G&R vwo B deel 1 C. von Schwartzenberg 1
1 Vergelijkingen en ongelijkheden 1/25
I, II, IV en V zijn tweedegraadsvergelijkingen. (de hoogste macht van x is steeds x 2 ; te zien na wegwerken haakjes?) (III is een eerstegraadsvergelijking en VI is een derdegraadsvergelijking)
Neem GR - practicum 1 door. (uitwerkingen aan het eind) Voorkennis: Ontbinden in factoren blz. 164 (op bladzijde 9 in het boek wordt hiernaar verwezen)
V1a
x 2 + 5x = x ⋅ (x + 5).
V1d
5x 2 + 20x = 5x ⋅ (x + 4).
V1b
x 2 + x = x ⋅ (x + 1).
V1e
x 3 − 5x 2 = x 2 ⋅ (x − 5).
V1c
3x 2 − 7 x = x ⋅ (3x − 7).
V1f
−3x 2 − 8x = −x ⋅ (3x + 8).
V2a
(x + 3) ⋅ (x + 5) = x 2 + 5x + 3x + 15 = x 2 + 8x + 15.
V3a
x 2 + 5x + 4 = (x + 1) ⋅ (x + 4).
V3g
x 2 − 24x − 52 = (x − 26) ⋅ (x + 2).
V3b
x 2 + 4x − 5 = (x + 5) ⋅ (x − 1).
V3h
x 2 + 1x − 56 = (x + 8) ⋅ (x − 7).
V3c
x 2 − 1x − 30 = (x − 6) ⋅ (x + 5).
V3i
x 2 − 1x − 2 = (x − 2) ⋅ (x + 1).
V3d
x 2 + 7x + 10 = (x + 5) ⋅ (x + 2).
V3j
x 2 − 4x + 3 = (x − 3) ⋅ (x − 1).
V3e
x 2 + 10x + 9 = (x + 9) ⋅ (x + 1).
V3k
x 2 − 4x − 12 = (x − 6) ⋅ (x + 2).
V3f
x 2 + 18x − 19 = (x + 19) ⋅ (x − 1).
V3l
x 2 + 5x − 50 = (x + 10) ⋅ (x − 5).
V4a
6x 2 − 6x = 6x ⋅ (x − 1).
V4d
x 2 + 1x − 56 = (x + 8) ⋅ (x − 7).
V4b
x 2 + 10 − 7 x = x 2 − 7 x + 10 = (x − 5) ⋅ (x − 2).
V4e
12x 2 + 6x = 6x ⋅ (2x + 1).
V4c
x 2 + x = x ⋅ (x + 1). (zie V1b)
V4f
−3x 2 + x = x ⋅ ( −3x + 1).
V5a
x 2 − 12x = x ⋅ (x − 12).
V5d
4x 2 + 8x = 4x ⋅ (x + 2).
V5b
x 2 − 12x + 36 = (x − 6) ⋅ (x − 6) = (x − 6)2 .
V5e
x 2 + 8x = x ⋅ (x + 8).
V5c
x 2 − 12x − 28 = (x − 14) ⋅ (x + 2).
V5f
x 2 + 8x − 20 = (x + 10) ⋅ (x − 2).
2a
x 2 + 6 = 5x
2b
x − 5x + 6 = 0 (x − 3) ⋅ (x − 2) = 0 x −3 = 0 ∨ x −2 = 0 x = 3 ∨ x = 2. x = x2 x x x x 3a
2e
−x =0 ⋅ (1 − x ) = 0 =0 ∨ 1−x =0 = 0 ∨ x = 1.
2c
x 2 = 11 x = ± 11 x = 11 ∨ x = − 11.
2x 2 = 5x 2x 2 − 5x = 0 x ⋅ (2x − 5) = 0 x = 0 ∨ 2x − 5 = 0 x = 0 ∨ 2x = 5
x = 0 ∨ x = 52 = 2 21 . 2f
x2 + 4 =1 x 2 = −3 (kan niet) (een kwadraat kan nooit negatief zijn)
geen oplossingen.
3b
3x 2 − 6x = −3 ⋅ (x − 6)
3c
3x − 6x = −3x + 18
2x 2 − 3x − 2 = 0
x 2 − 2x − 8 = 0 (x − 4) ⋅ (x + 2) = 0 x −4 = 0 ∨ x +2= 0 x = 4 ∨ x = −2.
3x 2 − 3x − 18 = 0
a = 2, b = −3 en c = −2
0,5x 2 − 2x − 6 = 0
3e
2
x − 4x − 12 = 0 (x − 6) ⋅ (x + 2) = 0 x −6= 0 ∨ x +2= 0 x = 6 ∨ x = −2.
2
2x 2 − 3x = 2
3x − 6x − 24 = 0
2
3d
x ⋅ (x − 1) = 12 x − x = 12 x 2 − x − 12 = 0 (x − 4) ⋅ (x + 3) = 0 x −4 = 0 ∨ x +3= 0 x = 4 ∨ x = −3.
2
3x 2 − 6x = 24
15 = 3 × 5 en 8 = 3 + 5.
2
2
2d
V2b
2
x − 1x − 6 = 0 (x − 3) ⋅ (x + 2) = 0 x −3 = 0 ∨ x +2 = 0 x = 3 ∨ x = −2.
x 2 − 3x = 5 ⋅ (x − 3) 2
x − 3x = 5x − 15 x 2 − 8x + 15 = 0 (x − 5) ⋅ (x − 3) = 0 x −5 = 0 ∨ x −3= 0 x = 5 ∨ x = 3.
D = b 2 − 4ac = ( −3)2 − 4 ⋅ 2 ⋅ −2 = 9 + 16 = 25 x = −b 2±a D = −−32±⋅ 2 25 = 3 4± 5 x = 3 +4 5 = 84 = 2 ∨ x = 3 4− 5 = −42 = − 21 . 3f
2x 2 − 5x = 3x 2x 2 − 8x = 0 2x ⋅ (x − 4) = 0 2x = 0 ∨ x − 4 = 0 x = 0 ∨ x = 4.
4a
G&R vwo B deel 1 C. von Schwartzenberg
1 Vergelijkingen en ongelijkheden 2/25
6 − x 2 = −2
2x 2 = 9x + 5
4b
2
D = b − 4ac = ( −9) − 4 ⋅ 2 ⋅ −5 = 81 + 40 = 121 x
4e
5d
−(2x − 1) + 5 = 1
4f
5b
(x + 2)2 = ± 25 = ±5 x + 2 = 5 ∨ x + 2 = −5 x = 3 ∨ x = −7.
8 − 3 ⋅ (4x − 5)2 = 5 −3 ⋅ (4x − 5)2 = −3
2
(x − 3)2 = ± 16 = ±4 x − 3 = 4 ∨ x − 3 = −4 x = 7 ∨ x = −1.
x 2 − 5x = 0 x ⋅ (x − 5) = 0 x = 0 ∨ x −5 = 0 x = 0 ∨ x = 5.
= −b ± D = −−9 ± 121 = 9 ± 11 2a 2⋅2 4 = 9 + 11 = 20 = 5 ∨ x = 9 − 11 = −2 = − 1 . 2 4 4 4 4 2
−(2x − 1)2 = −4
(x − 3) = 16
5a
2
2
x 1 ⋅ (x − 3)2 − 3 = 5 2 1 ⋅ (x − 3)2 = 8 2 2
(x + 2)2 = 25
a = 2, b = −9 en c = −5
x =8 x =± 8 x = 8 ∨ x = − 8.
3 ⋅ (x + 2)2 + 5 = 80 3 ⋅ (x + 2)2 = 75
2x 2 − 9x − 5 = 0
−x 2 = −8
4d
4c
(2x − 1) = 4
(4x − 5)2 = 1
(2x − 1)2 = ± 4 = ±2 2x − 1 = 2 ∨ 2x − 1 = −2 2x = 3 ∨ 2x = −1
(4x − 5)2 = ± 1 = ±1 4x − 5 = 1 ∨ 4x − 5 = −1 4x = 6 ∨ 4x = 4
x = 1 21
x = 1 21
∨ x =−1. 2
x 2 − 5x = 14
x 2 − 5 = 14
5c
x 2 = 19 x = ± 19 x = 19 ∨ x = − 19.
2
x − 5x − 14 = 0 (x − 7) ⋅ (x + 2) = 0 x −7 = 0 ∨ x +2= 0 x = 7 ∨ x = −2.
x 2 − 5 = 14x
∨ x = 1.
(2x − 1) ⋅ (3x + 6) = 0 2x − 1 = 0 ∨ 3x + 6 = 0 2x = 1 ∨ 3x = −6
5e
2
x − 14x − 5 = 0 a = 1, b = −14 en c = −5
x = 21
D = b 2 − 4ac = ( −14)2 − 4 ⋅ 1 ⋅ −5 = 196 + 20 = 216
∨ x = −2.
x = −b 2±a D = −−142±⋅ 1 216 = 14 ± 2 216 x = 14 + 2 216 ∨ x = 14 − 2 216 . 5f
(2x − 1) ⋅ (3x + 6) = 9x
5g
5h
(2x − 1) ⋅ 3x = 6 − 9x
6x 2 − 3x − 6 = 0
6x 2 − 3x − 6 + 9x = 0
6x 2 + 9x − 6 = 9x
2x 2 − 1x − 2 = 0
6x 2 + 6x − 6 = 0
6x 2 − 6 = 0 6x
2
=6
x =1 x = ± 1 = ±1 x = 1 ∨ x = −1. (x + 3)2 = 16x (x + 3) ⋅ (x + 3) = 16x
x 2 + 1x − 1 = 0
a = 2, b = −1 en c = −2
2
6a
(2x − 1) ⋅ 3x = 6
6x 2 + 12x − 3x − 6 = 9x
6b
x 2 + 3x + 3x + 9 = 16x
D = ( −1)2 − 4 ⋅ 2 ⋅ −2 = 1 + 16 = 17
a = 1, b = 1 en c = −1
x = −b 2±a D = −−12±⋅ 2 17 = 1 ± 4 17 x = 1 + 4 17 ∨ x = 1 − 4 17 .
D = 12 − 4 ⋅ 1 ⋅ −1 = 1 + 4 = 5
(2x + 3)2 = −16 kan niet
x = −b 2±a D = −12±⋅ 1 5 = −1 ±2 5 x = −1 +2 5 ∨ x = −1 −2 5 .
(een kwadraat kan niet negatief zijn)
2(x + 3)2 = −4x (x + 3) ⋅ (x + 3) = −2x
geen oplossingen.
x 2 + 3x + 3x + 9 = −2x
6c
x 2 − 10x + 9 = 0 (x − 9) ⋅ (x − 1) = 0 x = 9 ∨ x = 1.
x 2 + 8x + 9 = 0 a = 1, b = 8 en c = 9
D = 82 − 4 ⋅ 1 ⋅ 9 = 64 − 36 = 28 x = −b 2±a D = −82±⋅ 128 = −8 ±2 28 x = −8 +2 28 ∨ x = −8 −2 28 .
6d
(2x + 3) ⋅ (4 − x ) = 9 8x − 2x 2 + 12 − 3x = 9 −2x 2 + 5x + 3 = 0 a = −2, b = 5 en c = 3
D = 52 − 4 ⋅ −2 ⋅ 3 = 25 + 24 = 49 x = −b 2±a D = −52±⋅ −249 = −5−4± 7 = 5 4∓ 7 x = 5 4+ 7 = 12 = 3 ∨ x = 5 − 7 = −2 = − 1 . 2 4 4 4
6e
( −4x + 3)2 = 36 −4x + 3 = ± 36 = ±6 −4x + 3 = 6 ∨ − 4x + 3 = −6 −4x = 3 ∨ − 4x = −9
x = −34 = − 43
∨ x = −9 = 2 1 . −4
4
G&R vwo B deel 1 C. von Schwartzenberg 6f
−4(x + 3)2 = 4x
1 Vergelijkingen en ongelijkheden 3/25 6g
(x + 3)2 = −x
x + 6x + 9 = −x x 2 + 7x + 9 = 0
a = 1, b = 8 en c = 10
x = −b 2±a D = −72±⋅ 1 13 = −7 ±2 13 x = −7 +2 13 ∨ x = −7 −2 13 .
D = 82 − 4 ⋅ 1 ⋅ 10 = 64 − 40 = 24
x 2 − 1x − 6 = 0 (x − 3) ⋅ (x + 2) = 0 x = 3 ∨ x = −2.
7b
x = −b 2±a D = −8 2± ⋅ 124 = −8 ±2 24 x = −8 +2 24 ∨ x = −8 −2 24 . x 2 + 2x − 6 = 0
7c
a = 1, b = 2 en c = −6
a = 1, b = p en c = −6
D = p 2 − 4 ⋅ 1 ⋅ −6 = p 2 + 24 ≥ 24 > 0
dus 2 oplossingen.
dus 2 oplossingen.
8b
a = 1, b = −7 en c = p
8d
a = −3, b = 4 en c = − p 2
D = 4 − 4 ⋅ −3 ⋅ − p = 16 − 12 p twee oplossingen ⇒ D = 16 − 12 p > 0 −12 p > −16 p < −−16 =11. 12 3 9b
a = 1, b = p en c = 25
D = p 2 − 4 ⋅ 1 ⋅ 25 = p 2 − 100 twee opl. ⇒ D = p 2 − 100 > 0 ☺ 2
a =
D
1 4
, b = −3 en c = p = ( −3)2 − 4 ⋅ 1 ⋅ p = 9 − 4
p
twee oplossingen ⇒ D = 9 − p > 0 − p > −9
p < −−91 = 9. a = 1, b = p en c = 4
D = p 2 − 4 ⋅ 1 ⋅ 4 = p 2 − 16 geen opl. ⇒ D = p 2 − 16 < 0 ☺
9c
a = −2, b = p en c = 3
D = p 2 − 4 ⋅ −2 ⋅ 3 = p 2 + 24 > 0. (dus voor elke p twee oplossingen)
2
p > 100 p < −10 ∨ p > 10. 10a
a = 2, b = −5 en c = − p
D = ( −5)2 − 4 ⋅ 2 ⋅ − p = 25 + 8p 2 oplossingen ⇒ D = 25 + 8 p > 0 8 p > −25 p > −25 = −3 1 . 8 8
D = ( −7) − 4 ⋅ 1 ⋅ p = 49 − 4 p 2 oplossingen ⇒ D = 49 − 4 p > 0 −4 p > −49 = 12 1 . p < −−49 4 4
9a
x 2 + px − 6 = 0
D = 22 − 4 ⋅ 1 ⋅ −6 = 4 + 24 > 0
2
8c
x 2 + 5x − 6 = 0 (x + 6) ⋅ (x − 1) = 0 x = −6 ∨ x = 1.
x + 8x + 10 = 0
D = 72 − 4 ⋅ 1 ⋅ 9 = 49 − 36 = 13
(x + 3)2 + (x + 2)2 = 25
x 2 + 6x + 9 + x 2 + 4x + 4 = 25 2x 2 + 10x − 12 = 0
2
a = 1, b = 7 en c = 9
8a
6h
x 2 − (x 2 + 2x + 1) = x 2 + 6x + 9 −2x − 1 = x 2 + 6x + 9 −x 2 − 8x − 10 = 0
2
7a
x 2 − (x + 1)2 = (x + 3)2
p < 16 −4 < p < 4.
12 + 2 ⋅ 1 + p = 0 ⇒ 3 + p = 0 ⇒ p = −3. 2
De vergelijking is: x + 2x − 3 = 0 (x + 3) ⋅ (x − 1) = 0 x = −3 ∨ x = 1 (was bekend).
10b
p ⋅ 22 − 11 ⋅ 2 + 10 = 0 ⇒ 4 p − 12 = 0 ⇒ 4 p = 12 ⇒ p = 3. Dus 3x 2 − 11x + 10 = 0 (a = 3, b = −11 en c = 10) D = ( −11)2 − 4 ⋅ 3 ⋅ 10 = 121 − 120 = 1 x = −b 2±a D = 112±⋅ 3 1 = 116± 1 = 2 (bekend) ∨ x = 11 − 1 = 10 = 5 = 1 2 . x = 116+ 1 = 12 6 6 6 3 3
11a
De vergelijking is: 0 + 3x + 1 = 0; deze heeft één oplossing (het is een eerstegraadsvergelijking).
11b
px 2 + 3x + 1 = 0 (a = p ≠ 0, b = 3 en c = 1) ⇒ D = 32 − 4 ⋅ p ⋅ 1 = 9 − 4 p ; twee oplossingen ⇒ D = 9 − 4 p > 0 ⇒ −4 p > −9 ⇒ p < −9 . Dus p < 9 én p ≠ 0 ⇒ p < 0 ∨ 0 < p < 2 1 . −4 4 4
12a
px 2 + 5x + 2 = 0 (a = p ≠ 0, b = 5 en c = 2) ⇒ D = 52 − 4 ⋅ p ⋅ 2 = 25 − 8 p ; twee oplossingen ⇒ D = 25 − 8p > 0 ⇒ −8 p > −25 ⇒ p < −25 . Dus p < 25 én p ≠ 0 ⇒ p < 0 ∨ 0 < p < 3 1 . −8 8 8
12b
px 2 − 3x − 4 = 0 (a = p ≠ 0, b = −3 en c = −4) ⇒ D = ( −3)2 − 4 ⋅ p ⋅ −4 = 9 + 16 p : twee oplossingen ⇒ D = 9 + 16 p > 0 ⇒ 16 p > −9 ⇒ p > −9 . Dus p > − 9 én p ≠ 0 ⇒ − 9 < p < 0 ∨ p > 0. 16 16 16
13a
2x 2 + x + p = 0 (a = 2, b = 1 en c = p ); geen oplossing ⇒ D = 12 − 4 ⋅ 2 ⋅ p = 1 − 8 p < 0 ⇒ −8 p < −1 ⇒ p > −1 ⇒ p > 1 . −8
8
G&R vwo B deel 1 C. von Schwartzenberg 13b
1 Vergelijkingen en ongelijkheden 4/25
px 2 + x + p = 0 (a = p ≠ 0, b = 1 en c = p ) (p = 0 geeft 1 oplossing, namelijk x = 0); twee oplossingen ⇒ D = 12 − 4 ⋅ p ⋅ p = 1 − 4 p 2 > 0 ⇒ −4 p 2 > −1 ⇒ 4 p 2 < 1 ⇒ p 2 < 1 ☺ ⇒ − 1 < p < 1 én p ≠ 0. 4
13c
2
2
2
2x + px + 1 = 0 (a = 2, b = p en c = 1); twee oplossingen ⇒ D = p 2 − 4 ⋅ 2 ⋅ 1 = p 2 − 8 > 0 ⇒ p 2 > 8 ⇒ ☺ (grafiek is dalparabool) ⇒ p < − 8 ∨ p > 8.
14a
p = 0 ⇒ 6x + 9 = 0 ⇒ 6x = −9 ⇒ x = −69 = − 23 = −1 21 . p ≠ 0 ⇒ px 2 + 6x + 9 = 0 (a = p ≠ 0, b = 6 en c = 9); één oplossing ⇒ D = 62 − 4 ⋅ p ⋅ 9 = 36 − 36 p = 0 ⇒ −36p = −36 ⇒ p = 1 ⇒ x = −b ± D = −6 ± 0 = −6 = −3. 2a 2 ⋅1 2
14b
x 2 + px + 1 = 0 (a = 1, b = p en c = 1); één oplossing ⇒ D = p 2 − 4 ⋅ 1 ⋅ 1 = p 2 − 4 = 0 ⇒ p 2 = 4 ⇒ p = ±2. p = b = 2 ⇒ x = −b 2±a D = −22±⋅ 1 0 = −22 = −1 en p = b = −2 ⇒ x = −b 2±a D = −−22 ±⋅ 1 0 = 22 = 1.
15a
x 3 = 10 heeft één oplossing, omdat de grafiek van f en de horizontale lijn y = 10 één snijpunt hebben. (zie fig. 1.1a) x 3 = −10 heeft ook één oplossing, omdat de grafiek van f en de horizontale lijn y = −10 één snijpunt hebben.
15b
x 4 = 10 heeft twee oplossingen, omdat de grafiek van f en de lijn y = 10 twee snijpunten hebben. (zie figuur 1.1b) x 4 = −10 heeft geen oplossingen, omdat de grafiek van f en de lijn y = −10 geen snijpunten hebben.
16a
16b
*
17a
x 6 = 20 x = ±6 20.
17b
x 4 + 7 = 88
17e
17d
5x 4 − 1 = 4 5x
4
8x 3 = −1 3
x = −81 = − 81 x = 3 − 81 = − 21 . 19a
3(x − 2) 4 + 7 = 37 3(x − 2) 4 = 30
x5
x6
1 2 3 4 5 6 7 8 9
1 4 9 16 25 36 49 64 81
1 8 27 64 125 216 343
1 16 81 256 625
1 32 243 1024
1 64 729
17c
18b
1 − 3x 5 = 97
17f
x
18c 5
x3 =2 x = 3 2.
geen oplossing. 18e
5x 6 + 7 = 97
18f
5x 6 = 90
0,1x 7 − 1 = 999 0,1x 7 = 1 000
6
x 7 = 10 000 x = 7 10 000.
x = 18 x = ±6 18.
19b
5x 3 − 1 = 9 5x 3 = 10
= −4 = − 4 5
1 x 8 + 3 = 10 4 1 x8 = 7 4 8
x = 28 x = ±8 28.
5x 4 = −4 4
0,5x 5 = 20
x 5 = 40 x = 5 40.
6 − (2x − 1)3 = 1 −(2x − 1)3 = −5
(x − 2) = 10
(2x − 1)3 = 5
x − 2 = ± 4 10 x = 2 ± 4 10 x = 2 + 4 10 ∨ x = 2 − 4 10.
2x − 1 = 3 5
4
x4
x 5 = −32 x = 5 −32 = −2.
=5
8x 3 + 2 = 1
x3
−3x 5 = 96
x4 =1 x = ± 4 1 = ±1. 18d
x2
x 3 = 27 x = 3 27 = 3.
x 4 = 81 x = ± 4 81 = ±3.
18a
5x 3 = 135
x
2x = 1 + 3 5
x = 21 + 21 ⋅ 3 5.
G&R vwo B deel 1 C. von Schwartzenberg 19c
1 Vergelijkingen en ongelijkheden 5/25
1 (3x − 1) 4 = 8 2 4
19d
− 1 (4x − 3)5 = −81
3x − 1 = ± 4 16 = ±2 3x = 1 ± 2
(4x − 3)5 = 243
3
4x − 3 = 5 243 = 3 4x = 6
5x 4 − 3 = 17
x = 64 = 23 = 1 21 . 20b
x 3 = 343 x = 3 343 = 7.
4
x =4 x = ± 4 4. 3(4x − 5)3 = 15
20d
3
17 − 2(1 − 3x ) 4 = 5
(4x − 5) = 5
−2(1 − 3x ) 4 = −12
4x − 5 = 3 5
(1 − 3x ) 4 = 6
= 5 + 35
1 − 3x = ± 4 6
4x
x = 54 + 41 ⋅ 3 5 = 1 41 + 41 ⋅ 3 5.
21ab
4x 3 − 5 = 1367 4x 3 = 1372
5x 4 = 20
20c
3
(3x − 1) = 16
x = 1 ±3 2 x = 1 +3 2 = 1 ∨ x = 1 −3 2 = − 31 . 20a
100 − 1 (4x − 3)5 = 19
−3x = −1 ± 4 6
x = 31 ∓ 31 ⋅ 4 6 = 31 ± 31 ⋅ 4 6.
x 3 − x 2 − 2x = x ⋅ (x 2 − x − 2) = x ⋅ (x − 2) ⋅ (x + 1) = 0 ⇒ x = 0 ∨ x = 2 ∨ x = −1.
22a
22c
23a
x 3 − 5x 2 + 6x = 0 x ⋅ (x 2 − 5x + 6) = 0 x ⋅ (x − 3) ⋅ (x − 2) = 0 x = 0 ∨ x = 3 ∨ x = 2.
22b
x 3 = 4x 2 + 12x
22d
x 3 − 5x 2 = 6x x 3 − 5x 2 − 6x = 0 x ⋅ (x 2 − 5x − 6) = 0 x ⋅ (x − 6) ⋅ (x + 1) = 0 x = 0 ∨ x = 6 ∨ x = −1. x 4 − 13x 2 + 36 = 0 (noem x 2 tijdelijk t )
x 3 − 4x 2 − 12x = 0 x ⋅ (x 2 − 4x − 12) = 0 x ⋅ (x − 6) ⋅ (x + 2) = 0 x = 0 ∨ x = 6 ∨ x = −2.
t 2 − 13t + 36 = 0 (t − 4) ⋅ (t − 9) = 0 t = x2 = 4 ∨ t = x2 = 9 x = ±2 ∨ x = ±3.
x 4 − 10x 2 + 9 = 0 (noem x 2 tijdelijk t )
23b
2
23c
t − 10t + 9 = 0 (t − 9) ⋅ (t − 1) = 0
t 2 − 8t − 9 = 0 (t − 9) ⋅ (t + 1) = 0
t = x2 = 9 ∨ t = x2 =1 x = ±3 ∨ x = ±1.
t = x 2 = 9 ∨ t = x 2 = −1 (kan niet) x = ±3.
x 4 + 16 = 10x 2
23d
x 4 − 10x 2 + 16 = 0 (noem x 2 tijdelijk t ) t 2 − 10t + 16 = 0 (t − 8) ⋅ (t − 2) = 0 t = x2 = 8 ∨ t = x2 = 2 x = ± 8 ∨ x = ± 2. 24ab
x 4 − 8x 2 − 9 = 0 (noem x 2 tijdelijk t )
2x 4 − 11x 2 + 12 = 0 (noem x 2 tijdelijk p ) 2 p 2 − 11 p + 12 = 0 (a = 2, b = −11 en c = 12)
D = ( −11)2 − 4 ⋅ 2 ⋅ 12 = 121 − 96 = 25 p = −b 2±a D = 11 2± ⋅ 225 = 11 4± 5 = 4 ∨ p = x 2 = 11 − 5 = 6 = 3 = 1 1 p = x 2 = 11 4+ 5 = 16 4 4 4 2 2 1 x = ±2 ∨ x = ± 1 2 .
x 3 + 25x = 10x 2 x 3 − 10x 2 − 25x = 0 x ⋅ (x 2 − 10x − 25) = 0 x ⋅ (x − 5) ⋅ (x − 5) = 0 x = 0 ∨ x = 5 (dubbel).
G&R vwo B deel 1 C. von Schwartzenberg
1 Vergelijkingen en ongelijkheden 6/25
25a
6x 4 + 2 = 7 x 2
25b
6x 4 − 7 x 2 + 2 = 0 (noem x 2 tijdelijk t )
2x 4 − x 2 − 3 = 0 (noem x 2 tijdelijk t )
2
25c
2x 4 = x 2 + 3
6t − 7t + 2 = 0 (a = 6, b = −7 en c = 2)
2t 2 − t − 3 = 0 (a = 2, b = −1 en c = −3)
D = ( −7)2 − 4 ⋅ 6 ⋅ 2 = 49 − 48 = 1
D = ( −1)2 − 4 ⋅ 2 ⋅ −3 = 1 + 24 = 25
±1 t = −b 2±a D = 72±⋅ 61 = 712 +1 = 8 = 2 ∨ t = x 2 = 7 −1 = 6 = 1 t = x 2 = 712 12 3 12 12 2 2 1 x = ± 3 ∨ x = ± 2.
t = −b 2±a D = 1 ±2 ⋅ 225 = 1 ±4 5 t = x 2 = 1 +4 5 = 64 = 1 21 ∨ t = x 2 = 1 −4 5 = −1 (k.n.) x = ± 1 21 .
4x 4 + 7 x 2 = 2 4x
4
2
25d
16x 4 + 225 = 136x 2 16x 4 − 136x 2 + 225 = 0 (noem x 2 tijdelijk t )
2
+ 7 x − 2 = 0 (noem x tijdelijk t )
4t 2 + 7t − 2 = 0 (a = 4, b = 7 en c = −2)
16t 2 − 136t + 225 = 0 (a = 16, b = −136 en c = 225)
2
D = ( −136)2 − 4 ⋅ 16 ⋅ 225 = 4 096
D = 7 − 4 ⋅ 4 ⋅ −2 = 49 + 32 = 81
4096 t = −b 2±a D = −72±⋅ 481 = −78± 9 t = −b 2±a D = 136 2± ⋅ 16 = 136 ± 64 32 + 64 = 200 = 25 ∨ t = x 2 = 136 − 64 = 72 = 9 t = x 2 = −78+ 9 = 28 = 41 ∨ t = x 2 = −78− 9 = −816 = −2 (k.n.) t = x 2 = 13632 32 32 32 4 4 x = ± 41 = ± 21 . x = ± 25 = ± 5 = ±2 1 ∨ x = ± 9 = ± 3 = ±1 1 . 2 2 2 2 4 4
26a
4x 4 + 153 = 53x 2
26b
4x 4 − 53x 2 + 153 = 0 (noem x 2 tijdelijk t )
4x 4 + 21x 2 − 148 = 0 (noem x 2 tijdelijk t )
2
26c
4t − 53t + 153 = 0 (a = 4, b = −53 en c = 153)
4t 2 + 21t − 148 = 0 (a = 4, b = 21 en c = −148)
D = ( −53)2 − 4 ⋅ 4 ⋅ 153 = 361
D = 212 − 4 ⋅ 4 ⋅ −148 = 2 809
t = −b 2±a D = 53 2± ⋅ 4361 = 53 8± 19 = 9 ∨ x 2 = 53 − 19 = 34 = 17 = 4 1 x 2 = 53 8+ 19 = 72 8 8 8 4 4 x = ±3 ∨ x = ± 4 41 .
t = −b 2±a D = −21 ±2 ⋅ 42809 = −218± 53 x 2 = −218+ 53 = 32 = 4 ∨ x 2 = −21 − 53 = −... (k.n.) 8 8 x = ±2.
4x 6 + 35 = 24x 3
26d
4x 6 − 24x 3 + 35 = 0 (noem x 3 tijdelijk t )
64x 6 + 27 = 224x 3 64x 6 − 224x 3 + 27 = 0 (noem x 3 tijdelijk t )
2
27a
4x 4 + 21x 2 = 148
4t − 24t + 35 = 0 (a = 4, b = −24 en c = 35)
64t 2 − 224t + 35 = 0 (a = 64, b = −224 en c = 27)
D = ( −24)2 − 4 ⋅ 4 ⋅ 35 = 16
D = ( −224)2 − 4 ⋅ 64 ⋅ 27 = 43264
t = −b 2±a D = 242±⋅ 416 = 248± 4 = 7 ∨ x 3 = 24 − 4 = 20 = 5 x 3 = 248+ 4 = 28 8 2 8 8 2 x = 3 3 21 ∨ x = 3 2 21 .
43264 t = −b 2±a D = 224 ±2 ⋅ 64 = 224 ± 208 128 + 208 = 432 = 27 ∨ x 3 = 224 − 208 = 16 = 1 x 3 = 224128 128 8 128 128 8 x = 3 27 = 3 ∨ x =3 1 = 1. 8 2 8 2
De getallen 7 en − 7.
27b
2x − 1 = 7 ∨ 2x − 1 = −7 2x = 8 ∨ 2x = −6 x = 4 ∨ x = −3.
2x − 1 = 8 2x − 1 = 8 ∨ 2x − 1 = −8 2x = 9 ∨ 2x = −7
28b
x2 −3 =1
28a
x 2 − 3 = 1 ∨ x 2 − 3 = −1 x2 = 4 ∨ x2 = 2 x = ±2 ∨ x = ± 2.
x = 29 = 4 21 ∨ x = −27 = −3 21 . 28c
2x 2 − 5 = 11
28d
5 − x 2 = 11
2x 2 − 5 = 11 ∨ 2x 2 − 5 = −11
5 − x 2 = 11 ∨ 5 − x 2 = −11
2x 2 = 16 ∨ 2x 2 = −6
−x 2 = 6 ∨ − x 2 = −16
2
2
x = 8 ∨ x = −3 (k.n.) x = ± 8.
x 2 = −6 (k.n.) ∨ x 2 = 16 x = ±4.
G&R vwo B deel 1 C. von Schwartzenberg 29a
1 Vergelijkingen en ongelijkheden 7/25
2x 4 − 5 = 15
29b
2x 3 − 5 = 15 ∨ 2x 3 − 5 = −15
2x 4 − 5 = 15 ∨ 2x 4 − 5 = −15 2x
4
= 20 ∨ 2x
4
2x 3 = 20 ∨ 2x 3 = −10
= −10
x 3 = 10 ∨ x 3 = −5 x = 3 10 ∨ x = 3 −5.
x 4 = 10 ∨ x 4 = −5 (k.n.) x = ± 4 10. 29c
2x 3 − 5 = 15
x 4 − 5x 2 = 6
x 6 − 10x 3 = 24
29d
x 4 − 5x 2 = 6 ∨ x 4 − 5x 2 = −6
x 6 − 10x 3 = 24 ∨ x 6 − 10x 3 = −24
x 4 − 5x 2 − 6 = 0 ∨ x 4 − 5x 2 + 6 = 0 (noem x 2 tijdelijk t )
x 6 − 10x 3 − 24 = 0 ∨ x 6 − 10x 3 + 24 = 0 (stel x 3 = t ) t 2 − 10t − 24 = 0 ∨ t 2 − 10t + 24 = 0 (t − 12) ⋅ (t + 2) = 0 ∨ (t − 6) ⋅ (t − 4) = 0
2
2
t − 5t − 6 = 0 ∨ t − 5t + 6 = 0 (t − 6) ⋅ (t + 1) = 0 ∨ (t − 3) ⋅ (t − 2) = 0 t = x 2 = 6 ∨ x 2 = −1 (k.n.) ∨ x 2 = 3 ∨ x 2 = 2 x = ± 6 ∨ x = ± 3 ∨ x = ± 2.
t = x 3 = 12 ∨ x 3 = −2 ∨ x 3 = 6 ∨ x 3 = 4 x = 3 12 ∨ x = 3 −2 ∨ x = 3 6 ∨ x = 3 4.
30a
2x − 5 = 3 (kwadrateren) ⇒ 2x − 5 = 9 ⇒ 2x = 14 ⇒ x = 7.
30b
2x − 5 = −3 heeft geen oplossing, omdat een wortel niet negatief kan zijn.
31a
x = 5x + 14 (kwadrateren) x 2 = 5x + 14
31b
(3x )2 = 8x + 20
2
9x 2 − 8x − 20 = 0 (a = 9, b = −8 en c = −20)
x − 5x − 14 = 0 (x − 7) ⋅ (x + 2) = 0 x = 7 (voldoet) ∨ x = −2 (voldoet niet).
31c
5 x = x (kwadrateren) 25x = x
D = ( −8)2 − 4 ⋅ 9 ⋅ −20 = 64 + 720 = 784
31d
2
0 = x 2 − 25x 0 = x ⋅ (x − 25) x = 0 (voldoet) ∨ x = 25 (voldoet).
32a
4 −3 x =2 −3 x = −2
= 8 ± 28 x = −b 2±a D = 8 ±2 ⋅784 9 18 = 2 (voldoet) ∨ x = 8 − 28 = −20 = −... (voldoet niet). x = 8 +1828 = 36 18 18 18 3x = 18x + 72 (kwadrateren) (3x )2 = 18x + 72 9x 2 − 18x − 72 = 0
x 2 − 2x − 8 = 0 (x − 4) ⋅ (x + 2) = 0 x = 4 (voldoet) ∨ x = −2 (voldoet niet). 32b
x = 23 (kwadrateren)
x = 94 (voldoet). 32c
3x = 8x + 20 (kwadrateren)
5 x − 2x = 0 5 x = 2x (kwadrateren) 25x = 4x 2 0 = 4x 2 − 25x = 4x ⋅ (x − 25 ) 4
x = 0 (voldoet) x = 6 41 (voldoet).
2x − 5 x = 3 2x − 3 = 5 x (kwadrateren)
32d
4x 2 − 6x − 6x + 9 = 25x 4x 2 − 37 x + 9 = 0 (a = 4, b = −37 en c = 9)
5−2 x =3 2=2 x 1 = x (kwadrateren) 1 = x (voldoet).
D = ( −37)2 − 4 ⋅ 4 ⋅ 9 = 1225 = 37 ± 35 x = −b 2±a D = 37 ±2 ⋅ 1225 8 4 = 9 (voldoet) ∨ x = 37 − 35 = 2 = 1 (voldoet niet). x = 37 8+ 35 = 72 8 8 8 4 33a
2x + x = 10 x = 10 − 2x (kwadrateren)
x = 100 − 20x − 20x + 4x 2 0 = 4x 2 − 41x + 100 (a = 4, b = −41 en c = 100)
D = ( −41)2 − 4 ⋅ 4 ⋅ 100 = 81 x = −b 2±a D = 412±⋅ 481 = 418± 9 = 6 1 (voldoet niet) ∨ x = 41 − 9 = 32 = 4 (voldoet). x = 418+ 9 = 50 8 8 8 4
33b
x + 12 = x (kwadrateren) x + 12 = x 2 0 = x 2 − x − 12 0 = (x − 4) ⋅ (x + 3) x = 4 (voldoet) ∨ x = −3 (voldoet niet).
G&R vwo B deel 1 C. von Schwartzenberg 33c
1 Vergelijkingen en ongelijkheden 8/25
2x + x = 6 x = 6 − 2x (kwadrateren)
33d
10 − x x = 2 8 = x x (kwadrateren) 64 = x 2 ⋅ x = x 3
x = 36 − 12x − 12x + 4x 2
x = 3 64 = 4 (voldoet).
2
0 = 4x − 25x + 36 (a = 4, b = −25 en c = 36)
D = ( −25)2 − 4 ⋅ 4 ⋅ 36 = 49 x = −b 2±a D = 252±⋅ 449 = 258± 7 = 4 (voldoet niet) ∨ x = 25 − 7 = 18 = 2 1 (voldoet). x = 258+ 7 = 32 8 8 8 4 34a
(x x )2 + x x − 6 = 0 (stel x x = p )
x x = −3 (x = 0 voldoet niet, x > 0 of x < 0 kan ook niet) x x = 2 (kwadrateren) ⇒ x 2 ⋅ x = 4 ⇒ x 3 = 4 ⇒ x = 3 4.
34b
p2 + p − 6 = 0 ( p + 3) ⋅ ( p − 2) = 0 p = x x = −3 ∨ p = x x = 2 35a
x 3 − 9x x + 8 = 0 (stel x x = t ) t 2 − 9t + 8 = 0 (t − 8) ⋅ (t − 1) = 0 t = x x = 8 ∨ t = x x = 1 (kwadrateren) x 2 ⋅ x = x 3 = 82 = 64 ∨ x 3 = 12 = 1 x = 3 64 = 4 ∨ x = 3 1 = 1.
35c
8x 3 + 8 = 65x x
x 3 + 27 = 28x x x 3 − 28x x + 27 = 0 (stel x x = t ) t 2 − 28t + 27 = 0 (t − 27) ⋅ (t − 1) = 0 t = x x = 27 ∨ x x = 1 (kwadrateren) x 3 = 272 = 729 ∨ x 3 = 12 = 1 x = 3 729 = 9 ∨ x = 3 1 = 1.
35b
35d
3
8x − 65x x + 8 = 0 (stel x x = t ) 8t 2 − 65t + 8 = 0 (a = 8, b = −65 en c = 8)
D = ( −65)2 − 4 ⋅ 8 ⋅ 8 = 3 969 t = −b ± D = 65 ± 3969 = 65 ± 63 2a
2⋅8
16
x x = 65 + 63 = 128 = 8 ∨ x x = 65 − 63 = 2 = 1 (kwadr.) 16
16
16
x 3 = 82 = 64 ∨ x 3 = ( 1 )2 = 1 3
x = 64 = 4 ∨ x
16
x 5 − 33x 2 x + 32 = 0 (stel x 2 x = t ) t 2 − 33t + 32 = 0 (t − 32) ⋅ (t − 1) = 0 t = x 2 x = 32 ∨ x 2 x = 1 (kwadrateren) x 5 = 322 = 1 024 ∨ x 5 = 12 = 1 x = 5 1 024 = 4 ∨ x = 5 1 = 1.
8
8 64 1 1 3 = = . 64 4
36a
x 3 + 30 = 11x x x 3 − 11x x + 30 = 0 (x x = t ) t 2 − 11t + 30 = 0 (t − 6) ⋅ (t − 5) = 0 t = x x = 6 ∨ x x = 5 (kwadrateren) x 3 = 62 = 36 ∨ x 3 = 52 = 25 x = 3 36 ∨ x = 3 25.
36c
x 5 + 10 = 7x 2 x x 5 − 7 x 2 x + 10 = 0 (stel x 2 x = t ) t 2 − 7t + 10 = 0 (t − 2) ⋅ (t − 5) = 0 t = x 2 x = 2 ∨ x 2 x = 5 (kwadr.) x 5 = 22 = 4 ∨ x 5 = 52 = 25 x = 5 4 ∨ x = 5 25.
x 3 + 125 = 126x x x 3 − 126x x + 125 = 0 (x x = t ) t 2 − 126t + 125 = 0 (t − 125) ⋅ (t − 1) = 0 t = x x = 125 ∨ x x = 1 (kwadrateren) x 3 = 1252 = 15 625 ∨ x 3 = 12 = 1 x = 3 15 625 = 25 ∨ x = 3 1 = 1.
36b
36d
32x 5 + 32 = 1 025x 2 x 32x 5 − 1 025x 2 x + 32 = 0 (stel x 2 x = t ) 32t 2 − 1 025t + 32 = 0 (a = 32, b = −1025 en c = 32)
D = ( −1 025)2 − 4 ⋅ 32 ⋅ 32 = 1 046 529 t = −b ± D = 1025 ± 1046529 = 1025 ± 1023 2a
2 ⋅ 32
64
x 2 x = 1025 + 1023 = 32 ∨ x 2 x = 1025 − 1023 = 1 (kwadr.) 64
x 5 = 322 = 1 024 ∨ x 5 = ( 1 )2 = 32
x = 5 1 024 = 4 ∨ x = 5 1
1024
37
• x − x = 12 ⇒ x − 12 = x (kwadrateren) 2
2
x − 12x − 12x + 144 = x ⇒ x − 25x + 144 = 0 (x − 9) ⋅ (x − 16) = 0 ⇒ x = 9 (voldoet niet) ∨ x = 16 (voldoet).
1 1024
64
32
= 1. 4
• x − x = 12 ⇒ x − x − 12 = 0 (stel x = t )
t 2 − t − 12 = 0 ⇒ (t − 4) ⋅ (t + 3) = 0 t = x = 4 ∨ t = x = −3 (k.n.) ⇒ x = 42 = 16.
G&R vwo B deel 1 C. von Schwartzenberg
1 Vergelijkingen en ongelijkheden 9/25
38a
De kruisproducten bij de tabel geeft x ⋅ x = 2 ⋅ (x + 4) ⇒ x 2 = 2x + 8 ⇒ x 2 − 2x − 8 = 0.
38b
x 2 − 2x − 8 = 0 ⇒ (x − 4) ⋅ (x + 2) = 0 ⇒ x = 4 ∨ x = −2.
39a
x + 3 = 10 x x −1
39e
3 39b 2xx ++13 = 2xx −+12 39c xx −+ 31 = 1 21 = 2 39d x ⋅ (x + 3) = 10 ⋅ (x − 1) (2x + 3) ⋅ (x − 1) = (2x + 2) ⋅ (x + 1) 2 ⋅ (x − 3) = 3 ⋅ (x + 1) 2x − 6 = 3x + 3 x 2 + 3x = 10x − 10 2x 2 − 2x + 3x − 3 = 2x 2 + 2x + 2x + 2 −x = 9 2 −3x = 5 x − 7x + 10 = 0 = −9 (vold.). x (x − 5) ⋅ (x − 2) = 0 x = −53 = −1 23 (vold.). VOLDOET NIET ALS EEN NOEMER NUL WORDT !!! x = 5 (vold.) ∨ x = 2 (vold.). 3x + 4 = x + 18 x x −1
x ⋅ (3x + 4) = (x + 18) ⋅ (x − 1)
(2x − 5) ⋅ (3x − 4) = (x + 2) ⋅ (4 − x )
3x 2 + 4x = x 2 − x + 18x − 18
6x 2 − 8x − 15x + 20 = 4x − x 2 + 8 − 2x
2x 2 − 13x + 18 = 0 (a = 2, b = −13 en c = 18)
7 x 2 − 25x + 12 = 0 (a = 7, b = −25 en c = 12)
D = ( −13) − 4 ⋅ 2 ⋅ 18 = 25
D = ( −25)2 − 4 ⋅ 7 ⋅ 12 = 289
x = −b 2±a D = 13 2± ⋅ 225 = 134± 5 x = 134+ 5 = 18 = 4, 5 (vold.) ∨ x = 13 − 5 = 8 = 2 (vold.). 4 4 4
± 17 x = −b 2±a D = 25 2± ⋅ 7289 = 2514 + 17 = 42 = 3 (vold.) ∨ x = 25 − 17 = 8 = 4 (vold.). x = 2514 14 7 14 14
5x 2 − 15 = 0 x 2 +5 2
x 2−3 = x −1 x 2+1 x 2+1
40b
40c
x 2− 4 = x 2− 4 2x + 5 x +4 2
x2 −3 = x −1
x − 4 = 0 ∨ 2x + 5 = x + 4
5x 2 = 15
x2 −x −2 = 0 (x − 2) ⋅ (x + 1) = 0 x = 2 ∨ x = −1.
x = 4 ∨ x = −1 x = 2 ∨ x = −2 ∨ x = −1.
x =3 x = 3 ∨ x = − 3. (vold.)
(vold.)
(vold.)
(vold.)
(vold.)
x3 −8 = 0 ∨ x2 +2 = x +8 x3 =8 ∨ x2 −x −6 = 0 x = 3 8 = 2 ∨ (x − 3) ⋅ (x + 2) = 0 x = 2 ∨ x = 3 ∨ x = −2.
3x − 10 = 2x + 2
x 2 = 12 x = 12 ∨ x = − 12.
(vold.)
(vold.)
2
3x − 10 = 2 25 (x 2 + 1)2 2
(vold.)
6x − 12 = 1 1 = 4 3 3 (x 2 − 1)2 2
41d
3 ⋅ (6x − 12) = 4 ⋅ (x 2 − 1)2
75x 2 − 250 = 2 ⋅ (x 4 + x 2 + x 2 + 1)
18x 2 − 36 = 4 ⋅ (x 4 − x 2 − x 2 + 1)
75x − 250 = 2x
4
18x 2 − 36 = 4x 4 − 8x 2 + 4
2
+ 4x + 2
0 = 4x 4 − 26x 2 + 40
0 = 2x 4 − 71x 2 + 252 (stel x 2 = t ) 2t − 71t + 252 = 0 (a = 2, b = −71 en c = 252)
0 = 2x 4 − 13x 2 + 20 (stel x 2 = t )
D = ( −71)2 − 4 ⋅ 2 ⋅ 252 = 3 025
2t 2 − 13t + 20 = 0 (a = 2, b = −13 en c = 20)
= 71 ± 55 t = −b 2±a D = 71 ±2 ⋅3025 2 4 t = x 2 = 71 +4 55 = 31, 5 ∨ x 2 = 71 −4 55 = 4
D = ( −13)2 − 4 ⋅ 2 ⋅ 20 = 169 − 160 = 9
2
t = −b 2±a D = 132±⋅ 2 9 = 134± 3 t = x 2 = 134+ 3 = 4 ∨ x 2 = 134− 3 = 2,5
x = 31, 5 ∨ x = − 31, 5 ∨ x = 2 ∨ x = −2. (vold.)
(vold.)
(vold.)
(vold.)
x = 2 ∨ x = −2 ∨ x = 2,5 ∨ x = − 2, 5. (vold.)
42a
(vold.)
2
25 ⋅ (3x − 10) = 2 ⋅ (x 2 + 1)2 2
x = 0 en y = 3 invullen in x + 4y = 12 geeft 0 + 4 ⋅ 3 = 12 (klopt). x = 4 invullen in l geeft y
42c
y = − 41 x + 3 ⇒ 4y = −x + 12 ⇒ x + 4y = 12.
43
3x − y = 6 0
2
-6
0
(vold.)
(vold.)
(vold.)
y -as
= − 1 ⋅ 4 + 3 = −1 + 3 = 2 ⇒ (4, 2) ligt op l . 4
42b
x y
(vold. niet)
x 3−8 = x 3−8 x +8 x 2+ 2
41b
2
(vold.)
(vold.)
(vold.)
3x 2 − 10 = 2 = 2 1 x 2+1 2 2
(vold.)
x 2+1 = x + 3 x +1 x +1
x2 +1 = x +3 x2 −x −2 = 0 (x − 2) ⋅ (x + 1) = 0 x = 2 ∨ x = −1.
2
1 ⋅ (3x − 10) = 2 ⋅ (x 2 + 1)
41c
40d
5x − 15 = 0 2
41a
2 ⋅ x = 1 ⋅ (x − 1) 2x = x − 1 x = −1 (vold.).
2x − 5 = x + 2 4 −x 3x − 4
39f
2
40a
x −1 + 1 = 3 x x −1 = 2 = 2 x 1
x -as
x +y =1
x −y =0
x + 2y = 4
x y
x y
x y
0
1
1
0
0
1
0
1
4
0
0
2
G&R vwo B deel 1 C. von Schwartzenberg
1 Vergelijkingen en ongelijkheden 10/25
44a
y = 0 ⇒ 4x = 24 ⇒ x = 6; dus snijpunt met de x -as: (6, 0). x = 0 ⇒ −3y = 24 ⇒ y = −8; dus snijpunt met de y -as: (0, − 8).
44b
4 ⋅ 8 − 3 ⋅ 3 ≠ 24 ⇒ (8, 3) ligt niet op l . 4 ⋅ 18 − 3 ⋅ 16 = 24 ⇒ (18, 16) ligt op l . 4 ⋅ −30 − 3 ⋅ −48 = 24 ⇒ ( −30, − 48) ligt op l .
44c
4 ⋅ 16 − 3 ⋅ p = 24 ⇒ −3p = −40 ⇒ p = 40 = 13 1 .
44d
4 ⋅ q − 3 ⋅ 48 = 24 ⇒ 4q = 168 ⇒ q = 42.
45a
l : 2x + y = 3 gaat door (0, 3) en (1, 1); m: x − 2y = 4 gaat door (0, − 2) en (4, 0).
3
y -as
l
3
x -as
m
(de grafieken van de lijnen in de figuur hiernaast)
45b
Het snijpunt is (2, − 1).
45c
x = 2 ∧ y = −1 is zowel oplossing van 2x + y = 3 als van x − 2y = 4.
46a
5x − 4y = − 8 −x + 4y = −12
46b +
4x
= −20 x = −5 ⇒ 5 + 4y = −12 − x + 4y = −12 4y = −17
−2x + y = 7 −2x + 3y = −1 − − 2y = 8 y = −4 ⇒ −2x − 4 = 7 − 2x + y = 7 −2x = 11
3x − 4y = 7 2x + 3y = 16
+
3x + 5y = −7 1 2x + y = 0 5 3x + 5y = −7 10x + 5y = 0
48b
−
= −7 x =1 ⇒2+y =0 2x + y = 0 y = −2.
49a
5x x 5x 5x
+ 2y = 69 1 + 3y = −7 5 + 2y = 69 + 15y = −35
−
− 13y = 104 y = −8 ⇒ x − 24 = −7 x + 3y = −7 x = 17.
50
3x − 2y x + 4y 6x − 4y x + 4y 7x x =2
= −12 2 = 38 1 = −24 = 38 +
= 14 ⇒ 2 + 4y = 38 x + 4y = 38 4y = 36 y = 9.
−
Nee, er is geen variabele geëlimineerd.
2x − 4y = 6 1 3x − y = 19 4 2x − 4y = 6 12x − 4y = 76
48c
−10x
= −70 x =7 ⇒ 21 − y = 19 3x − y = 19 2 = y.
49b
+
= −9 ⇒ −6 + 3y = −1 = −1 3y = 5
x − 7y = −9
−
− 7x
= −8 = −1
y = 35 = 1 32 .
3x − 4y = 7 2x + 3y = 16
47b
5x − y = 23 Nee, er is geen variabele geëlimineerd.
48a
− x − 3y −2x + 3y − 3x x =3 − 2x + 3y
x = −5 21 .
y = −417 = −4 41 .
47a
46c
2x − 5y = −19 4 5x + 4y = 35 5 8x − 20y = −76 25x + 20y = 175
4x + y = 13 2 x − 2y = 1 1 8x + 2y = 26 x − 2y = 1 + 9x = 27 x =3 ⇒ 12 + y = 13 4x + y = 13 y = 1.
49c
24x + 6y = 30 6x − 6y = 30
+
33x
x = 1 ∧ y = −2 invullen: −2 = 12 + b ⋅ 1 + c −2 = 1 + b + c −3 = b + c . x = 2 ∧ y = 3 invullen: 3 = 22 + b ⋅ 2 + c 3 = 4 + 2b + c −1 = 2b + c .
+
30x
= 99 x =3 ⇒ 15 + 4y = 35 5x + 4y = 35 4y = 20 y = 5. 51ab
0,8x + 0,2y = 1 30 0,3x − 0,3y = 1, 5 20
= 60 x =2 ⇒ 12 − 6y = 30 6x − 6y = 30 −6y = 18 y = −3. 51c
b + c = −3 2b + c = −1 − −b = −2 b =2 ⇒ 2 + c = −3 b + c = −3 c = −5.
G&R vwo B deel 1 C. von Schwartzenberg 52
1 Vergelijkingen en ongelijkheden 11/25
(1, 8) op parabool ⇒ 8 = a ⋅ 1 + c ; (2, 17) op parabool ⇒ 17 = a ⋅ 4 + c .
53
2a + b = 8 −2 a + 2b = 8 1 −4a − 2b = −16 a + 2b = 8 + − 3a = −8 8 a = 3 16 24 16 8 2 ⇒ 3 +b = 8 ⇒ b = 3 − 3 = 3 = 23. 2a + b = 8
a +c = 8 4a + c = 17 − −3a = −9 a =3 ⇒ 3+c = 8 a + c = 8 c = 5.
54a
(2, − 1) op parabool ⇒ −1 = 4 + 2 p + q ; (2, − 1) op lijn ⇒ −1 = 4 p − q . 2 p + q = −5 4 p − q = −1
54b
De parabool y = x 2 − x − 3 snijden met de lijn y = −2x + 3.
x 2 − x − 3 = −2x + 3 x2 +x −6 = 0 (x + 3) ⋅ (x − 2) = 0 x = −3 x = 2 (was gegeven) y = −2 ⋅ −3 + 3 = 9 ∨ y = −2 ⋅ 2 + 3 = −1.
+
6p
= −6 p = −1 ⇒ −2 + q = −5 2 p + q = −5 q = −3. 55
( −2, − 10) op parabool ⇒ −10 = a ⋅ 4 + b ⋅ −2 + c ; (0, 4) op parabool ⇒ 4 = c ; (3, 5) op parabool ⇒ 5 = a ⋅ 9 + b ⋅ 3 + c . invullen in en geeft: −10 = 4a − 2b + 4 ⇒ 4a − 2b = −14 ⇒ 2a − b = −7 en 5 = 9a + 3b + 4 ⇒ 9a + 3b = 1. 2a − b 9a + 3b 6a − 3b 9a + 3b 15a
= −7 3 = 1 1 = −21 = 1+ = −20 a = − 43 8 ⇒ − 3 − b = −7 2a − b = −7 −b = − 21 + 8 = − 13 ⇒ b = 4 1 . 3
57a
58a
(2, 8) op k ⇒ 2a + b = 8; (2, 8) op l ⇒ 2b + a = 8.
3
3
56
2x + 3y = 12 y = 4x − 10 2x + 3y = 12 1 −4x + y = −10 −3 2x + 3y = 12 12x − 3 y = 30 + 14x = 42 x =3 ⇒ y = 4 ⋅ 3 − 10 = 2. y = 4x − 10
3
y = 1 x + 1 2x + 2y = 9 x = 5y − 3 2 57b 57c y = 4x − 3 3x + 4y = 29 3x + 6y = 8 in geeft: 2x + 2 ⋅ (4x − 3) = 9 1 in geeft: 3 ⋅ (5y − 3) + 4y = 29 in geeft: 3x + 6 ⋅ ( 2 x + 1) = 8 2x + 8x − 6 = 9 15y − 9 + 4y = 29 3x + 3x + 6 = 8 10x = 15 19y = 38 6x = 2 x = 1, 5 in y = 2 in x = 1 in 3 y = 4 ⋅ 1,5 − 3 = 3. x = 5 ⋅ 2 − 3 = 7. 1 1 1 y = 2 ⋅ 3 + 1 = 1 6 . y = x 2 − 3 x − y = −3 in geeft: x − (x 2 − 3) = −3
x − x 2 + 3 = −3 0 = x2 −x −6 0 = (x − 3) ⋅ (x + 2) x = 3 in x = −2 in ∨ y = 9 − 3 = 6 y = 4 − 3 = 1.
58b
x 2 + y 2 = 25 x 2 + y 2 = 25 ⇒ 3x + y = 5 y = −3x + 5
in geeft: x 2 + ( −3x + 5)2 = 25 x 2 + 9x 2 − 15x − 15x + 25 = 25 10x 2 − 30x = 0 10x ⋅ (x − 3) = 0 x = 0 in x = 3 in ∨ y = −9 + 5 = −4. y = 0 + 5 = 5
G&R vwo B deel 1 C. von Schwartzenberg
58c
1 Vergelijkingen en ongelijkheden 12/25
2 2 x 2 + y 2 = 20 x + y = 20 ⇒ y = x8 xy = 8
in geeft: x 2 + ( x8 )2 = 20
x 2 + 642 − 20 = 0 (vermenigvuldigen met x 2 ) x
x 4 − 20x 2 + 64 = 0 (stel x 2 = t ) t 2 − 20t + 64 = 0 (t − 16) ⋅ (t − 4) = 0 t = x 2 = 16 ∨ t = x 2 = 4 x = 4 in x = −4 in x = 2 in x = −2 in ∨ ∨ ∨ 8 8 8 8 y = 4 = 2 y = −4 = −2 y = 2 = 4 y = −2 = −4. 59
x 4 − x 2 − 2 = 0 kun je algebraïsch oplossen door x 2 = t te stellen. Je krijgt (t − 2) ⋅ (t + 1) = 0 x 4 − x 3 − 2 = 0 kun je niet algebraïsch oplossen. x 4 − x 3 − 2x = 0 ⇒ x ⋅ (x 3 − x 2 − 2) = 0 kun je niet algebraïsch oplossen. x 4 − x 3 − 2x 2 = 0 ⇒ x 2 ⋅ (x 2 − x − 2) = 0 ⇒ x 2 ⋅ (x − 2) ⋅ (x + 1) = 0 kun je algebraïsch oplossen.
60a
x = −1, x = 1, x = 2 en x = 3.
60b
x = −1 geeft y = ( −1) 4 − 5 ⋅ ( −1)3 + 5 ⋅ ( −1)2 + 5 ⋅ −1 − 6 = 0 (klopt), x = 1 geeft y = 14 − 5 ⋅ 13 + 5 ⋅ 12 + 5 ⋅ 1 − 6 = 0 (klopt), x = 2 geeft y = 2 4 − 5 ⋅ 23 + 5 ⋅ 22 + 5 ⋅ 2 − 6 = 0 (klopt) en x = 3 geeft y = 34 − 5 ⋅ 33 + 5 ⋅ 32 + 5 ⋅ 3 − 6 = 0 (klopt).
61a
x = −2, x = 2 en x = 4.
61b
x = −2 ∨ x = 2 ∨ x = 4.
Neem GR - practicum 2 door. (uitwerkingen aan het eind)
62a
x 3 − 4x 2 + 3 = 0 (intersect met ZStandard) ⇒ x ≈ −0, 79 ∨ x = 1 ∨ x ≈ 3, 79.
62b
x 4 − 4x 3 + 2x 2 + x − 1 = 0 (intersect met ZStandard) ⇒ x ≈ −0,58 ∨ x ≈ 3,34.
62c
0, 4x 3 + 2x 2 + x − 2 = x + 2 (intersect) ⇒ x ≈ −4, 51 ∨ x ≈ −1, 76 ∨ x ≈ 1,26.
62d
0,2x 5 − x 4 + 4x 2 = 0,2x + 3 (intersect) ⇒ x ≈ −1, 45 ∨ x = −1 ∨ x = 1 ∨ x = 3 ∨ x ≈ 3, 45.
63a
0,5x 3 − 5x 2 + 20 = 0 (intersect) ⇒ x ≈ −1,84 ∨ x ≈ 2,28 ∨ x ≈ 9,56.
63b
0,1x 4 + 0,1x 3 − 12x 2 + 50 = 25x (intersect) ⇒ x = −10 ∨ x ≈ −3,53 ∨ x ≈ 1,26 ∨ x ≈ 11,27.
G&R vwo B deel 1 C. von Schwartzenberg 64a
1 Vergelijkingen en ongelijkheden 13/25
x 3 − 9x = 5 (intersect) ⇒ x ≈ −3,25 ∨ x ≈ −2, 67 ∨ x ≈ −0,58 ∨ x ≈ 0, 58 ∨ x ≈ 2, 67 ∨ x ≈ 3,25.
64b
x 3 − 9x = x + 5 (intersect) ⇒ x ≈ −3,10 ∨ x ≈ −2,87 ∨ x ≈ −0,51 ∨ x ≈ 0, 66 ∨ x ≈ 2, 44 ∨ x ≈ 3,39.
65a
x 4 − x 3 + x − 5 = x + 3 (intersect) ⇒ x ≈ −1, 48 ∨ x ≈ −1,26 ∨ x = 1 ∨ x = 2.
65b
x 3 − 5x 2 − 2x + 24 = 20 (intersect) ⇒ x ≈ −2, 55 ∨ x = −1 ∨ x ≈ 0, 76 ∨ x ≈ 5,24.
65c
x 2 − 4x = x 2 + 2x − 3 (intersect) ⇒ x ≈ −0,82 ∨ x = 0,5 ∨ x ≈ 1, 82.
65d
x 3 − 4x 2 − 3x + 10 = 0 (intersect lukt niet) ⇒ x 3 − 4x 2 − 3x + 10 = 0 (intersect) ⇒ x ≈ −1, 63 ∨ x ≈ 1, 48 ∨ x ≈ 4,14.
66a
−x 2 + 6x = x + 4 (intersect) ⇒ x = 1 ∨ x = 4.
67a
x 2 − 3x = 14 (intersect) ⇒ x ≈ −2,531 ∨ x ≈ 5,531. x 2 − 3x ≤ 14 (zie plot) ⇒ −2,531 ≤ x ≤ 5,531.
67b
x 2 + 2x = 11 (intersect) ⇒ x ≈ −4, 464 ∨ x ≈ 2, 464. x 2 + 2x > 11 (zie plot) ⇒ x < −4, 464 ∨ x > 2, 464.
67c
8x 2 + 6x − 35 = 0 (intersect) ⇒ x = −2,5 ∨ x = 1, 75.
66b
Uit de plot volgt nu: 1 < x < 4. (voor x tussen 1 en 4)
8x 2 + 6x − 35 ≥ 0 (zie plot) ⇒ x ≤ −2,5 ∨ x ≥ 1, 75.
67d
x 3 + 4,5x 2 = 19x + 60 (intersect) ⇒ x = −6 ∨ x = −2,5 ∨ x = 4. x 3 + 4,5x 2 < 19x + 60 (zie plot) ⇒ x < −6 ∨ − 2,5 < x < 4.
G&R vwo B deel 1 C. von Schwartzenberg 68a
1 Vergelijkingen en ongelijkheden 14/25
x 2 − 5x = 14 (niet met intersect !!!) x 2 − 5x − 14 = 0 (x − 7) ⋅ (x + 2) = 0 x = 7 ∨ x = −2
68b
2x 2 − 3x − 2 = 0 (a = 2, b = −3 en c = −2)
D = ( −3)2 − 4 ⋅ 2 ⋅ −2 = 9 + 16 = 25 x = −b 2±a D = 3 ±2 ⋅ 225 = 3 ±4 5 x = 3 +4 5 = 84 = 2 ∨ x = 3 4− 5 = −42 = − 21 . 2x 2 − 3x ≥ 2 (zie plot) ⇒ x ≤ − 1 ∨ x ≥ 2. 2
x 2 − 5x < 14 (zie plot) ⇒ −2 < x < 7.
68c
2x 2 − 3x = 2 (niet intersect !!!)
x 2 − 4x = −x 2 − 5x + 6 (niet intersect) 2x 2 + x − 6 = 0 (a = 2, b = 1 en c = −6)
D = 12 − 4 ⋅ 2 ⋅ −6 = 1 + 48 = 49
68d x 3 + 2x 2 = 3x (niet intersect)
x = −b 2±a D = −1 2± ⋅ 249 = −14± 7 x = −14+ 7 = 64 = 1 21 ∨ x = −14− 7 = −48 = −2. x 2 − 4x ≤ −x 2 − 5x + 6 (zie plot) ⇒ −2 ≤ x ≤ 1 21 . ☺
☺
x 3 + 2x 2 − 3x = 0 x ⋅ (x 2 + 2x − 3) = 0 x ⋅ (x + 3) ⋅ (x − 1) = 0 x = 0 ∨ x = −3 ∨ x = 1. x 3 + 2x 2 > 3x (zie plot) ⇒ −3 < x < 0 ∨ x > 1.
69a
3
0,1x − 2x
2
+ 8x + 10 = −x + 15 (intersect) ⇒ x ≈ 0, 65 ∨ x ≈ 5, 66 ∨ x ≈ 13, 69.
3
2
+ 8x + 10 ≥ −x + 15 (zie plot) ⇒ 0, 65 ≤ x ≤ 5, 66 ∨ x ≥ 13, 69.
0,1x − 2x 69b
4
−0,5x + 3x 3 − 4x 2 + 8 = x + 7 (intersect) x ≈ −0,52 ∨ x ≈ 0, 45 ∨ x ≈ 2,29 ∨ x ≈ 3, 78. −0,5x 4 + 3x 3 − 4x 2 + 8 ≥ x + 7 (zie plot) −0,52 ≤ x ≤ 0, 45 ∨ 2,29 ≤ x ≤ 3, 78.
69c
x 3 − 10x = 2x + 8 (intersect) x ≈ −3,24 ∨ x ≈ −3, 06 ∨ x ≈ −0, 69 ∨ x ≈ 1,24 ∨ x = 2 ∨ x ≈ 3, 76. x 3 − 10x ≤ 2x + 8 (zie plot) ⇒ −3,24 ≤ x ≤ −3, 06 ∨ − 0, 69 ≤ x ≤ 1,24 ∨ 2 ≤ x ≤ 3, 76. 2,5
69d
x 4 + x 2 − 5x − 10 = 8 − 2x − 4 (intersect) x ≈ −1,32 ∨ x ≈ −1,10 ∨ x ≈ 1, 69 ∨ x ≈ 2,21. x 4 + x 2 − 5x − 10 ≤ 8 − 2x − 4 (zie plot) −1,32 ≤ x ≤ −1,10 ∨ 1, 69 ≤ x ≤ 2,21.
70a
x 2 + px + p = 0 (a = 1, b = p
71a
x 2 + px + 3p = 0 (a = 1, b = p en c = 3p ) ⇒ D = p 2 − 4 ⋅ 1 ⋅ 3p = p 2 − 12 p . D = 0 ⇒ p 2 − 12 p = p ⋅ ( p − 12) = 0 (of intersect) ⇒ p = 0 ∨ p = 12. Twee oplossingen ⇒ D > 0 (zie plot) ⇒ p < 0 ∨ p > 12.
71b
px 2 + ( p − 4) ⋅ x + 0, 5 = 0 (a = p ≠ 0, b = p − 4 en c = 0, 5) ⇒ D = ( p − 4)2 − 4 ⋅ p ⋅ 0, 5. D = 0 ⇒ p 2 − 10 p + 16 = ( p − 8) ⋅ ( p − 2) = 0 (of intersect) ⇒ p = 8 ∨ p = 2. Twee oplossingen ⇒ D > 0 (zie plot) ⇒ p < 0 ∨ 0 < p < 2 ∨ p > 8. (p = 0 geeft 1 oplossing)
71c
px 2 + ( p − 3) ⋅ x − 4 = 0 (a = p ≠ 0, b = p − 3 en c = −4) ⇒ D = ( p − 3)2 − 4 ⋅ p ⋅ −4. D = 0 ⇒ p 2 + 10 p + 9 = ( p + 9) ⋅ ( p + 1) = 0 (of intersect) ⇒ p = −9 ∨ p = −1. Geen oplossingen ⇒ D < 0 (zie plot) ⇒ −9 < p < −1. (p = 0 geeft 1 oplossing)
en c = p ) ⇒ D =
p 2 − 4 ⋅ 1 ⋅ p = p 2 − 4p.
70b
Twee oplossingen ⇒ D = p 2 − 4 p > 0.
G&R vwo B deel 1 C. von Schwartzenberg 72a
1 Vergelijkingen en ongelijkheden 15/25
x 2 + ( p 2 − 2) ⋅ x + 12 41 = 0 (a = 1, b = p 2 − 2 en c = 12 41 ).
D = ( p 2 − 2)2 − 4 ⋅ 1 ⋅ 12 41 = ( p 2 − 2)2 − 49.
D = 0 ⇒ ( p 2 − 2)2 = 49 ⇒ p 2 − 2 = ±7 ⇒ p 2 = 2 ± 7 ⇒ p 2 = 9 ∨ p 2 = −5 (kan niet) ⇒ (of met intersect) p = ±3. Twee oplossingen ⇒ D > 0 (zie plot) ⇒ p < −3 ∨ p > 3. 72b
px 3 + p 2x 2 − 16x = x ⋅ ( px 2 + p 2x − 16) = 0 ⇒ x = 0 ∨ px 2 + p 2x − 16 = 0. Drie oplossingen als px 2 + p 2x − 16 = 0 (a = p ≠ 0, b = p 2 en c = −16) twee oplossingen heeft. D = ( p 2 )2 − 4 ⋅ p ⋅ −16 = p 4 + 64 p . D = 0 ⇒ p 4 + 64 p = p ⋅ ( p 3 + 64) = 0 ⇒ p = 0 ∨ p 3 = −64 ⇒ (of met intersect) p = 0 ∨ p = 3 −64 = −4. Drie oplossingen ⇒ D > 0 (zie plot) ⇒ p < −4 ∨ p > 0. (p = 0 geeft − 16x = 0 ⇒ x = 0 ⇒ 1 oplossing)
72c
px 3 + 2px 2 − 3x 2 + 41 x = px 3 + (2p − 3) ⋅ x 2 + 41 x = x ⋅ ( px 2 + (2p − 3)x + 41 ) = 0 ⇒ x = 0 ∨ px 2 + (2p − 3)x + 41 = 0.
Eén oplossing als px 2 + (2p − 3)x + 1 = 0 (a = p ≠ 0, b = 2p − 3 en c = 41 ) geen oplossing heeft. 4
D = (2p − 3)2 − 4 ⋅ p ⋅ 41 = (2 p − 3)2 − p .
D = 0 ⇒ (2p − 3)2 − p = 0 (exact of intersect) ⇒ p = 1 ∨ p = 2 41 . Eén oplossing ⇒ D < 0 (zie plot) ⇒ 1 < p < 2 1 . 4 (p = 0 geeft − 3x
2
+
1 4
x = x ⋅ ( −3x + 41 ) = 0 ⇒ 2 oplossingen)
G&R vwo B deel 1 C. von Schwartzenberg
1 Vergelijkingen en ongelijkheden 16/25
Diagnostische toets D1a
3x 2 − x = 0 x ⋅ (3x − 1) = 0 x = 0 ∨ 3x − 1 = 0 x = 0 ∨ 3=1
D1b
D1i
D = ( −1)2 − 4 ⋅ 3 ⋅ −2 = 1 + 24 = 25
x − 3x − 4 = 0 (x − 4) ⋅ (x + 1) = 0 x = 4 ∨ x = −1.
x 2 + 14 = 16 x2 =2 x = ± 2.
D1e
x = −b 2±a D = 1 ±2 ⋅ 325 = 1 ±6 5 x = 1 +6 5 = 66 = 1 ∨ x = 1 −6 5 = −64 = − 32 .
(2x − 3)2 = 81 2x − 3 = ± 81 = ±9 2x = 3 ± 9 x = 1,5 ± 4,5 x = 6 ∨ x = −3.
x 2 = 7x + 13 x 2 − 7x − 13 = 0 (a = 1, b = −7 en c = −13)
3x 2 − x = 2 3x 2 − x − 2 = 0 (a = 3, b = −1 en c = −2)
2
(x = 2 ∨ x = − 2)
D1g
D1c
3x 2 − 9x − 12 = 0
x = 0 ∨ x = 31 . D1d
3x 2 − 9x = 12
D1h
(3x + 2) ⋅ (x − 1) = 0 3x + 2 = 0 ∨ x − 1 = 0 3x = −2 ∨ x = 1
D1f
x = − 23 ∨ x = 1. (3x + 2) ⋅ (x − 1) = (x + 5) ⋅ x 3x 2 − 3x + 2x − 2 = x 2 + 5x
D = ( −7)2 − 4 ⋅ 1 ⋅ −13 = 49 + 52 = 101
2x 2 − 6x − 2 = 0
x = −b 2±a D = 7 ±2 ⋅ 1101 = 7 ± 2 101 x = 7 + 2 101 ∨ x = 7 − 2 101 .
x 2 − 3x − 1 = 0 (a = 1, b = −3 en c = −1) D = ( −3)2 − 4 ⋅ 1 ⋅ −1 = 9 + 4 = 13
(x + 2) ⋅ (x + 2) = 3x + 7
D1j
x 2 + 2x + 2x + 4 = 3x + 7 x 2 + x − 3 = 0 (a = 1, b = 1 en c = −3)
x 2 − 3x − 3x + 9 − (x 2 + x + x + 1) = x 2 − 4x − 4x + 16 x 2 −6x + 9 −x 2 −2x − 1 = x 2 −8x + 16 0 = x2 +8
2
D = 1 − 4 ⋅ 1 ⋅ −3 = 1 + 12 = 13 x = −b 2±a D = −12±⋅ 113 = −1 ±2 13 x = −1 +2 13 ∨ x = −1 −2 13 . D2a 2x 2 + 4x + p = 0
x = −b 2±a D = 3 ±2 ⋅ 113 = 3 ±2 13 x = 3 +2 13 ∨ x = 3 −2 13 . (x − 3) ⋅ (x − 3) − (x + 1) ⋅ (x + 1) = (x − 4) ⋅ (x − 4)
−8 = x 2 (kan niet) geen oplossingen.
D2b
3x 2 + px + 27 = 0
D2c
px 2 − 6x + 12 = 0
(a = 2, b = 4 en c = p )
(a = 3, b = p en c = 27)
(a = p ≠ 0, b = −6 en c = 12)
D = 42 − 4 ⋅ 2 ⋅ p = 16 − 8 p < 0 −8p < −16 p > −−16 = 2. 8
D = p 2 − 4 ⋅ 3 ⋅ 27 = p 2 − 324 > 0
D = ( −6)2 − 4 ⋅ p ⋅ 12 = 36 − 48 p = 0 36 = 48 p 36 = 3 = p ;
p 2 > 324 ☺ p < −18 ∨ p > 18.
48
4
6 = 12 = 4; x = −b 2±a D = 6 ± 30 = 1,5 3 2⋅ 4 voor p = 0 ⇒ −6x + 12 = 0 ⇒ x = 2.
D3a
x = 2 ⇒ 22 + 4 ⋅ 2 + p = 0 ⇒ 4 + 8 + p = 0 ⇒ p = −12; x 2 + 4x − 12 = 0 ⇒ (x + 6) ⋅ (x − 2) = 0 ⇒ x = −6 ∨ x = 2 (was bekend).
D3b px 2 + 2x + 5 = 0 (a = p ≠ 0, b = 2 en c = 5);
twee oplossingen ⇒ D = 22 − 4 ⋅ p ⋅ 5 = 4 − 20 p > 0 ⇒ −20 p > −4 ⇒ p < −4 = 1 . ( p = 0 geeft een eerstegraadsvergelijking met één oplossing)
D4a 3x 3 + 5 = 86 3x
3
D4b
5x
= 81
x 3 = 27 x = 3 27 = 3. D4d
1 (x + 2) 4 = 1 2 32 (x + 2) 4 = 1 16 1 =±1 4 x + 2 = ± 16 2 x = −2 ± 21 x = −1 21 ∨ x = −2 21 .
5x 4 − 6 = 9 4
−20
5
D4c
2x 3 = −14
= 15
x 3 = −7 x = 3 −7.
x4 =3 x = ± 4 3. D4e
100 − (2x + 1)5 = 68 32 = (2x + 1)5 5
2x + 1 = 32 = 2 2x = 1
x = 21 .
2x 3 + 19 = 5
D4f
(2x + 4)3 = 10 2x + 4 = 3 10 2x = −4 + 3 10
x = −2 + 21 ⋅ 3 10.
G&R vwo B deel 1 C. von Schwartzenberg D5a
x 4 − 6x 2 + 5 = 0 (stel x 2 = t )
1 Vergelijkingen en ongelijkheden 17/25 D5b
t 2 − 6t + 5 = 0 (t − 5) ⋅ (t − 1) = 0 2
D5c
5x 4 − 6x 2 + 1 = 0 (stel x 2 = t ) 5t 2 − 6t + 1 = 0 (a = 5, b = −6 en c = 1)
D = ( −6)2 − 4 ⋅ 5 ⋅ 1 = 36 − 20 = 16
2
t =x =5 ∨ t =x =1 x = ± 5 ∨ x = ± 1 = ±1.
±4 ⇒ x2 = 6+4 =1 ∨ x2 = 6−4 = 2 = 1 t = −b 2±a D = 6 2± ⋅ 516 = 610 10 10 10 5 x = ± 1 = ±1 ∨ x = ± 51 .
x 4 − 6x 3 + 5x 2 = 0 x 2 ⋅ (x 2 − 6x + 5) = 0 x 2 ⋅ (x − 5) ⋅ (x − 1) = 0 x = 0 (dubbel) ∨ x = 5 ∨ x = 1.
D5d
x 3 + 6x 2 + 2x = 0 x ⋅ (x 2 + 6x + 2) = 0 x = 0 ∨ x 2 + 6x + 2 = 0 (a = 1, b = 6 en c = 2) D = 62 − 4 ⋅ 1 ⋅ 2 = 36 − 8 = 28 ⇒ x = −b 2±a D = −62± ⋅ 128 = −6 ±2 28 x = 0 ∨ x = −6 +2 28 ∨ x = −6 −2 28 .
D5e 3x 6 + 3 = 10x 3
D5f
3x 6 − 10x 3 + 3 = 0 (stel x 3 = t )
x 8 + x 4 − 42 = 0 (stel x 4 = t )
2
t 2 + t − 42 = 0 (t + 7) ⋅ (t − 6) = 0
3t − 10t + 3 = 0 (a = 3, b = −10 en c = 3)
D = ( −10)2 − 4 ⋅ 3 ⋅ 3 = 100 − 36 = 64 t = −b 2±a D = 10 2± ⋅ 364 = 106± 8 ⇒ x 3 = 106+ 8 = 3 ∨ x 3 = 106− 8 = 26 = 31 x = 3 3 ∨ x = 3 31 . D6a
D7a
x 2 − 4 = 21
D6b
D8a
4x 3 − 5 = 17 4x 3 − 5 = 17 ∨ 4x 3 − 5 = −17
x 2 = 25 ∨ x 2 = −17 (kan niet) x = ± 25 = ±5.
4x 3 = 22 ∨ 4x 3 = −12
3x + 5 + 1 = 5 3x + 5 = 4 (kwadrateren) 3x + 5 = 16 3x = 11
x 3 = 5,5 ∨ x 3 = −3 x = 3 5,5 ∨ x = 3 −3. D7b
x = x +6 x − 6 = x (kwadrateren) x 2 − 6x − 6x + 36 = x x 2 − 13x + 36 = 0 (x − 9) ⋅ (x − 4) = 0 x = 9 (voldoet) ∨ x = 4 (voldoet niet).
3x = 5 x + 4 (kwadrateren) 9x 2 = 25(x + 4) 9x 2 − 25x − 100 = 0 (a = 9, b = −25 en c = −100)
D = ( −25)2 − 4 ⋅ 9 ⋅ −100 = 4 225 x = −b 2±a D = 25 ±2 ⋅ 4225 = 25 ± 65 9 18 + 65 = 5 (voldoet) ∨ x = 25 − 65 = −40 = −2 2 (voldoet niet). x = 2518 18 18 9 D7d 2x + 3 x = 2 3 x = 2 − 2x (kwadrateren) 9x = 4 − 4x − 4x + 4x 2
x 3 − 189 = 20x x x 3 − 20x x − 189 = 0 (x x = t ) t 2 − 20t − 189 = 0 (t − 27) ⋅ (t + 7) = 0 t = x x = 27 ∨ t = x x = −7 (k.n.) (kwadrateren) x 3 = 272 = 729 x = 3 729 = 9 (voldoet).
D9a
x 4 = −7 (k.n.) ∨ x 4 = 6 x = ± 4 6.
x 2 − 4 = 21 ∨ x 2 − 4 = −21
= 3 2 (voldoet). x = 11 3 3
D7c
x 8 + x 4 = 42
0 = 4x 2 − 17 x + 4 (a = 4, b = −17 en c = 4)
D = ( −17)2 − 4 ⋅ 4 ⋅ 4 = 225 x = −b 2±a D = 17 ±2 ⋅ 4225 = 17 8± 15 x = 17 8+ 15 = 32 = 4 (voldoet niet) ∨ x = 17 − 15 = 2 = 1 (voldoet). 8 8 8 4 D8b
x 5 + 12 = 8x 2 x x 5 − 8x 2 x + 12 = 0 (stel x 2 x = t ) t 2 − 8t + 12 = 0 (t − 6) ⋅ (t − 2) = 0 t = x 2 x = 6 ∨ x 2 x = 2 (kwadrateren) x 5 = 62 = 36 ∨ x 5 = 22 = 4 x = 5 36 (voldoet) ∨ x = 5 4 (voldoet).
6x − 18 = 0 (teller = 0 en noemer ≠ 0) ⇒ 6x − 18 = 0 ⇒ 6x = 18 ⇒ x = 3 (voldoet, want de noemer ≠ 0). x +1
G&R vwo B deel 1 C. von Schwartzenberg D9b
x 2 − 5x + 6 = 0 2x + 4
1 Vergelijkingen en ongelijkheden 18/25 D9c
D9d
3x − 5 = x + 2 2x = 7 x = 3,5 (vold.).
x 2 − 5x + 6 = 0 (x − 3) ⋅ (x − 2) = 0 x = 3 (vold.) ∨ x = 2 (vold.). D9e
3x − 5 = x + 2 x +1 x +1
2x − 1 = x + 3 x +1 x −4
D9f
(2x − 1) ⋅ (x − 4) = (x + 3) ⋅ (x + 1)
x − 13x + 1 = 0 (a = 1, b = −13 en c = 1) D = ( −13)2 − 4 ⋅ 1 ⋅ 1 = 1 69 − 4 = 165
8x 2 − 7 x − 51 = 0 (a = 8, b = −7 en c = −51)
D = ( −7)2 − 4 ⋅ 8 ⋅ −51 = 1 681
= −b ± D = 13 ± 165 = 13 ± 165 2a 2 ⋅1 2 = 13 + 165 (vold.) ∨ x = 13 − 165 (vold.). 2 2
4x D10a −2x 4x −4x
+ 5y + 3y + 5y + 6y
= 27 1 = 25 2 = 27 = 50
2x 2 − 4 = 1 3 = 7 4 4 x +5 2
8x 2 − 16 = 7 x + 35
2
x
x − 4 = 0 ∨ 2x + 1 = x − 4 x2 = 4 ∨ x −5 x = 2 (vold.) ∨ x = −2 (vold.) ∨ x = −5 (vold.). 4 ⋅ (2x − 4) = 7 ⋅ (x + 5)
2x 2 − 8x − x + 4 = x 2 + x + 3x + 3
x
x 2− 4 = x 2− 4 2x + 1 x −4 2
x = −b 2±a D = 7 ±2 ⋅1681 = 7 ± 41 8 16 + 41 = 48 = 3 (vold.) ∨ x = 7 − 41 = −34 = −2 1 (vold.). x = 7 16 16 16 16 8
2x + 3y = 7 2 D10b 5x − 2y = 8 3
+
11y = 77 y = 7 ⇒ 4x + 35 = 27 4x + 5y = 27 4x = −8 x = −2.
5x − 3y = 3 D12a 2 y = 3 x − 4 in geeft: 5x − 3 ⋅ ( 23 x − 4) = 3 5x − 2x + 12 = 3 3x = −9 x = −3 in 2 y = 3 ⋅ −3 − 4 = −6.
D11 (2, 18) op parabool ⇒ 18 = a ⋅ 4 + b ⋅ 2; ( −4, 0) op parabool ⇒ 0 = a ⋅ 16 + b ⋅ −4. 4x + 6y = 14 4a + 2b = 18 15x − 6y = 24 + 8a − 2b = 0 + = 38 19x 12a = 18 x =2 1 = 1 a ⇒ 4 + 3y = 7 2 ⇒ 6 + 2b = 18 2x + 3y = 7 4a + 2b = 18 3y = 3 2b = 12 y = 1. b = 6.
2x + 3y = 10 D12b 2 y = x − 4x + 6 in geeft: 2x + 3 ⋅ (x 2 − 4x + 6) = 10 2x + 3x 2 − 12x + 18 = 10 3x 2 − 10x + 8 = 0 (a = 3, b = −10 en c = 8)
D = ( −10)2 − 4 ⋅ 3 ⋅ 8 = 4 x = −b 2±a D = 102±⋅ 3 4 = 106± 2 x = 106+ 2 = 12 = 2 ∨ x = 10 − 2 = 8 = 4 6 6 6 3 x = 1 1 in x = 2 in 3 ∨ =24. y = 4 − 8 + 6 = 2 y = 22 9 9
D13a x 4 − 4x 2 = 0, 5x − 2 (intersect) ⇒ x ≈ −1, 75 ∨ x ≈ −0, 86 ∨ x ≈ 0, 69 ∨ x ≈ 1, 93.
D13b x 3 − 3x = − 1 x + 2 (intersect) ⇒ x ≈ −2,11 ∨ x ≈ 0, 65 ∨ x ≈ 1, 46 ∨ x ≈ 1,89. 2
D14a x 2 + 5x = x 3 + 2x 2 − 6x + 1 (intersect) ⇒ x ≈ −3, 89 ∨ x ≈ 0, 09 ∨ x ≈ 2,80.
x 2 + 5x ≤ x 3 + 2x 2 − 6x + 1 (zie plot) ⇒ −3, 89 ≤ x ≤ 0, 09 ∨ x ≥ 2,80.
G&R vwo B deel 1 C. von Schwartzenberg
1 Vergelijkingen en ongelijkheden 19/25
D14b x 2 − 4x = 1 x + 2 (intersect) ⇒ x ≈ −0, 41 ∨ x ≈ 0, 72 ∨ x ≈ 2, 78 ∨ x ≈ 4, 91. 2
x 2 − 4x > 21 x + 2 (zie plot) ⇒ x < −0, 41 ∨ 0, 72 < x < 2, 78 ∨ x > 4, 91.
D15a 3x 2 + 2x = 33 (niet met intersect !!!)
D15b
2
3x + 2x − 33 = 0 (a = 3, b = 2 en c = −33)
D = 22 − 4 ⋅ 3 ⋅ −33 = 400 x = −b 2±a D = −2 ±2 ⋅ 3400 = −2 6± 20 x = −2 +6 20 = 18 = 3 ∨ x = −2 − 20 = −22 = − 11 = −3 2 . 6 6 6 3 3 3x 2 + 2x ≥ 33 (zie plot) ⇒ x ≤ −3 2 ∨ x ≥ 3. 3
x 3 + x 2 − 6x = 0 (niet met intersect !!!) x ⋅ (x 2 + x − 6) = 0 x ⋅ (x + 3) ⋅ (x − 2) = 0 x = 0 ∨ x = −3 ∨ x = 2. x 3 + x 2 − 6x < 0 (zie plot) ⇒ x < −3 ∨ 0 < x < 2.
D16a px 2 + px − 2x + 4 p = px 2 + ( p − 2) ⋅ x + 4 p = 0 (a = p ≠ 0, b = p − 2 en c = 4 p ).
D = ( p − 2)2 − 4 ⋅ p ⋅ 4 p = ( p − 2)2 − 16 p 2 . D = 0 ⇒ ( p − 2)2 − 16 p 2 = 0 (intersect) ⇒ p = − 23 ∨ p = 0, 4. Geen oplossing ⇒ D < 0 (zie plot) ⇒ p < − 2 ∨ p > 0, 4. 3 (p = 0 geeft − 2x = 0 ⇒ x = 0 ⇒ 1 oplossing)
D16b px 3 + 2px 2 − 2x = x ⋅ ( px 2 + 2 px − 2) = 0 ⇒ x = 0 ∨ px 2 + 2 px − 2 = 0.
Eén oplossing als px 2 + 2px − 2 = 0 (a = p ≠ 0, b = 2 p en c = −2) geen oplossing heeft.
D = (2p )2 − 4 ⋅ p ⋅ −2 = 4 p 2 + 8 p . D = 0 ⇒ 4 p 2 + 8p = 0 ⇒ 4 p ⋅ ( p + 2) = 0 (of intersect) ⇒ p = 0 ∨ p = −2. D < 0 (zie plot) ⇒ −2 < p < 0. (p = 0 geeft − 2x = 0 ⇒ x = 0 ⇒ ook 1 oplossing) Dus één oplossing als − 2 < p ≤ 0.
G&R vwo B deel 1 C. von Schwartzenberg
1 Vergelijkingen en ongelijkheden 20/25
Gemengde opgaven 1. Vergelijkingen en ongelijkheden G1a
7 x 2 = 5x
G1b
2
7 x − 5x = 0 x ⋅ (7x − 5) = 0 x = 0 ∨ 7x = 5
x = 0 ∨ x = 75 .
2x 2 + x = 3 2
D = 1 − 4 ⋅ 2 ⋅ −3 = 1 + 24 = 25 x = −b 2±a D = −1 2± ⋅ 225 = −14± 5 x = −1 + 5 = 4 = 1 ∨ x = −1 − 5 = −6 = −1 21 . 4
4
(x − 3)2 − (x + 1)2 = x 2 − 1
G1e
x 2 − 3x − 3x + 9 − (x 2 + x + x + 1) = x 2 − 1 x 2 − 6x + 9 −x 2 − 2x −1 = x 2 −1
G2a
4
G1f 4 − (x − 2)2 = 7 x − 3
(2x − 3)2 = 36 2x − 3 = ±6 2x = 3 ± 6
4 − (x 2 − 2x − 2x + 4) = 7 x − 3
x = 3 2+ 6 ∨ x = 3 2− 6 . x = 4 21 ∨ x = −1 21 .
0 = x 2 + 8x − 9 (x + 9) ⋅ (x − 1) = 0 x = −9 ∨ x = 1.
(x + 2) ⋅ (x − 6) = 9
x 2 − 6x + 2x − 12 = 9 x 2 − 4x − 21 = 0 (x − 7) ⋅ (x + 3) = 0 x = 7 ∨ x = −3.
2x + x − 3 = 0 (a = 2, b = 1 en c = −3)
4
G1d
G1c
2
4 − x 2 + 4x −4 = 7 x − 3 0 = x 2 + 3x − 3 (a = 1, b = 3 en c = −3)
D = 32 − 4 ⋅ 1 ⋅ −3 = 9 + 12 = 21 x = −b 2±a D = −32±⋅ 1 21 = −3 ±2 21 x = −3 +2 21 ∨ x = −3 −2 21 .
px 2 + 6x + 3p = 0 (a = p ≠ 0, b = 6 en c = 3p ) D = 62 − 4 ⋅ p ⋅ 3p = 36 − 12 p 2 . D = 0 ⇒ 36 − 12 p 2 = 0 ⇒ 36 = 12 p 2 ⇒ p 2 = 3 ⇒ p = ± 3. D > 0 (zie plot) ⇒ − 3 < p < 3. ( p = 0 ⇒ 6x = 0 ⇒ x = 0 ⇒ 1 oplossing)
G2b 62 + p ⋅ 6 − 6 p 2 = 0 2
−6p + 6 p + 36 = 0 2
p − p −6=0 ( p − 3) ⋅ ( p + 2) = 0 p = 3 ∨ p = −2. G2c
p = 3 geeft: 2
x + 3x − 54 = 0 (x − 6) ⋅ (x + 9) = 0 x = 6 (bekend) ∨ x = −9.
p = −2 geeft: x 2 − 2x − 24 = 0 (x − 6) ⋅ (x + 4) = 0 x = 6 (bekend) ∨ x = −4.
px 2 − 2px + 4 = 0 (a = p ≠ 0, b = −2 p en c = 4) D = ( −2p )2 − 4 ⋅ p ⋅ 4 = 4 p 2 − 16 p . D = 0 ⇒ 4 p 2 − 16 p = 0 ⇒ 4 p ⋅ ( p − 4) = 0 ⇒ p = 0 ∨ p = 4. ( p = 0 ⇒ 4 = 0 (kan niet) ⇒ geen oplossing) 2
p = 4 ⇒ 4x − 8x + 4 = 0
x 2 − 2x + 1 = 0 (x − 1) ⋅ (x − 1) = 0 ⇒ x = 1 (dubbel). G3a
x 6 − 6x 3 + 5 = 0 (stel x 3 = t )
G3b
2
t − 6t + 5 = 0 (t − 5) ⋅ (t − 1) = 0 t = x3 = 5 ∨ x3 =1 x = 3 5 ∨ x = 3 1 = 1. G3c
x 4 − 7x 2 = 18 x 4 − 7x 2 = 18 ∨ x 4 − 7x 2 = −18 (stel x 2 = t ) t 2 − 7t − 18 = 0 ∨ t 2 − 7t + 18 = 0 (a = 1, b = −7 en c = 18) (t − 9) ⋅ (t + 2) = 0 ∨ D = ( −7)2 − 4 ⋅ 1 ⋅ 18 < 0 (geen oplossingen) x 2 = 9 ∨ x 2 = −2 (k.n.) x = 3 ∨ x = −3.
10x 4 = 17 x 2 + 657 10x 4 − 17 x 2 − 657 = 0 (stel x 2 = t ) 2
G3d 10 − (2x − 1) 4 = 8 2 = (2x − 1) 4
10t − 17t − 657 = 0 (a = 10, b = −17 en c = −657)
2x − 1 = ± 4 2
D = ( −17)2 − 4 ⋅ 10 ⋅ −657 = 26 569
2x = 1 ± 4 2
x = 21 + 21 4 2 ∨ x = 21 − 21 4 2. = 17 ± 163 t = −b 2±a D = 17 ±2 ⋅26569 10 20 + 163 = 180 = 9 ∨ x 2 = 17 − 163 = −147 = −... (k.n.) ⇒ x = 3 ∨ x = −3. x 2 = 17 20 20 20 20 5 3 G3e x − 16x + 28x = 0 G3f x 3 − 3x x − 108 = 0 (stel x x = t )
x ⋅ (x 4 − 16x 2 + 28) = 0 (stel x 2 = t ) x x x x
= 0 ∨ t 2 − 16t + 28 = 0 = 0 ∨ (t − 14) ⋅ (t − 2) = 0 = 0 ∨ x 2 = 14 ∨ x 2 = 2 = 0 ∨ x = ± 14 ∨ x = ± 2.
t 2 − 3t − 108 = 0 (t − 12) ⋅ (t + 9) = 0 x x = 12 (kwadrateren) ∨ x x = −9 (k.n.) x 2 ⋅ x = x 3 = 144 x = 3 144 (voldoet).
G&R vwo B deel 1 C. von Schwartzenberg
1 Vergelijkingen en ongelijkheden 21/25
6x 5 + 10x 2 ⋅ x − 464 = 0 (stel x 2 ⋅ x = t )
G3g
G3h
6t 2 + 10t − 464 = 0
t 2 − 5t + 4 = 0 (t − 4) ⋅ (t − 1) = 0 (2x − 1)2 = 4 ∨ (2x − 1)2 = 1 2x − 1 = ±2 ∨ 2x − 1 = ±1 2x = 1 ± 2 ∨ 2x = 1 ± 1 x = 1 21 ∨ x = − 21 ∨ x = 1 ∨ x = 0.
2
3t + 5t − 232 = 0 (a = 3, b = 5 en c = −232)
D = 52 − 4 ⋅ 3 ⋅ −232 = 2 809 = −5 ± 53 t = −b 2±a D = −5 ±2 ⋅2809 3 6 x 2 ⋅ x = −5 6+ 53 = 8 (kwadr.) ∨ x 2 ⋅ x = −5 6− 53 = −... (k.n.) x 4 ⋅ x = x 5 = 64 x = 5 64 (voldoet). 2x − 2 = 4 x −1 2x = 6 = 6 x −1 1
G4a
G4b
2x ⋅ 1 = 6 ⋅ (x − 1) 2x = 6x − 6 −4x = −6
3 2 − 3x = 21 2 − 3x = 7 (kwadrateren) 2 − 3x = 49 −3x = 47
2x − 1 = x + 4 x +2 x −2
2
= 12 1 x − 1 = 49 4 4
x − 11x − 6 = 0 (a = 1, b = −11 en c = −6) D = ( −11)2 − 4 ⋅ 1 ⋅ −6 = 145 x = −b 2±a D = 11 ±2 ⋅ 1145 = 11 ± 2 145 x = 11 + 2 145 (voldoet) ∨ x = 11 − 2 145 (voldoet).
x = 13 41 (voldoet).
2 − 2x = −2x (kwadrateren)
4x + 4 + 2x 2 + 2x = 12x 2x 2 − 6x + 4 = 0
x 2 − 3x + 2 = 0 (x − 2) ⋅ (x − 1) = 0 x = 2 (vold.) ∨ x = 1 (vold.).
(3x )2 = 8x + 1
2 − 2x = ( −2x ) 2
0 = 4x + 2x − 2
9x 2 − 8x − 1 = 0 (a = 9, b = −8 en c = −1)
2x 2 + 1x − 1 = 0 (a = 2, b = 1 en c = −1)
D = ( −8)2 − 4 ⋅ 9 ⋅ −1 = 64 + 36 = 100
2
= 8 ± 10 x = −b 2±a D = 8 ±2 ⋅ 100 9 18 + 10 = 1 (vold.) ∨ x = 8 − 10 = −2 = − 1 (vold. niet). x = 8 18 18 18 9
D = 1 − 4 ⋅ 2 ⋅ −1 = 1 + 8 = 9 x x
= −b ± D = −1 ± 9 = −1 ± 3 2a 2⋅2 4 = −1 + 3 = 2 = 1 (vold. niet) ∨ 4 4 2
3x −x 3x −3x
x = −14− 3 = −44 = −1 (vold.).
− 2y = −5 1 + 5y = 32 3 − 2y = −5 + 15y = 96 +
13y = 91 y = 7 ⇒ −x + 35 = 32 − x + 5y = 32 −x = −3 x = 3. G6
G4f 4 +x2x = 12 x +1 (4 + 2x ) ⋅ (x + 1) = 12 ⋅ x
G4h 3x = 8x + 1 (kwadrateren)
2
G5a
x 2 + 5x + 2x + 10 = x 2 − x 8x = −10 x = −810 = −1 41 (voldoet).
x − 1 = 72 (kwadrateren)
2x 2 − 4x − x + 2 = x 2 + 4x + 2x + 8
x +2 = x x −1 x + 5
(x + 2) ⋅ (x + 5) = x ⋅ (x − 1)
G4e 2 x − 1 + 8 = 15 2 x −1 = 7
(2x − 1) ⋅ (x − 2) = (x + 2) ⋅ (x + 4)
G4g
G4c
x = 47 = −15 2 (voldoet). −3 3
x = −−46 = 1 21 (voldoet). G4d
(2x − 1) 4 − 5(2x − 1)2 + 4 = 0 (stel (2x − 1)2 = t )
4x + 2y = 14 3 G5b 5x − 3y = 45 2 12x + 6y = 42 10x − 6y = 90 +
22x
= 132 x =6 ⇒ 24 + 2y = 14 4x + 2y = 14 2y = −10 y = −5.
( −4, 42) op grafiek ⇒ 42 = −32 + a ⋅ 16 + b ⋅ −4 + 6; (2, 12) op parabool ⇒ 12 = 4 + a ⋅ 4 + b ⋅ 2 + 6. 16a − 4b = 68 1 4a + 2b = 2 2 16a − 4b = 68 8a + 4b = 4 + 24a = 72 a =3 ⇒ 12 + 2b = 2 4a + 2b = 2 2b = −10 b = −5.
G&R vwo B deel 1 C. von Schwartzenberg
G7a
G8a
1 Vergelijkingen en ongelijkheden 22/25
a+ b = 150 7 8, 6 + 7, 0 = 1185 1 a b 7 a + 7 b = 1 050 8, 6a + 7, 0b = 1185 − −1, 6a = −135 a = 84,375 ⇒ 84,375 + b = 150 a + b = 150 b = 65, 625.
G7b
Stel hij neemt x ml van 15% en y ml van 30%. x + y = 600 15 15x + 30y = 13200 1 15x + 15y = 9 000 15x + 30y = 13200
−
− 15y = −4 200 y = 280 ⇒ x + 280 = 600 x + y = 600 x = 320.
x 2 − 4x = 2x − 1 (intersect) ⇒ x ≈ 0,17 ∨ x ≈ 5, 83. x 2 − 4x > 2x − 1 (zie plot) ⇒ x < 0,17 ∨ x > 5, 83.
G8b
−0, 5x 3 + 2x 2 + 3x − 5 = x − 3 (intersect) ⇒ x ≈ −1,32 ∨ x ≈ 0, 65 ∨ x ≈ 4, 67. −0, 5x 3 + 2x 2 + 3x − 5 ≤ x − 3 (zie plot) ⇒ −1,32 ≤ x ≤ 0, 65 ∨ x ≥ 4, 67.
G8c
x 2 − 4 − x = 8 − x 2 (intersect) ⇒ x ≈ −2,21 ∨ x ≈ 2, 71. x 2 − 4 − x < 8 − x 2 (zie plot) ⇒ −2,21 < x < 2, 71.
G8d
x 2 − 4x + 4 = x 3 − 6x (intersect) ⇒ x ≈ −2, 78 ∨ x = −2 ∨ x ≈ −0, 41 ∨ x ≈ 0,29 ∨ x ≈ 2, 41 ∨ x ≈ 2, 49. x 2 − 4x + 4 > x 3 − 6x (zie plot) ⇒ −2, 78 < x < −2 ∨ − 0, 41 < x < 0,29 ∨ 2, 41 < x < 2, 49.
G9a
px 3 + 2px 2 + x 2 + 2 41 x = px 3 + (2p + 1) ⋅ x 2 + 2 41 x = x ⋅ ( px 2 + (2p + 1)x + 2 41 ) = 0 ⇒
x = 0 ∨ px 2 + (2p + 1)x + 2 41 = 0.
Drie oplossingen als px 2 + (2p + 1)x + 2 1 = 0 (a = p ≠ 0, b = 2 p + 1 en c = 2 41 ) twee oplossingen heeft. 4
D = (2p + 1)2 − 4 ⋅ p ⋅ 2 41 = (2 p + 1)2 − 9 p .
D = 0 ⇒ (2p + 1)2 − 9 p = 0 (exact of intersect) ⇒ p =
1 ∨ p = 1. 4 Drie oplossingen ⇒ D > 0 (zie plot) ⇒ p < 0 ∨ 0 < p < 1 ∨ p > 1. 4 2 (p = 0 geeft x − 2 41 x = 0 ⇒ x ⋅ (x − 2 41 ) = 0 ⇒ x = 0 ∨ x = 2 41 ⇒ 2 oplossingen)
G9b 2 px 4 − px 3 + 5x 3 + 2x 2 = 2 px 4 + (5 − p ) ⋅ x 3 + 2x 2 = x 2 ⋅ (2 px 2 + (5 − p )x + 2) = 0 ⇒
x = 0 ∨ 2px 2 + (5 − p )x + 2 = 0. Eén oplossing als 2px 2 + (5 − p )x + 2 = 0 (a = 2 p ≠ 0, b = 5 − p 2
2
en c = 2) geen oplossing heeft.
D = (5 − p ) − 4 ⋅ 2 p ⋅ 2 = (5 − p ) − 16 p . D = 0 ⇒ (5 − p )2 − 16 p = 0 (exact of intersect) ⇒ p = 1 ∨ p = 25. Eén oplossing ⇒ D < 0 (zie plot) ⇒ 1 < p < 25. 3 2 2 (p = 0 geeft 5x − x = x ⋅ (5 − x ) = 0 ⇒ x = 0 ∨ x = 5 ⇒ 2 oplossingen)
G&R vwo B deel 1 C. von Schwartzenberg TI-84
1a 1b 2a 2b
1 Vergelijkingen en ongelijkheden 23/25
1. Berekeningen op het basisscherm
5,364 + 5 × 1, 47 2 ≈ 836,19. 34 + 6, 53 ≈ 280, 46.
12 + 3,51 ≈ 3, 94. −3, 52 − 8 × −3 = 11, 75.
4a 4b
( −5, 7)2 = 32, 49.
11,52 + 8, 7 ≈ 135,20.
2c 2d
12 + 3,51 ≈ 6, 97.
3a 3b
1,82 : 35 ≈ 0, 01.
1c 1d
21,8 : 3,51 ≈ 1,33. 21, 8 : 3,51 ≈ 2, 49.
3c 3d
−8,134 − − 5 : 1, 63 ≈ −4 368,25.
−5, 7 2 = −32, 49.
( −1,8) 4 = 10, 4976.
4c 4d
5a 5b
118 − 53 × 100 ≈ 122, 6. 53 100 ≈ 0,2. 352 × 1,23
5c 5d
1371 − 862 ≈ 4, 0. 128 1283 − 1827 × 100 ≈ −29,8. 1827
6a
118,6 ≈ 1,87. 8,32 − 5,6
6c
−1,31 + 8,3 × 7,05 ≈ 1, 80. 21,32 − 7,53
6b
5,93 + 23 ≈ −3,34. 8,41 − 3 15
6d
3,882 + 4,263 + 7, 43 ≈ 386, 91. 1 + 5,6 − 2,92
7a 7b
2 + 1 = 11 . 3 4 12 (1 2 )2 = 121 . 9 81
7c 7d
20 × 1 3 = 200 .
8a 8b
8 3 : 2 1 = 172 .
8c 8d
9a
(1 2 )2 = 25 .
1ab 1c
TI-84 2. Formules, grafieken en tabellen Zie de eerste drie schermen hiernaast. Kies WINDOW: [ − 5, 15] × [ − 10, 15]. (gebruik deze notatie)
8, 91 − 3,1 × 1,33 ≈ −3, 83.
5 4 45 (3 1 − 2 1 ) : 2 1 = 29 . 6 5 5 66
3
9
9b
−8,1 × 1,34 − 5, 7 2 : −8 ≈ −19, 07.
−1,84 = −10, 4976.
7 7 1 19 × 2 − 8 × 2 4 = 499 . 3 7 21
(3 1 − 2 1 )2 = 1849 . 6
7
( −2 3 ) 4 = 83521 . 7
2401
7
1764
21 : 2 3 = 147 . 17
9c
5 : 1 1 = 15 . 3
4
(schaalstreepjes uit met Xscl = 0 en Yscl = 0)
1d
Zie de schermen hieronder. Neem (bijvoorbeeld) WINDOW: [ − 15, 15] × [ − 10, 15].
2ab 2c
Zie de schermen hiernaast (neem Zoom 6 = ZStandard). Met ZStandard is er één snijpunt te zien.
3abcd Zie de schermen hieronder; het linker snijpunt: ( −1, 702;
− 0, 726) en de top van y2: (2,553; 6, 499).
G&R vwo B deel 1 C. von Schwartzenberg
1 Vergelijkingen en ongelijkheden 24/25
4a 4b
f ( −5) = 20,5; f ( −1,2) = −3,288; f (0,8) = −0, 728; f (8,3) = 101, 497.
4cde
f (15) = 316,5; f ( −17) = 342,1; f (51) = 3 470,1; f (120) = 18 933.
5a
y 1 ( −3) = 13, 4; y 1 (0,3) = −2, 00638; y 1 (1,8) = −8,18848; y 1 (5) = 79.
5b
y 2 ( −3) = −11, 7; y 2 (0,3) = 3, 48; y 2 (1, 8) = 3,18; y 2 (5) = −12, 5.
5cd
y 1 (12) = 3 937, 4; y 1 ( −18) = 20 659, 4; y 2 (12) = −118,2; y 2 ( −22) = −522,8.
6ab
Zie hieronder: y 1 (4,15) = −1, 83875.
7
Haal de antwoorden uit de tabel hiernaast.
Zie de schermen hiernaast. (de optie value in è ( `$) werkt als $). (zie de schermen hieronder)
6c
y 1 (12, 74) = 44, 9338 en y 2 (12, 68) = −296, 5448. (zie hieronder)
x
-6
-4
-2
0
2
4
6
8
f (x )
44,8
22,8
7,2
-2
-4,8
-1,2
8,8
25,2
8
y 1 = 0,5x 2 + 2x − 3 en y 2 = −0,3x 2 + 3. (zie hiernaast) optie intersect ⇒ S 1 ( −6, 46; 4, 94) en S 2 (1, 86; 2, 44).
9
−0,2x 2 + x + 5 = 4 (intersect in ZStandard) ⇒ x ≈ −0,85 ∨ x ≈ 5,85. (zie de schermen hieronder)
10a 10b
−0,2x 2 + 5 = 3, 62 − x (intersect in ZStandard) ⇒ x ≈ −1,13 ∨ x ≈ 6,13.
0,5x 2 − 1 = 5 − 2x (intersect op [ − 10, 10] × [ − 10, 20]) ⇒ x = −6 ∨ x = 2.
G&R vwo B deel 1 C. von Schwartzenberg
10c 10d
1 Vergelijkingen en ongelijkheden 25/25
−0, 02x 2 + 0,2x + 5 = 2 (intersect op [ − 10, 30] × [ − 10, 10]) ⇒ x ≈ −8,23 ∨ x ≈ 18,23. −0, 4x 3 − 10 = 5 + 4x − 2x 2 (intersect op [ − 8, 5] × [ − 100, 10])) x ≈ −5,59 ∨ x ≈ −2,31 ∨ x ≈ 2, 90. (zie de schermen hieronder)
11ab
0, 6x − 4 = −0,3x 2 + 2x + 1 (intersect in ZStandard) ⇒ x ≈ −2,37 ∨ x ≈ 7, 04. (zie de schermen hieronder)
11c
0, 6x − 4 = −0,3x 2 + 2x + 1 (intersect in ZStandard) ⇒ x ≈ −0,59 ∨ x ≈ 5,21. (zie de schermen hierboven) (het is niet nodig om grafieken uit te zetten; kies met : of ; bij First curve? en/of Second curve? de juiste formules)
12abc 0, 9x 2 + 2x − 3 = 0 (intersect in ZStandard) ⇒ x ≈ −3,25 ∨ x ≈ 1, 03. (zie de schermen hieronder) 12d −1,3x 2 + 5x + 4 = 0 (intersect in ZStandard) ⇒ x ≈ −0, 68 ∨ x ≈ 4, 53. (zie de schermen hieronder)
13a
x 2 − 5x − 1 = 0 (intersect in ZStandard) ⇒ x ≈ −0,19 ∨ x ≈ 5,19. (zie de schermen hieronder)
13b
−0,8x 2 − x + 3 = 0 (intersect in ZStandard) ⇒ x ≈ −2, 66 ∨ x ≈ 1, 41. (zie de schermen hieronder)
13c
0,3x 3 − 1,2x 2 − 1, 6x + 2 = 0 (intersect in ZStandard) ⇒ x ≈ −1, 66 ∨ x ≈ 0,84 ∨ x ≈ 4,82. (zie de schermen hieronder)
14ab
x 3 − 12x 2 + 8x + 250 = 0 (intersect op
14c
x 3 − 12x 2 + 8x + 250 = 500 (intersect) ⇒ x ≈ 12,88. (zie het scherm hiernaast)
15a
WINDOW: [ −1, 2] × [0, 50] ; vanaf x ≈ 1, 49 (intersect en plot).
[ − 5, 15] × [ − 200, 1000]) ⇒ x ≈ −3, 74. (zie de schermen hieronder)
15b
x ≈ −0, 78 ∨ x ≈ 1,11 (intersect).