STABILITAS PEMBANGKIT TENAGA LISTRIK TERHIJB{JNG PADA JARING INTERKONEKSI Sapto Nisworo Fakuhos Teknik lutusdn Ele*|tu Unive6ilos Tidat Magelang
.
ABSTRACT
at its highest burden frequently I'sten, the butden luctualion caltses energ/ svhlg \thich impacts an the generulhlg engine otat \'hete the ascillation ofthe generatu rctot last fot a long tine can cause danage o the shafi of the generator rolor The d),nonic dishtbance can be tu the forni af changihg burden, signirtcant at arytine and cause distwbance on the lax. The aperulion af eleclric genetulot
cause it$tability on the genercting
,
frequency oscillatiqn, and this ca,l ca$e danage on the gehemtor. On thc single-system generutot t'hich se^'es infnithe-bus butdet and to Sain a Iornt of shijs - function vhich is 6ed to neasurc shgle -s)stem engine $l1ich senes itlinite- bus s)sten to nake it nore stabile.
Ket\ods :
intercohhect ioh, netN ot k, aenetato4 stabil iO'.
A.
PEN'DAIIULUAN Unjuk kerja )ang baik dari sistem eksilasi suatu Senerator sinkroo. mcrupakan hal )ang sangat peniing untuk nlenjaga kerdaan lurak dan stibilil3s transient dari generator sinkron. Hal ini merupakan bagian dari penlediaan sisrem kontrol)ang cepat pada lerminal tegangan (Padi)ar. 1996pp I0= I5). Kestabilan suatu generator pada suatu $aktu sangat bergantung pada kondis' operasi sist€m tenaga listrik lersebut pada saat kondisi pembebanan. konfigurasi jaring dan pembangkhan (siskin. 1966 pp 3-17 - 375). Karera kondisi operasi sitem tenaga l;srik senanliasa berubah, maka keslabilan suatu generalor juga berubah seliap saat. Pada kondisi beban puncak kestabilLlD generator menjadi kritis. perubahan beban alan dapal mengakibalkan lerjadinla osilasi yang lama pada rolor generator.
3-15
Iol.
23, No.
2, l5 Septenbet 2006 ffoh"n ke 12)
:
3J5-356
B. PEMBAHASAN Blok diagnm untuk sinem osilasi frekuensi rendai ditunjuklan gambar I, yang terdiri dari /oop mekanik di bagian atas dan /ooP elektris
pada pada
darikirike kanan. Blok pertama meropakan fungsi torka mesin, dan bagian kedua menunjukkan hubungan sudut dan kecepaEn mesin. Pada blok diagram, M adalah konstanta intersia, D merupakan koefisien .edaman mekanis, dan 2tif adalah kecepatan
bagian ba\rah. Zoop mekanis terdiri dali dua fungsi alih
sinkron.
kanan ke kiri, blok pe.tama merupakan eksitasi darf regulator tegangan sistem dengan konstanta waktu TA dan p€nguatan keseluruhan Kr; dan blok kedqa merupakan fungsi
,oop elektris terdiri dari dua blok fungsi alih. Dari
alih dari rangkaian medan yang dipengaruhi oleh reaki jangkar,
dengan
konstanta waktu T'dJ(r dan penguatan sebesar K3.
KA 1+sTr
'
Gambar
l.
Diagram blok fungsialih untuk osilasifiekuensirendah
Landasar Teori Gambar 2 memperlihatkan sistem mesin sinkon tunggal yang terhubung dengan beban infhite-b s mela]]].l suatu transmisi, yang terdiri dari Senerator SG, arus jangkar i, tegangan terminhal v! tegangan inrtnib-bus vo, ifiped^ s seri z dan beban admitans Y.
i46
*;bititas Penbangkit Tenaga Lktrik Tefi1lb ng ..
(SaPto
Nisvoto)
ditunjukler pada gambar 3, dan sudut torka 6 didefinisikan sebagai sudut antata tegangan infr ite'bus vo dan tegangan Sudut arus dan tegangan yang
intemal e'q.
Perhitutrgan konsladta Didapa!: iAid +jiq
't.Lv , + iv, !--"!""":"'!
i
(t)
[sudut vo] 4 vo (sin 6 +j cos 6) keterangan : 6 A Z (e'q, vJ
Cambar
2.
Sistem satu mesin terhubung ke
Cambar
J.
irfrte-rw
Sudul phasa anrs dar tegangan
,'ol. 23, l;o. 2,
Gambar
4. Diagram
15
Septenbet 2006 (Tahun le 12)
: 3a5t56
phasoi untuk generator sinkron orde_rendah
Untuk memudahkan, digunakan konstanta berikut :
l+zY4cr+jc,
XrAX+CIx{ Rr 4 R-Cr&
R- C:x'a, X2AX+Crx'4 2"2=ARrRr+xrxr Rr A
Yo4(CrXr -CzR:) / Zj
=,
vq A(C,n,
(3)
-CtxtlZl=
Dari gambar 2, diperoleh : (4) i = yvr + Zt(v"-%) atau Zi = (t dap.t ditulis imajinernya, dan hasilnya bagiad real dan Dengan memisahkan dalam bentuk matrik berikut :
-Zy)vo-'lo
lR -xl l,,l fc, -c,lfv,l lx n lfi,l= lc, c, lL".l-" L"*rl
dengan
(s)
:
crA I +RG-XB,
C,AXG+ RB
348
(s')
Slalbilitat Penbangk rehal:a
Listil
Tethubune ... (Sapto Niswoto)
Gambar 4 memperlihatkan gambar diagram ph?rsor generator rendah. Dari gambar magnitude vd dan vq adalah :
(6)
l;:l[l]".[],;"]l;:l Substitusi (6) ke (5) untuk mendapakan
i6
dan io menghasilkan
li"l lY,l . "" f-r, x, lfsinal
L';l=Lr;]"'"2= lr,' *,11.*al dengan melinearisasi dihasilkan
lai.l lr.l
LF"'l^6
(7)
(8)
Dengan Ya danYo diberikan dalam persamaan 3
TnI '
:
:
lF,l
L^';l= 1",] ^e'q'
sinkon orde
(e)
l;,)=;= 1",' ^,.11'*aJ , l-.,t. x.llsina'l
dan 60 adalah sudu! awal
Perhitungan Konslanta Kr, Kr, Kr, I(-{, Ks datr lq Kr dan K2 diperoleh dari torka elektris generator sinkon pada kecepatan mendekati kecepatan sinkonny4 yang dapat din)'atakarf dengan : (10) T. : P" = idvd + iqvq pu Substitusi persarnaan (6) ke (10)
(\-x'd idio
iqe'q + Substitusi Aid dan Aiq ke persamaan
T. =
AT.=KI d6 + Sehingga
K2Ae'q
:
f*l=l.l_
L*,1- L',"1-
14
lr,
4ll r,
(l l) (l l) menghasilkan
:
(12)
txe-x',,\i..
ll"',"-r'"
I -r, r' l
349
,,,,
'
tjol. 23, lo. 2,
,
15
Septenbet 2006 (fahun ke 12) : 3.15-356
Kr dan Kr dip€roleh dari persamaan sirkuit tegangan ftedan, bentuk p€rsamaan medan yang sudah dilinearisasi dapat ditulis sebagai : (14) (l + ST'a.) Ae'q = dEro-(xn -x'd) aid Substitusikan persamaan (8) ke (14) menghasilkan : (l + 5T'6. K) Ae'o = I(, [^Em- K4 A6] (15) sehingga: Kr = I /l +(&-x'dl Ydl (16) Kr = (xd- x'd) Fd
K: dan Ke diperoleh dari magritude terminal tegangan, yang dapat dinyatakan dalam komponen d dan q sebagai
ri='j *"i
:
{r7.a)
dan deviasinya l
ll7.b) Avl = (vdo / v,o) avd + (vqo / v,.) avq (6) (8) pe*amaan hasilnya dimasukkan ke dan substitlsi persarnaan
'
persarnaan ( Av, = Kr A6
l7b) menghasilkan
t
K6
ke
:
Ae'q
(18)
Keterangan :
[*,.]=
lK"l
(
[ o/v,,.1 ]_ |F, 4l[-',",",",.] Y" x"v,o /v,. lv,"
LY,
l
)1.
.e,
Arus Mula, Tegatrgan daD Sudut Torka Untuk perhitungan pad. sistem mesin tunggal yang mel^y^ii inlinile-bus, d\ra hal berikut mungkin_terjadi : . daya elekrii P* daya reaktif Q-, dan tegangan terminal mesin lrt"l diberikan, . daya elektris Peo, tegangan terminal mesin lV,.l, dan tegangan infinitivebus diberikan I v"l diberikan. Daya dan daya reakif suatu mesin sinkon dapat dihitung dari : (20) P. +je. = (id +jiq) * (vd +jvq) (6). persamaan Sehingga ddpat Magnitude Vd dan Vq dapat dihitung dari persamaan-persamaan disusun be kut :
350
Stabilitas
=Yn,fu! +19j
Pe
bangkit Tenaga LisitikTerhltbung ... (Sipto Nisi+,oto)
*rl tr;'l'''
= P; -Y;/ iq
id = (P"-iqvq)/vd (2t Dan harga awal vo dan 6 adalah
6
=
dan
:.
t 1 vo= (t';
tan-' (v"d/v"q),
' \r/2 +v;/
)
(22)
:
= vo sin 6 = Cr vd- C2 vd - Rid + Xiq v* = vosin6 = Clvd-Cr vd-Rid+Xiq
voa
(23)
Perencana.n Power SysGm Srabilizer (PSS) Blok diagram PSS yang digunakan dalam industri ditunjukkan pada gambar yang 5, terdiri dari sirkuit penyaring qlashout citcuit), kompensator dinamik (dina ic compensator). j er totsinal,lan penbalas (iniler),
i Dinamic comp.isaior
Cambar
Torsional Fiher
5. Diagrarn Blok PSS
Sirkuit Penlaring (Warbout Cir.uit) Digunakan untuk menghilanglian bias t\rnak lstedd)-state bia, p d^ keluaran PSS yang akan memodifikasi tegangan terminal generator. Sirklil penyaring benindak sebagai tapis pelalu frekuensi tinggi, )ang akan melewatkan semua frekuensi tinCgi.
i5t
,ol.
23, No. 2, I5 Septenbet 2006 Oahun ke 12)
:
315-356
Sirkuit Dinamik (Dinamic Codpensaior) Koto.nr"to, din"mik dapal berupa fungsi alih dua tinglat' namun jila digunakan eksitasi statis maka fungsi alihnya dapat berupa orde satu saja Se"cara umum bentuk
'
T(s)
=
fungsi alih kompensator dinamik dinyatakan dengan
( ,V(s) _--:
:
(24)
D(s)
Filter -F;i;;; Torsional
i;"";i
digunakan untuk mencegal penguatan frekuensi' torsional iif,., torsional dapat beruPa filler tow pass Yang berfungsi untuk rolor' ""n"rn". ilencegah osilasi puntiran liorsionait. yang dapat merusak tuas-(shaft) Hs' 3 I sampai Filter ;i dirancang dengan phase lag dalam frekuensi PcmbarAs
b","*
(limller)
!
'
i;is-rt".i ,iiu"asi untuk mencegah PsS membarasi kerja AvR sebagai t.,if.u krjadi pelepasan bebqn. AVR akan mencoba menlrunkan
"o"i.tr, ;;;;;;;"
t;;i pst
memteri sinval supava
t€Sangan .dinaikkan ^terminal Sehingga dibuluhkan frekuensi) (slhu6unean denean kenailan kecepatan dan ,ntuk me-rnutus PiS dalam kasus pelepasan beban ini'
Metode Peredcanaau SfutGm Kontrol Eksitasi U"trt .",un"""g kontrol eksitasi supplementary dapat digunakan berbagai jenis sinyal masJkan : simpangan kec€palan Ao, pecepatan daya APs' atau "frekuensi sistem Af. PSS dapat didesain dari bentuk frekuensi natural mekanik yang tak teredam ioJ^. alau dari fiekuensi kompleks o + jo dari benruk mekanik
diperoleh d-ari analisis eigenvalue sistem. Berikul ini digunakan bentuk frekuensi natural mekanik ik teredam jro", sebagai dasar perancangan sistem : PSS. Dengan A(o sebagai masukan konhol. Pros€dur yang harus dilakukan . rnencari frekuensi ositasi alamiah oD dari loop mekanisnya Dari gambar 3.1 tetaPi dengan mengabaikan peredaman' maka karakteiistik frekuensi osilasi alamial (Do dari loop mekanisnya dapat dituliskan sebagai i
MS2+606, =
(2s)
6
Dan penyelesaiannya adalah :
352
Stabilitat Pembangkit TenaAa Lisnik Terhubuhg ... (Sapto Nisworo)
s =ljos
!)a=
(DbKt I
M
(26)
Keterangan : fiekuensi osilasi alamiah
on = oo = Kr =
M=
.
frekuensi sistem (2nf). Konstanta panmeter sistem Konst4nta momen inersia dalam detik
m€nentukan ketertinggalatr ihasa ZGs antara U. dan e,q dari loop elektris fungsi alih antara uE dan e'q dari gambar 3.1, temausk pengaruh konstant4 K6, adalah :
Ge=
K
nK,
(l + sfl )(1+ jf'd,
K3) + K,tK3K6
Dan kelambatan phasa dapat dihirung dari kelambatan phasa darice-
ZGeI"-i,n
.
(27)
Q8)
Z Gc untuk k€lamb.tatr ZGE Ketika dipilih Ao sebagai tambahan input penguatan, harus memenuhi : ZC.+ ZCE-0, (2e) ZGs Pengkompensasian phasa Fendahului dapat dilakukan dengan menggunakan operational arnplifier, dan bentuk amplifier yang paling peretrcanaan kornpensasi phrsa menqahului
sederhana dapat digunakan berbentuk :
Cc:l
/1+'r'l\'
ll+stJ
k= latau2 T,>T.
(30)
peraDcang.n peDguateD Kt uDtuk eksisteEsi tambaha! untuk perancangan kontrok eksitasi ini, DM dan D diabaikan. Dan koefisien redaman (n dapat dipilih antara 0.1 sampai 0.3. dari p€rsamaan 40, dengan mengabaikan DM dan D diperoleh : DE 2 ("o"M (ll)
=
353
vol.23,No.2, lS Septenbet 2006 (Tahxn ke 12) : 315-356 Tetapi dari gambar 3.1 danjuga eksitasi tambahan, didapat
DE=KKJcJn-lcJs."
:
(32)
sehingga :
Kc=
2€"@,M K,lG
"ti
@,\llc,( i
@
(33)
)l
desain blok r€set unluk ur
Kontrol eksitasi tambahan hanya boleh bekerja Pada saat osilasi frekudsirendah terjadi, dan harus otomatis mati ketika osilasi berhenti. Juga tidak boleh mengganggu ftekuensi eksitasi regular selama keadaan tunak. Sehingga dibutuhkan blok resel yang dapat berbentuk : ST (34)
crusr=;]|
Blok reset ini tidak boleh mempengamhi pergeseran phasa atau PenSlatan pada frekuensi osilasi. Hal ini dapat dicapai dengan memilih nilai T yang cukup besar, dan harus memenuhi
:
(34.a)
M€todologi
Dalam makalah ini afan digunakan simulasi perhitungan dengan menggunakan contoh sebu;I sistem mesin-tunggal yang terhubung ke infinitite-bus melalui suatu transmisi. Perhitungan dilakukan dengan bantuan program MATLAB.
Pembahasan
lisfik yang yang PSS, terdiri untuk merancang suatu sistem
Pembahasan selaniutnya digunakan suatu model sistem tenaga
dituniuklan pada gambar
I
dari generator yang terh nb,Jng deng; n inlnile bl,lj melalui saluran transmisi
354
Stabilil8 Pedbangkit Tenaga Listri* Te.hubunA ... (Sdpro Nietoto)
berikut
Sebagai ilustrasi diberikan data mesin sebagai
Generator
M:9.26 xd = 0.973 Eksitasi :
Td". = \ = Ka = TBnsmisidan beban R = C = Keadaan ar\al : P"o =
7.76 0.550 50 -0.034 0.249 1.0 Q."
D!0 xd. = 0.190 Tr = 0.05 X' = 0.997 S = 0.262 = 0.015 Vb = 1.05
Dengan menggunakan metode yang dijelaskan perhirungan sebagai berikut :
a.
b.
c.
di
atas, dapat dilakukan
komponen arus mula d dao tegangan q dan sudut torsi dalam keadaan tunak didapat dengan menggunakan persamaan (21) dan (22).
Vao id" 6
= = =
0.4681 0.4253
vqo = 0.9396 €'oo = 1.0204
iq" = 0.8521 vo = I 166l
69.7650 Konstanta K dihitung dengan persamaan (l 3, (l 6) dan
Kt Kr
= =
0.2445 0.7973
(
l9) : = =
K: = 1.2120 Kr Ks = -0.1873 Ko
0.6584 0.8150
Untuk desain eksitasi tambahannya digunakan nilai-nilai be.ikut
=.0.3
6"
sehingga diperoleh i
d.
:
:
o" = Tr =
3.f549 0,6720s
Tz
- 0.2
T
zGE- -32:t6gto lc.J
K
=
=
=
:
3
t.os+z
6.6641
Sehingga model kontrol yang disarankan akan mempunyai fungsi alih sebagai berikut
:
/t + o.etzo')/e.ee+trg'r\
taa) ' = t-\ l+0.2s ,\it -------------j-1+ls ,
eE
C. SIMPULAN
'
Salah satu metode untuk mengatasi gangguan dinamik pada mesin generator adalah dengan penggunaan PonelS/sten Stabilizer (PSS).
355
/
vol.:3. lio.
.
2, l5 Septenbe.2006 Oahun *e l2t : 3J5-J56
Metode perhitlngan PSS untuk si$em mesin{unggal melayani b€ban infinite-bls meruipakan dasrr perhitungan untuk sistem tenaga yang lebih kompleks.
DAFTAR PUSTAKA
D)r4aic, John Wiley & Sons, Singapore. Soeprijanto, Adi., Metode Sederhana Penalaan Pover Systen Stabilizer ', Proce€ding lntemational Conference on Po*er System Dinamics, Padiyar, K.R., 1996, Poreer S]stem
Yu
Bandune. -1983, Yao-nan,
Electic Po\+r Systen DynLmics, Academic
York.
356
Press, New