Neželezné kovy
Hutnické listy č. 4/2009
neželezné kovy Microstructure of Ultrafine-grained Metals after ECAP
Mikrostruktura ultra-jemnozrnných kovových materiálů připravovaných ECAP Doc. Ing. Miroslav Greger, CSc., Vysoká škola báňská - Technická univerzita Ostrava, Ing. Ladislav Kander, Ph.D., MATERIÁLOVÝ A METALURGICKÝ VÝZKUM s.r.o.,Ostrava, Ing. Václav Snášel, SE-MI Engineering s.r.o., Ostrava This paper was aimed at verification of functionality of the ECAP technology at extrusion of the copper, aluminium alloys and steel. Experiments were made on the equipment, which is demonstrated in the Fig 1. Deformation forces were measured during extrusion, resistance to deformation was calculated and deformation speed was determined approximately. Analysis of structure was made with use of light microscopy and TEM. The samples of Cu and Al alloys were extruded at room temperature and low homological temperature. For the samples made of steel the twostage pressing was used, when the samples were extruded at the temperature of approx. T1 = 325°C and T2 = 220 °C. In order to increase concentration of deformation in volume of the sample the samples were after individual passes turned around their longitudinal axis by 90 and they were extruded again. Cross-section of original samples of Cu and Al alloys was 8 x 8 mm and their length was 32 mm and cross-section of original samples of steel was diameter 10 mm and their length was 90 mm Předkládaný článek se zabývá verifikací funkčnosti ECAP technologie při zpracování mědi, hliníkových slitin a oceli. Použité zařízení ECAP umožňuje protlačovat vzorky z uvedených materiálů v oblasti teplot 20°C až 550°C. Experimenty byly realizovány v matrici s úhlem kanálu 90° a 105°. Při protlačování byly měřeny deformační síly a byl vypočítán deformační odpor jednotlivých materiálů. Analýza vývoje struktury byla provedena pomocí světelné mikroskopie a transmisní elektronové mikroskopie (TEM). Vzorky z mědi a slitiny hliníku byly protlačovány při pokojové teplotě, popř. nízké homologické teplotě. Vzorky z oceli byly protlačovány ve dvou krocích. V počáteční fázi se protlačovaly při teplotě T1 = 325°C a v druhé fázi při teplotě T2 = 220°C. Za účelem zrovnoměrnění deformace ve vzorcích se mezi jednotlivými průchody vzorky pootáčelo kolem podélné osy o úhel 90° a byly opět protlačeny. Příčný průřez vzorků z mědi a hliníkové slitiny byl čtvercový 8 x 8 mm, délka vzorků byla 32 mm. Příčný průřez vzorků z oceli byl kruhový s průměrem 10 mm, délka vzorků 90 mm. Na jednotlivých materiálech byl aplikován různý počet průchodů. Na vzorcích z Cu a slitiny AlCu2Mg byl maximální počet průchodů 8. Na oceli bylo provedeno až 16 průchodů. Mechanické vlastnosti po jednotlivých průchodech byly sledovány měřením tvrdostí HV30, tahovou zkouškou a pomocí penetračních testů. Cílem experimentů bylo zjistit vývoj struktury a velikost zrna po jednotlivých průchodech. Mikrostruktura byla sledována pomocí optické mikroskopie a pomoci TEM. Protlačováním vzorků matricí ECAP je struktura výrazně usměrněna a svírá úhel 45° ke směru protlačování. Při kumulované deformaci vzniká výrazná textura. Tvrdost zkoumaných materiálů se zvyšuje s klesající teplotou protlačování a s rostoucím počtem protlačení (velikosti deformace). Při nízkých homologických teplotách tvrdost ve všech zkoumaných materiálech intenzivně roste se zvyšujícím s počtem průchodů. Při vyšších homologických teplotách se tvrdost mědi s počtem průchodů nezvyšuje. Příčinu konstantní tvrdosti mědi lze hledat v dynamickém zotavování dislokační struktury během protlačování. I po tepelném zpracování je zachován trend zjemnění zrna v závislosti na velikosti deformace. U mědi je závislost méně výrazná než u vzorků z oceli. Závislost pevnostních vlastností jednotlivých materiálů na velikosti zrna odpovídá Hall-Petchovu vztahu.
1. Introduction New forming technologies, to which the ECAP technology (Fig. 1) belongs as well, are focused on
46
refining of grains by intensive plastic deformations [1,2]. The objective consists in fabrication of structural metallic materials with ultra-fine grain with higher mechanical properties.
Hutnické listy č. 4/2009
Fine-grained materials are the materials, the structure of which consists of components, which have at least one dimension within the range between 100 – 500 nm (these materials are also called ultrafine-grained materials). From the viewpoint of strength properties these components can be represented by sub-grains, grains, lamellas, layers, fibres, etc. For example lamellar pearlite can be considered as nano-composite material,
Neželezné kovy
which is formed by ferrite and cementite lamellas with width mostly below 100 nm. The value of 100 nm does not have a physical meaning [3]. The term ultrafinegrained material is used also for materials composed of particles below 1 micrometer.
2. Experimental techniques The experiment was divided into the three parts. In the first part of the experiment the copper grade C 10200 (ASTM B152) was pressed, in the second part the aluminium alloy AlCu2.5Mg was extruded, and in the final part the steel P355Q was pressed. Chemical composition of all alloys is demonstrated in the Table 1.
Fig. 1. Scheme of the of ECAP process Obr.1. Schéma protlačování ECAP
Cross-section of original samples of Cu and Al alloys was 8 x 8 mm and their length was 32 mm and crosssection of original samples of Fe alloy was 10 x 10 mm and their length was 40 mm. The samples of Cu and Al alloys were extruded at room temperature. For the samples of steel the two-stage pressing, when the samples were extruded at the temperature of approx. T1 = 325 0C and T2 = 220 0C. In order to increase concentration of deformation in volume of the sample the samples were after individual passes turned around their longitudinal axis by 90o and they were extruded again.
Tab. 1. Chemické složení oceli, mědi a slitiny hliníku Tab. 1. Chemical composition of alloys Alloys Chemical compositions (%) C Is Man P S Cu Cr Ni Al P355Q 0.028 0.040 0.27 0.00 9 0.015 0.06 0.06 0.03 0.004 C 10200 0.005 0.003 0.005 99.95 0.002 AlCu2Mg 0.26 0.14 2.1 97,5
Mo 0.013 -
V 0.004 -
Ti 0.177 -
B 0.005 -
The experiments were aimed at determination of extrusion force, the pressure necessary at individual stages of extrusion, change of strength properties in dependence on number of extrusions and change of structure. In the first part of the experiment we used for extrusion the copper grade C 10200. Original samples were processed by cold forming and they were afterwards annealed at the temperature of 600 oC/3h. The samples were extruded at the temperature of approx. 20 co. The samples are ordered from the left to the right according to the number of passes. We have measured at extrusion the deformation forces and we have also calculated the pressure needed for extrusion. We have determined approximately the strain rate, which was 2,3 .10-2 s-1 [4]. Structure analysis was made by optical microscopy. Structure of original samples and that of samples after individual stages of extrusion is shown in Fig.2. Substructure of original samples and that of samples after individual stages of extrusion is shown in Fig.3.
a) a)
b)
Fig. 2. Development of structure (in longitudinal direction) at extrusion ECAP of copper: a) initial structure, b) structure after the 4th extrusion Obr.2. Mikrostruktura mědi po protlačování ECAP: a) výchozí struktura, b) struktura po 4. protlačení
47
Neželezné kovy
Hutnické listy č. 4/2009
a)
a)
a)
b)
b) Fig. 3. Substructure of copper after the 1st (a), and 4th passes (b) Obr. 3. Substruktura mědi po prvním (a) a čtvrtém protlačení (b)
Average grain size in transverse direction was determined by quantitative metallographic methods and it varied around 50 µm at the beginning of extrusion, and around 15 µm at the end of extrusion, i.e. after the 4th pass [5]. In the second part of the experiment the Al alloy AlCu2Mg was pressed. The samples were extruded at room temperature. The samples were before pressing annealed at the temperature of 380 0C. Structure of original samples and that of samples after individual stages of extrusion is shown in Fig. 4. Average grain size in transverse direction varied around 150 µm.
c) Fig. 4. Development of structure (in longitudinal direction) at extrusion of AlCu2Mg: a – structure after the 1st extrusion, b – structure after the 2nd extrusion, c – structure after the 4th extrusion Obr.4. Struktura slitiny hliníku AlCu2Mg po ECAP: a) po 1. protlačení, b) po 2. protlačení, c) po 4. protlačení
Modification of the shape of sample and sustentation solid metal at particular periods of pressing depends on the passing level and the radius fillet of edges in the pressing channel. During pressing in the channel with a small radius fillet working edges the splits are coming up in the whole length of the pressing channel. After particular through pass happened to the cumulation of the deformations consolidation, which was the basic in the creating substructure. It is demonstrated in Fig. 5.
a)
48
Hutnické listy č. 4/2009
Neželezné kovy
b) b) Fig. 6. Structure of steel P355Q after ECAP (e = 6) and annealing: a) in longitudinal direction, b) in transverse direction Obr. 6. Struktura oceli P355Q po šesti průchodech ECAP (e = 6) a žíhání : a) podélný směr, b) příčný směr
3. Obtained results and their analysis
c) Fig. 5. Substructure of AlCu2Mg alloy after the 1st (a), the 3rd (b) and the 4th passes (c) Obr. 5. Substruktura AlCu2Mg po protlačování ECAP: a) po 1.protlačení, b) po 2. protlačení, c) po 4. protlačení
In the last part of experiment the steel P355Q was pressed. The samples were before pressing annealed for ECAP. The temperature of annealing was 350 oC and the period dwell of the annealing temperature was 30 min. After annealing metallographic examination of the structure was made (Fig. 6).
For copper: After individual passes an accumulation of deformation strengthening has occurred, e.g. at extrusion with the radius of rounding of the inside cants (R = 0.5) the extrusion pressure at the beginning varied around τ = 658 MPa [6,7]. At the second extrusion it increased to τ2 = 965 MPa, and at the third extrusion it increased to τ3 = 1188 MPa. For aluminium: At extrusion with radius of rounding of the inside cants (Rv = 2 mm; Rvn = 5 mm) the extrusion pressure in die was after the first pass approximately τmax = 620 MPa and in then increased. After the 4th extrusion it was approximately τmax = 810 MPa [8, 9]. For steel: During pressing the press power was changing in dependence on the degree of filling of the die channel. For the 1st sample it was Fmax = 92 kN, for the 2nd sample it was Fmax = 95 kN and for the 3th sample it was Fmax = 123 kN. These powers correspond to these stresses: 1438 MPa, 1484 MPa and 1922 MPa. The press power was increasing with increasing deformation (hardening of the sample). The stability properties are increasing with the magnitude of deformation (e = 3.54) and they double during four passes [9,10]. The tensibility is going down. It is caused by recovery processes.
4. Conclusion
a)
Experiments made on poly-crystalline copper of the grade C10200, on an aluminium alloy AlCu2Mg and on steel P355Q have confirmed that the ECAP method is efficient tool for refining the grain. Microstructure depends of experimental conditions, particularly on number of passes and on rotation of the sample between individual passes. The angle between horizontal and
49
Neželezné kovy
Hutnické listy č. 4/2009
vertical part of the extrusion channel was for this experiment approximately 900 for Cu and Al, and for steel approximately 105°. Radii of the rounding of working parts of extrusion channel must correspond to conditions for laminar flow of metal.
Acknowledgements The research was supported by the Grant Agency of the Czech Republic under the grant No. 106/09/1598 and by the research goal MSM 619 891 0013
[3]
[4] GREGER, M. Verification of the ECAP technology. In Eighth International conference on nanostructured materials. Department of Metallurgy Indian Institute of Science, Bangalore 2006, p. 90. [5]
GREGER, M., et al. Possibilities of aluminium extrusion by the ECAP method. In NANO 05. VUT Brno 2005, p.45.
[6]
GREGER, M., et al: Structure, properties of ECAP deformed Cu and Ni shape memory alloys. In TMT 2006, University of Zenica, 2006, p. 1287 - 1290.
[7] GREGER, M., KOCICH, R., ČÍŽEK, L. Structural evolution of copper during by several plastic deformation. Mechanika. Vol.86, 2005, 308, p.125-130. [8]
Literature [1] KARAMAN, I. et al. The effect of severe forming on shape memory characteristics of a Ti rich NiTi alloy processed using ECAP. Metal. Mat. Trans. Vol. 34, p. 2527-2539. [2]
KWAPULINSKI, P. et al. Magnetic properties of amorphous and nanocrystalline alloys based on iron. J. Mat. Proc. Tech. 157-158 (2004), p. 735-742.
BEYERLEIN, I.J., LEBENSOHN, R.A., TOMÉ, C.N.: Ultrafine Grained Materials II. TMS, Seattle, 2002, p. 585.
GREGER, M., et al: Mechanical properties and microstructure of Al alloy produced by SPD process. In TMT 2006. University of Zenica, 2006, p. 253-256.
[9] GREGER, M., KANDER, L., KUŘETOVÁ, B.: Plastic forming of ECAP processed EN AW 6082 aluminium alloy. University Review. University of Trenčín, Vol. 2., 2008, no.3, p.84-90. [10] GREGER, M., et al. Strength enhancement possibilities of low carbon steels. In New methods of damage and failure analysis of structural parts. VSB-TU Ostrava. Ostrava, 2006, p. 207214.
Recenze: Ing. Ladislav Jílek, CSc., Ing. Jiří Petržela, Ph.D.
__________________________________________________________________________________________________
21. mezinárodní veletrh technologií pro zpracování kovových plechů
EuroBLECH 2010 Hannover
Hannover, Spolková republika Německo Veletržní areál, hala 11 – 17, 27 www.euroblech.com 50