ANALISIS HUBUNGAN DINAMIS SUKU BUNGA SBI, IHSG, DAN SUKU BUNGA INTERNASIONAL DENGAN MODEL VECTOR AUTOREGRESSIVE
KARINA DIANINGSARI
DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2007
PENDAHULUAN Latar Belakang Data deret waktu (time series) adalah pengamatan yang ditata menurut urutan waktu. Dalam banyak kasus data deret waktu dapat ditemukan pola-pola yang ada pada data. Pola-pola yang sama dapat saja terjadi berulang pada data deret waktu karena kondisi saat ini terkait dengan kondisi pada periode sebelumnya. Dengan memanfaatkan data historis, dapat dibangun model yang dapat merepresentasikan pola data tersebut dan menggunakannya untuk meramalkan nilai yang akan datang. Pemodelan dan peramalan data deret waktu dapat dilakukan secara bersamaan (simultan) karena pergerakan data-data deret waktu dapat terjadi bersamaan atau mengikuti pergerakan data deret waktu lainnya. Dengan memasukkan peubah deret waktu yang lain dalam model untuk meramal pergerakan deret waktu tertentu dapat meningkatkan ketepatan peramalan. Salah satu model peramalan untuk data deret waktu yang dapat digunakan adalah model Vector Autoregressive (VAR). Model ini digunakan untuk menyusun sistem peramalan dari data deret waktu yang saling terkait dan untuk menganalisis efek (impact) dinamis dari keberadaan faktor acak yang mengganggu sistem tersebut (Sartono dkk, 2006). Sims’s dalam Enders (1995) menjelaskan bahwa VAR adalah suatu sistem persamaan yang memperlihatkan setiap peubah sebagai fungsi linear dari konstanta dan nilai beda kala (lag) peubah tersebut serta beda kala peubah lain dalam sistem, atau dengan kata lain peubah penjelas dalam VAR meliputi nilai beda kala semua peubah respon dalam model. Hubungan dinamis antara pergerakan peubah-peubah ekonomi merupakan topik yang menarik untuk dipelajari. Novita & Nachrowi (2005) menganalisis hubungan dinamis antara Indeks Harga Saham Gabungan (IHSG) dengan nilai tukar rupiah terhadap dollar Amerika dengan menggunakan VAR. Pendekatan VAR juga digunakan oleh Natassyari (2006) dalam menganalisis hubungan antara pasar modal dengan nilai tukar, cadangan devisa, dan ekspor bersih. Kristiawardani (2002) menerapkan model VAR dalam menyusun model ekonomi kecil Indonesia. Sedangkan penelitian ini memodelkan dan meramalkan suku bunga SBI, IHSG, dan suku bunga
internasional secara simultan menggunakan model VAR.
dengan
Tujuan Tujuan penelitian ini adalah: 1. Memodelkan dan meramalkan suku bunga SBI, IHSG, dan suku bunga internasional dengan menggunakan model VAR dan ARIMA. 2. Menganalisis efek (impact) dinamis dari keberadaan faktor acak dalam model VAR. 3. Melakukan perbandingan hasil peramalan antara model VAR dan ARIMA.
TINJAUAN PUSTAKA Model ARIMA Model Autoregressive Integrated Moving Average (ARIMA) merupakan campuran antara model regresi diri (Autoregressive, AR) berordo p dengan model rataan bergerak (Moving Average, MA) berordo q yang mengalami pembedaan sebanyak d kali. Persamaan umum model ARIMA (p, d, q) adalah sebagai berikut (Wei, 1990): φ p (B)(1 − B) d y t = µ + θ q (B)ε t ..................(1) dimana µ merupakan konstanta, φ p (B) = (1 - φ1 B − ... − φ p B p ) merupakan
polinomial karakteristik AR dan θ q (B) = (1 - θ1 B − ... − θ q B ) merupakan q
polinomial karakteristik MA. Kestasioneran Data Ide dasar kestasioneran adalah bahwa proses tersebut mengikuti kaidah kemungkinan yang tidak berubah karena waktu atau proses berada pada keseimbangan secara statistik (Cryer, 1986). Kestasioneran data deret waktu dapat diperiksa dengan melihat plot deret waktu. Plot deret waktu yang berfluktuasi dengan ragam yang konstan disekitar rataan yang konstan menunjukkan bahwa data deret waktu tersebut stasioner. Sedangkan plot deret waktu yang tidak berfluktuasi disekitar rataan yang konstan atau tidak berfluktuasi dengan ragam yang konstan mengindikasikan bahwa data deret waktu tersebut tidak stasioner. Selain itu plot korelasi diri (ACF) juga dapat menunjukkan data deret waktu stasioner atau
tidak. Jika plot ACF dari data membentuk pola cuts off (memotong garis) atau tails off (turun secara eksponensial menuju nol) dengan cepat, maka data tersebut diperkirakan stasioner. Sedangkan jika plot ACF membentuk pola tails off secara lambat, maka data deret waktu tersebut diperkirakan tidak stasioner (Bowerman & O’Connell, 1993). Uji Augmented Dickey Fuller
dimana rh = nilai korelasi diri pada beda kala ke-h y t = nilai pengamatan pada waktu ke-t T = banyaknya pengamatan deret waktu h = beda kala yang diamati t = 1, 2, 3, ..., T. Sedangkan fungsi korelasi diri parsial contoh ( φ hh ) diperoleh melalui persamaan sebagai berikut: h −1
Kestasioneran data dapat diuji dengan uji Augmented Dickey Fuller melalui model pembedaan sebagai berikut (Eviews, 2002):
φ hh =
rh − ∑ φ h −1, j rh − j j=1
h −1
1 − ∑ φ h −1, j r j j=1
p
∆y t = µ + βy t −1 + ∑ δ i ∆y t −i + ε t …........…(2)
dimana
dimana
j=1,2,...,h-1.
i =1
µ
adalah
konstanta
dan
β = φ - 1 , φ adalah parameter AR(1). Hipotesis yang diuji adalah: H0 : β = 0 (data bersifat tidak stasioner) H1 : β < 0 (data bersifat stasioner) Nilai β diduga melalui metode kuadrat terkecil dan pengujian dilakukan dengan uji t. Statistik uji-nya yaitu: βˆ t hit = ......................................................(3) σ βˆ dengan βˆ
= nilai dugaan β
σ βˆ = simpangan baku dari βˆ
Jika nilai t hit < nilai kritis MacKinnon (α), maka keputusan yang diambil adalah menolak H0 yang berarti data bersifat stasioner. (Eviews, 2002). Korelasi Diri (Autocorrelation) dan Korelasi Diri Parsial (Partial Autocorrelation) Fungsi korelasi diri (Autocorrelation Function, ACF) dan fungsi korelasi diri parsial (Partial Autocorrelation Function, PACF) merupakan alat yang digunakan untuk menentukan spesifikasi atau identifikasi model. Tahap identifikasi didasarkan pada fungsi korelasi diri contoh ( rh ) dan fungsi korelasi diri parsial contoh ( φ hh ) yang diperoleh dari data yang ada. Fungsi korelasi diri contoh ( rh ) diperoleh melalui persamaan sebagai berikut (Cryer, 1986): T−h
rh =
∑ (y t − y)(y t + h − y)
t =1
T
2 ∑ (y t − y)
t =1
...........................(4)
..............................(5)
φ hj = φ h −1, j − φ hh φ h −1,h − j
untuk
Identifikasi Model ARIMA Proses identifikasi model didasarkan pada plot ACF dan PACF yang sangat berguna dalam memprediksi ordo p dan q dalam model. Ciri model AR(p) adalah adanya perilaku cuts off (memotong garis) pada plot PACF setelah beda kala ke-p dan perilaku tails off (turun secara eksponensial menuju nol) pada plot ACF. Sedangkan ciri model MA(q) adalah adanya perilaku cuts off pada plot ACF setelah beda kala ke-q dan perilaku tails off pada plot PACF. Jika pada kedua plot ACF dan PACF menunjukkan perilaku tails off, hal ini menunjukkan ciri model ARMA(p,q) (Bowerman & O’Connell, 1993). Pendugaan Parameter Model ARIMA Setelah identifikasi model, tahapan berikutnya adalah pendugaan parameter. Terdapat beberapa metode pendugaan parameter, antara lain: metode kuadrat terkecil, metode momen, metode maximum likelihood dan sebagainya. Nilai dugaan parameter diuji dengan statistik uji-t untuk mengetahui signifikan atau tidaknya pengaruh parameter tersebut terhadap model (Bowerman & O’Connell, 1993). Nilai dugaan parameter signifikan apabila nilai peluang statistik t (nilai-p) lebih kecil dari taraf nyata α. Uji Diagnostik Model ARIMA Uji Portmanteau digunakan untuk menguji apakah model yang dimiliki sudah layak atau belum. Hipotesis yang diuji adalah sebagai
berikut: H0 : r1 = r2 = ... = rh = 0 (tidak ada autokorelasi dalam sisaan sampai beda kala ke-h) H1 : ∃ ri ≠ 0 (ada autokorelasi dalam sisaan sampai beda kala ke-h) Jika H0 ditolak maka model tidak layak. Statistik uji yang digunakan adalah statistik Q (Cryer, 1986): h rˆ 2 Q = T(T + 2) ∑ h ..................................(6) h =1 T − h dimana T = banyaknya sisaan ˆrh = autokorelasi antar sisaan h = beda kala Statistik Q mengikuti sebaran Chi-Square dengan derajat bebas h-p-q, dimana p adalah ordo Auto Regressive (AR) dan q adalah ordo Moving Average (MA). Model Vector Autoregressive Model Vector Autoregressive (VAR) merupakan suatu sistem persamaan dinamis dimana pendugaan suatu peubah pada periode tertentu tergantung pada pergerakan peubah tersebut dan peubah-peubah lain yang terlibat dalam sistem pada periode-periode sebelumnya (Enders, 1995). Untuk suatu sistem sederhana dengan 2 peubah, model simultan yang dibentuk (Enders, 1995) adalah sebagai berikut: y t = b10 − b12 z t + γ11y t −1 + γ12 z t −1 + ε y t ….(7) z t = b 20 − b 21 y t + γ 21 y t −1 + γ 22 z t −1 + ε z t …(8)
dengan asumsi: (a) y t dan z t stasioner; (b) ε y t dan ε z t adalah galat dengan simpangan baku σ y dan σ z ; dan (c) ε y t dan ε z t tidak berkorelasi. Persamaan (7) dan (8) memiliki struktur timbal balik (feedback) karena y t dan z t saling memberikan pengaruh satu sama lain. Persamaan ini merupakan persamaan VAR struktural. Dengan menggunakan aljabar matriks, persamaan (7) dan (8) dapat dituliskan sebagai berikut: 1 b 21
b12 y t b10 γ11 = + 1 z t b 20 γ 21
γ12 y t −1 ε y t + γ 22 z t −1 ε z t
atau Bx t = Γ 0 + Γ1x t −1 + ε t ................................(9)
Perkalian (9) dengan B−1 akan diperoleh model VAR dalam bentuk standar: x t = A 0 + A1x t −1 + e t ................................(10) dimana A 0 = B −1Γ 0
A1 = B−1Γ1 e t = B −1ε t Secara umum model VAR dengan ordo-p (VAR(p)) sebagai berikut (Enders, 1995): x t = A 0 + A1 x t −1 + A 2 x t − 2 + ... + A p x t − p + e t ..(11)
t = 1, ..., T dimana x t adalah vektor peubah endogen berukuran nx1, A 0 adalah vektor intersep berukuran nx1, A i adalah matriks parameter berukuran nxn untuk setiap i=1, 2, ..., p dan e t adalah vektor sisaan yang berukuran nx1. Karena peubah-peubah endogen dalam persamaan (11) hanya terdiri dari beda kala semua peubah eksogen, kesimultanan bukan suatu persoalan dan pendugaan Ordinary Least Square (OLS) atau metode kuadrat terkecil menghasilkan dugaan yang konsisten. Pendugaan metode kuadrat terkecil menjadi efisien karena seluruh persamaan memiliki regresor yang identik (Eviews, 2002). Peubah dalam vektor x t , misalkan peubah y k, t (k=1,2,...,n), memiliki persamaan parsial sebagai berikut: y k, t = a k0 + a k1(1)y1,t −1 + a k2 (1)y2,t −1 + ... + a kn (1) yn,t −1 + a k1(2)y1,t − 2 + a k2 (2)y2,t −2 + ... + a kn (2) yn,t −2 + ... + a k1(p)y1,t −p + a k2 (p)y2,t −p + ... + a kn (p)yn,t −p + ek,t .................................(12)
dimana a kj (i) adalah unsur baris ke-k dan kolom ke-j dari matriks Ai, yang dapat diartikan sebagai koefisien parameter peubah ke-j (j=1, 2, ..., n) pada persamaan parsial peubah ke-k (k=1, 2, ..., n) untuk beda kala ke-i (i=1, 2, ..., p). Hipotesis yang diuji dalam persamaan model VAR: H0 : a kj (i) = 0 H1 : a kj (i) ≠ 0 Nilai a kj (i) diduga melalui metode kuadrat terkecil dan pengujiannya dilakukan dengan uji t. Statistik uji-nya yaitu: aˆ kj (i) t hit = ..............................................(13) σ aˆ kj (i) Jika nilai | t hit | > t (db =T −s,α/2) , dimana T adalah banyaknya pengamatan dan s adalah banyaknya parameter yang diduga dalam satu persamaan yaitu sebanyak 1+np, maka keputusan yang diambil adalah menolak H0.
Penentuan Ordo VAR Penentuan ordo atau panjang beda kala yang optimal merupakan tahapan yang penting dalam pemodelan VAR (Novita & Nachrowi, 2005). Menurut Enders (1995), kriteria uji alternatif untuk menentukan panjang beda kala yang sesuai adalah dengan menggunakan statistik AIC (Akaike Information Criterion) atau SBC (Schwartz Bayesian Criterion). AIC = Tlog | Σ | +2N .................................(14) SBC = Tlog | Σ | + Nlog(T) ........................(15) dimana T = banyaknya pengamatan yang digunakan | Σ | = determinan matriks ragam peragam dari sisaan = banyaknya parameter yang diduga N dalam seluruh persamaan Jika setiap persamaan dalam n peubah VAR mempunyai p beda kala dan sebuah intersep, maka N =n2p+n. Model yang baik adalah model yang mampu memberikan tingkat residual (error) yang paling kecil. Model dengan nilai AIC atau SBC terkecil dipilih sebagai model terbaik dengan beda kala yang cukup efisien. Uji Kointegrasi Konsep kointegrasi diperkenalkan oleh Engle dan Granger (Enders, 1995). Untuk mengembangkan idenya lebih lanjut, Granger mendefinisikan konsep derajat integrasi dari sebuah peubah atau suatu deret waktu. Jika suatu deret waktu bisa dibuat mendekati bentuk pola deret waktu yang stasioner setelah mengalami pembedaan sebanyak d kali, maka deret waktu tersebut dikatakan terintegrasi dengan derajat d, atau I(d). Peubah-peubah yang tidak stasioner yang terintegrasi pada tingkat yang sama dapat membentuk kombinasi linear yang bersifat stasioner (SAS Institute, 2002). Engle dan Granger (1987) mendefinisikan kointegrasi sebagai berikut: komponen dari vektor x t dikatakan terkointegrasi pada ordo d, b, dinyatakan dengan x t ~ CI(d, b), jika (i) seluruh komponen dari x t terintegrasi pada ordo d (ii) terdapat vektor β=( β1, β2, ..., βn) sehingga kombinasi linier β x t terintegrasi pada ordo (d-b) dimana b > 0. Vektor β dinamakan vektor kointegrasi.
Adapun metode yang digunakan untuk menguji adanya kointegrasi antara lain: Uji Engle-Granger dan Uji Johansen. Engle dan Granger (1987) melakukan pengujian hipotesis nol bahwa tidak ada kointegrasi antara gugus peubah yang terintegrasi pada derajat 1 atau I(1). Engle dan Granger melakukan pendugaan koefisien hubungan antar peubah menggunakan metode kuadrat terkecil, dan menerapkan uji Augmented Dickey Fuller terhadap sisaan yang dihasilkan untuk melihat apakah deret tertentu merupakan proses yang stasioner atau tidak. Penolakan hipotesis nol tentang ketidakstasioneran dijadikan sebagai bukti terjadinya kointegrasi. Uji Johansen memodelkan deret-deret yang ada dalam bentuk model VAR(p) kemudian mencari matriks yang dapat digunakan untuk menyusun kombinasi linear antar deret, dan memeriksa apakah ada kombinasi linear yang dapat membentuk deret baru yang mengikuti proses stasioner. Model pada persamaan (11) dapat dituliskan sebagai: p −1
∆x t = Πx t −1 + ∑ Γ i ∆x t −i + e t ..........................(16) i =1
dimana p
p
Π = ∑ A i − I,
Γi = − ∑ Ai
i =1
j= i +1
Adapun hipotesis yang diuji dalam uji Johansen adalah: H0 : rank( Π ) ≤ r H1 : rank( Π ) > r Statistik uji yang digunakan adalah: n
λ trace (r) = −T ∑ ln(1 − λˆ i ) .........................(17) i = r +1
dimana λˆ i = akar ciri ke-i matriks Π T = banyaknya pengamatan yang digunakan Jika nilai λ trace (r) > nilai kritis dalam Tabel λ trace dimana keputusan yang diambil adalah menolak H0, maka uji dilanjutkan untuk rank = r+1 hingga diperoleh λ trace (r) < nilai kritis λ trace dengan keputusan menerima H0, yang artinya kointegrasi terjadi pada rank r. Fungsi Respon Impuls Bentuk model dinamik VAR yang semakin rumit akan menyebabkan sulitnya memberikan interpretasi terhadap setiap nilai koefisien. Kerumitan tersebut dapat diatasi dengan “impuls respon”. Dengan
menggunakan fungsi respon impuls, pengaruh dari adanya shock atau guncangan pada salah satu peubah terhadap peubah lain yang ada dalam VAR dapat diketahui. Misalkan untuk model pada persamaan (10) dengan panjang beda ordo p=1 dan banyaknya peubah endogen n=2 (peubah y t dan z t ), melalui proses iterasi dapat dinyatakan dalam Vector Moving Average dan diperoleh persamaan sebagai berikut (Enders, 1995): ∞
x t = µ + ∑ φ i ε t −i .......................................(18) i =0
φ11 (i ) φ12 (i ) dimana φ i = φ 21 (i ) φ 22 (i )
Koefisien φ i dapat digunakan untuk membangkitkan pengaruh dari shock atau guncangan peubah y t dan z t ( ε y t dan ε z t ) terhadap deret y t dan z t . Sebagai contoh, koefisien φ12 (0) adalah pengaruh langsung satu unit perubahan ε z t terhadap y t . Dengan cara yang sama, elemen φ11 (1) dan φ12 (1) adalah respon dari perubahan unit ε y t dan ε z t pada y t +1 . Pada periode ke-n, efek ε z t
pada nilai y t + n adalah φ12 (n ) . Kemudian, setelah n periode, jumlah kumulatif pengaruh n
ε z t pada y t adalah ∑ φ12 (i ) . i =0
Koefisien φ11 (i) , φ12 (i ) , φ 21 (i ) dan φ 22 (i ) disebut sebagai fungsi respon impuls yang menginformasikan pengaruh perubahan guncangan suatu peubah terhadap peramalan peubah lain (Enders, 1995). Pengaruh tersebut dapat dilihat secara visual dengan menggunakan plot antara koefisien φ jk (i) dengan i. Dekomposisi Ragam Dekomposisi ragam memisahkan keragaman pada peubah endogen menjadi komponen-komponen yang ada dalam sistem VAR. Dekomposisi ragam ini dapat memberikan informasi mengenai kontribusi setiap sisaan ( ε i ) dalam mempengaruhi besarnya nilai-nilai peubah dalam VAR (Enders, 1995). Misalkan ragam peramalan sisaan n periode ke depan untuk y t adalah
2 2 2 σ 2y (n) = σ 2y [φ11 (0) + φ11 (1) + ... + φ 11 (n − 1)]
2 2 2 + σ 2z [φ 12 (0) + φ 12 (1) + ... + φ 12 (n − 1)] ...................................................................(19) Dekomposisi ragam sisaan n periode ke depan terhadap proporsi masing-masing guncangan dapat dilakukan. Proporsi σ 2y (n)
terhadap masing-masing guncangan ε y t dan ε z t adalah 2 2 2 σ 2y [φ 11 (0) + φ 11 (1) + ... + φ 11 (n − 1)]
σ 2y (n )
dan 2 2 2 σ 2z [φ 12 (0) + φ 12 (1) + ... + φ 12 (n − 1)] σ 2y (n )
..........(20)
..........( 21)
Uji Diagnostik Model VAR Salah satu diagnostik terhadap sisaan yang dapat dilakukan adalah memeriksa adanya korelasi serial antar sisaan pada beberapa beda kala (lag). Uji Portmanteau menghasilkan statistik yang dapat digunakan untuk hal tersebut, yaitu Statistik Q seperti pada persamaan (6). Statistik Q untuk model VAR mengikuti sebaran Chi-Square dengan derajat bebas n2(h-p), dimana n = banyaknya peubah dalam VAR p = ordo VAR h = beda kala (Eviews, 2002). Sedangkan hipotesis yang diuji adalah: H0 : tidak ada autokorelasi sisaan sampai beda kala ke-h H1 : terdapat autokorelasi sisaan sampai beda kala ke-h Jika nilai-p > α maka terima H0 atau tidak ada komponen autokorelasi yang signifikan hingga beda kala ke-h. Evaluasi Peramalan Evaluasi ketepatan peramalan dihitung dengan menggunakan rataan persentase kesalahan absolut (Mean Absolute Percentage Error), disingkat MAPE dengan rumus: 100 n y t − yˆ t MAPE = ∑ ........................(22) n i =1 yˆ t dengan y t adalah data aktual pada waktu ke-t sedangkan yˆ t adalah data hasil peramalan pada waktu ke-t. Nilai MAPE yang semakin kecil menunjukkan data hasil peramalan mendekati nilai aktual (Makridakis et al, 1983).
DATA DAN METODE Data
Data yang digunakan dalam penelitian ini merupakan data deret waktu suku bunga SBI, IHSG, dan suku bunga internasional periode Januari 1998 sampai dengan Mei 2006. Data ini terbagi menjadi 2 bagian yaitu data amatan (Januari 1998 sampai dengan Desember 2005) dan data validasi (Januari 2006 sampai dengan Mei 2006). Data diperoleh dari Statistik Keuangan Ekonomi Indonesia (SEKI) Bank Indonesia. Adapun peubah-peubah yang diamati dalam penelitian ini antara lain: 1. Suku bunga SBI = sbSBI 2. Indeks harga saham gabungan = IHSG 3. Suku bunga internasional = sbInt
Apakah data stasioner dalam ragam ? Ya
Tidak
Uji kestasioneran rataan
Tidak Stasioner
Pembedaan
Ya Uji kointegrasi (dilakukan jika data tidak stasioner)
Pemilihan Ordo
Metode
Tahap-tahap yang dilakukan dalam penelitian ini adalah sebagai berikut: a. Eksplorasi data terhadap masing-masing peubah. b. Pemodelan dan peramalan dengan model ARIMA dengan langkah-langkah sebagai berikut: 1. Pemeriksaan kestasioneran data dengan melihat plot data asal, plot ACF dan PACF. Jika ditemukan perilaku tidak stasioner dalam ragam maka dilakukan transformasi dan jika ditemukan perilaku tidak stasioner dalam rataan maka dilakukan pembedaan (differencing). Secara formal, dilakukan uji Augmented Dickey Fuller untuk memeriksa kestasioneran data dalam rataan. 2. Identifikasi model melalui plot ACF dan PACF untuk menentukan ordo p dan q sehingga diperoleh kandidat model. 3. Pendugaan parameter tiap kandidat model melalui metode kuadrat terkecil. 4. Pemilihan model terbaik melalui kriteria AIC. 5. Uji kelayakan model atau diagnostik terhadap sisaan. 6. Peramalan. c. Pemodelan dan peramalan dengan model VAR. Bagan 1 menggambarkan alur penyusunan model VAR. Adapun langkah-langkah penyusunan model VAR sebagai berikut: 1. Pemeriksaan kestasioneran data dalam ragam dan rataan.
Transformasi logaritma
Johansen
Engle Granger
Tdk ada kointegrasi r=0
VARD
VAR
r>0
Ada kointegrasi
VECM
Interpretasi model Uji kelayakan model: Portmanteau Respon impuls Peramalan Bagan 1 Alur penyusunan model VAR 2. Pemilihan ordo model. 3. Apabila data stasioner dalam rataan tanpa harus dilakukan pembedaan, maka dapat langsung menggunakan model VAR. Namun jika data tidak stasioner dalam rataan maka dilakukan uji Johansen dan Engle Granger untuk memeriksa apakah ada kointegrasi pada peubah-peubah tersebut. Pada uji Johansen, jika rank kointegrasi sama dengan nol maka model yang digunakan adalah VAR dengan pembedaan (VAR Differencing / VARD) sampai ordo d. Jika rank
kointegrasi lebih besar dari nol maka model yang digunakan adalah VECM (Enders, 1995). 4. Analisis model VAR, VARD atau VECM. 5. Interpretasi terhadap model. 6. Uji kelayakan model. 7. Pengkajian fungsi respon impuls dan dekomposisi ragam 8. Peramalan. d. Evaluasi peramalan dengan MAPE dan membandingkan hasil peramalan antara model ARIMA dengan model VAR.
terjadinya krisis moneter dan penetapan suku bunga yang sangat tinggi sehingga menyebabkan turunnya harga saham. Namun seiring dengan pemulihan ekonomi, IHSG terus meningkat. Hal ini ditunjukkan dengan plot deret waktu IHSG yang cenderung meningkat pada Gambar 2.
Analisis data dilakukan dengan menggunakan Software Eviews Versi 4.1 dan Microsoft Office Excel 2003.
HASIL DAN PEMBAHASAN Eksplorasi Data
Eksplorasi data dari masing-masing peubah dilakukan untuk melihat pola data secara umum. Gambar 1 menunjukkan pola deret waktu peubah suku bunga SBI. Terjadi peningkatan suku bunga SBI secara drastis pada permulaan tahun 1998. Hal tersebut dikarenakan terjadinya krisis moneter yang melanda Indonesia. Pada saat krisis moneter, Bank Indonesia menetapkan tingkat suku bunga SBI hingga mencapai 70% yang terjadi pada bulan Agustus 1998. Namun demikian, tidak lama kemudian suku bunga SBI berangsur turun pada akhir tahun 1998. Tingkat suku bunga SBI cenderung turun dan relatif stabil dibawah 18% mulai pertengahan tahun 1999.
Gambar 2 Plot IHSG. Peubah suku bunga internasional cenderung stabil dari bulan ke bulan sampai Januari 2001. Namun setelah itu terjadi penurunan suku bunga internasional hingga penghujung tahun 2001. Pada tahun 2002 sampai dengan 2004 suku bunga internasional cenderung stabil yaitu sekitar 4%. Kenaikan tingkat suku bunga internasional terjadi pada awal tahun 2005 hingga akhir tahun 2005. Plot deret waktu suku bunga internasional dapat dilihat pada Gambar 3.
Gambar 3 Plot suku bunga internasional. Model ARIMA
Gambar 1 Plot suku bunga SBI. Pada tahun 1998 IHSG mengalami penurunan yang cukup tajam yaitu pada bulan September 1998. Hal ini berkaitan dengan
Suku Bunga SBI Langkah awal sebelum mengidentifikasi model ARIMA data suku bunga SBI adalah pemeriksaan kestasioneran data tersebut. Plot deret waktu suku bunga SBI (Gambar 1) menunjukkan pola yang tidak stasioner baik dalam ragam maupun rataan. Untuk menstasionerkan data dalam ragam maka
dilakukan transformasi logaritma. Plot ACF dan PACF pada Lampiran 1 menunjukkan ACF turun secara lambat menuju nol sedangkan PACF nyata pada tiga beda kala pertama. Berdasarkan keadaan tersebut dapat disimpulkan bahwa data tersebut tidak stasioner dalam rataan sehingga dibutuhkan pembedaan agar diperoleh deret yang stasioner. Setelah dilakukan pembedaan satu kali terlihat bahwa data sudah stasioner dimana plot ACF tidak lagi turun secara lambat menuju nol (Lampiran 2). Pemeriksaan kestasioneran data deret waktu secara formal dilakukan dengan menggunakan uji Augmented Dickey Fuller (ADF). Hasilnya dapat dilihat pada Tabel 1. Terlihat bahwa peubah suku bunga SBI tidak stasioner saat I(0) (data sebelum pembedaan) karena nilai t-hitung > nilai kritis MacKinnon pada α=5% yang menyatakan bahwa data tidak stasioner. Sedangkan saat I(1) nilai thitung < nilai kritis MacKinnon, yang berarti bahwa data telah stasioner. Tabel 1 Uji Augmented Dickey Fuller Peubah I(0) Nilai I(1) Nilai t-hit Kritis t-hit Kritis sbSBI IHSG sbInt
-2,07 -1,69 -0,03
-3,46 -3,46 -3,46
-6,36 -7,95 -5,29
-3,46 -3,46 -3,46
Langkah selanjutnya adalah mengidentifikasi model-model tentatif berdasarkan plot ACF maupun PACF. Beberapa alternatif model untuk suku bunga SBI dapat dilihat pada Tabel 2. Tabel 2 Alternatif model ARIMA untuk suku bunga SBI No. Model Koefisien Nilai- AIC p ARIMA 1.
(1,1,0)
2.
(0,1,2)
3.
(1,1,2)
Konstanta AR(1) Konstanta MA(1) MA(2) Konstanta AR(1) MA(1) MA(2)
0,733 0,000 0,775 0,020 0,000 0,397 0,000 0,000 0,000
-3,28 -3,37
-3,77
Berdasarkan Tabel 2, ketiga model tersebut signifikan dalam parameter pada α=5% karena memiliki nilai peluang statistik t (nilai-p) < α=5%. Namun dari ketiga model
tersebut, model yang terbaik adalah ARIMA (1,1,0) karena tidak terdapat autokorelasi sisaan pada model tersebut (Lampiran 3). Model yang lain tidak layak karena berdasarkan pengujian statistik Q terhadap sisaan (Lampiran 4 dan 5) dengan penetapan α sebesar 5%, terdapat autokorelasi dalam sisaan model-model tersebut (nilai-p < α=5%). IHSG Plot IHSG pada Gambar 2 menunjukkan pola data yang tidak stasioner dalam ragam maupun rataan. Agar data stasioner dalam ragam maka dilakukan transformasi logaritma. Plot ACF data IHSG (Lampiran 6) terlihat turun lambat menuju nol sehingga data tidak stasioner dalam rataan. Untuk itu dilakukan pembedaan 1 kali agar data menjadi stasioner. Plot ACF setelah pembedaan 1 kali menunjukkan ACF tidak lagi turun lambat menuju nol (Lampiran 7). Ini menunjukkan bahwa data sudah stasioner. Melalui uji ADF pada Tabel 1 diperoleh hasil bahwa data IHSG stasioner setelah dilakukan pembedaan 1 kali dimana nilai t-hitung < nilai kritis MacKinnon pada α=5%. Alternatif model untuk IHSG dapat dilihat pada Tabel 3. Berdasarkan Tabel 3 diperoleh model yang terbaik yaitu model ARIMA (2,1,0). Model yang lain tidak dipilih karena model-model tersebut memiliki koefisien parameter yang tidak signifikan pada α=5% (nilai-p < α=5%).
Tabel 3 Alternatif model ARIMA untuk IHSG No. Model Koefisien Nilai- AIC p ARIMA 1. (2,1,0) Konstanta 0,381 -3,63 AR(1) 0,031 AR(2) 0,043 2. (0,1,2) Konstanta 0,363 -5,86 MA(1) 0,061 MA(2) 0,277 3. (2,1,2) Konstanta 0,301 -5,92 AR(1) 0,230 AR(2) 0,000 MA(1) 0,003 MA(2) 0,000 Pada pengujian statistik Q untuk model ARIMA (2,1,0) (Lampiran 8) diperoleh hasil seluruh nilai-p > α=5% yang artinya tidak terdapat autokorelasi pada sisaan. Sehingga dapat disimpulkan bahwa model tersebut layak.
Suku Bunga Internasional Plot deret waktu data aktual suku bunga internasional pada Gambar 3 menunjukkan pola data yang tidak stasioner dalam ragam maupun rataan. Sehingga data suku bunga internasional juga ditransformasi dengan transformasi logaritma. Pada Lampiran 9 terlihat bahwa plot ACF data awal turun lambat menuju nol sehingga data tidak stasioner dalam rataan. Untuk itu dilakukan pembedaan 1 kali agar data menjadi stasioner. Setelah pembedaan 1 kali, ACF tidak lagi turun lambat menuju nol (Lampiran 10). Hal tersebut didukung oleh hasil uji ADF pada Tabel 1 yaitu data suku bunga internasional stasioner setelah dilakukan pembedaan 1 kali dimana nilai t-hitung < nilai kritis MacKinnon pada α=5%. Beberapa alternatif model untuk suku bunga internasional seperti terlihat pada Tabel 4. Berdasarkan Tabel 4, kedua model menunjukkan nilai koefisien parameter yang signifikan pada α=5%.
Tabel 4 Alternatif model ARIMA untuk suku bunga internasional No. Model Koefisien Nilai- AIC p ARIMA 1.
(1,1,0)
2.
(1,1,1)
Konstanta AR(1) Konstanta AR(1) MA(1)
0,857 0,000 0,985 0,000 0,001
-5,94 -5,97
Pada pengujian statistik Q untuk kedua model tersebut (Lampiran 11 dan 12), seluruh nilai-p > α=5% yang berarti tidak terdapat autokorelasi pada sisaan. Dengan kata lain, kedua model tersebut layak. Namun, untuk model terbaik dipilih model ARIMA (1,1,1) karena nilai AIC-nya lebih kecil dari nilai AIC model ARIMA (1,1,0).
Tabel 5 Hasil perhitungan AIC dan SBC Lag AIC SBC -3,5061 0 -3,5930 -13,5118 1 -13,8591 -13,5296* 2 -14,1373* -13,1275 3 -13,9957 -12,7226 4 -13,8512 -12,3880 5 -13,7770 -12,1097 6 -13,7592 -11,8404 7 -13,7503 -11,6592 8 -13,8296 -11,4140 9 -13,8448 -11,2509 10 -13,9421 -10,9430 11 -13,8947 -10,5998 12 -13,8120 * mengindikasikan ordo / beda kala yang dipilih oleh kriteria informasi AIC dan SBC
Uji Kointegrasi Karena data tidak stasioner dalam rataan dan harus dilakukan pembedaan 1 kali terhadap data maka perlu dilakukan uji kointegrasi. Hasil uji ADF sisaan kombinasi linier peubah suku bunga SBI, IHSG, dan suku bunga internasional dapat dilihat pada Tabel 6. Kombinasi linier diperoleh melalui pendugaan metode kuadrat terkecil. Dari uji ADF tersebut diperoleh statistik uji t > nilai kritis MacKinnon pada α=5% sebesar -2,89, sehingga sisaan tidak stasioner. Berdasarkan kondisi tersebut maka tidak terdapat kointegrasi antara deret suku bunga SBI, IHSG, dan suku bunga internasional.
Tabel 6 Hasil uji ADF sisaan dari kombinasi linier peubah suku bunga SBI, IHSG, dan suku bunga internasional Peubah Peubah statistik t tak bebas bebas sisaan sbSBI IHSG, sbInt -1,54 IHSG sbSBI, sbInt -0,97 sbInt sbSBI, IHSG -1,39
Model VAR Penentuan Panjang Beda Kala atau Ordo VAR Berdasarkan nilai AIC dan SBC pada saat p=2 diperoleh nilai AIC dan SBC terkecil sehingga model VAR yang digunakan adalah model VAR ordo ke-2 atau VAR dengan beda kala 2. Hasil perhitungan AIC dan SBC selengkapnya dapat dilihat pada Tabel 5.
Hasil uji Johansen pada Tabel 7 memberikan kesimpulan yang sama dengan hasil metode Engle Granger pada Tabel 6. Hasil uji tersebut menunjukkan bahwa H0 diterima pada saat r=0, dimana nilai λ trace (r) < nilai kritis λ trace . Sehingga dapat disimpulkan tidak terdapat kointegrasi antara suku bunga SBI, IHSG, dan suku bunga internasional.
Tabel 7 Uji Johansen untuk kointegrasi H1 H0 Nilai Kritis λ trace (r) λ trace rank = r rank > r 0 0 31,48 42,44 1 1 6,97 25,32 2 2 2,92 12,25 Pendugaan Model Dari hasil uji kointegrasi disimpulkan tidak terdapat kointegrasi antara suku bunga SBI, IHSG, dan suku bunga internasional pada α=0.05. Oleh karena itu, model yang digunakan adalah model VAR dengan pembedaan (VARD) sampai ordo d. Karena ketiga peubah ekonomi tersebut stasioner setelah dilakukan pembedaan 1 kali terhadap data, maka model yang digunakan untuk menjelaskan hubungan ketiga peubah tersebut adalah model VAR pembedaan 1 kali. Hasil pendugaan model tersebut dapat dilihat pada Tabel 8. Untuk peubah endogen d_sbSBI, peubah yang signifikan adalah d_sbSBI, d_IHSG, dan d_sbInt satu bulan sebelumnya. Ini menunjukkan bahwa selisih nilai antar waktu suku bunga SBI dipengaruhi oleh selisih nilai antar waktu suku bunga SBI, IHSG, dan suku bunga internasional satu bulan sebelumnya. Secara umum, hubungan antara d_sbSBI dengan d_IHSG adalah negatif, karena nilai koefisiennya yang negatif. Artinya jika selisih nilai antar waktu IHSG meningkat maka selisih nilai antar waktu suku bunga SBI cenderung turun. Selisih nilai antar waktu IHSG dua bulan sebelumnya memberikan pengaruh yang signifikan terhadap selisih nilai antar waktu IHSG. Sedangkan untuk peubah d_sbInt,
peubah yang berpengaruh hanyalah d_sbInt satu bulan sebelumnya. Artinya selisih nilai antar waktu suku bunga internasional dipengaruhi oleh selisih antar waktu suku bunga internasional satu bulan sebelumnya. Hasil pendugaan yang diperoleh cenderung tidak konsisten dengan teori ekonomi yang ada. Dari hasil pendugaan diperoleh bahwa peubah d_IHSG mempengaruhi d_sbSBI, bukan sebaliknya. Ketika tingkat suku bunga tinggi, investor akan cenderung memilih penempatan dananya tidak pada saham. Dengan demikian, tingkat suku bunga yang tinggi akan diikuti dengan penurunan harga saham. Sunariyah (2004) menjelaskan bahwa meningkatnya tingkat bunga akan meningkatkan harga kapital sehingga memperbesar biaya perusahaan dan terjadi perpindahan investasi dari saham ke deposito atau fixed investasi lainnya. Apabila faktor-faktor lain dianggap tetap (cateris paribus) profitabilitas perusahaan akan menurun sehingga disimpulkan tingkat bunga yang tinggi adalah signal negatif bagi harga saham. Hasil pendugaan d_sbSBI menunjukkan bahwa d_sbSBI dipengaruhi oleh d_sbInt. Hasil ini mendukung pernyataan Rowter (2006) yaitu salah satu faktor yang harus dipertimbangkan BI dalam menurunkan atau menaikkan suku bunga adalah perkembangan suku bunga internasional. Diagnostik Model Pemeriksaan terhadap sisaan dilakukan dengan menggunakan uji Portmanteau
Tabel 8 Hasil Pendugaan Model VARD D_sbSBI D_ IHSG D_sbSBI (-1) 0,283726* -0,174434 [ 3,71906] [-1,91312] D_sbSBI (-2) 0,116432 -0,007295 [ 1,56768] [-0,08219] D_ IHSG (-1) -0,230218* 0,210602* [-2,62527] [ 2,00944] D_ IHSG (-2) -0,000761 -0,271090* [-0,00840] [-2,50509] D_ sbInt (-1) 0,655035* 0,079658 [ 2,30812] [ 0,23486] D_ sbInt (-2) -0,280356 0,040903 [-0,97897] [ 0,11951] -0,003691 0,003439 Konstanta [-1,08662] [ 0,84710] * signifikan pada taraf α=0,025
D_ sbInt 0,006153 [ 0,21534] 0,006972 [ 0,25068] 0,056851 [ 1,73107] 0,044466 [ 1,31129] 0,444137* [ 4,17882] 0,194689 [ 1,81528] -0,000454 [-0,35695]
(Lampiran 13). Uji sisaan tersebut menunjukkan bahwa sampai lag ke-12 tidak ada komponen autokorelasi yang signifikan pada α=5% (nilai-p > α=5%). Sehingga dapat disimpulkan bahwa model tersebut layak. Fungsi Respon Impuls Fungsi respon impuls dari seluruh peubah suku bunga SBI, IHSG, dan suku bunga internasional selama 10 periode dapat dilihat pada Lampiran 14, 15 dan 16. Misalkan shock atau guncangan suku bunga SBI pada periode ke-t dinotasikan dengan ε sbSBI(t) , guncangan
IHSG pada periode ke-t dengan
ε IHSG(t) , dan
guncangan suku bunga internasional pada periode ke-t dengan ε sbInt(t) . Gambar 4(a) menunjukkan bahwa efek guncangan ε sbSBI(1) sebesar 1 unit akan menyebabkan kenaikan 1 unit nilai suku bunga SBI pada periode ke-1. Hingga periode ke-n, sistem menuju kestabilan dimana guncangan ε sbSBI(1) sebesar 1 unit akan menyebabkan nilai peubah suku bunga SBI konvergen menuju nol. Pada Gambar 4(b), guncangan ε IHSG(1) sebesar 1 unit pada suku bunga SBI pengaruhnya hanya terasa pada periode ke-2 dan periode ke-3, yaitu dengan penurunan nilai suku bunga SBI sebesar 0,23 dan 0,08 unit. Pada Gambar
4(c), pengaruh guncangan
ε sbInt(1) sebesar 1
unit menyebabkan kenaikan nilai suku bunga SBI hingga mencapai 0,66 unit pada periode ke-2. Namun nilai kenaikannya cenderung turun mendekati nol untuk periode selanjutnya. Gambar 5 memperlihatkan reaksi IHSG dalam 10 periode terhadap perubahan guncangan IHSG itu sendiri. Dapat dilihat bahwa guncangan ε IHSG(1) sebesar 1 unit menyebabkan kenaikan nilai IHSG sebesar 1 unit pada periode ke-1. Guncangan ε IHSG(1) sebesar 1 unit membuat kenaikan nilai IHSG sebesar 0,2 unit pada periode ke-2 . Terlihat bahwa terjadi penurunan kenaikan nilai pada IHSG dari periode ke-1 ke periode ke-2 akibat guncangan yang ditimbulkannya. Untuk periode selanjutnya guncangan ε IHSG(1) tidak berpengaruh terhadap IHSG itu sendiri. Respon suku bunga internasional terhadap guncangannya sendiri dapat dilihat pada Gambar 6. Pada periode ke-1, guncangan ε sbInt(1) menyebabkan kenaikan nilai suku bunga internasional sebesar 1 unit. Pada periode selanjutnya, guncangannya menyebabkan kenaikan nilai suku bunga internasional yang cenderung turun. Grafik respon impuls selengkapnya dapat dilihat pada Lampiran 17.
: SK : aktual
: SK : aktual
4(a)
4(b) : SK : aktual
4(c) Gambar 4 Respon suku bunga SBI terhadap guncangan suku bunga SBI 4(a), IHSG 4(b), dan suku bunga internasional 4(c).
: SK : aktual
Gambar 5 Respon IHSG terhadap guncangan IHSG. Dekomposisi Ragam Pada Lampiran 18 terlihat bahwa terhadap peramalan suku bunga SBI, yang dominan adalah suku bunga SBI itu sendiri dimana kontribusinya sekitar 86% hingga 10 periode ke depan. Peramalan suku bunga SBI 10 tahun ke depan sedikit memperoleh kontribusi dari IHSG dan suku bunga internasional. Untuk peramalan IHSG, kontribusi yang dominan berasal dari IHSG sendiri dimana kontribusinya mencapai 94% hingga 10 periode ke depan. Suku bunga SBI memberikan kontribusi sekitar 6% terhadap peramalan IHSG 10 periode ke depan (Lampiran 19). Begitu pula halnya dengan suku bunga internasional dimana peramalannya selama 10 periode ke depan didominasi oleh peubahnya sendiri. Peramalan suku bunga internasional hanya mendapatkan sedikit kontribusi dari suku bunga SBI dan IHSG (Lampiran 20). Grafik dekomposisi ragam untuk seluruh peubah dapat dilihat pada Lampiran 21. Hasil Peramalan Model ARIMA dan VAR
Hasil peramalan suku bunga SBI, IHSG, dan suku bunga internasional dengan menggunakan model ARIMA dan VAR dapat dilihat pada Tabel 9 dan Gambar 7. Hasil peramalan model ARIMA menunjukkan bahwa suku bunga SBI dan IHSG relatif stabil dari Januari 2006 sampai dengan Mei 2006. Sedangkan peramalan suku bunga internasional menunjukkan terjadinya kenaikan suku bunga internasional periode Januari 2006 hingga Mei 2006. Evaluasi peramalan untuk peubah suku bunga SBI dan suku bunga internasional menghasilkan nilai MAPE yang relatif kecil yaitu sebesar 1,18 dan 1,85. Ini menunjukkan bahwa model ARIMA tersebut efektif digunakan untuk peramalan suku bunga SBI dan suku bunga internasional. Sedangkan evaluasi peramalan
: SK : aktual
Gambar 6 Respon suku bunga internasional terhadap guncangan suku bunga internasional. untuk peubah IHSG menghasilkan nilai MAPE yang relatif lebih besar yaitu sebesar 7,16. Hasil peramalan model VAR menunjukkan bahwa suku bunga SBI dan IHSG relatif stabil dari Januari 2006 sampai dengan Mei 2006. Berbeda dengan suku bunga SBI dan IHSG, peramalan suku bunga internasional menunjukkan terjadinya penurunan suku bunga internasional periode Januari 2006 hingga Mei 2006. Evaluasi peramalan untuk peubah suku bunga SBI menghasilkan nilai MAPE yang relatif kecil yaitu sebesar 1,37. Ini menunjukkan bahwa model VAR tersebut efektif digunakan untuk peramalan suku bunga SBI. Sedangkan evaluasi peramalan untuk peubah IHSG dan suku bunga internasional menghasilkan nilai MAPE yang relatif lebih besar yaitu sebesar 14,29 dan 10,68. Nilai MAPE tersebut menunjukkan bahwa penyimpangan nilai ramalan terhadap nilai aktual relatif besar. Hal ini diperjelas melalui gambar 7(b) dan 7(c), dimana hasil peramalan IHSG dan suku bunga internasional dangan menggunakan model VAR menyimpang agak jauh terhadap nilai aktualnya. Perbandingan hasil peramalan model ARIMA dengan model VAR dilakukan dengan membandingkan hasil MAPE setiap model untuk masing-masing peubah. Untuk suku bunga SBI, nilai MAPE hasil peramalan dengan model ARIMA adalah 1,18 sedangkan pada model VAR sebesar 1,37. Pada kasus ini, terlihat bahwa nilai MAPE antara kedua model tersebut relatif tidak jauh berbeda. Sedangkan nilai MAPE hasil peramalan model ARIMA dengan model VAR untuk peubah IHSG berbeda relatif besar. Nilai MAPE hasil peramalan model VAR adalah sebesar 14,29, lebih besar dibandingkan model ARIMA yaitu sebesar 7,16. Begitu pula dengan peubah suku bunga internasional,
Tabel 9 Hasil peramalan model ARIMA dan VAR 5 periode ke depan Periode Suku Bunga SBI Aktual Peramalan ARIMA Peramalan VAR Jan-06 0,1275 0,129 0,1278 Feb-06 0,1274 0,1291 0,1285 Mar-06 0,1273 0,1287 0,1282 Apr-06 0,1274 0,128 0,1287 Mei-06 0,125 0,1273 0,1299 MAPE 1,18 1,37 Periode Jan-06 Feb-06 Mar-06 Apr-06 Mei-06
Aktual 1229,7 1216,14 1322,97 1464,4 1330 MAPE
Periode Jan-06 Feb-06 Mar-06 Apr-06 Mei-06
Aktual 0,075 0,075 0,075 0,0775 0,0775 MAPE
IHSG Peramalan ARIMA 1218,25 1206,66 1201,91 1213,16 1226,74 7,16
Peramalan VAR 1113,63 1130,76 1133,73 1118,47 1103,2 14,29
Suku Bunga Internasional Peramalan ARIMA Peramalan VAR 0,0743 0,07 0,0759 0,069 0,0773 0,067 0,0785 0,067 0,0796 0,066 1,85 10,68
dimana nilai MAPE hasil peramalan model VAR sebesar 10,68 jauh lebih besar dibandingkan MAPE hasil peramalan model ARIMA yaitu sebesar 1,85. Secara ringkas, perbandingan hasil peramalan antara model ARIMA dan VAR untuk masingmasing peubah yang diamati dapat dilihat pada Tabel 10. Tabel 10 Perbandingan hasil model yang terbaik untuk masing-masing peubah Model Peubah ARIMA VAR sbSBI √ √ IHSG √ X sbInt √ X Memasukkan peubah suku bunga SBI dan suku bunga internasional dalam meramal pergerakan IHSG ternyata tidak meningkatkan ketepatan peramalan IHSG. Sebaliknya, melakukan peramalan IHSG tanpa
memasukkan informasi peubah lain memberikan hasil yang lebih akurat. Sehingga untuk peramalan IHSG, peramalan dengan menggunakan ARIMA lebih akurat bila dibandingkan peramalan dengan menggunakan model VAR. Begitu pula halnya dengan peramalan suku bunga internasional, memasukkan informasi suku bunga SBI dan IHSG dalam peramalan suku bunga internasional tidak meningkatkan ketepatan peramalan suku bunga internasional sehingga peramalan dengan menggunakan ARIMA memberikan hasil yang lebih akurat dibandingkan peramalan dengan menggunakan model VAR. Hal ini mungkin dikarenakan peubah-peubah lain yang dimasukkan dalam peramalan IHSG maupun suku bunga internasional kurang tepat dalam meramal pergerakan IHSG maupun suku bunga internasional.
Suku Bunga SBI
IHSG
0,8
1600
0,7
1400
0,6
1200
0,5
1000
0,4
800
0,3
600
0,2
400
0,1
200
0
0
1
7
13
19
25
31
Aktual
37
43
49
55
61
67
peramalan ARIMA
73
79
85
91
97
1
7
13
19
peramalan VAR
25
31
Aktual
37
43
49
55
peramalan ARIMA
7(a)
61
67
73
79
85
91
97
peramalan VAR
7(b) Suku Bunga Internasional 0,1 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0 1
7
13
19
25
31
Aktual
37
43
49
55
peramalan ARIMA
61
67
73
79
85
91
97
peramalan VAR
7(c) Gambar 7 Peramalan suku bunga SBI, IHSG, dan suku bunga internasional 5 periode ke depan (Januari 2006 sd Mei 2006).
KESIMPULAN DAN SARAN Kesimpulan
Analisis VAR digunakan untuk mengetahui hubungan dinamik antara peubah suku bunga SBI, IHSG, dan suku bunga internasional serta menjelaskan pengaruh dari satu peubah baik terhadap peubah itu sendiri maupun terhadap peubah lain. Model yang digunakan untuk menjelaskan hubungan antara peubah suku bunga SBI, IHSG, dan suku bunga internasional adalah model VAR pembedaan 1 kali. Dengan menggunakan fungsi respon impuls, pengaruh dari adanya guncangan pada salah satu peubah terhadap peubah lain yang ada dalam VAR dapat diketahui. Informasi mengenai tingkat kepentingan atau kontribusi setiap sisaan ( ε t ) dalam mempengaruhi besarnya nilai-nilai peubah dalam VAR dapat diperoleh dengan melakukan dekomposisi ragam. Dengan menggunakan model VAR, dapat diperoleh peramalan jangka pendek dari peubah suku bunga SBI, IHSG, dan suku bunga internasional. Evaluasi peramalan untuk peubah suku bunga SBI menghasilkan nilai MAPE yang kecil yaitu sebesar 1,37. Ini
menunjukkan bahwa model VAR yang diperoleh efektif dalam meramalkan suku bunga SBI. Untuk kasus peubah IHSG dan suku bunga internasional, peramalan secara individual (dengan menggunakan model ARIMA) lebih akurat dibandingkan dengan peramalan yang dilakukan secara bersamaan atau peramalan dengan melibatkan peubah lain (dengan menggunakan model VAR). Hal ini mungin dikarenakan peubah-peubah lain yang dimasukkan dalam peramalan IHSG maupun suku bunga internasional kurang tepat dalam meramal pergerakan IHSG maupun suku bunga internasional. Saran
Hasil pemodelan VAR menunjukkan bahwa IHSG hanya dipengaruhi oleh beda kala (lag) peubahnya sendiri. Hal ini mungkin disebabkan terlalu lebarnya selang waktu yang digunakan dalam penelitian ini yaitu dalam selang waktu bulanan. Penulis menyarankan untuk mengkaji kembali hubungan antara suku bunga SBI, IHSG, dan suku bunga internasional dalam selang waktu yang lebih pendek misalnya dalam harian atau mingguan. Tidak signifikannya pengaruh suku bunga SBI dan suku bunga internasional terhadap
IHSG secara statistik mungkin disebabkan karena IHSG ditentukan oleh faktor-faktor lain yang lebih berperan seperti nilai tukar rupiah terhadap dollar Amerika dan tingkat inflasi. Untuk penelitian selanjutnya disarankan untuk menambah jumlah peubah yang mempengaruhi harga saham seperti nilai tukar rupiah terhadap dollar Amerika dan tingkat inflasi sehingga hasil yang didapat dapat lebih baik.
DAFTAR PUSTAKA Bowerman BL, RT O'Connell. 1993. Forecasting and Time Series: An Applied Approach. 3rd edition. Boston: Duxbury Press. Cryer JD. 1986. Time Series Analysis. Boston: Duxbury Press. Enders W. 1995. Applied Econometric Time Series. New York: Wiley and Sons, Inc. Engle RF, CWJ Granger. 1987. CoIntegration and Error Correction: Representation, Estimation and Testing. Econometrica 55: 251-276. Eviews. 2002. Eviews User’s Guide 4.0. United States of America: Quantitative Micro Software, LLC. Kristiawardani K. 2002. Model Ekonomi Indonesia dengan Metode VAR. Skripsi. Bogor: Fakultas Matematika dan IPA. Institut Pertanian Bogor. Makridakis S, SC Wheelwright, VE McGee. 1983. Forecasting: Methods and Applications. 2nd edition. New York: John Wiley & Sons. Natassyari M. 2006. Analisis Hubungan antara Pasar Modal dengan Nilai Tukar, Cadangan Devisa, dan Ekspor Bersih. Skripsi. Bogor: Fakultas Ekonomi dan Manajemen . Institut Pertanian Bogor. Novita M, ND Nachrowi. 2005. Dynamic Analysis of the Stock Price Index and the Exchange Rate Using Vector Autoregression (VAR): An Empirical Study of the Jakarta Stock Exchange, 2001-2004. Economics and Finance in Indonesia. LPEM 53 (3): 263-278.
Rowter K. Tantangan Berat Turunkan Suku bunga dalam Investor. No. 148 Tahun VIII, 6 – 27 Juni 2006. Jakarta: PT Media Investor Indonesia. Sartono B, dkk. 2006. Modul Kuliah Pelatihan Time Series Analysis. Kerjasama BI, LPPM, dan Departemen Statistika Institut Pertanian Bogor. SAS Institute Inc. 2002. SAS User’s Guide. Version 9. Cary, NC, USA: SAS Institute Inc. Sunariyah. 2004. Pengantar Pengetahuan Pasar Modal. Edisi keempat. Yogyakarta: UPP AMP YKPN. Wei, WWS. 1990. Time Series Analysis: Univariate and Multivariate Methods. Canada: Addison Wesley Publishing Company.
LAMPIRAN
Lampiran 1 Plot ACF dan PACF data awal logaritma suku bunga SBI
Lampiran 2 Plot ACF dan PACF logaritma suku bunga SBI setelah 1 kali pembedaan
Lampiran 3 Plot autokorelasi sisaan model suku bunga SBI untuk ARIMA (1,1,0)
Lampiran 4 Plot autokorelasi sisaan suku bunga SBI untuk model ARIMA (0,1,2)
Lampiran 5 Plot autokorelasi sisaan suku bunga SBI untuk model ARIMA (1,1,2)
Lampiran 6 Plot ACF dan PACF data awal logaritma IHSG
Lampiran 7 Plot ACF dan PACF logaritma IHSG setelah 1 kali pembedaan
Lampiran 8 Plot autokorelasi sisaan IHSG untuk model ARIMA (2,1,0)
Lampiran 9 Plot ACF dan PACF data awal logaritma suku bunga internasional
Lampiran 10 Plot ACF dan PACF logaritma suku bunga internasional setelah 1 kali pembedaan
Lampiran 11 Plot autokorelasi sisaan suku bunga internasional untuk model ARIMA (1,1,0)
Lampiran 12 Plot autokorelasi sisaan suku bunga internasional untuk model ARIMA (1,1,1)
Lampiran 13 Pemeriksaan kebebasan sisaan menggunakan Uji Portmanteau VAR Residual Portmanteau Tests for Autocorrelations H0: no residual autocorrelations up to lag h Date: 11/20/06 Time: 20:17 Sample: 1998:01 2005:12 Included observations: 93 Lags
Q-Stat
Prob,
Adj Q-Stat
Prob,
df
1 2 3 4 5 6 7 8 9 10 11 12
2,857053 4,262833 7,270450 14,10569 20,09484 34,37208 43,79400 57,66991 68,02561 75,59570 82,03465 87,49919
NA* NA* 0,6090 0,7222 0,8268 0,5461 0,5230 0,3412 0,3102 0,3631 0,4470 0,5550
2,888108 4,324784 7,432655 14,57509 20,90454 36,16642 46,35523 61,53711 73,00236 81,48450 88,78721 95,06131
NA* NA* 0,5922 0,6909 0,7907 0,4609 0,4162 0,2244 0,1823 0,2081 0,2594 0,3373
NA* NA* 9 18 27 36 45 54 63 72 81 90
*The test is valid only for lags larger than the VAR lag order. df is degrees of freedom for (approximate) chi-square distribution
Lampiran 14 Respon impuls suku bunga SBI Periode 1 2 3 4 5 6 7 8 9 10
sbSBI 1,000000 (0,00000) 0,283726 (0,07629) 0,241120 (0,07518) 0,122277 (0,05355) 0,061059 (0,04385) 0,030388 (0,02910) 0,016879 (0,01914) 0,009337 (0,01279) 0,004468 (0,00867) 0,001920 (0,00602)
IHSG 0,000000 (0,00000) -0,230218 (0,08769) -0,077325 (0,09606) 0,029650 (0,05824) 0,022109 (0,03353) 0,003889 (0,02406) 0,002834 (0,01836) 0,007103 (0,01349) 0,006933 (0,01042) 0,004696 (0,00803)
sbInt 0,000000 (0,00000) 0,655035 (0,28380) 0,178082 (0,25995) 0,269442 (0,22375) 0,166035 (0,20366) 0,134888 (0,16249) 0,096235 (0,12795) 0,071925 (0,09963) 0,052746 (0,07660) 0,038581 (0,05832)
Lampiran 15 Respon impuls IHSG Periode 1 2 3 4 5 6 7 8 9 10
sbSBI 0,000000 (0,00000) -0,174434 (0,09118) -0,093033 (0,08322) -0,016061 (0,04671) -0,001802 (0,01974) -0,008341 (0,00967) -0,007539 (0,00780) -0,002854 (0,00459) -0,000608 (0,00276) -0,000451 (0,00150)
IHSG 1,000000 (0,00000) 0,210602 (0,10481) -0,182051 (0,10723) -0,071545 (0,06823) 0,036438 (0,04729) 0,026574 (0,02989) -0,002789 (0,01478) -0,006350 (0,01100) -0,000294 (0,00620) 0,001478 (0,00507)
sbInt 0,000000 (0,00000) 0,079658 (0,33918) -0,021203 (0,28449) -0,011832 (0,20621) -0,006967 (0,10721) -0,002099 (0,07601) -0,003640 (0,06450) -0,003760 (0,05070) -0,002755 (0,03577) -0,001837 (0,02518)
Lampiran 16 Respon impuls suku bunga internasional Periode 1 2 3 4 5 6 7 8 9 10
sbSBI 0,000000 (0,00000) 0,006153 (0,02857) 0,001534 (0,02772) -0,007704 (0,02385) -0,005740 (0,02262) -0,003637 (0,01822) -0,002675 (0,01430) -0,002380 (0,01096) -0,001900 (0,00833) -0,001376 (0,00624)
IHSG 0,000000 (0,00000) 0,056851 (0,03284) 0,080272 (0,03607) 0,043654 (0,02479) 0,022497 (0,01779) 0,017724 (0,01377) 0,015561 (0,01146) 0,011429 (0,00953) 0,007684 (0,00779) 0,005431 (0,00629)
sbInt 1,000000 (0,00000) 0,444137 (0,10628) 0,400505 (0,09522) 0,272347 (0,09854) 0,200217 (0,09932) 0,143925 (0,09080) 0,104461 (0,07985) 0,075648 (0,06821) 0,054673 (0,05710) 0,039512 (0,04694)
Lampiran 17 Grafik respon impuls
Lampiran 18 Dekomposisi ragam untuk suku bunga SBI Periode
S,E,
sbSBI
IHSG
sbInt
1 2 3 4 5 6 7 8 9 10
0,032412 0,035893 0,036963 0,037260 0,037351 0,037392 0,037412 0,037423 0,037429 0,037432
100,0000 88,56631 88,19182 87,56562 87,30536 87,14686 87,06520 87,01624 86,98827 86,97361
0,000000 6,657543 6,971861 6,924684 6,928439 6,913183 6,906115 6,905571 6,907011 6,907472
0,000000 4,776150 4,836320 5,509695 5,766197 5,939962 6,028686 6,078194 6,104720 6,118918
Lampiran 19 Dekomposisi ragam untuk IHSG Periode
S,E,
sbSBI
IHSG
sbInt
1 2 3 4 5 6 7 8 9 10
0,038737 0,040211 0,040844 0,040935 0,040960 0,040975 0,040975 0,040976 0,040976 0,040976
2,922079 5,913830 5,920038 5,893823 5,891569 5,898917 5,901565 5,901462 5,901467 5,901478
97,07792 94,02989 94,02155 94,04683 94,04874 94,04140 94,03864 94,03862 94,03855 94,03851
0,000000 0,056276 0,058411 0,059350 0,059693 0,059687 0,059798 0,059916 0,059981 0,060010
Lampiran 20 Dekomposisi ragam untuk suku bunga internasional Periode
S,E,
sbSBI
IHSG
sbInt
1 2 3 4 5 6 7 8 9 10
0,012139 0,013418 0,014568 0,015037 0,015260 0,015376 0,015440 0,015474 0,015492 0,015501
2,317574 2,449605 2,781597 3,091087 3,214851 3,272851 3,307124 3,328354 3,339878 3,345811
0,355890 2,188542 5,481692 6,099470 6,141255 6,187569 6,248849 6,282167 6,294886 6,300853
97,32654 95,36185 91,73671 90,80944 90,64389 90,53958 90,44403 90,38948 90,36524 90,35334
Lampiran 21 Grafik dekomposisi ragam