BAB II LANDASAN TEORI 2.1 Definisi Penelitian Operasional / Operations Research (OR). Penelitian Operasional (Operations Research / OR) adalah suatu ilmu yang berusaha untuk memecahkan suatu masalah dengan mencari suatu keputusan yang paling optimum dari pembatasan sumber daya yang ada. Cara-cara dalam OR untuk memecahkan suatu masalah keputusan yaitu dengan cara perhitungan-perhitungan matematis, oleh karena itu matematika dan ilmu matematis sangatlah memegang peranan penting dalam ilmu OR ini. Pemecahan masalah yang dilakukan pada ilmu OR ini yaitu dengan terlebih dahulu mengubah atau menerjemahkan masalah serta pembatasan-pambatasan sumber daya yang ada menjadi suatu model matematika, kemudian model tersebut akan diolah dan dikembangkan dengan menggunakan caracara perhitungan yang ada untuk memperoleh suatu keputusan yang paling optimal dan efisien secara teoritis. Walaupun demikian, pemecahan masalah dalam keadaan yang sebenarnya tidaklah hanya sekedar dilakukan dengan mengembangkan dan memecahkan model matematis saja, tetapi masih dipengaruhi oleh faktor-faktor penting lainnya yang tidak berwujud dan tidak dapat diterjemahkan secara langsung dalam bentuk matematis. Oleh karena itu, untuk memecahkan suatu masalah diperlukan ilmu-ilmu lain yang dapat mendukung OR, seperti sosiologi, psikologi, dan ilmu prilaku dalam
pengenalan akan pentingnya kontribusi mereka dalam mempertimbangkan faktorfaktor yang tidak berwujud tersebut. 2.1.1 Tahap – Tahap Studi Riset Operasi. Tahap – tahap utama yang harus dilalui oleh sebuah kelompok riset operasi untuk melakukan studi riset operasi mencakup: (Taha, 1996, h.9). 1. Definisi masalah. 2. Pengembangan model 3. Pemecahan model 4. Pengujian keabsahan model 5. Implementasi hasil akhir Walaupun sama sekali bukan merupakan standar, urutan ini umumnya dapat diterima. Kecuali untuk tahap pemecahan model, yang umumnya didasari oleh teknik yang telah dikembangkan dengan baik, tahap-tahap ini bergantung pada jenis masalah yang sedang diteliti dan lingkungan operasi di mana masalah itu terdapat.
2.1.1.1 Definisi Masalah. Tahap pertama studi ini berkaitan dengan definisi masalah. Dari sudut pandang Penelitian Operasional. Pada tahap ini menunjukkan 3 aspek utama: 1) Deskripsi tentang sasaran dari studi tersebut, 2) Identifikasi alternatif keputusan dari sistem tersebut, dan 3) Pengenalan tentang keterbatasan, batasan, dan persyaratan sistem tersebut.
2.1.1.2 Pengembangan Model. Tahap kedua dari studi ini berkaitan dengan pengembangan model. Bergantung pada definisi masalah, kelompok riset operasi tersebut harus memutuskan model yang paling sesuai untuk mewakili sistem yang bersangkutan. Model seperti ini harus menyatakan ekspresi kuantitatif dari tujuan dan batasan masalah dalam bentuk variabel keputusan. Jika model yang dihasilkan dalam salah satu model matematis yang umum (misalnya, pemrograman linier), pemecahan yang memudahkan dapat diperoleh dengan menggunakan teknik-teknik matematis. Jika hubungan matematis dalam model tersebut terlalu kompleks untuk memungkinkan pemecahan analitis, sebuah model simulasi kemungkinan lebih sesuai. Beberapa kasus memerlukan penggunaan kombinasi antara model matematis, simulasi, heuristik. Hal ini tentu saja sebagian besar bergantung pada sifat dan kompleksitas sistem yang sedang diteliti.
2.1.1.3 Pemecahan Model. Tahap ketiga dari studi ini berkaitan dengan pemecahan model. Dalam modelmodel matematis, hal ini dicapai dengan menggunakan teknik-teknik optimisasi yang didefinisikan dengan baik dan model tersebut dikatakan menghasilkan sebuah pemecahan optimal. Jika simulasi atau model heuristik dipergunakan, konsep optimalitas tidak didefinisikan dengan begitu baik, dan pemecahan dalam kasus ini dipergunakan untuk memperoleh evaluasi terhadap tindakan dalam sisterm tersebut.
Di samping pemecahan optimal dari model tersebut, kita harus juga memperoleh, ketika mungkin, informasi tambahan yang berkaitan dengan perilaku pemecahan tersebut yang disebabkan oleh perubahan dalam parameter sistem tersebut. Hal ini biasanya disebut sebagai anlisis sensitivitas. Secara khusus, analisis seperti ini diperlukan ketika parameter dari sebuah sistem tidak dapat diestimasi secara akurat. Dalam kasus ini, adalah penting untuk mempelajari perilaku pemecahan yang optimal di sekitar estimasi ini.
2.1.1.4 Pengujian Keabsahan Model. Tahap keempat menuntut pemeriksaan terhadap keabsahan model. Sebuah model adalah absah jika, walaupun tidak secara pasti mewakili sistem tersebut, dapat memberikan prediksi yang wajar dari kinerja sistem tersebut. Satu metode yang umum untuk menguji keabsahan sebuah model adalah membandingkan kinerjanya dengan data masa lalu yang tersedia untuk sistem aktual tersebut. Model tersebut akan absah jika dalam kondisi masukan yang serupa, model tersebut dapat menghasilkan ulang kinerja masa lalu dari sistem tersebut. Masalahnya di sini adalah bahwa tidak ada jaminan bahwa kinerja masa mendatang akan terus serupa dengan perilaku masa lalu. Harus dicatat bahwa metode penujian keabsahan seperti ini tidak sesuai untuk sistem yang belum ada, karena data tidak tersedia untuk perbandingan. Dalam beberapa kasus, jika sistem semula diinvestigasi oleh sebuah model matematis,
adalah layak untuk mengembangkan sebuah model simulasi yang darinya data dapat diperoleh untuk melakukan perbandingan.
2.1.1.5 Implementasi Hasil Akhir. Tahap akhir studi ini berkaitan dengan implementasi hasil model yang telah diuji tersebut. Beban pelaksanaan hasil ini terutama berada di pundak para peneliti operasi. Implementasi melibatkan penerjemahan hasil ini terutama berada di pundak para peneliti operasi. Implementasi melibatkan penerjemahan hasil ini menjadi petunjuk operasi yang terinci dan disebarkan dalam bentuk yang mudah dipahami kepada para individu yang akan mengatur dan mengoperasikan sistem yang direkomendasikan tersebut.
2.1.2
Programa Linier / Linear Programing (LP). Programa Linier adalah sebuah alat deterministik, yang berarti bahwa semua
parameter model diasumsikan diketahui dengan pasti. Tetapi, dalam kehidupan nyata, jarang seseorang menghadapi masalah di mana terdapat kepastian yang sesungguhnya. Teknik LP mengkompensasi “kekurangan” ini dengan memberikan analisis pascaoptimum dan analisis parametrik yang sistematik untuk memungkinkan pengambil keputusan yang bersangkutan untuk menguji sensitivitas pemecahan optimum yang “statis” terhadap perubahan diskrit atau kontinyu dalam berbagai parameter dari model tersebut. (Taha, 1996, h.16).
2.1.2.1 Metode Grafik. Salah satu metode yang dapat digunakan untuk memecahkan permasalahan LP adalah metode grafik. Pada metode grafik, model-model matemetika tersebut diubah ke dalam bentuk grafik atau biasanya disebut grafik Cartesius. Metode ini dapat dipakai selama jumlah variabel pada LP tidak lebih dari 2 buah variabel. Karena pada metode grafik permasalahan dipecahkan dengan menggambar grafik. Jika variabel yang ada 2 buah maka grafik tersebut akan bergambar 3 dimensi sedangkan jika variabelnya ada 3 buah maka grafik tersebut bergambar 3 dimensi dan jika variabelnya lebih dari 3 maka metode grafik tidak dapat digunakan. Pada grafik bergambar 3 dimensi pembuatannya sangatlah sulit dan tidak dapat dibuat dengan cara manual harus dengan bantuan program-program tertentu, oleh karena itu sangat dianjurkan metode grafifik ini hanya digunakan jika variabel yang ada hanya 2 buah. Metode grafik cukup mudah digunakan, hanya saja metode ini terbatas untuk permasalahan LP yang memiliki variabel tidak lebih dari 2. Langkah-langkah penyelesaian permasalahan LP dengan metode grafik adalah: 1. Menentukan fungsi tujuan dan pembatas yang ditulis dalam bentuk matematika. 2. Plot pembatas dalam sebuah grafik 3. Tentukan nilai dari titik perpotongan 2 atau lebih garis 4. Uji nilai pada setiap sudut pada gambar untuk mencari solusi yang paling sesuai dengan fungsi tujuan
2.1.2.2 Metode Simpleks. Metode Simpleks adalah salah satu metode yang digunakan untuk memecahkan permasalahan LP yang mempunyai variabel tidak terbatas. Metode Simpleks dipublikasikan oleh Dr. G.B. Dantzig pada tahun 1974, dan kemudian dikembangkan lebih lanjut menjadi metode yang cukup mudah digunakan dan mampu menyelesaikan banyak permasalahan LP. Secara umum, persamaan standar LP dapat dituliskan sebagai berikut: (Whitehouse, 1976, h.85) Cari nilai dari X1, X2, . . ., Xn yang maksimum atau minimum Z = C1X1 + C2X2 + . . . + CnXn
(2.1)
Dibatasi oleh :
a11X1 + a12X2 + . . . + a1nXn = b1 a21X1 + a22X2 + . . . + a2nXn = b2 .
.
.
.
.
.
.
.
.
(2.2)
am1X1 + am2X2 + . . . + amnXn = bm dimana Xj ≥ 0 untuk j = 1,2, . . . ,n
(2.3)
Formulasi dari permasalahan yang ada menjadi bentuk standar seperti di atas dapat dikatakan sebagai langkah pertama dari pemecahan masalah dengan
menggunakan metode simpleks. Apabila formulasi masalah yang ada tidak sama seperti bentuk standar (menggunakan tanda pertidaksamaan), maka formulasi harus diubah dulu menjadi bentuk standar. Beberapa bentuk persamaan yang mungkin muncul adalah:
Σ
aijXj ≤ bi
i = 1,2, . . . m
pertidaksamaan di atas akan diubah menjadi Σ
aijXj + Si = bi
i = 1,2, . . . m
dan fungsi tujuan akan menjadi: Z = Σ CjXj + 0Si Dimana Si menunjukan variabel slack pada pembatas ke i.
Σ
aijXj ≥ bi
i = 1,2, . . . m
pertidaksamaan di atas akan diubah menjadi Σ
aijXj - Si = bi
i = 1,2, . . . m
apabila dianggap nilai Xj = 0, maka nilai Si = -b; sedangkan nilai semua variabel, termasuk Si harus ≥ 0. Untuk mengatasi masalah ini, maka akan dimunculkan variabel baru yaitu variabel artifisial. Meskipun kita dapat mengartikan variabel slack sebagai sumber yang tidak terpakai, variabel artifisial tidak dapat diartikan. Maka pembatas akan berubah menjadi: Σ
aijXj - Si + Ri = bi
i = 1,2, . . . m
dan dengan Xj = Si = 0, maka akan diperoleh Ri yang positif (fisibel)
Karena variabel aritifisial tidak ada artinya, maka variabel ini harus tidak nampak pada solusi yang dihasilkan. Oleh karena itu, variabel artifisial diberi nilai pinalti yang sangat besar apabila variabel artifisial dimasukan dalam fungsi tujuan. Untuk dapat mempermudah penulisan, bilangan yang besar itu akan dituliskan sebagai “M” atau biasanya disebut Big M. Fungsi tujuan akan menjadi: Z = Σ CjXj + 0Si - Σ MRi Langkah-langkah dari metode ini adalah sebagai berikut:(Whitehouse,1976, h.86). Langkah 1.
bentuk permasalahan menjadi bentuk standar .
Langkah 2.
tentukan solusi inisial basic / dasar yang fisibel .
Langkah 3.
tentukan, apakah masih ada solusi fisibel yang lebih baik. Jika tidak, solusi optimal telah ditemukan. Jika masih ada solusi fisibel yang lebih baik, lanjutkan ke langkah 4.
Langkah 4.
identifikasi variabel yang memberikan kontribusi peningkatan yang terbesar untuk fungsi objektif.
Langkah 5.
identifikasi variabel yang harus dipindahkan dari solusi basis ketika variabel yang diidentifikasikan pada langkah 4 diperoleh.
Langkah 6.
lakukan perhitungan yang diperlukan untuk menentukan entering variabel (yang diidentifikasikan pada langkah 4) dan pindahkan variabel masuk (yang diidentifikasikan pada langkah 5)
Langkah 7.
kembali ke langkah 3
Tabel simpleks merupakan salah satu alat yang sangat penting dalam perhitungan. Tabel simpleks diperlihatkan pada gambar 2.1.
Cj Variabel pd solusi
Var Cj
X1
X2
...
Xn
b
i=1 2 . M Zj Cj – Zj
Gambar 2.1 Tabel Simpleks.
Data Cj yang harus dimasukan pada baris paling atas tabel berasal dari (3.1) dan akan selalu tetap sampai ditemukan solusi dari masalah. Kolom 1 berisi Xj yang merupakan variabel basis (variabel dari solusi) dan berjumlah m (banyaknya pembatas). Kolom selanjutnya berisi Cj yang berhubungan dengan Xj yang ada. Kolom selanjutnya yang berjumlah n kolom berisi aij yang berhubungan dengan Xj pada kolom 1. kolom b berisi nilai dari variabel yang merupakan solusi, dan tabel terakhir dipakai untuk perhitungan yang berhubungan dengan algoritma yang ada. Baris Zj berisi nilai fungsi tujuan.
Untuk lebih jelasnya dapat dilihat pada contoh : Maksimasi Z = 2X1 + 3 X2 Pembatas:
(laba)
3X1 + 6 X2 ≤ 24
(pekerja)
2X1 + X2 ≤ 10
(bahan mentah)
X1 , X2 ≥0 Langkah 1:
bentuk permasalahan menjadi bentuk standar
Dapat dilihat bahwa pembatas 1 dan 2 tidak dalam bentuk standar karena persamaan tidak dalam bentuk sama dengan (=) melainkan lebih kecil dari (≤). Tanda ini dapat diubah menjadi tanda sama dengan, tetapi harus dibuat variabel baru yang mewakili pekerja yang tidak terpakai apabila menggunakan tanda lebih kecil dari. Variabel baru itu kita namai S1 (slack 1) ; pembatas menjadi 3X1 + 6 X2 + S1 = 24 2X1 + 1 X2 + S2 = 10 bentuk permasalahan menjadi: Maksimasi Z = 2X1 + 3 X2 + 0S1 + 0 S2 Pembatas:
3X1 + 6 X2 + S1 + 0 S2= 24 2X1 + 1 X2 + 0S1 + S2 = 10
Langkah 2. Tentukan solusi inisial basic / dasar yang fisibel Digunakan tabel simpleks sebagai alat untuk mempermudah perhitungan. Data-data yang digunakan untuk mengisi tabel ini diambil dari bentuk standar yang ada.
Cj
2
3
0
0
Var Cj
X1
X2
S1
S2
b
S1
0
3
6
1
0
24
S2
0
2
1
0
1
10
Variabel pd solusi
Zj Cj – Zj
Gambar 2.2 Membentuk tabel inisial.
Variabel pada solusi untuk tabel inisial, S1 dan S2
,
diperoleh dari keadaan dimana
nilai X1 = X2 = 0, sehingga pembatas pertama dipakai untuk mecari nilai S1 dan pembatas kedua dipakai untuk mencari nilai S2. Nilai var Cj adalah nilai Cj dari variabel pada solusi, dalam hal ini adalah S1 dan S2. Lima kolom selanjutnya berisi koefisien dari pembatas dan batasannya. Jika X1 = X2 = 0 seperti yang telah dilakukan, maka nilai S1 dan S2 adalah 24 dan 10. Nilai variabel dari solusi dasar yang fisibel akan selalu ditampilkan pada kolom b. Sedangkan variabel yang tidak ditampilkan akan bernilai 0. Dengan demikian, gambar 2.2 dapat diartikan bahwa jumlah produk yang dihasilkan perusahaan (X1 dan X2) adalah 0, maka tenaga kerja yang tidak terpakai, S1 dan bahan baku yang tidak terpakai S2 adalah 24 dan 10 unit. Langkah 3: tentukan, apakah masih ada solusi fisibel yang lebih baik Pada bagian ini, baris Zj dan baris terakhir akan diisi. Nilai baris Zj : Zj(X1) = (var Cj baris 1) (a12) + (var Cj baris 2) (a21) = 0 (3) + 0 (2) = 0
dan seterusnya dicari nilai Zj sampai X4. Nilai Zj adalah nilai fungsi tujuan. Sedangkan baris terakhir dapat dicari dengan mengurangkan nilai pada baris teratas (Cj) dengan Zj. Cj – Zj (X1) = Cj (X1) - Zj (X1) = 2 – 0 = 2 Sehingga tabel menjadi: Cj
2
3
0
0
Var Cj
X1
X2
S1
S2
b
S1
0
3
6
1
0
24
S2
0
2
1
0
1
10
Zj
0
0
0
0
0
Cj – Zj
2
3
0
0
0
Variabel pd solusi
Gambar 2.3 Lanjutan perhitungan Zj dan Cj-Zj untuk tabel inisial.
Nilai pada baris terakhir ini menunjukan perubahan fungsi tujuan (Zj) yang terjadi apabila nilai variabel pada kolom yang bersangkutan dinaikan. Karena fungsi tujuan adalah maksimasi, maka apabila nilai pada baris terakhir >0, maka masih ada solusi fisibel yang lebih baik jadi tabel tersebut belumlah optimal sehingga langsung pada langkah berikutnya sampai nilai pada baris terakhir semuanya ≤0. Langkah 4. identifikasi variabel yang memberikan kontribusi peningkatan yang terbesar (entering variable) untuk fungsi objektif.
Cari nilai terbesar pada baris terakhir. Untuk tabel di atas, variabel X2 nilai terbesar (nilai terbesar untuk kasus maksimasi dan terkecil untuk kasus minimasi) dari Cj-Zj =3. Nilai ini kita sebut sebagai entering variable (EV). Nilai EV ditunjukan oleh panah kecil pada gambar 2.3. Yang merupkan EV adalah X2 langkah 5. identifikasi variabel yang harus dipindahkan dari solusi basis Pada langkah ini, akan dihitung nilai dari kolom terakhir dengan cara membagi nilai b dengan nilai aij pada kolom dimana terletak EV. Nilai kolom terakhir untuk tabel di atas adalah 4 (diperoleh dari 24/6) dan 10 (diperoleh dari 10/1). Leaving Variabel (LV) ditentukan dengan cara mencari nilai positif terkecil (baik untuk tujuan maksimasi atau minimasi) pada kolom terakhir. Bila ada terdapat dua atau lebih nilai positif terkecil yang sama, maka ambil salah satu saja secara acak sebagai LVnya. Yang merupakan LV adalah S1. Selanjutnya dicari perpotongan dari entering colom dengan leaving row. Nilai perpotongan tersebut disebut pivot elemen (6) yang akan digunakan untuk perhitungan selanjutnya.
Cj
2
3
0
0
Var Cj
X1
X2
S1
S2
B
S1
0
3
6
1
0
24
4
S2
0
2
1
0
1
10
10
Zj
0
0
0
0
0
Cj – Zj
2
3
0
0
0
Variabel pd solusi
Gambar 2.4 Menentukan entering dan leaving variabel.
Sebelum melanjutkan ke langkah selanjutnya, yang penting diingat adalah: X2 adalah EV karena memberikan kontribusi terbesar untuk fungsi tujuan, dan kemudian dapat dihitung nilai X2 tanpa melewati pembatas. Pada gambar 2.4 terlihat bahwa jumlah X2 yang dapat dibuat adalah 4 unit dan S1 (jumlah tenaga kerja yang tidak dibutuhkan) harus dipindahkan dari variabel pada solusi. Langkah 6.lakukan perhitungan yang diperlukan untuk menentukan entering variabel (yang diidentifikasikan pada langkah 4) dan pindahkan variabel masuk
Variabel pd solusi
Cj
2
3
0
0
Var Cj
X1
X2
S1
S2
X2
3
S2
0
B
Zj Cj – Zj
Gambar 2.5 Memulai solusi yang telah diperbaiki.
Perhitungan untuk matriks yang baru dimulai pada baris yang merupakan entering variabel yaitu baris pivot. Nilai pada baris pivot dicari dengan membagi nilai aij pada gambar 2.4 dengan pivot elemen.
Cj
2
3
0
0
Var Cj
X1
X2
S1
S2
b
X2
3
3/6
1
1/6
0
4
S2
0
Variabel pd solusi
Zj Cj – Zj
Gambar 2.6 Pengembangan dari solusi yang telah diperbaiki
Untuk mengisi baris selanjutnya, dibutuhkan 2 tahap perhitungan. Nilai aij pada kolom EV yang menjadi 0. Hal ini dilakukan dengan cara mengalikan baris pivot dengan angka yang dapat menyebabkan nilai aij pada kolom EV menjadi 0. Untuk tabel di atas, baris pivot harus dikali -1. Dapat dilihat bahwa pwrhitunganperhitungan pada langkah ini dilakukan dengan cara aljabar linier. Perhitungannya adalah sebagai berikut: 2
1
0
1
10
-3/6
-1
-1/6
-0
-4
9/6
0
-1/6
1
6
nilai ini akan dimasukan pada baris kedua yang masih kosong yang dapat dilihat pada gambar 2.6. Contoh di atas hanya memiliki 2 baris, maka perhitungan kita telah selesai. Apabila pada tabel terdapat lebih dari 2 baris, maka akan terus diadakan perhitungan sampai semua baris terisi. Langkah 7 yaitu kembali ke langkah 3
Nilai pada baris Zj adalah: Kolom X1 = 3 (3/6) + 0 (9/6) = 9/6 dst Setelah itu akan dicari nilai Cj – Zj. Hasil perhitungan akan dilihat pada gambar 2.7. Cj
2
3
0
0
Var Cj
X1
X2
S1
S2
b
X2
3
3/6
1
1/6
0
4
S2
0
9/6
0
-1/6
1
6
Zj
9/6
3
3/6
0
12
Cj – Zj
3/6
0
-3/6
0
-12
Variabel pd solusi
Gambar 2.7 Menentukan nilai Zj dan Cj-Zj.
Nilai Cj-Zj terbesar adalah 3/6 sehingga dapat ditentukan EV yaitu X1 Cj
2
3
0
0
Var Cj
X1
X2
S1
S2
b
X2
3
3/6
1
1/6
0
4
8
S2
0
9/6
0
-1/6
1
6
4
Zj
9/6
3
3/6
0
12
Cj - Zj
3/6
0
-3/6
0
-12
Variabel pd solusi
Gambar 2.8 Menentukan entering dan leaving variabel.
Yang merupakan LV adalah S2 dengan elemen pivot 9/6. Pada baris pivot menunjukan bahwa 4 unit X1 akan diperkenalkan pada perhitungan selanjutnya dan
peningkatan fungsi tujuan adalah 3/6 untuk satu nilai X1. Kemudian perhitungan dilanjutkan sehingga memperoleh gambar 2.9.
Cj
2
3
0
0
Var Cj
X1
X2
S1
S2
b
X2
3
0
1
2/9
-1/9
2
X1
2
1
0
-1/9
2/3
4
Zj
2
3
4/9
1/3
14
Cj - Zj
0
0
-4/9
-1/3
-14
Variabel pd solusi
Gambar 2.9 Tabel optimal.
Dari tabel pada gambar 2.9 terlihat bahwa perhitungan telah optimal karena tidak ada nilai Cj-Zj >0. Solusi dari contoh soal yang terlihat pada kolom b gambar 2.9 adalah: 2 unit X2 dan 4 unit X1 serta keuntungan sebesar 14.
2.1.2.3 Analisa Sensitivitas. Hasil perhitungan dari metode simpleks dapat dianalisa dan diintepretasikan lebih lanjut. Daftar berikut ini meringkaskan informasi yang dapat diperoleh dari tabel simpleks: 1. Status sumber daya. 2. Harga dual (nilai unit sumber daya) dan pengurangan biaya.
3. Sensitivitas pemecahan optimum terhadap perubahan dalam ketersediaan sumber daya, laba/biaya marginal (koefisien fungsi tujuan), dan penggunaan sumber daya oleh kegiatan-kegiatan dalam model. Semua butir di atas akan dibahas dan diterangkan melalui penggunaan perangkat lunak. Fungsi dari analisa sensitivitas ini adalah memberikan pandangan tentang bagaimana hasil yang diperoleh pada perhitungan metode simpleks. (Taha, h.95).
2.1.2.4 Status Sumber Daya. Sebuah batasan diklasifikasikan sebagai batasan yang langka atau melimpah bergantung, secara berturut-turut, pada apakah pemecahan optimum tersebut “menghabiskan” keseluruhan jumlah yang tersedia untuk sumber daya yang bersangkutan. Tujuannya adalah memperoleh informasi ini dari tabel optimum. Status sumber daya (melimpah atau langka) dalam setiap model LP dapat diperoleh secara langsung dari tabel optimum dengan mengamati nilai variabel slack. Jika nilai variabel slack bernilai positif berarti bahwa sumber daya tersebut tidak dipergunakan sepenuhnya, sehingga melimpah, sementara nilai variabel slack yang bernilai sama dengan nol menunjukkan bahwa keseluruhan sumber daya tersebut dihabiskan oleh kegiatan-kegiatan dalam model yang bersangkutan. Sumber daya yang dapat dinaikkan untuk maksud memperbaiki pemecahan (menigkatkan laba) adalah sumber daya yang langka pada tabel optimum. Sebuah pertanyaan logis secara alamiah timbul: apabila ada dua atau lebih sumber daya langka, yang manakah yang harus diprioritaskan terlebih dahulu dalam alokasi dana
tambahan untuk meningkatkan laba secara paling menguntungkan? Kita dapat menjawab pertanyaan ini ketika kita mempertimbangkan harga dual dari sumber daya yang berbeda pada bab selanjutnya.
2.1.2.4.1 Harga Dual. Secara spesifik, nilai dual (shadow price) menunjukan berapa banyak perubahan fungsi tujuan untuk setiap unit jika dihubungkan dengan sumber daya yang ada. Untuk contoh di atas, nilai Y1 = 4/9 dan Y2 = 1/3 sehingga dengan satu tambahan tenaga kerja akan meningkatkan keuntungan sebesar 4/9 dari 1 unit, dan dengan satu tambahan bahan baku akan meningkatkan keuntungan sebesar 1/3 dari 1 unit. (Whitehouse, 1976, h.105) Untuk mencari nilai dual, tidak harus dilakukan iterasi lagi dari persamaan dual. Nilai dual dapat diperoleh dari tabel primal yaitu pada baris Zj dan kolom slack (Si) atau kolom artifisial (Ri) apabila tidak terdapat slack pada pembatas.
2.1.2.4.2 Perubahan Maksimum dalam Ketersediaan Sumber Daya. Dalam bagian ini, akan diterjemahkan arti dari kisaran variasi dalam ketersediaan sumber daya di mana harga dual tetap konstan. Untuk memperoleh nilai kisaran variasi, perlu dilakukan beberapa perhitungan tambahan, tetapi hal ini tidak dibahas, karena telah diperhitungkan dalam perangkat lunak. Nilai minimum RHS pembatas pertama adalah nilai RHS terkecil dari pembatas pertama dimana harga dual dari pembatas tersebut tidak berubah,
sedangkan nilai maksimum RHS pembatas pertama adalah nilai RHS terbesar dari pembatas pertama dimana harga dual dari pembatas tersebut tidak berubah. 2.1.2.4.3 Perubahan Maksimum dalam Laba/Biaya Marginal. Bagian ini dipergunakan untuk mempelajari kisaran yang diijinkan untuk perubahan dalam laba (atau biaya) marginal. Dalam pembahasan ini akan diperlihatkan bagaimana memperoleh informasi fungsi tujuan dapat berubah dalam batasan-batasan tanpa mempengaruhi nilai optimal dari variabel (walau nilai optimum z akan berubah). Dalam situasi ini, seperti dalam kasus perubahan sumber daya, persamaan tujuan tidak pernah dipergunakan sebagai pivot. Jadi setiap perubahan dalam koefisien fungsi tujuan hanya akan mempengaruhi persamaan tujuan dalam tabel optimum. Ini berarti bahwa perubahan seperti ini memiliki pengaruh berupa membuat pemecahan menjadi tidak optimal. Sasaran kita adalah menentukan kisaran variasi untuk koefisien tujuan (satu per satu) di mana di dalamnya pemecahan optimum saat ini tetap tidak berubah. Dua kasus berbeda timbul bergantung pada apakah variabel tersebut dasar atau non dasar dalam tabel optimal. •
Variabel dasar. Sifat operasi baris dalam tabel simpleks mengungkapkan bahwa setiap perubahan dalam koefisien semula dari variabel dasar optimal akan mempengaruhi semua koefisien nondasar dalam baris tujuan dari tabel optimum. Perubahan tersebut mempengaruhi optimum saat ini, karena satu variabel
nondasar atau lebih kemungkinan menjadi dapat dimasukkan ke dalam pemecahan dasar. •
Variabel nondasar. Kasus variabel nondasar adalah lebih sederhana, karena perubahan dalam koefisien tujuan mereka semula hanya dapat mempengaruhi koefisien persamaan z dan tidak mempengaruhi yang lainnya. Ini terjadi karena kolom yang bersangkutan tidak dijadikan pivot seperti dalam kolom dasar. Variabel nondasar dapat berubah menjadi variabel dasar apabila koefisien tujuannya diubah. Apabila kita tetap memaksakan variabel non dasar ke dalam pemecahan dasar tanpa mengubah koefisien tujuannya, maka nilai tujuan akan berkurang (untuk kasus maksimasi) sebesar nilai koefisien tujuan optimal dari variabel nondasar. Karena alasan ini, koefisien tujuan optimal dari variabel nondasar biasanya disebut sebagai pengurangan biaya karena mereka mewakili laju penurunan bersih dalam nilai tujuan optimum yang dihasilkan dari kenaikan variabel nondasar yang bersangkutan. Sebenarnya, pengurangan biaya mewakili selisih bersih antara biaya sumber daya per unit dengan pendapatan per unit.
2.1.2.5 Integer Programing. Hasil yang diperoleh dari perhitungan LP terkadang memperoleh nilai yang tidak bulat. Untuk permasalahan tertentu, hal ini tidak dimungkinkan. Contohnya saja, mencari jumlah mesin yang paling optimal untuk suatu pabrik. Banyaknya mesin tidak mungkin berupa pecahan. Oleh karena itu, hasil yang diperoleh dari perhitungan
LP harus dijadikan bilangan bulat dan lebih besar dari nol (integer) dengan cara menaikan atau menurunkan bilangan tersebut. Membuat suatu bilangan menjadi integer dapat dilakukan dengan cara cobacoba (trial and error) Hasil pecahan yang diperoleh dapat dinaikan atau diturunkan, tetapi harus memenuhi pembatas dan mencapai tujuan. Cara ini tidak efisien untuk variabel yang banyak, karena akan memakan waktu yang lama. Cara lain untuk mengintegerkan bilangan adalah dengan teknik branch and bound (B&B) Prinsip-prinsip dari teknik branch and bound adalah: •
mengurangi ruang solusi dengan menghilangkan cabang yang tidak fisibel
•
perlu menambahkan fungsi pembatas. Pembatas ini dipakai hanya sampai bila sudah diketahui cabang tersebut tidak fisibel lagi, kemudian diganti dengan fungsi pembatas yang baru .
Langkah-langkah algoritma B&B dengan mengasumsikan masalah maksimasi: 1. Ukur/batasi. Pilih LPi sebagai bagian masalah berikutnya untuk diteliti. Pecahkan LPi dan coba ukur bagian masalah itu dengan menggunakan kondisi yang sesuai. 2. Percabangan. Pilih salah satu variabel Xj yang nilai optimumnya Xj* dalam pemecahan LPi tidak memenuhi batasan integer. Singkirkan bidang [Xj*]<Xj<[Xj*]+1 dengan membuat dua bagian masalah LP yang berkaitan dengan dua batasan yang tidak dapat dipenuhi secara bersamaan ini. Xj ≤ [Xj*] dan
Xj ≥ [Xj*]+1
3. Kembali ke langkah 1. Walaupun metode B&B memiliki kekurangan, dapat dikatakan bahwa sampai sekarang, ini adalah metode yang paling efektif dalam memecahkan programprogram integer dengan ukuran praktis. (Taha, 1996, h.332).
2.1.2.6 Goal Programming. Goal programing mengaplikasikan model programa linier (LP) yang mempunyai lebih dari 1 fungsi tujuan. Pada Goal Programing perhitungan hampir sama dengan programa linier. Untuk memperjelas algoritma perhitungan dengan goal programing, akan digunakan contoh 2 sebagai berikut: (Levin, 1992, h.687). Maksimasi
8 x1 + 6 x2
(keuntungan)
Pembatas
4 x1 + 2 x2 ≤ 60
(waktu di dept. asembly)
2 x1 + 4 x2 ≤ 48
(waktu di dept. Finishing)
x1 , x2 ≥ 0 x1 adalah jumlah meja ; x2 adalah jumlah bangku
2.1.2.6.1 Prioritas Setara pada Tujuan Multipel. Dengan menggunakan contoh soal 2 di atas, dimisalkan perusahaan mempunyai 2 tujuan, yang pertama memperoleh keuntungan $100 dan menghasilkan 10 meja. Karena kedua tujuan ini setara, maka perubahan $1 dari keuntungan setara
dengan perubahan 1 buah meja. Untuk formulasi, akan digunakan notasi sebagai berikut: Duk = jumlah dimana tujuan keuntungan melampaui batas Dok = jumlah dimana tujuan keuntungan kurang dari batas Dum = jumlah dimana tujuan banyaknya meja melebihi batas Dom = jumlah dimana tujuan banyaknya meja kurang dari batas Adapun formulasi masalahnya menjadi: Minimasi :
Duk + Dum
Pembatas
8x1 + 6x2 + Duk – Dok = 100
(tujuan keuntungan)
x2 + Dum – Dom = 10
(tujuan jumlah meja)
4x1 + 2x2 ≤ 60
(waktu di dept asembly)
2 x1 + 4 x2 ≤ 48
(waktu di dept. Finishing)
semua variabel ≥ 0
perhitungan dan jawaban dari formulasi di atas dapat dilihat pada tabel 2.10. Cj
Var
0
0
0
0
1
0
1
0
Cj
Jlh
M
B
Sa
Sf
Duk
Dok
Dum
Dom
1
Duk
100
8
6
0
0
1
-1
0
0
1
Duk
10
1
0
0
0
0
0
1
-1
0
Sa
60
4
2
1
0
0
0
0
0
0
Sf
48
2
4
0
1
0
0
0
0
Zj
110
9
6
0
0
1
-1
1
-1
-9
-6
0
0
0
1
0
1
Cj-Zj 0
Dom
2½
0
¾
0
0
1/8
-1/8
-1
1
0
M
12 ½
1
¾
0
0
1/8
-1/8
0
0
0
Sa
-10
0
-1
1
0
-1/2
½
0
0
0
Sf
23
0
2½
0
1
-1/4
¼
0
0
Zj
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
Cj-Zj
Tabel 2.10. Solusi inisial dan optimal untuk contoh 2..
Dari tabel 2.10 dapat diperhatikan bahwa jumlah meja yang dapat diproduksi (12 ½ buah) melebihi tujan jumlah meja yang ingin dicapai (10 buah). Kelebihan ini (12 ½ 10 = 2 ½ ) dapat dilihat pada Dom. Tujuan keuntungan $100 juga tercapai. Hal ini dapat dilihat dari Duk dan Dok adalah 0 karena kedua variable tersebut tidak terdapat pada variabel Cj, oleh karena itu, keuntungannya adalah $100.
2.1.2.6.2 Prioritas Bertingkat pada Tujuan Multipel. Pada beberapa kasus, kepentingan dari tujuan yang satu melebihi kepentingan tujuan yang lain. Misalkan fungsi tujuan dari contoh 2 ada tiga buah, dengan prioritas (p1, p2, dan p3, dimana p1 paling penting) masing-masing dapat dilihat pada tabel 2.11 Tujuan
Prioritas
1.produksi meja mencapai 13 buah
P1
2.mencapai keuntungan $135
P2
3.produksi bangku mencapai 5 buah
P3
Tabel 2.11. Tujuan Fungsi dan Prioritas Tujuan.
Untuk memformulasi masalah ini akan digunakan notasi sebagai berikut: Duk = jumlah dimana tujuan keuntungan melampaui batas Dok = jumlah dimana tujuan keuntungan kurang dari batas Dum = jumlah dimana tujuan banyaknya meja melebihi batas Dom = jumlah dimana tujuan banyaknya meja kurang dari batas Dub = jumlah dimana tujuan banyaknya bangku melampaui batas Dob = jumlah dimana tujuan banyaknya bangku kurang dari batas Adapun formulasi masalahnya menjadi: Minimasi :
P1Dum + P2Duk + P3Dub
Pembatas
8x1 + 6x2 + Duk – Dok = 135
(tujuan keuntungan)
x2 + Dum – Dom = 13
(tujuan jumlah meja)
x1 + Dub – Dob = 5
(tujuan jumlah meja)
4x1 + 2x2 ≤ 60
(waktu di dept asembly)
2 x1 + 4 x2 ≤ 48
(waktu di dept. Finishing)
semua variabel ≥ 0 Tabel 2.12 memperlihatkan langkah dengan metode simpleks.
Cj
Var
0
0
0
0
Jlh
M
B
Sa
Sf
P2
0
P1
0
P3
0
Duk Dok Dum Dom Dub Dob
P2
Duk
125
8
6
0
0
1
-1
0
0
0
0
P1
Dum
13
1
0
0
0
0
0
1
-1
0
0
P3
Dub
5
0
1
0
0
0
0
0
0
1
-1
0
Sa
60
4
2
1
0
0
0
0
0
0
0
0
Sf
48
2
4
0
1
0
0
0
0
0
0
P3
Zj
0
1
0
0
0
0
0
0
1
-1
Cj-Zj
0
-1
0
0
0
0
0
0
0
1
Zj
8
6
0
0
1
-1
0
0
0
0
Cj-Zj
-8
-6
0
0
0
1
0
0
0
0
Zj
1
0
0
0
0
0
1
-1
0
0
Cj-Zj
-1
0
0
0
0
0
0
1
0
0
P2
P1
Tabel 2.12 Langkah Metode Simpleks untuk Contoh 2.
Penjelasan mengenai beberapa nilai pada tabel 2.12: 1. baris Zj dan Cj-Zj adalah terpisah untuk setiap prioritas p1, p2, dan p3. Karena tidak diketahui deviasi dari setiap tujuan, maka dibutuhkan baris-baris
yang terpisah untuk Zj dan Cj-Zj pada setiap prioritas untuk mempermudah perhitungan. 2. nilai Cj-Zj dari setiap kolom dibaca pada tiga baris terakhir. Contohnya: nilai Cj-Zj untuk kolom M adalah -8P2 -1P1; nilai Cj-Zj untuk kolom B adalah 1P3 – 6P2. 3. dalam memilih variabel masuk (M pada kasus ini), kita mulai dengan prioritas yang paling penting, P1, pilih nilai Cj – Zj yang paling negatif pada baris tersebut. Apabila tidak ada nilai yang negatif pada baris tersebut, maka cari ke prioritas kedua terpenting, yaitu P2. 4. untuk menentukan variabel keluar, digunakan prosedur yang seperti biasanya. Untuk kasus ini 13/1 adalah nilai positif yang terkecil; oleh karena itu baris Dum akan dipindahkan. 5. apabila kita menemukan nilai Cj-Zj negatif yang mempunyai nilai Cj-Zj yang positif pada baris P di bawahnya, jangan pedulikan nilai negatif tersebut. Nilai positif seperti itu dapat berarti deviasi dari tujuan di bawahnya (tujuan yang lebih penting) dapat meningkat apabila kita memasukan variabel tersebut, dan hal ini dihindarkan karena hal tersebut tidak memberikan solusi yang lebih baik. Ketika tabel simpleks inisial telah terbentuk, proses selanjutnya adalah sama seperti simpleks biasa, hanya saja 5 point di atas haruslah diperhatikan. Tabel simpleks terakhir diperlihatkan pada tabel 2.13.
Cj
Var
0
0
0
0
Jlh
M
B
Sa
Sf
P2
0
P1
0
P3
0
Duk Dok Dum Dom Dub Dob
P2
Duk
7
0
0
-3
0
1
-1
4
-4
0
0
0
M
13
1
0
0
0
0
0
1
-1
0
0
P3
Dub
1
0
0
-1/2
0
0
0
2
-2
1
-1
0
B
4
0
1
½
0
0
0
-2
2
0
0
0
Sf
6
0
0
-2
1
0
0
6
-6
0
0
P3
Zj
0
0
-1/2
0
0
0
2
-2
1
-1
Cj-Zj
0
0
½
0
0
0
-2
2
0
1
Zj
0
0
-3
0
1
-1
4
-4
0
0
Cj-Zj
0
0
3
0
0
1
-4
4
0
0
Zj
0
0
0
0
0
0
0
0
0
0
Cj-Zj
0
0
0
0
0
0
1
0
0
0
P2
P1
Tabel 2.13.Tabel Simpleks Optimal.
Perhatikan bahwa ada nilai negatif pada Cj-Zj untuk baris P2 dan P3 (-4 dan 2). Meskipun demikian, ada nilai positif pada baris P1, oleh karena itu nilai negatif pada P2 dan P3 dapat diabaikan. Dari tabel 2.13 dapat dilihat bahwa ada beberapa tujuan yang tercapai, dan ada pula yang tidak tercapai. Tujuan terpenting (memproduksi 13 meja) tecapai. Tujuan kedua terpenting (memperoleh keuntungan $135) tidak tercapai. Keuntungan yang didapat hanya $128; deviasi yang terjadi hanya sedikit, dibawah 5 % (deviasi dihitung dari nilai Duk). Tujuan terakhir terpenting (memproduksi 5 kursi) tidak tercapai. Kursi yang diproduksi kurang 1 buah (diperlihatkan pada baris Dub) dan
deviasi yang terjadi adalah 20%. Perhatikan pula bahwa ada 6 jam waktu finishing yang tidak terpakai. Hal ini terlihat seperti masih adanya sisa waktu finishing sehingga kita masih dapat memproduksi bangku, tetapi hal yang perlu diingat adalah waktu asembly yang telah tidak bersisa. Oleh karena itu tidak dapat dibentuk bangku yang lain lagi.
2.1.2.7 Terminologi Cost Accounting. Pada bagian ini, akan dibahas sekilas umum tentang cost accounting untuk mendukung pengolahan data dan analisa mengenai biaya operasi. Pembahasan hanya ditekankan pada satu jenis metode pembagian saja yaitu variable cost dan fixed cost. Sebenarnya, pembagian biaya ada bermacam-macam, tergantung dari tujuan yang ingin dicapai oleh pemakai. Secara garis besar biaya dapat dibagi berdasarkan atas: (Horngren, 1988, h.38). 1. tingkat rata-rata: a. Total cost. b. Unit cost. 2. keadaan yang disebabkan oleh perubahan volume: a. Fixed. b. Variable. 3. fungsi: a. Manufaktur. b. Penjualan. c. Administratif.
4. sesuai penggunaan: a. Langsung. b. Tidak langsung. catatan: suatu biaya termasuk langsung atau tidak langsung tergantung dari tujuan dan tingkat kesulitan perhitungan. Sebagai contoh, gaji seorang manajer departemen merupakan biaya langsung bila dibagi berdasarkan departemen tetapi sekaligus bisa merupakan biasa tidak langsung jika dibagi berdasarkan produk. 5. waktu yang dibebankan pada pendapat: a. Product cost. b. Period cost. 6. waktu pada saat perhitungan berlaku: a. Historical. b. Budget atau ditentukan.
2.1.2.7.1 Variable Cost dan Fixed Cost. Beberapa jenis biaya langsung berubah dengan berubahnya volume hasil produksi, sedangkan ada jenis biaya lainnya yang dalam hubungannya dengan suatu waktu, tetap tidak berubah dalam jumlahnya. Hanya sistem pembiayaan yang memperlihatkan perbedaan wajar yang penting yang dihimpun dan dilaporkan untuk perencanaan strategi perusahaan atau menghitung harga pokok suatu jenis produksi atau jasa bisa bermanfaat bagi manajemen.
2.1.2.7.1.1 Fixed Cost (Biaya Tetap). Biaya tetap didefinisikan sebagai biaya yang tidak berubah jumlahnya meskipun kegiatan bisnis meningkat atau menurun. Meskipun beberapa jenis biaya tampak tetap, namun dalam jangka penjang semua biaya adalah variabel. Jika semua kegiatan bisnis menurun sampai nol dan tidak ada prospek bagi kegiatan tersebut untuk meningkat, perusahaan akan melakukan likuidasi, dengan demikian perusahaan menghindari semua biaya. Jika kegiatan diharapkan meningkat sampai melebihi kapasitas yang ada saat ini, biaya tetap harus ditingkatkan untuk mengimbangi kelebihan volume tersebut. Oleh karena itu, jenis pengeluaran digolongkan sebagai biaya tetap dalam rentang kegiatan yang terbatas. Rentang kegiatan yang terbatas ini disebut sebagai rentang yang relevan. Total biaya tetap akan berubah di luar rentang kegiatan yang relevan. Contoh biaya tetap adalah gaji pelaksana produksi, penyusutan, asuransiharta dan kewajiban perusahaan, dan lain-lain.
2.1.2.7.1.2 Variable Cost (Biaya Variabel). Biaya variabel adalah biaya yang berubah-ubah secara proporsional sesuai dengan perubahan kegiatan. Yang termasuk dalam biaya variabel adalah biaya bahan bakar, ongkos kerusakan, biaya pengangkutan pabrik, dan lain-lain. Pada umumnya, biaya variabel dapat secara langsung didefinisikan dengan kegiatan yang menyebabkan adanya biaya tersebut. (Usry, 1996, h.352).
2.2. Kerangka Pemikiran Kerangka pemikiran secara skema dapat dilihat pada gambar 2.10 2.2.1. Kapasitas Maksimum Kendaraan. Dari data ukuran kendaraan dan ukuran kardus, dapat dicari kapasitas maksimum kendaraan. 2.2.2. Perhitungan Biaya Satu Trip. Dari data-data biaya-biaya yang dikeluarkan, diadakan perhitungan untuk memperoleh biaya satu trip. 2.2.3. Perhitungan Banyaknya Trip Tiap Bulan. Pada bagian ini akan dihitung banyaknya trip tiap bulannya untuk ketiga jenis kendaraan yang ada 2.2.4. Perhitungan Biaya Transportasi dan Jumlah kendaraan yang Beroperasi Dengan Menggunakan Model Integer Programming. Setelah memperoleh biaya satu trip dan banyaknya trip tiap bulannya dari perhitungan pada bagian sebelumnya, biaya tersebut akan digunakan untuk perhitungan biaya transportasi. Biaya trasportasi dihitung dengan menggunakan model Integer programming. Pada bagian ini berisi mengenai pembuatan model dan penyelesaiannya. Perhitungan biaya transportasi dan jumlah kendaraan yang beroperasi dibagi menjadi dua bagian, yaitu perhitungan dengan melibatkan kendaraan sendiri, dan perhitungan dengan melibatkan kendaraan sendiri dan jasa ekspedisi.
2.2.4.1. Perhitungan Beroperasi
Biaya
Transportasi
Menggunakan
Model
dan
Jumlah
Integer
kendaraan
Programming
yang
Dengan
Kendaraan Sendiri. Pada bagian ini akan dibuat pemodelan dan penyelesaian masalah transportasi pada bulan September 2005 dan Oktober 2005 dengan hanya melibatkan kendaraan milik perusahaan sendiri. 2.2.4.1.1. Pemodelan Masalah. Dari data yang diperoleh pada perhitungan sebelumnya, akan dibuat model goal programming dengan menggunakan kendaraan milik perusahaan. Pada bagian ini akan ditentukan variabel, fungsi tujuan, dan pembatas untuk membentuk suatu model. 2.2.4.1.2. Penyelesaian Masalah. Pada bagian ini akan dihitung biaya transportasi dan jumlah kendaraan yang beroperasi dengan menggunakan metode Integer programming. Permasalahan akan diambil dari data pengiriman produk oleh perusahaan selama bulan September dan Oktober 2005. 2.2.4.2. Perhitungan
Biaya
Transportasi
dan
Jumlah
Kendaraan
yang
Beroperasi Menggunakan Model Integer Programming Dengan Bantuan Jasa Ekspedisi. Pada bagian ini akan dibuat pemodelan dan penyelesaian masalah transportasi pada bulan September 2005 dan Oktober 2005 dengan melibatkan kendaraan milik perusahaan sendiri serta dibantu dengan jasa ekspedisi.
2.2.4.2.1. Pemodelan Masalah. Dari data yang diperoleh pada perhitungan sebelumnya, akan dibuat model integer programming menggunakan kendaraan milik perusahaan dan dengan bantuan jasa ekspedisi. Pada bagian ini akan ditentukan variabel, fungsi tujuan, dan pembatas untuk membentuk suatu model. 2.2.4.2.2. Penyelesaian Masalah. Pada bagian ini akan dihitung biaya transportasi dan jumlah kendaraan yang beroperasi dengan metode integer programming dengan menggunakan kendaraan sendiri dan jasa ekspedisi. Permasalahan akan diambil dari data pengiriman produk jadi oleh perusahaan selama bulan September 2005 dan bulan Oktober 2005. 2.2.4.3 Perhitungan Biaya Transportasi dan Jumlah Kendaraan
yang
Beroperasi Dengan Pendekatan “Common Sense” Perusahaan. Pada bagian ini akan dihitung biaya yang dikeluarkan oleh perusahaan dan jumlah kendaraan yang beroperasi dengan menggunakan pendekatan heuristik atau “Common Sense” milik perusahaan selama bulan Sepember dan Oktober 2005. 2.2.5 Analisa Hasil. Pada bagian ini akan dilakukan analisa secara keseluruhan terhadap hasil dari perhitungan pada bagian pengolahan data. 2.2.5.1 Analisa Kapasitas Maksimum Kendaraan. Melakukan analisa keseluruhan terhadap hasil perhitungan yang telah dilakukan pada bab sebelumnya mengenai kapasitas maksimum kendaraan.
2.2.5.2 Analisa Perhitungan Biaya Total Satu Trip. Melakukan analisa keseluruhan terhadap hasil perhitungan yang telah dilakukan pada bab sebelumnya mengenai perhitungan biaya total satu trip. 2.2.5.3 Analisa Perhitungan Banyaknya Trip Tiap Bulan. Melakukan analisa keseluruhan terhadap hasil perhitungan yang telah dilakukan pada bab sebelumnya mengenai perhitungan banyaknya trip tiap bulan. 2.2.5.4 Analisa Biaya Transportasi dan Jumlah Kendaraan yang Beroperasi Dengan Menggunakan Model Integer Programming. Melakukan analisa model integer programing apakah hasil perhitungan dapat memecahkan permasalahan perusahaan. Selain itu juga pada bagian ini akan dilakukan analisa sensitivitas, bagaimana solusi model goal programing dapat berubah berkaitan dengan perubahan data-data yang bersangkutan seperti status sumber daya, harga dual dan pengurangan harga. 2.2.5.6 Analisa Perbandingan Hasil Model Integer Programming Dengan Kendaraan Sendiri dan Model Integer Programming Dengan Bantuan Jasa Ekspedisi. Melakukan analisa perbandingan hasil antara model integer programming dengan melibatkan kendaraan sendiri dan model integer programming dengan bantuan jasa ekspedisi yang telah dihitung pada bagian pengolahan data.
2.2.5.7 Analisa Perbandingan Hasil Model Integer Programming Dengan Hasil Pendekatan “Common Sense” Perusahaan. Melakukan analisa perbandingan hasil perhitungan antara menggunakan pendekatan “common sense” yang telah dipakai perusahaan sebelumnya dan model integer programming terbaik yang telah ditentukan pada bagian sebelumnya.