaan masyarakat. Namun, tetap saja penetapan harga jual yang menguntungkan perlu mempertimbangkan faktor biaya dan beban yang dikeluarkan selama proses produksi berlangsung. Banyaknya permintaan terhadap produk dengan harga jual yang menguntungkan memberikan pendapatan penjualan yang tentunya juga menguntungkan tetapi belum dapat dipastikan bahwa perusahaan akan memperoleh laba dari penjualan tersebut. Faktor laba juga dipengaruhi oleh biaya dan beban nonmanufaktur yang dikeluarkan perusahaan. Biaya dan beban adalah dua hal yang berbeda. Beberapa pengertian biaya dan beban menurut para ahli antara lain : Carter, Usry yang diterjemahkan oleh Krista (2006) menyatakan, “Akuntan telah mendefinisikan biaya sebagai [“]nilai tukar, pengeluaran, pengorbanan untuk memperoleh manfaat” (h. 29). Simamora (1999) mendefinisikan, “Biaya (cost) adalah kas atau nilai setara kas yang dikorbankan untuk barang atau jasa yang diharapkan memberikan manfaat pada saat ini atau di masa mendatang bagi organisasi” (h. 36). Horngren, Datar, Foster yang diterjemahkan oleh Adhariani (2005) menyatakan, “Akuntan mendefinisikan biaya (cost) sebagai suatu sumber daya
8
yang dikorbankan (sacrified) atau dilepaskan (forgone) untuk mencapai tujuan tertentu” (h. 34). Carter et al. Menjelaskan mengenai beban sebagai berikut: Tetapi, beban dapat didefinisikan sebagai aliran keluar terukur dari barang atau jasa, yang kemudian ditandingkan dengan pendapatan untuk menentukan laba, atau sebagai: ... penurunan dalam aktiva bersih sebagai akibat dari penggunaan jasa ekonomis dalam menciptakan pendapatan atau pengenaan pajak oleh badan pemerintah. Beban diukur dengan nilai penurunan dalam aktiva atau peningkatan dalam utang yang berkaitan dengan produksi atau penyerahan barang dan jasa ...beban dalam arti luas termasuk semua biaya yang sudah habis masa berlakunya yang dapat dikurangkan dari pendapatan. Sedangkan Simamora menjelaskan bahwa, “Beban (expense) adalah biaya terpakai (expired cost)” (h. 36). Berdasarkan pengertian di atas, maka biaya dan beban adalah dua hal yang berbeda. Biaya merupakan penyerahan atau pengorbanan sumber daya untuk mendapatkan barang dan jasa yang dapat memberikan manfaat untuk saat ini maupun di masa yang akan datang dan beban adalah biaya yang sudah terpakai dan tidak dapat memberikan manfaat lagi. Dalam arti luas, biaya meliputi pengertian dari harga pokok (cost) dan beban (expense). II.2.
Klasifikasi Biaya Dalam perhitungan break-even point, diperlukan adanya pengklasifikasian biaya terutama pengklasifikasian berdasarkan perilaku biaya. II.2.1. Biaya Dalam Hubungannya Dengan Produk Carter et al. Menjelaskan, “Dalam lingkungan manufaktur, total biaya operasi terdiri atas dua elemen: biaya manufaktur dan biaya komersial” (h. 40).
9
II.2.1.1. Biaya Manufaktur Carter et al. Menjelaskan, “Biaya manufaktur-juga disebut biaya produksi atau biaya pabrik-biasanya didefinisikan sebagai jumlah dari tiga elemen biaya: bahan baku langsung, tenaga kerja langsung, dan overhead pabrik” (h. 40). Menurut Garrison, Noreen, Brewer yang diterjemahkan oleh Hinduan (2006), “Kebanyakan perusahaan manufaktur membagi biaya produksi ke dalam tiga kategori besar: bahan langsung (direct material), tenaga kerja langsung (direct labor), dan biaya overhead pabrik (manufacturing overhead)” (h. 51). A. Bahan Baku Langsung Carter et al. Mendefinisikan, “Bahan baku langsung adalah semua bahan baku yang membentuk bagian integral dari produk jadi dan dimasukkan secara eksplisit dalam perhitungan biaya produk” (h. 40). Sedangkan Garrison et al. Mendefinisikan, “Bahan langsung (direct material) adalah bahan yang menjadi bagian tak terpisahkan dari produk jadi, dan dapat ditelusuri secara fisik dan mudah ke produk tersebut” (h. 51). Jadi, biaya bahan baku langsung adalah biaya bahan baku yang menjadi bagian yang tidak terpisahkan dari produk jadi, karena produk jadi yang telah melewati proses produksi berasal dari bahan baku langsung sehingga biaya bahan baku langsung tidak dapat terpisahkan dari produk jadi. 10
B. Tenaga Kerja Langsung Carter et al. Mendefinisikan, “Tenaga kerja langsung adalah tenaga kerja yang melakukan konversi bahan baku langsung menjadi produk jadi dan dapat dibebankan secara layak ke produk tertentu” (h. 40). Sedangkan Garrison et al. Mendefinisikan, “Tenaga kerja langsung (direct labor) digunakan untuk biaya tenaga kerja yang dapat ditelusuri dengan mudah ke produk jadi” (h. 51). Jadi, biaya tenaga kerja langsung adalah biaya yang dikeluarkan pada saat produksi untuk mengubah bahan baku langsung menjadi produk jadi. C. Overhead Pabrik Menurut Carter et al.: Overhead pabrik-juga disebut overhead manufaktur, beban manufaktur, atau beban pabrik-terdiri atas semua biaya manufaktur yang tidak ditelusuri secara langsung ke output tertentu. Overhead pabrik biasanya memasukkan semua biaya manufaktur kecuali bahan baku langsung dan tenaga kerja langsung. Sedangkan menurut Garrison et al., “Overhead pabrik (manufacturing overhead)-elemen ketiga biaya produksimencakup seluruh biaya produksi yang tidak termasuk dalam bahan langsung dan tenaga kerja langsung” (h. 52). Jadi, biaya overhead pabrik merupakan salah satu biaya manufaktur yang tidak termasuk ke dalam biaya bahan
11
baku langsung dan tenaga kerja langsung. Contohnya adalah biaya listrik dan penerangan, depresiasi. II.2.1.2. Beban Komersial Carter et al. Menjelaskan, “Beban komersial terdiri atas dua klasifikasi besar: beban pemasaran dan beban administratif (juga disebut beban umum dan administratif)” (h. 43). A. Beban Pemasaran Beban pemasaran didefinisikan oleh beberapa ahli sebagai berikut : Carter et al. Mendefinisikan, “Beban pemasaran mulai dari titik di mana biaya manufaktur berakhir. Yaitu, ketika proses manufaktur selesai dan produk ada dalam kondisi siap dijual” (h. 43). Garrison et al. Memberikan definisi mengenai biaya pemasaran, “Biaya pemasaran atau penjualan meliputi semua biaya yang diperlukan untuk menangani pesanan konsumen dan memperoleh produk atau jasa untuk disampaikan kepada konsumen” (h. 52). Jadi, beban pemasaran adalah beban yang dikeluarkan oleh organisasi untuk memasarkan produk jadi untuk dijual. Contohnya adalah beban promosi, penjualan, pengiriman, dan komisi penjualan.
12
B. Beban Administratif Sedangkan beban administratif didefinisikan oleh beberapa ahli sebagai berikut : Carter et al. Mendefinisikan, “Beban administratif termasuk beban yang terjadi dalam mengarahkan dan mengendalikan organisasi” (h. 43). Sedangkan
menurut
Garrison
et
al.,
“Biaya
administrasi meliputi pengeluaran eksekutif, organisasional, dan klerikal yang berkaitan dengan manajemen umum organisasi” (h. 52). Jadi, beban administratif adalah beban yang terkait dengan manajemen dalam organisasi. Contohnya adalah beban pos dan audit. II.2.2. Biaya Dalam Hubungannya Dengan Perilaku Biaya Biaya dalam hubungannya dengan perilaku biaya dapat diklasifikasikan menjadi biaya tetap, biaya variabel, dan biaya semivariabel. II.2.2.1. Biaya Tetap Carter et al. Menjelaskan, “Biaya tetap didefinisikan sebagai biaya yang secara total tidak berubah saat aktivitas bisnis meningkat atau menurun” (h. 58). Garrison et al. Mendefiniskan, “Biaya tetap adalah biaya yang selalu tetap secara keseluruhan tanpa terpengaruh oleh tingkat aktivitas” (h. 67).
13
Simamora mendefinisikan, “Biaya tetap (fixed cost) adalah biaya yang jumlahnya tidak berubah, terlepas dari perubahan tingkat aktivitas dalam kisaran releven (relevant range) tertentu” (h. 133). Sedangkan Pujawan (2004) mendefinisikan, “Biayabiaya tetap (fixed cost) yaitu biaya-biaya yang besarnya tidak dipengaruhi oleh volume produksi” (h. 148). Berdasarkan pendapat di atas, maka biaya tetap adalah biaya yang tidak terpengaruh pada saat terjadi perubahan aktivitas dan berada pada rentang yang relevan. Rentang yang relevan adalah daerah sampai pada batas tertentu mesin dapat berproduksi untuk menghasilkan output, jadi jika output yang diinginkan melebihi kapasitas mesin maka akan terbentuk biaya tetap yang baru. Contoh dari biaya tetap adalah biaya sewa, asuransi, depresiasi. Berikut ini grafik dari biaya tetap: Biaya Operasi
Biaya Tetap
Volume Produksi Gambar 2.1. Grafik Biaya Tetap
14
II.2.2.2. Biaya Variabel Carter et al. Menjelaskan, “Biaya variabel didefinisikan sebagai biaya yang secara total meningkat secara proporsional terhadap peningkatan dalam aktivitas dan menurun secara proporsional terhadap penurunan dalam aktivitas” (h. 59). Garrison et al. Mendefiniskan, “Biaya variabel adalah biaya yang berubah secara proporsional dengan perubahan aktivitas” (h. 66). Simamora menjelaskan: Biaya variabel (variable cost) adalah biaya yang jumlah keseluruhannya berubah sebanding dengan perubahan tingkat aktivitas bisnis. Dengan demikian, apabila tingkat aktivitas meningkat 10 persen, maka jumlah biaya variabel juga akan ikut meningkat sebesar 10 persen. Pujawan
mendefinisikan,
“Biaya-biaya
variabel
(variabel cost) yaitu biaya-biaya yang besarnya tergantung (biasanya secara linier) terhadap volume produksi” (h. 148). Berdasarkan pendapat di atas, maka biaya variabel adalah biaya yang berubah secara proposional pada saat terjadi perubahan aktivitas. Contoh dari biaya variabel adalah biaya bahan baku dan biaya tenaga kerja langsung.
15
Berikut ini grafik dari biaya variabel: Biaya Operasi Biaya Variabel
Volume Produksi Gambar 2.2. Grafik Biaya Variabel II.2.2.3. Biaya Semivariabel Carter
et
didefinisikan
al.
sebagai
Menjelaskan,
“Biaya
biaya
memperlihatkan
yang
semivariabel baik
karakteristik-karakteristik dari biaya tetap maupun biaya variabel” (h. 60). Garrison et al., “Biaya semivariabel (mixed cost) adalah biaya yang terdiri atas elemen biaya variabel maupun biaya tetap” (h. 270). Dan
menurut
Simamora
mendefinisikan,
“Biaya
campuran (mixed cost) adalah biaya yang mengandung unsurunsur biaya variabel dan tetap” (h. 142) Berdasarkan pendapat di atas, maka biaya semivariabel adalah biaya yang mengandung unsur-unsur biaya tetap dan biaya variabel. Biaya semivariabel disebut juga biaya campuran. Contoh dari biaya semivariabel adalah biaya telepon, biaya pemeliharaan kendaraan, dan biaya listrik.
16
Berikut ini grafik dari biaya semivariabel: Biaya Operasi Biaya Semivariabel
Volume Produksi Gambar 2.3. Grafik Biaya Semivariabel II.2.2.4. Cara Pemisahan Biaya Semivariabel Menjadi Biaya Tetap dan Biaya Variabel Biaya dalam hubungannya dengan perilaku biaya dapat diklasifikasikan menjadi biaya tetap, biaya variabel, dan biaya semivariabel sesuai dengan yang telah dijelaskan sebelumnya. Namun, dalam melakukan analisis break-even point break-even point biaya hanya dapat diklasifikasikan menjadi biaya tetap dan biaya
variabel
sehingga
biaya
yang
tergolong
biaya
semivariabel harus dipisahkan menjadi biaya tetap dan biaya variabel. Mengacu pada pendapat Carter et al. Dan Garrison et al. Cara pemisahan biaya semivariabel menjadi biaya tetap dan biaya variabel dengan menggunakan tiga metode yaitu metode tinggi-rendah, metode scattergraph, dan metode kuadrat terkecil. Berikut ini adalah contoh dari biaya semivariabel di suatu perusahaan yaitu biaya listrik berdasarkan jam tenaga 17
kerja
langsung
selama
1
tahun
(12
bulan)
untuk
mengestimasikan elemen biaya tetap dan variabel dengan metode yang telah disebutkan. Tabel 2.1. Data Biaya Listrik Dan Jam Tenaga Kerja Langsung Bulan Biaya listrik (Rp) Januari 640 Februari 620 Maret 620 April 590 Mei 500 Juni 530 Juli 500 Agustus 500 September 530 Oktober 550 November 580 Desember 680 Total 6840
Jam tenaga kerja langsung (jam) 34.000 30.000 34.000 39.000 42.000 32.000 26.000 26.000 31.000 35.000 43.000 48.000 420.000
a. Metode Tinggi-Rendah Dalam metode ini, elemen biaya tetap dan variabel dari suatu biaya dapat dihitung dengan menggunakan dua titik data. Titik data tersebut dipilih dari data dengan aktivitas tertinggi dan terendah. Selisih perbedaan biaya dari aktivitas tertinggi dan terendah dibagi selisih perbedaan aktivitas tertinggi dan terendah tersebut untuk menentukan biaya variabel per unit. Penggunaan
metode
ini
mudah,
namun
dapat
menghasilkan estimasi biaya tetap dan variabel yang bias
18
karena hanya menggunakan dua titik data dibandingkan dengan metode lain yang menggunakan banyak data. Tabel 2.2. Perubahan Aktivitas Keterangan Tingkat aktivitas tertinggi Tingkat aktivitas terendah Selisih
Biaya Listrik Jam Tenaga Kerja Langsung 680 48000 500 26000 180 22000 Selisih biaya
Biaya variabel = Selisih aktivitas 180 = 22000 = Rp 0,00818 per jam tenaga kerja langsung Setelah menentukan biaya variabel listrik untuk setiap tenaga kerja langsung, maka dapat ditentukan biaya tetapnya. Penentuan biaya tetap dapat dilakukan dengan mengambil aktivitas tertinggi maupun terendah dengan mengurangi biaya variabel. Perhitungan berikut dengan mengambil tingkat aktivitas tertinggi untuk menghitung biaya tetap: Biaya tetap = Total biaya – Biaya variabel = 680 – (0,00818 x 48000) = 680 – 393 = Rp 287 elemen biaya tetap per bulan Jadi, biaya variabel sebesar Rp 0,00818 per jam tenaga kerja langsung dan biaya tetap sebesar Rp 287 per bulan.
19
b. Metode Scattergraph
800
Des
700
Jan Feb Maret Apr Sept Okt Juni Juli&Agustus
Biaya listrik ($
600 500
Biaya Variabel Nov Mei Biaya Tetap
400 300 200 100 0 0
10000
20000
30000
40000
50000
60000
Jam tenaga kerja langsung(jam)
Gambar 2.4. Grafik Metode Scattergraph Garis regresi memotong sumbu Y pada Rp 440,00 yang menunjukkan elemen biaya tetap. Biaya variabel dihitung dengan mengurangi biaya tetap dari total biaya. Titik yang menunjukkan tenaga kerja langsung sebesar 39.000 jam (pada bulan April) dapat digunakan untuk menghitung biaya variabel. Biaya variabel ditentukan sebagai berikut: Total rata-rata biaya listrik (Rp 6.840/12)
Rp 570,00
Total Biaya Tetap
Rp 440,00
Total Biaya Variabel
Rp 130,00
Biaya variabel per jam tenaga kerja langsung adalah total biaya variabel/rata-rata jam tenaga kerja langsung sama
20
dengan Rp 130,00/(420.000/12) = Rp 0,0037 per jam tenaga kerja langsung. c. Metode Kuadrat Terkecil (Least Square) Metode ini lebih obyektif karena menyesuaikan garis secara matematis. Model ini didasarkan pada persamaan garis lurus (y = a + b x), dengan b =
∑ (xi -
) (yi -
∑ (xi dan
)
)2
=a+b -b
a= Dimana :
y : total biaya a : biaya tetap b : biaya variabel x : volume produksi xi : jam tenaga kerja langsung aktual : jam tenaga kerja langsung aktual rata-rata yi : biaya : biaya rata-rata Tabel 2.3. Perhitungan Metode Least Square (1)
Bulan
(2)
(3)
yi
(yi -
)
Biaya listrik (Rp)
Selisih dari rata-rata biaya
xi Jam tenaga kerja langsung
(4)
(xi -
(5)
)
Selisih dari rata-rata jam
(xi -
)2
(4) Dikuadratkan
(6)
(xi - ) (yi - ) (4) x (2)
(7)
(yi -
)2
(2) Dikuadratkan
Januari
640
70
34.000
( 1.000)
1.000.000
( 70.000)
4.900
Februari
620
50
30.000
( 5.000)
25.000.000
( 250.000)
2.500
Maret
620
50
34.000
( 1.000)
1.000.000
( 50.000)
2.500
21
April
590
20
39.000
4.000
16.000.000
( 80.000)
400
Mei
500
(70)
Juni
530
(40)
42.000
7.000
49.000.000
( 490.000)
4.900
32.000
( 3.000)
9.000.000
120.000
1.600
Juli
500
Agustus
500
(70)
26.000
( 9.000)
81.000.000
630.000
4.900
(70)
26.000
( 9.000)
81.000.000
630.000
4.900
( 4.000)
16.000.000
160.000
1.600
0
0
400
September
530
(40)
31.000
Oktober
550
(20)
35.000
0
November
580
10
43.000
8.000
64.000.000
80.000
100
Desember
680
110
48.000
13.000
169.000.000
1.430.000
12.100
0
420.000
0
512.000.000
2.270.000
40.800
Total
6.840
= total biaya listrik/12 = 6.840/12 = Rp 570,00 = total jam tenaga kerja langsung/12 = 420.000/12 = 35.000 Tarif variabel untuk biaya listrik, b, dihitung sebagai berikut: b = ∑ (xi -
) (yi -
∑ (xi -
) = Total kolom 6
)2
Total kolom 5 =
Rp 2.270.000 512.000.000
=Rp 0,0044 per jam tenaga kerja langsung Biaya tetap, a, dapat dihitung menggunakan rumus untuk garis lurus sebagai berikut: =a+b 570 = a + (0,0044)(35.000) 570 = a + $154 a = Rp 416 elemen tetap biaya listrik per bulan Dengan metode least square, biaya variabel sebesar Rp 0,0044 per jam tenaga kerja langsung dan biaya tetap sebesar Rp 416 per bulan.
22
II.3.
Format Laporan Laba Rugi Laporan laba rugi memiliki dua format yang dapat dibuat oleh manajemen yaitu format tradisional (format biaya penyerapan/full costing) dan format kontribusi (format biaya variabel/variable costing). Pada umumnya, manajemen membuat laporan laba rugi dengan format tradisional yang disusun tidak berdasarkan perilaku biaya. Laporan dengan format ini bertujuan untuk keperluan eksternal perusahaan. Namun, format ini memiliki kelemahan jika ingin digunakan untuk keperluan internal. Format ini tidak berguna untuk perencanaan, pengendalian dan pembuatan keputusan sehingga laporan laba rugi format kontribusi menjadi lebih berguna untuk keperluan internal. Analisis BEP multi produk merupakan alat untuk perencanaan laba akan lebih mudah dianalisis jika menggunakan laporan laba rugi format kontibusi dimana format ini menyediakan data biaya dalam format tetap dan variabel. II.3.1. Format Tradisional Garrison et al. Menjelaskan, “Pendekatan tradisional laporan laba rugi tidak disusun berdasakan perilaku biaya. Laporan tradisional disusun berdasarkan format “fungsional” yang klasifikasi data biayanya menekankan pada fungsi produksi, administrasi, dan penjualan” (h. 285). Juga dijelaskan bahwa, “Laporan laba rugi perhitungan biaya penyerapan tidak membedakan antara biaya tetap dan variabel; sehingga metode ini tidak cocok untuk perhitungan biaya-volume-laba yang penting untuk perencanaan dan pengendalian yang baik” (h. 393).
23
Berikut ini adalah laporan laba rugi format tradisional: Penjualan
xxx
Harga Pokok Penjualan
xxx -
Laba Kotor
xxx
Beban Komersial Beban Administratif
xxx
Beban Pemasaran
xxx +
Total Beban Komersial
xxx -
Laba Bersih
xxx
II.3.2. Format Kontribusi Garrison et al. Menjelaskan, “Pendekatan kontribusi digunakan dalam perencanaan internal dan sebagai alat pembuatan keputusan” (h. 286). Juga dijelaskan bahwa, “Pendekatan perhitungan biaya variabel untuk menentukan biaya produksi per unit sesuai dengan pendekatan kontribusi karena kedua konsep tersebut mengklasifikasi biaya berdasarkan perilakunya” (h. 393). Berikut ini adalah laporan laba rugi format kontribusi: Penjualan
xxx
Biaya Variabel
xxx -
Margin Kontribusi
xxx
Biaya Tetap
xxx -
Laba Bersih
xxx
24
II.4.
Konsep Analisis Titik Impas (Break-Even Point) II.4.1. Pengertian Break-Even Point Mengenai analisis titik impas, Carter et al. Mendefinisikan, “Titik impas adalah titik di mana biaya dan pendapatan adalah sama. Tidak ada laba maupun rugi pada titik impas” (h. 272). Garrison et al. Mendefinisikan, “titik impas adalah tingkat penjualan di mana laba adalah nol” (h. 325). Hansen, Mowen yang diterjemahkan oleh Hermawan (2000) mendefinisikan, “Titik impas (break-even point) adalah titik di mana total pendapatan sama dengan total biaya, yaitu titik di mana laba sama dengan nol” (h.210). Jadi, break-even point atau titik impas adalah titik di mana total pendapatan sama dengan total biaya, dengan kata lain laba sama dengan nol. II.4.2. Tujuan Analisis Break-Even Point Adisaputro (2000) menjelaskan: Kegunaan analisis break-even point adalah memberi gambaran tentang batas jumlah minimal yang harus diusahakan agar perusahaan tidak menderita kerugian dan break-even point dapat juga dipakai untuk menentukan jumlah penjualan yang seharusnya diperoleh pada persyaratan tertentu, misalnya penjualan yang seharusnya diperoleh akan sama dengan jumlah penjualan pada keadaan break-even ditambah sejumlah penjualan lain yang diperlukan untuk memperoleh laba yang dimaksud. Carter et al. Menjelaskan, “Analisis titik impas digunakan untuk menentukan tingkat penjualan dan bauran produk yang diperlukan hanya
25
untuk menutup semua biaya yang terjadi selama periode tersebut” (h. 272). Berdasarkan pendapat dari para ahli tersebut, analisis break-even point dapat digunakan oleh manajer untuk menentukan titik dimana penjualan dapat menutup biaya-biaya yang dikeluarkan supaya perusahaan tidak menderita kerugian. Selain itu, untuk mempelajari hubungan antara volume penjualan, harga, dan biaya sehingga dapat digunakan dalam penetapan harga jual produk yang menguntungkan bagi perusahaan agar memberikan laba. II.4.3. Asumsi-asumsi Yang Menunjang Break-Even Point Dalam melakukan analisis break-even point membutuhkan sejumlah asumsi sebagai dasarnya. Adisaputro menjelaskan,”...asumsi-asumsi tersebut sebagai berikut: a. Biaya pada berbagai tingkat kegiatan dapat diperkirakan jumlahnya secara tepat yang menggambarkan bahwa perubahan tingkat produksi dapat dijabarkan menjadi perubahan tingkat biaya. b.Biaya yang diperkirakan harus dipisahkan menjadi biaya tetap dan biaya variabel. Analisis titik impas dapat dihitung jika sebagian biaya merupakan biaya tetap. c. Tingkat penjualan sama dengan tingkat produksi. Dengan demikian tingkat persediaan barang jadi tidak mengalami perubahan atau perusahaan tidak menyediakan stok barang jadi. d.Harga jual produk perusahaan pada berbagai tingkat penjualan tidak mengalami perubahan. 26
e. Biaya variabel setiap unit produk sama untuk berbagai volume produksi. f. Tidak terdapat perubahan pada berbagai kebijakan pimpinan yang secara langsung berpengaruh terhadap beban tetap keseluruhan juga tidak berubah. g.Perusahaan dianggap hanya menjual satu macam produk jika dalam kenyataan produk yang dibuat lebih dari satu macam, maka bauran penjualan dipertahankan tetap sama. II.4.4. Perhitungan Break-Even Point Single Produk Hansen et al. Menjelaskan mengenai perhitungan break-even point dalam unit dan rupiah sebagai berikut: Rumus titik impas dalam unit adalah : Unit titik impas = Biaya tetap Harga – Biaya variabel per unit Apabila kita mengalikan kedua sisi persamaan dengan harga, maka sisi kiri akan sama dengan pendapatan penjualan pada titik impas : Unit titik impas x Harga = Harga x Biaya tetap Harga – Biaya variabel per unit Penjualan impas = Biaya tetap x Harga Harga – Biaya variabel per unit Ukuran unit yang terjual dapat dikonversi menjadi ukuran pendapatan penjualan hanya dengan mengalikan harga jual per unit dengan unit yang terjual Garrison et al. Menjelaskan mengenai perhitungan break-even point sebagai berikut: Titik impas dapat dihitung dengan menggunakan metode persamaan (equation method) atau metode margin kontribusi (contribution margin method). Kedua metode akan memberikan hasil yang sama. Metode Persamaan... Bentuk dari laporan laba rugi digambarkan dalam persamaan seperti berikut: Laba = (Penjualan – Beban Variabel) – Beban Tetap
27
Mengubah sedikit persamaan ini menghasilkan persamaan berikut, yang banyak dipakai dalam analisis biaya-volume-laba: Penjualan = Beban Variabel + Beban Tetap + Laba Pada titik impas, laba adalah nol. Dengan demikian, titik impas dapat dihitung dengan menemukan titik di mana penjualan sama dengan total beban variabel dan beban tetap... Titik impas dalam dolar penjualan dapat dihitung dengan mengalikan titik impas dalam unit penjualan dengan harga jual per unit... Metode Margin Kontribusi pada dasarnya hanyalah versi jalan pintas dari metode persamaan yang telah dijelaskan. Pendekatan ini memusatkan pada ide yang telah didiskusikan sebelumnya bahwa setiap unit yang terjual memberikan sejumlah margin kontribusi yang akan menutup biaya tetap. Untuk menemukan berapa banyak unit yang harus terjual untuk mencapai titik impas, bagilah total biaya tetap dengan margin kontribusi per unit: Titik impas dalam unit yang terjual = Beban Tetap Margin Kontribusi per unit ... Variasi dari metode ini menggunakan Rasio CM bukan margin kontribusi per unit. Hasilnya adalah titik impas dalam dolar penjualan bukan unit yang terjual. Titik impas dalam dolar penjualan = Beban Tetap Rasio CM Carter et al. Menjelaskan mengenai perhitungan break-even point sebagai berikut: CVP didasarkan pada hubungan akuntansi berikut ini: Laba = Total pendapatan – (Total biaya variabel + Total biaya tetap) yang setara dengan: Total pendapatan = Total biaya tetap + Total biaya variabel + Laba Karena total biaya tetap dan biaya variabel per unit diasumsikan tetap konstan sepanjang rentang aktivitas yang dianalisis, hubungan akuntansi dasar dapat dinyatakan dalam bentuk persamaan linier, sebagai berikut: R = F + (V x R) + π dimana : R = Total pendapatan penjualan F = Total biaya tetap V = Biaya variabel per dolar pendapatan penjualan (yaitu: total biaya variabel dibagi dengan total pendapatan penjualan) π = Total laba Volume penjualan dapat diukur dalam pendapatan penjualan atau dalam unit produk. Untuk menentukan tingkat pendapatan penjualan yang diperlukan, persamaan sebelumnya dapat dipecahkan untuk R sebagai berikut:
28
R R - (V x R) R(1 – V) R
= = = =
F + (V x R) + π F+π F+π F+π = Total biaya tetap + Laba 1 – V Margin kontribusi per dolar penjualan
Jika laba ditetapkan sama dengan nol, maka titik impas diukur dalam pendapatan penjualan, R(BE), dihitung sebagai berikut: R(BE) = F = Total biaya tetap 1–V Margin kontribusi per dolar penjualan II.4.5. Perhitungan Break-Even Point Multi Produk Carter et al. Menjelaskan mengenai perhitungan BEP dalam kasus multi produk sebagai berikut: Perhitungan dalam kasus BEP multiproduk dapat diilustrasikan sebagai berikut. Star Company memperkirakan bauran produk berikut ini akan dijual pada periode mendatang: Harga jual per unit Rp 1.800 1.100
Produk A B
Biaya variabel Per unit Rp 900 800
Bauran penjualan yang diperkirakan 1 2
Jika bauran produk tersebut diperkirakan tanpa mempedulikan tingkat penjualan, maka biaya variabel per dolar pendapatan penjualan ditentukan sebagai berikut: V=
Biaya Variabel = Rp 900 + (2 x 800) = 2500 = 0,625 Pendapatan Penjualan Rp 1.800 + (2 x 1.100) 4000
Diasumsikan biaya tetap diperkirakan Rp 16.000.000. Titik impas diukur dalam pendapatan penjualan adalah: R(BE) =
F = 1–V
Rp 16.000.000 = Rp 16.000.000 = Rp 42.666.667 1 – 0,625 0,375
29
Untuk mencapai laba sebesar Rp 4.500.000 dengan bauran produk ini, pendapatan penjualan harus sebesar Rp 54.666.667 dihitung sebagai berikut: R = F + π =Rp16.000.000 + Rp4.500.000 = Rp20.500.000 = Rp 54.666.667 1–V 1 – 0,625 0,375 Setelah mendapatkan hasil titik impas, dapat dihitung total pendapatan penjualan. Pendapatan dari paket dibagi menjadi pendapatan yang diperlukan untuk mencapai titik impas. Hasilnya dikalikan dengan kuantitas masing-masing produk yang harus dijual untuk mencapai titik impas. Jika satu unit produk A diperkirakan akan dijual untuk setiap 2 unit produk B yang terjual, maka paket hipotetis terdiri dari satu unit produk A dan 2 unit produk B. Untuk Star Company, paket tersebut dijual seharga Rp 4.000 [(1 unit A x Rp 1.800 per unit) + (2 unit B x Rp 1.100 per unit)]. Kuantitas dari setiap produk yang akan dijual untuk mencapai titik impas dengan bauran penjualan ini dapat ditentukan sebagai berikut: Q(BE) = R(BE) = Rp 42.666.667 = 10.667 paket Rp 4.000 Rp 4.000 10.667 paket x 1 unit A per paket = 10.667 unit A 10.667 paket x 2 unit B per paket = 21.334 unit B Kuantitas dari setiap produk yang akan dijual dalam bauran ini untuk mencapai pendapatan penjualan sebesar Rp 54.666.667 dan laba sebesar Rp 4.500.000 ditentukan sebagai berikut: Q=
R = Rp 54.666.667 = 13.667 paket hipotetis Rp 4.000 Rp 4.000
30
13.667 paket x 1 unit A per paket = 13.667 unit A 13.667 paket x 2 unit B per paket = 27.334 unit B Alternatif lain untuk kuantitas paket hipotetis yang akan dijual mencapai titik impas atau target laba dapat dihitung langsung menggunakan pendekatan unit produk. Pada contoh ini, jenis ‘unit’ yang akan digunakan dalam rumus adalah paket produk hipotetis. Untuk Star Company, titik impas dalam paket produk hipotetis, dimana setiap paket berisi 1 unit produk A dan 2 unit produk B, ditentukan sebagai berikut: Pendapatan penjualan per paket = (1 unit A x Rp 1.800 per unit) + (2 unit B x Rp 1.100 per unit) = Rp 4.000 Biaya variabel per paket = (1 unit A x Rp 900 per unit) + (2 unit B x Rp 800 per unit) = Rp 2.500 Q(BE) =
F = Rp 16.000.000 P – C Rp 4.000-Rp 2.500
= Rp 16.000.000 = 10.667 paket Rp 1.500
Jumlah unit untuk setiap produk yang diperlukan untuk mencapai titik impas kemudian dihitung dengan cara mengalikan jumlah paket hipotetis dengan jumlah unit dari masing-masing produk pada paket hipotetis sebagai berikut: 10.667 paket x 1 unit A per paket = 10.667 unit A 10.667 paket x 2 unit B per paket = 21.334 unit B Jumlah paket hipotetis yang diperlukan untuk mencapai laba yang ditargetkan sebesar Rp 4.500.000 adalah: R = F + π = Rp 16.000.000 + Rp4.500.000 = 20.500.000 = 13.667 paket P–C Rp 4.000-Rp 2.500 1.500 13.667 paket x 1 unit A per paket = 13.667 unit A 13.667 paket x 2 unit B per paket = 27.334 unit B
31
Dalam kasus multiproduk ini, titik impas dan pendapatan penjualan yang diperlukan untuk mencapai target laba berbeda untuk bauran produk yang berbeda, karena biaya variabel dan margin kontribusi per rupiah penjualan adalah berbeda. Misalnya, jika bauran penjualan yang diperkirakan adalah 1 unit produk A untuk setiap 3 unit produk B, maka biaya variabel per rupiah penjualan berubah dari Rp 0,625 menjadi 0,647, yang ditentukan sebagai berikut: V=
Biaya variabel = Rp900+(3 x Rp800) = Rp 3.300 = 0,647 Pendapatan penjualan Rp1.800+(3 x Rp1.100) Rp 5.100
Peningkatan dalam biaya variabel per rupiah penjualan menyebabkan penurunan dalam margin kontribusi per rupiah pendapatan penjualan dan peningkatan dalam pendapatan penjualan yang diperlukan untuk mencapai titik impas. Pendapatan penjualan yang diperlukan untuk mencapai titik impas meningkat dari Rp 42.666.667 menjadi Rp 45.325.779, yang ditentukan sebagai berikut: R(BE) =
= Rp 16.000.000 = Rp 16.000.000 = Rp 45.325.779 F 1–V 1 – 0,647 0,353
Akibat dari perubahan dalam bauran penjualan ini, maka kuantitas dari setiap produk yang harus dijual untuk mencapai titik impas akan berubah menjadi sebagai berikut: Q(BE) =
R(BE) = Rp 45.325.779 = 8.887 paket Rp 5.100 Rp 5.100
atau setara dengan: Q(BE) =
= Rp 16.000.000 = 8.889 paket F = Rp 16.000.000 P – C Rp 5.100-Rp 3.300 Rp 1.800
32
Perbedaan antara perhitungan dengan hasil 8.887 dan 8.889 hanya karena adanya pembulatan. Jumlah unit dari setiap produk yang harus dijual untuk mencapai titik impas dengan bauran penjualan ini adalah: 8.887 paket x 1 unit A per paket = 8.887 unit A 8.887 paket x 3 unit B per paket = 26.661 unit B Berdasarkan bauran penjualan yang terdiri dari 1 unit produk A dan 2 unit produk B, Star Company akan memperoleh laba sebesar Rp 4.500.000 jika perusahaan dapat menghasilkan pendapatan penjualan sebesar Rp 54.666.667. Tetapi, jika bauran penjualan aktual adalah 1 unit produk A dibandingkan dengan 3 unit produk B, maka pendapatan penjualan mendekati Rp 54.666.667 hanya akan menghasilkan laba Rp 3.413.000, yang ditentukan sebagai berikut: Penjualan: Produk A (10.719* unit dengan harga Rp1.800)...Rp19.294.200 Produk B (32.157** unit dengan harga Rp1.100)..Rp35.372.700 Rp 54.666.900 Dikurang harga pokok penjualan variabel Produk A (10.719* unit dengan harga Rp900) .....Rp 9.647.100 35.372.700 Produk B (32.157** unit dengan harga Rp800).....Rp25.725.600 Margin kontribusi ............................................ Rp 19.294.200 Dikurang biaya tetap ....................................... 16.000.000 Laba operasi .................................................... Rp 3.294.200 *
Rp 54.666.667 penjualan : [Rp 1.800 + (3 x Rp 1.100)] = 10.719 paket x 1 unit = 10.719 unit A ** 10.719 paket x 3 = 32.157 unit B II.4.6. Marjin Kontribusi Dan Rasio Marjin Kontribusi Simamora mendefinisikan, “Marjin kontribusi (contribution margin) adalah perbedaan antara harga jual per unit dan biaya variabel
33
per unit. Marjin kontribusi merupakan jumlah yang tersisa untuk menutup biaya tetap dan memberikan keuntungan” (h. 161). Dan dijelaskan juga, “Rasio marjin kontribusi (contribution margin ratio) adalah persentase marjin kontribusi dibandingkan jumlah penjualan” (h. 163). Hansen et al. Menjelaskan margin kontribusi sebagai berikut: Marjin kontribusi (contribution margin) adalah pendapatan penjualan dikurangi total biaya variabel. Pada titik impas, marjin kontribusi sama dengan beban tetap. Apabila kita mensubstitusikan marjin kontribusi per unit untuk harga dikurangi biaya variabel per unit pada persamaan laba operasi dan memperoleh jumlah unit, maka kita akan mendapatkan persamaan titik impas sebagai berikut: Jumlah unit = Biaya tetap Marjin kontribusi per unit Carter et al. Menyatakan, “Margin kontribusi per dolar penjualan, juga disebut sebagai rasio margin kontribusi (contribution margin ratio-C/M), adalah bagian dari setiap dolar penjualan yang tersedia untuk menutup biaya tetap dan menghasilkan laba” (h. 273). Garrison et al. Mendefinisikan, “Margin kontribusi adalah jumlah yang tersisa dari pendapatan dikurangi beban variabel” (h. 324). Margin kontribusi dan rasio margin kontribusi terkait dengan analisis break-even point. Margin kontribusi merupakan jumlah yang tersisa untuk menutupi biaya tetap yang dikeluarkan perusahaan. Margin kontribusi dapat ditemui dalam laporan laba rugi format kontribusi. Jadi, dapat disimpulkan secara rumus matematis sebagai berikut : Marjin Kontribusi = Harga jual per unit – Biaya variabel per unit
34
Rasio marjin kontribusi = Marjin kontribusi Penjualan II.4.7. Grafik Break-Even Point Mengacu pada pendapat Carter et al. Mengenai cara membuat grafik titik impas (break-even point) sebagai berikut: Data yang diperlukan untuk membuat grafik titik impas (breakeven point) adalah penjualan, biaya tetap dan biaya variabel. Grafik titik impas dibuat sebagai berikut: 1. Garis dasar horizontal, sumbu x, menunjukkan volume penjualan dalam rupiah atau unit. 2. Garis vertikal, sumbu y, menunjukkan biaya dalam rupiah. 3. Garis biaya tetap, digambar sejajar dengan sumbu x pada titik tertentu di sumbu y. 4. Garis total biaya digambar dari titik biaya tetap di sumbu y sebelah kiri ke kanan atas melewati titik biaya impas. 5. Garis total penjualan digambar dari titik 0 ke arah kanan atas melewati titik biaya impas dengan volume penjualan. 6. Garis total biaya memotong garis penjualan pada titik impas. 7. Area segi tiga di sebelah kiri titik impas adalah area rugi; area segi tiga di sebelah kanan adalah area laba. Dalam grafik titik impas, garis biaya tetap adalah sejajar dengan sumbu x dan biaya variabel diplot di atas biaya tetap. Jadi, berdasarkan pendapat di atas dapat digambarkan grafik BEP seperti di bawah ini: 35
Biaya Garis Total Penjualan
BEP
Area Biaya Variabel Garis Total Biaya Daerah Laba Garis Biaya Tetap Area Biaya Tetap
Daerah Rugi Volume Penjualan
Gambar 2.5. Grafik BEP II.4.8. Marjin Pengaman Dan Rasio Marjin Pengaman Margin pengaman dan rasio margin pengaman adalah dua hal yang terkait dengan analisis break-even point. Dengan adanya margin pengaman dan rasio margin pengaman, maka perusahaan dapat menentukan sampai sejauh mana penjualan boleh turun sehingga perusahaan tidak mengalami kerugian. Berikut ini beberapa pendapat mengenai margin pengaman dan rasio margin pengaman dari para ahli: Hansen et al. Mendefinisikan dan menjelaskan mengenai margin pengaman sebagai berikut: Marjin Pengaman (margin of safety) adalah unit yang dijual atau diharapkan terjual atau pendapatan yang dihasilkan atau diharapkan diterima yang melebihi volume impas. Apabila marjin pengaman perusahaan lebih besar daripada penjualan yang diharapkan ditahun depan, maka risiko menderita kerugian penjualan akan lebih kecil dari apabila marjin pengaman lebih kecil. Simamora menjelaskan margin pengaman sebagai berikut: Marjin pengaman penjualan (margin of safety, MS) adalah kelebihan penjualan yang dianggarkan di atas volume penjualan impas. Marjin 36
pengaman penjualan ini menentukan seberapa banyak penjualan boleh turun sebelum perusahaan menderita kerugian. Rumus untuk menghitung marjin pengaman penjualan adalah: Marjin pengaman penjualan = Penjualan dianggarkan – Penjualan impas Marjin pengaman penjualan bisapula dinyatakan dalam rupiah atau dalam bentuk persentase. Persentase ini dicari dengan membagi marjin pengaman penjualan dengan jumlah rupiah penjualan, seperti yang dipaparkan dalam rumus berikut: Persentase marjin pengaman penjualan = Marjin pengaman penjualan dalam rupiah Penjualan Carter et al. Menjelaskan Margin Pengaman: Margin pengaman mengindikasikan berapa banyak penjualan dapat turun dari angka penjualan yang dipilih sebelum perusahaan mencapai titik impas; yaitu, sebelum perusahaan mengalami kerugian... Margin pengaman yang dinyatakan sebagai persentase dari penjualan disebut sebagai rasio margin pengaman (margin of safety ratio-M/S)... Rasio margin pengaman (M/S) = Angka penjualan yang dipilih – Penjualan titik impas Angka penjualan yang dipilh Sedangkan Menurut Garrison et al. “Margin keamanan (safety of margin) adalah kelebihan dari penjualan yang dianggarkan (aktual) di atas titik impas volume penjualan. Margin keamanan menjelaskan jumlah di mana penjualan dapat menurun sebelum kerugian mulai terjadi” (h. 338). Jadi, dapat disimpulkan secara rumus matematis: Marjin Pengaman = Penjualan yang dianggarkan – Penjualan titik impas Rasio Marjin Pengaman = Marjin pengaman penjualan dalam rupiah Penjualan II.4.9. Operating Leverage Operating leverage terkait dengan analisis break even point yang dapat mengukur dampak perubahan biaya tetap terhadap laba operasi 37
ketika terjadi perubahan dalam volume penjualan. Beberapa pendapat mengenai operating leverage menurut para ahli: Garrison et al. Menjelaskan mengenai Operating Leverage: Operating leverage adalah suatu ukuran tentang seberapa sensitif laba bersih terhadap perubahan dalam penjualan. Jika operating leverage tinggi, peningkatan persentase yang kecil dalam penjualan dapat menghasilkan peningkatan laba bersih dalam persentase yang jauh lebih besar. Tingkat operating leverage pada berbagai tingkat penjualan dihitung dengan rumus di bawah ini: Tingkat operating leverage = Margin kontribusi Laba bersih Tingkat operating leverage adalah suatu ukuran, pada tingkat penjualan tertentu, tentang bagaimana persentase perubahan dalam volume penjualan akan mempengaruhi laba. Horngren et al. Mendefinisikan, “Pengungkit operasi (operating leverage) menggambarkan dampak perubahan biaya tetap terhadap laba operasi ketika terjadi perubahan unit terjual, dan tentunya marjin kontribusi” (h. 84). Tampubolon (2005) mendefinisikan, “Operating Leverage (OL) adalah
untuk
mengukur
risiko
operasional
dan
peningkatannya
dibandingkan biaya tetap operasional” (h. 47). Gitman (2006) menjelaskan, “Operating leverage is concerned with the relationship between the firm’s sales revenue and its earnings before intrest and taxes, or EBIT. (EBIT is a descriptive label for operating profit)” (p. 538). Jadi, operating leverage dapat disimpulkan secara matematis: Tingkat operating leverage = Marjin kontribusi Laba bersih
38
II.5.
Konsep Perencanaan Laba Laba merupakan tolak ukur untuk menilai kinerja manajer dalam suatu perusahaan. Perusahaan berharap dalam setiap aktivitas operasi yang dilakukan dapat mencapai laba optimum. Untuk mencapai laba optimum yang telah ditargetkan maka aktivitas perusahaan harus direncanakan sebaik-baiknya termasuk dalam hal perencanaan laba. II.5.1. Pengertian Laba Beberapa pendapat dari para ahli mengenai laba sebagai berikut: Warren, Reeve, Fees yang diterjemahkan oleh Farahmita, Amanugrahani dan Hendrawan (2005) mendefinisikan, “Laporan laba rugi juga melaporkan kelebihan pendapatan terhadap beban-beban yang terjadi. Kelebihan ini disebut laba bersih atau keuntungan bersih (net income atau net profit)” (h. 25). Horngren et al. Merumuskan secara matematis mengenai laba operasi, “Laba operasi = pendapatan operasi total – Harga pokok penjualan dan biaya operasi (tidak termasuk pajak)” (h. 73). Khan & Jain (2000) mendefinisikan laba, “The difference between revenues and expenses is net profit” (p. 2.10). Berdasarkan pendapat diatas, laba merupakan selisih dari pendapatan dan beban. Selisih dari pendapatan dan beban merupakan hal yang selalu ingin dicapai oleh perusahaan. Perusahaan berusaha untuk memperoleh pendapatan yang tinggi dengan beban yang rendah.
39
II.5.2. Pengertian Perencanaan Laba Beberapa pendapat dari para ahli mengenai perencanaan laba sebagai berikut: Carter et al. Mendefinisikan, “Perencanaan laba (profit planning) adalah pengembangan dari suatu rencana operasi guna mencapai cita-cita dan tujuan perusahaan” (h. 4). Welsch, Hilton, Gordon yang diterjemahkan oleh Purwatiningsih dan Warouw (2000) mendefinisikan, “Rencana laba adalah gambaran keuangan dan naratif mengenai hasil yang diharapkan dari keputusan perencanaan” (h. 30). Nafarin (2000) mendefinisikan, “Anggaran rugi laba adalah anggaran berupa daftar yang disusun secara sistematis tentang pendapatan (revenues), beban (expenses), rugi dan laba yang diperoleh suatu perusahaan selama periode tertentu” (h. 11). Simons (2000) menjelaskan, “The profit plan summarizes the expected revenue inflows and expenses outflows for a specified future accounting period (typically one year)” (p. 80). Khan et al. Mendefinisikan, “Profit planning is a function of coordinating the selling price of a unit of product, the variable cost per unit of making and selling the product, the volume of sales, sales-mix in the case of multiple-product firms and the total fixed cost” (p. 15.30). Jadi, perencanaan laba adalah gambaran laba yang diharapkan yang terdiri dari pendapatan yang diharapkan dan beban yang dikeluarkan
40
untuk masa depan selama periode akuntansi. Perencanaan laba juga meliputi perencanaan mengenai pendapatan, biaya dan beban.
41