BAB II TINJAUAN PUSTAKA
2.1. Tinjauan Umum Setiap bangunan sipil seperti gedung, jembatan, jalan raya, terowongan, menara, dam/tanggul dan sebagainya harus mempunyai pondasi yang dapat mendukungnya.
Istilah
pondasi
digunakan
dalam
teknik
sipil
untuk
mendefenisikan suatu konstruksi bangunan yang berfungsi sebagai penopang bangunan dan meneruskan beban bangunan di atasnya (upper structure) ke lapisan tanah yang cukup kuat daya dukungnya. Untuk itu, pondasi bangunan harus diperhitungkan agar dapat menjamin kestabilan bangunan terhadap berat sendiri, beban – beban yang bekerja, gaya – gaya luar seperti tekanan angin, gempa bumi dan lain – lain. Di samping itu, tidak boleh terjadi penurunan melebihi batas yang diijinkan. Setiap pondasi harus mampu mendukung beban sampai batas keamanan yang telah ditentukan, termasuk mendukung beban maksimum yang mungkin terjadi. Jenis pondasi yang sesuai dengan tanah pendukung yang terletak pada kedalaman 10 meter di bawah permukaan tanah adalah pondasi tiang.
2.2. Definisi Tanah Tanah selalu mempunyai peranan yang penting pada suatu lokasi pekerjaan konstruksi. Tanah adalah pondasi pendukung suatu bangunan, atau bahan konstruksi dari bangunan itu sendiri seperti tanggul atau bendungan, atau
Universitas Sumatera Utara
kadang-kadang sebagai sumber penyebab gaya luar pada bangunan, seperti tembok/dinding penahan tanah. Tanah, di alam terdiri dari campuran butiran-butiran mineral dengan atau tanpa kandungan bahan organik. Butiran-butiran tersebut dapat dengan mudah dipisahkan satu sama lain dengan kocokan air. Material ini berasal dari pelapukan batuan, baik secara fisik maupun kimia. Sifat-sifat teknis tanah, kecuali oleh sifat batuan induk yang merupakan material asal, juga dipengaruhi oleh unsur-unsur luar yang menjadi penyebab terjadinya pelapukan batuan tersebut. Istilah-istilah seperti kerikil, pasir, lanau dan lempung digunakan dalam teknik sipil untuk membedakan jenis-jenis tanah. Pada kondisi alam, tanah dapat terdiri dari dua atau lebih campuran jenis-jenis tanah dan kadang-kadang terdapat pula kandungan bahan organik. Material campurannya kemudian dipakai sebagai nama tambahan dibelakang material unsur utamanya. Sebagai contoh, lempung berlanau adalah tanah lempung yang mengandung lanau dengan material utamanya adalah lempung dan sebagainya. Tanah terdiri dari 3 komponen, yaitu udara, air dan bahan padat. Udara dianggap tidak mempunyai pengaruh teknis, sedangkan air sangat mempengaruhi sifat-sifat teknis tanah. Ruang diantara butiran-butiran, sebagian atau seluruhnya dapat terisi oleh air atau udara. Bila rongga tersebut terisi air seluruhnya, tanah dikatakan dalam kondisi jenuh. Bila rongga terisi udara dan air, tanah pada kondisi jenuh sebagian (partially saturated). Tanah kering adalah tanah yang tidak mengandung air sama sekali atau kadar airnya nol (Hardiyatmo, 1996).
Universitas Sumatera Utara
2.3. Penyelidikan Tanah (Soil Investigation) Pada perencanaan pondasi terlebih dahulu perlu diketahui susunan lapisan tanah yang sebenarnya pada suatu tempat dan juga hasil pengujian laboratorium dari sampel tanah yang diambil dari berbagai kedalaman lapisan tanah dan mungkin kalau ada perlu juga diketahui hasil pengamatan lapangan yang dilakukan sewaktu pembangunan gedung - gedung atau bangunan - bangunan lain yang didirikan dalam kondisi tanah yang serupa. Penyelidikan tanah diperlukan untuk menentukan pilihan jenis pondasi, daya dukungnya dan untuk menentukan metode konstruksi yang efisien dan juga diperlukan untuk menentukan stratifikasi (pelapisan) tanah dan karakteristik teknis tanah sehingga perancangan dan konstruksi pondasi dapat dilakukan dengan ekonomis. 2.3.1. Sondering Test/Cone Penetration Test (CPT) Pengujian CPT atau sondir adalah pengujian dengan menggunakan alat sondir yang ujungnya berbentuk kerucut dengan sudut 60º dan dengan luasan ujung 1,54 in² (10 cm²). Alat ini digunakan dengan cara ditekan ke dalam tanah terus menerus dengan kecepatan tetap 20 mm/detik, sementara itu besarnya perlawanan tanah terhadap kerucut penetrasi (qc) juga terus diukur. Dilihat dari kapasitasnya, alat sondir dapat dibedakan menjadi dua jenis, yaitu sondir ringan (2 ton) dan sondir berat (10 ton). Sondir ringan digunakan untuk mengukur tekanan konus sampai 150 kg/cm², atau kedalam maksimal 30 m, dipakai untuk penyelidikan tanah yang terdiri dari lapisan lempung, lanau dan pasir halus. Sondir berat dapat mengukur tekanan konus 500 kg/cm² atau kedalaman maksimal 50 m, dipakai untuk penyelidikan tanah di daerah yang terdiri dari lempung padat, lanau padat dan pasir kasar.
Universitas Sumatera Utara
Keuntungan utama dari penggunaan alat ini adalah tidak perlu diadakan pemboran tanah untuk penyelidikan. Tetapi tidak seperti pada pengujian SPT, dengan alat sondir sampel tanah tidak dapat diperoleh untuk penyelidikan langsung ataupun untuk uji laboratorium. Tujuan dari pengujian sondir ini adalah untuk mengetahui perlawanan penetrasi konus dan hambatan lekat tanah yang merupakan indikator dari kekuatan tanahnya dan juga dapat menentukan dalamnya berbagai lapisan tanah yang berbeda. Dari alat penetrometer yang lazim dipakai, sebagian besar mempunyai selubung geser (bikonus) yang dapat bergerak mengikuti kerucut penetrasi tersebut. Jadi pembacaan harga perlawanan ujung konus dan harga hambatan geser dari tanah dapat dibaca secara terpisah. Ada 2 tipe ujung konus pada sondir mekanis yaitu pada (Gambar 2. 1) : 1. Konus biasa, yang diukur adalah perlawanan ujung konus dan biasanya digunakan pada tanah yang berbutir kasar, dimana besar perlawanan lekatnya kecil; 2. Bikonus, yang diukur adalah perlawanan ujung konus dan hambatan lekatnya dan biasanya digunakan pada tanah yang berbutir halus. Hasil penyelidikan dengan alat sondir ini pada umumnya digambarkan dalam bentuk grafik yang menyatakan hubungan antara kedalaman setiap lapisan tanah dengan besarnya nilai sondir yaitu perlawanan penetrasi konus atau perlawanan tanah terhadap ujung konus yang dinyatakan dalam gaya per satuan luas. Hambatan lekat adalah perlawanan geser tanah terhadap selubung bikonus yang dinyatakan dalam gaya per satuan panjang. Dari hasil sondir diperoleh nilai jumlah perlawanan (JP) dan nilai perlawanan konus (PK), sehingga hambatan lekat (HL) dapat dihitung sebagai berikut :
Universitas Sumatera Utara
1. Hambatan Lekat (HL) HL = (JP-PK) x ..............................................................................(2. 1) 2. Jumlah Hambatan Lekat ( JHL ) JHL =
.................................................................................(2. 2)
dimana : JP
= Jumlah perlawanan, perlawanan ujung konus + selimut (kg/cm²)
PK
= Perlawanan penetrasi konus, qc (kg/cm²)
A
= Interval pembacaan (setiap kedalaman 20 cm)
B
= Faktor alat = luas konus/luas torak = 10 cm
i
= Kedalaman lapisan tanah yang ditinjau (m)
(a). Konus
(b). Bikonus
Gambar 2.1 Dimensi Alat Sondir Mekanis Sumber : Ir. Sardjono, H. S. Pondasi Tiang Pancang, Jilid I
Data sondir tersebut digunakan untuk mengidentifikasikan dari profil tanah terhadap kedalaman. Hasil akhir dari pengujian sondir ini dibuat dengan
Universitas Sumatera Utara
menggambarkan variasi tahanan ujung (qc) dengan gesekan selimut (fs) terhadap kedalamannya. Bila hasil sondir diperlukan untuk mendapatkan daya dukung tiang, maka diperlukan harga kumulatif gesekan (jumlah hambatan lekat), yaitu dengan menjumlahkan harga gesekan selimut terhadap kedalaman, sehingga pada kedalaman yang ditinjau dapat diperoleh gesekan total yang dapat digunakan untuk menghitung gesekan pada kulit tiang. Besaran gesekan kumulatif (total friction) diadaptasikan dengan sebutan jumlah hambatan lekat (JHL). Bila hasil sondir digunakan untuk klasifikasi tanah, maka cara pelaporan hasil sondir yang diperlukan adalah menggambarkan tahanan ujung (qc), gesekan selimut (fs) dan ratio gesekan (FR) terhadap kedalaman tanah.
2.3.2. Standard Penetration Test (SPT) Standard Penetration Test (SPT) sering digunakan untuk mendapatkan daya dukung tanah secara langsung di lokasi. Metode SPT merupakan percobaan dinamis yang dilakukan dalam suatu lubang bor dengan memasukkan tabung sampel yang berdiameter dalam 35 mm sedalam 305 mm dengan menggunakan massa pendorong (palu) seberat 63, 5 kg yang jatuh bebas dari ketinggian 760 mm. Banyaknya pukulan palu tersebut untuk memasukkan tabung sampel sedalam 305 mm dinyatakan sebagai nilai N.
Tujuan dari percobaan SPT ini adalah untuk menentukan kepadatan relatif lapisan tanah dari pengambilan contoh tanah dengan tabung sehingga diketahui jenis tanah dan ketebalan tiap-tiap lapisan kedalaman tanah dan untuk memperoleh data yang kualitatif pada perlawanan penetrasi tanah serta menetapkan kepadatan dari tanah yang tidak berkohesi yang biasa sulit diambil sampelnya. Percobaan SPT ini dilakukan dengan cara sebagai berikut :
Universitas Sumatera Utara
1. Siapkan peralatan SPT yang dipergunakan seperti : mesin bor, batang bor, split
spoon sampler, hammer, dan lain – lain; 2. Letakkan dengan baik penyanggah tempat bergantungnya beban penumbuk; 3. Lakukan pengeboran sampai kedalaman testing, lubang dibersihkan dari kotoran hasil pengeboran dari tabung segera dipasangkan pada bagian dasar lubang bor; 4. Berikan tanda pada batang peluncur setiap 15 cm, dengan total 45 cm; 5. Dengan pertolongan mesin bor, tumbuklah batang bor ini dengan pukulan palu seberat 63,5 kg dan ketinggian jatuh 76 cm hingga kedalaman tersebut, dicatat jumlah pukulan untuk memasukkan penetrasi setiap 15 cm (N value); Contoh : N1 = 10 pukulan/15 cm N2 = 5 pukulan/15 cm N3 = 8 pukulan/15 cm Maka total jumlah pukulan adalah jumlah N2 dengan N3 adalah 5 + 8 = 13 pukulan = nilai N. N1 tidak diperhitungkan karena dianggap 15 cm pukulan pertama merupakan sisa kotoran pengeboran yang tertinggal pada dasar lubang bor, sehingga perlu dibersihkan untuk memperkecil efisiensi gangguan; 6. Hasil pengambilan contoh tanah dari tabung tersebut dibawa ke permukaan dan dibuka. Gambarkan contoh jenis - jenis tanah yang meliputi komposisi, struktur, konsistensi, warna dan kemudian masukkan ke dalam botol tanpa dipadatkan atau kedalaman plastik, lalu ke core box; 7. Gambarkan grafik hasil percobaan SPT; Catatan : Pengujian dihentikan bila nilai SPT≥ 50 untuk 4x interval .
Universitas Sumatera Utara
2.4. Pondasi Tiang Pondasi tiang adalah elemen struktur yang berfungsi meneruskan beban kepada tanah, baik beban dalam tanah vertikal maupun horizontal. Pondasi tiang digunakan untuk mendukung bangunan bila lapisan tanah kuat terletak sangat dalam. Pondasi jenis ini dapat juga digunakan untuk mendukung bangunan yang menahan gaya angkat ke atas, terutama pada bangunan-bangunan tingkat yang dipengaruhi oleh gaya-gaya.
2.5. Klasifikasi Pondasi Tiang Berdasarkan metode instalasinya, pondasi tiang pada umumnya dapat diklasifikasikan atas : 1). Tiang Pancang Pondasi tiang pancang merupakan sebuah tiang yang dipancang kedalam tanah sampai kedalaman yang cukup untuk menimbulkan tahanan gesek pada selimutnya atau tahanan ujungnya. Pemancangan tiang dapat dilakukan dengan memukul kepala tiang dengan palu atau getaran atau dengan penekan secara hidrolis. 2). Tiang Bor Sebuah tiang bor dikonstruksikan dengan cara menggali sebuah lubang bor yang kemudian diisi dengan material beton dengan memberikan penulangan terlebih dahulu.
Universitas Sumatera Utara
2.6. Pondasi Tiang Pancang Pondasi tiang pancang dibuat ditempat lain (pabrik, dilokasi) dan baru dipancang sesuai dengan umur beton setelah 28 hari. Karena tegangan tarik beton adalah kecil, sedangkan berat sendiri beton adalah besar, maka tiang pancang beton ini haruslah diberi tulangan yang cukup kuat untuk menahan momen lentur yang akan timbul pada waktu pengangkatan dan pemancangan. Pemakaian pondasi tiang pancang mempunyai keuntungan dan kerugian, sebagai berikut ini: Keuntungan pondasi tiang pancang : 1. Karena tiang dibuat di pabrik dan pemeriksaan kualitas ketat, hasilnya lebih dapat diandalkan; 2. Prosedur pelaksanaan tidak dipengaruhi oleh air tanah; 3. Daya dukung dapat diperkirakan berdasarkan rumus tiang pancang sehingga mempermudah pengawasan pekerjaan konstruksi; 4. Cara penumbukan sangat cocok untuk mempertahankan daya dukung vertikal. Kerugian pondasi tiang pancang : 1. Karena dalam pelaksanaannya menimbulkan getaran dan kegaduhan maka pada daerah yang berpenduduk padat di kota dan desa, akan menimbulkan masalah disekitarnya; 2. Pemancangan sulit, bila dimeter tiang terlalu besar; 3. Bila panjang tiang pancang kurang, maka untuk melakukan penyambungannya sulit dan memerlukan alat penyambung khusus; 4. Bila memerlukan pemotongan maka dalam pelaksanaannya akan lebih sulit dan memerlukan waktu yang lama.
Universitas Sumatera Utara
2.7. Penggolongan Pondasi Tiang Pancang Pada perencanaan pondasi, pemilihan jenis pondasi tiang pancang untuk berbagai jenis keadaan tergantung pada banyak variabel. Faktor - faktor yang perlu dipertimbangkan di dalam pemilihan tiang pancang antara lain type dari tanah dasar yang meliputi jenis tanah dasar dan ciri - ciri topografinya, alasan teknis pada waktu pelaksanaan pemancangan dan jenis bangunan yang akan dibangun. Pondasi tiang dapat digolongkan berdasarkan material yang digunakan dan berdasarkan cara penyaluran beban yang diterima tiang ke dalam tanah. 2.7.1. Pondasi tiang pancang menurut pemakaian bahan dan karakteristik strukturnya Tiang pancang dapat dibagi kedalam beberapa kategori (Bowles, 1991), antara lain : A. Tiang pancang kayu Tiang pancang kayu dibuat dari batang pohon yang cabang-cabangnya telah dipotong dengan hati-hati, biasanya diberi bahan pengawet dan didorong dengan ujungnya yang kecil sebagai bagian yang runcing. Kadang-kadang ujungnya yang besar didorong untuk maksud-maksud khusus, seperti dalam tanah yang sangat lembek dimana tanah tersebut akan bergerak kembali melawan poros. Kadang kala ujungnya runcing dilengkapi dengan sebuah sepatu pemancangan yang terbuat dari logam bila tiang pancang harus menembus tanah keras atau tanah kerikil. Pemakaian tiang pancang kayu ini adalah cara tertua dalam penggunaan tiang pancang sebagai pondasi. Tiang kayu akan tahan lama dan tidak mudah busuk apabila tiang kayu tersebut dalam keadaan selalu terendam penuh di bawah
Universitas Sumatera Utara
muka air tanah. Tiang pancang dari kayu akan lebih cepat rusak atau busuk apabila dalam keadaan kering dan basah yang selalu berganti-ganti. Sedangkan pengawetan serta pemakaian obat-obatan pengawet untuk kayu hanya akan menunda atau memperlambat kerusakan dari pada kayu, akan tetapi tetap tidak akan dapat melindungi untuk seterusnya. Pada pemakaian tiang pancang kayu biasanya tidak diijinkan untuk menahan muatan lebih besar dari 25 sampai 30 ton untuk setiap tiang. Tiang pancang kayu ini sangat cocok untuk daerah rawa dan daerahdaerah dimana sangat banyak terdapat hutan kayu seperti daerah Kalimantan, sehingga mudah memperoleh balok/tiang kayu yang panjang dan lurus dengan diameter yang cukup besar untuk di gunakan sebagai tiang pancang.
Gambar 2.2 Tiang pancang kayu Sumber : Bowles, 1991
B. Tiang pancang beton 1. Precast reinforced concrete pile Precast reinforced concrete pile adalah tiang pancang dari beton bertulang yang dicetak dan dicor dalam acuan beton ( bekisting ), kemudian setelah cukup kuat lalu diangkat dan di pancangkan. Karena tegangan tarik beton adalah kecil
Universitas Sumatera Utara
dan praktis dianggap sama dengan nol, sedangkan berat sendiri dari pada beton adalah besar, maka tiang pancang beton ini haruslah diberi penulanganpenulangan yang cukup kuat untuk menahan momen lentur yang akan timbul pada waktu pengangkatan dan pemancangan. Karena berat sendiri adalah besar, biasanya pancang beton ini dicetak dan dicor di tempat pekerjaan, jadi tidak membawa kesulitan untuk transport. Tiang pancang ini dapat memikul beban yang besar ( > 50 ton untuk setiap tiang), hal ini tergantung dari dimensinya. Dalam perencanaan tiang pancang beton precast ini panjang dari pada tiang harus dihitung dengan teliti, sebab kalau ternyata panjang dari pada tiang ini kurang terpaksa harus di lakukan penyambungan, hal ini adalah sulit dan banyak memakan waktu. .
Gambar 2.3 Tiang pancang beton precast reinforced concrete pile Sumber : Bowles, 1991
2. Precast prestressed concrete pile Precast prestressed concrete pile adalah tiang pancang dari beton prategang yang mengunakan baja penguat dan kabel kawat sebagai gaya prategangnya.
Universitas Sumatera Utara
Gambar 2.4 Tiang pancang precast prestressed concrete pile Sumber : Bowles, 1991
3. Cast in place pile Pondasi tiang pancang tipe ini adalah pondasi yang di cetak di tempat dengan jalan dibuatkan lubang terlebih dahulu dalam tanah dengan cara mengebor tanah seperti pada pengeboran tanah pada waktu penyelidikan tanah. Pada Cast in place ini dapat dilaksanakan dua cara: 1. Dengan pipa baja yang dipancangkan ke dalam tanah, kemudian diisi dengan beton dan ditumbuk sambil pipa tersebut ditarik keatas. 2. Dengan pipa baja yang di pancangkan ke dalam tanah, kemudian diisi dengan beton, sedangkan pipa tersebut tetap tinggal di dalam tanah.
Gambar 2.5 Tiang pancang Cast in place pile Sumber : Bowles, 1991
Universitas Sumatera Utara
C. Tiang pancang baja. Kebanyakan tiang pancang baja ini berbentuk profil H. Karena terbuat dari baja maka kekuatan dari tiang ini sendiri sangat besar sehingga dalam pengangkutan dan pemancangan tidak menimbulkan bahaya patah seperti halnya pada tiang beton precast. Jadi pemakaian tiang pancang baja ini akan sangat bermanfaat apabila kita memerlukan tiang pancang yang panjang dengan tahanan ujung yang besar. Tingkat karat pada tiang pancang baja sangat berbeda-beda terhadap tekstur tanah, panjang tiang yang berada dalam tanah dan keadaan kelembaban tanah. a. Pada tanah yang memiliki tekstur tanah yang kasar/kesap, maka karat yang terjadi karena adanya sirkulasi air dalam tanah tersebut hampir mendekati keadaan karat yang terjadi pada udara terbuka; b. Pada tanah liat ( clay ) yang mana kurang mengandung oksigen maka akan menghasilkan tingkat karat yang mendekati keadaan karat yang terjadi karena terendam air; c. Pada lapisan pasir yang dalam letaknya dan terletak dibawah lapisan tanah yang padat akan sedikit sekali mengandung oksigen maka lapisan pasir tersebut juga akan akan menghasilkan karat yang kecil sekali pada tiang pancang baja. Pada umumnya tiang pancang baja akan berkarat di bagian atas yang dekat dengan permukaan tanah. Hal ini disebabkan karena Aerated-Condition ( keadaan udara pada pori-pori tanah ) pada lapisan tanah tersebut dan adanya bahan-bahan organis dari air tanah. Hal ini dapat ditanggulangi dengan memoles tiang baja
Universitas Sumatera Utara
tersebut dengan ter ( coaltar ) atau dengan sarung beton sekurang-kurangnya 20” ( ± 60 cm ) dari muka air tanah terendah. Karat/korosi yang terjadi karena udara (atmosphere corrosion) pada bagian tiang yang terletak di atas tanah dapat dicegah dengan pengecatan seperti pada konstruksi baja biasa.
Gambar 2.6 Tiang pancang baja Sumber : Bowles, 1991
D. Tiang pancang komposit. Tiang pancang komposit adalah tiang pancang yang terdiri dari dua bahan yang berbeda yang bekerja bersama-sama sehingga merupakan satu tiang. Kadang-kadang pondasi tiang dibentuk dengan menghubungkan bagian atas dan bagian bawah tiang dengan bahan yang berbeda, misalnya dengan bahan beton di atas muka air tanah dan bahan kayu tanpa perlakuan apapun disebelah bawahnya. Biaya dan kesulitan yang timbul dalam pembuatan sambungan menyebabkan cara ini diabaikan.
Universitas Sumatera Utara
2.7.2. Pondasi tiang pancang menurut pemasangannya Pondasi tiang pancang menurut cara pemasangannya dibagi dua bagian besar, yaitu : A. Tiang pancang pracetak Tiang pancang pracetak adalah tiang pancang yang dicetak dan dicor didalam acuan beton (bekisting), kemudian setelah cukup kuat lalu diangkat dan dipancangkan. Tiang pancang pracetak ini menurut cara pemasangannya terdiri dari : 1. Cara penumbukan Dimana tiang pancang tersebut dipancangkan kedalam tanah dengan cara penumbukan oleh alat penumbuk (hammer). 2. Cara penggetaran Dimana tiang pancang tersebut dipancangkan kedalam tanah dengan cara penggetaran oleh alat penggetar (vibrator). 3. Cara penanaman Dimana permukaan tanah dilubangi terlebih dahulu sampai kedalaman tertentu, lalu tiang pancang dimasukkan, kemudian lubang tadi ditimbun lagi dengan tanah. Cara penanaman ini ada beberapa metode yang digunakan : a. Cara pengeboran sebelumnya, yaitu dengan cara mengebor tanah sebelumnya lalu tiang dimasukkan kedalamnya dan ditimbun kembali. b. Cara pengeboran inti, yaitu tiang ditanamkan dengan mengeluarkan tanah dari bagian dalam tiang. c. Cara pemasangan dengan tekanan, yaitu tiang dipancangkan kedalam tanah dengan memberikan tekanan pada tiang.
Universitas Sumatera Utara
d. Cara pemancaran, yaitu tanah pondasi diganggu dengan semburan air yang keluar dari ujung serta keliling tiang, sehingga tidak dapat dipancangkan kedalam tanah. B. Tiang yang dicor ditempat (cast in place pile) Tiang yang dicor ditempat (cast in place pile) ini menurut teknik penggaliannya terdiri dari beberapa macam cara yaitu : 1. Cara penetrasi alas Cara penetrasi alas yaitu pipa baja yang dipancangkan kedalam tanah kemudian pipa baja tersebut dicor dengan beton. 2. Cara penggalian Cara ini dapat dibagi lagi urut peralatan pendukung yang digunakan antara lain : a. Penggalian dengan tenaga manusia Penggalian lubang pondasi tiang pancang dengan tenaga manusia adalah penggalian lubang pondsi yang masih sangat sederhana dan merupakan cara konvensional. Hal ini dapat dilihat dengan cara pembuatan pondasi dalam, yang pada umumnya hanya mampu dilakukan pada kedalaman tertentu. b. Penggalian dengan tenaga mesin Penggalian lubang pondasi tiang pancang dengan tenaga mesin adalah penggalian lubang pondasi dengan bantuan tenaga mesin, yang memiliki kemampuan lebih baik dan lebih canggih.
Universitas Sumatera Utara
2.8. Peralatan Pemancangan (Driving Equipment) Untuk memancangkan tiang pancang ke dalam tanah digunakan alat pancang. Pada dasarnya alat pancang terdiri dari tiga macam, yaitu : 1. Drop hammer 2. Single - acting hammer 3. Double - acting hammer Bagian - bagian yang paling penting pada alat pancang adalah pemukul (hammer), leader, tali atau kabel dan mesin uap.
2.9. Hidrolik Sistem Hidrolik Sistem adalah suatu metode pemancangan pondasi tiang dengan menggunakan mekanisme hydraulic jacking foundation system, dimana sistem ini telah mendapatkan hak paten dari United States, United Kingdom, China dan New Zealand. Sistem ini terdiri dari suatu hydraulic ram yang ditempatkan pararel dengan tiang yang akan dipancang, dimana untuk menekan tiang tersebut ditempatkan sebuah mekanisme berupa plat penekan yang berada pada puncak tiang dan juga ditempatkan sebuah mekanisme pemegang (grip) tiang, kemudian tiang ditekan ke dalam tanah. Dengan sistem ini tiang akan tertekan secara kontiniu ke dalam tanah, tanpa suara, tanpa pukulan dan tanpa getaran. Penempatan sistem penekan hydraulic yang senyawa dan menjepit pada dua sisi tiang menyebabkan didapatkannya posisi titik pancang yang cukup presisi dan akurat. Ukuran diameter piston mesin hydraulic jack tergantung dengan besar kapasitas daya dukung mesin tersebut. Sebagai pembebanan, ditempatkan balok –
Universitas Sumatera Utara
balok beton atau plat – plat besi pada dua sisi bantalan alat yang pembebanannya disesuaikan dengan muatan yang dibutuhkan tiang. Keunggulan teknologi hidrolik sistem ini yang ditinjau dari beberapa segi, antara lain adalah : 1. Bebas getaran Bila suatu proyek yang akan dikerjakan berdampingan dengan bangunan, pabrik atau instansi yang sarat akan peralatan instrumentasi yang sedang bekerja, maka teknologi hydraulic jacking system ini akan menyelesaikan masalah wajib bebas getaran terhadap instalasi yang ada tersebut. 2. Bebas pengotoran lokasi kerja dan udara serta bebas dari kebisingan Teknologi pemancangannya bersih dari asap dan partikel debu (jika menggunakan drop hammer) serta bebas dari unsur berlumpur (jika menggunakan bore piles). Karena sistem ini juga tidak bising akibat suara pukulan pancang (seperti pada drop hammer), maka untuk lokasi yang membutuhkan ketenangan seperti rumah sakit, sekolah dan bangunan di tengah kota, teknologi ini tidak akan membuat lingkungan sekitarnya terganggu. hydraulic jacking system ini juga disebut dengan teknologi berwawasan lingkungan (environment friendly). 3. Daya dukung aktual per tiang diketahui Seperti kita ketahui bahwa kondisi tanah asli di bawah pondasi yang akan dibangun umumnya terdiri dari lapisan – lapisan yang berbeda ketebalannya, jenis tanah maupun daya dukungnya. Dengan hydraulic jacking system, daya dukung setiap tiang dapat diketahui dan dimonitor langsung dari manometer
Universitas Sumatera Utara
yang dipasang pada peralatan hydraulic jacking system sepanjang proses pemancangan berlangsung. 4. Harga yang ekonomis Teknologi hydraulic jacking ini tidak memerlukan pemasangan tulangan ekstra penahan impack pada kepala tiang pancang seperti pada tiang pancang umumnya. Disamping itu, dengan sistem pemancangan yang simpel dan cepat menyebabkan biaya operasional yang lebih hemat. 5. Lokasi kerja yang terbatas Dengan tinggi alat yang relatif rendah, hydraulic jacking system ini dapat digunakan pada basement, ground floor atau lokasi kerja yang terbatas, Alat hydraulic jacking system ini dapat dipisahkan menjadi beberapa komponan sehingga memudahkan untuk dapat dibawa masuk atau keluar lokasi kerja. Kekurangan dari teknologi, hydraulic jacking system antara lain adalah : 1. Apabila terdapat batu atau lapisan tanah keras yang tipis pada ujung tiang yang ditekan, maka hal tersebut akan mengakibatkan kesalahan pada saat pemancangan; 2. Sulitnya mobilisasi alat pada daerah lunak ataupun pada daerah berlumpur (biasanya pada areal tanah timbunan); 3. Karena hydraulic jacking ini mempunyai berat sekitar 320 ton dan saat permukaan tanah yang tidak sama daya dukungnya, maka hal tersebut akan dapat mengakibatkan posisi alat pancang menjadi miring bahkan tumbang. Kondisi ini akan sangat berbahaya terhadap keselamatan pekerja; 4. Pergerakan alat hydraulic jacking ini sedikit lambat, proses pemindahannya relatif lama untuk pemancangan titik yang berjauhan.
Universitas Sumatera Utara
2.10. Kapasitas Daya Dukung 2.10.1. Kapasitas daya dukung tiang pancang dari hasil sondir Diantara perbedaaan tes dilapangan, sondir atau Cone Penetration Test (CPT) seringkali sangat dipertimbangkan berperanan dari geoteknik. CPT atau sondir ini tes yang sangat cepat, sederhana, ekonomis dan tes tersebut dapat dipercaya dilapangan dengan pengukuran terus-menerus dari permukaan tanahtanah dasar. CPT atau sondir ini dapat juga mengklasifikasi lapisan tanah dan dapat memperkirakan kekuatan dan karakteristik dari tanah. Didalam perencanaan pondasi tiang pancang (pile), data tanah sangat diperlukan dalam merencanakan kapasitas daya dukung (bearing capacity) dan tiang pancang sebelum pembangunan dimulai, guna menentukan kapasitas daya dukung ultimit dari tiang pancang. Kapasitas daya dukung ultimit ditentukan dengan persamaan sebagai berikut : Qu = Qb + Qs = qbAb + f.As…………………………………(2.3) Dimana : Qu = Kapasitas daya dukung aksial ultimit tiang pancang. Qb = Kapasitas tahanan di ujung tiang. Qs
= Kapasitas tahanan kulit.
qb
= Kapasitas daya dukung di ujung tiang persatuan luas.
Ab = Luas di ujung tiang. f
= Satuan tahanan kulit persatuan luas.
As
= Luas kulit tiang pancang.
Dalam menentukan kapasitas daya dukung aksial ultimit (Qu) dipakai Metode Aoki dan De Alencar.
Universitas Sumatera Utara
Aoki dan De Alencar mengusulkan untuk memperkirakan kapasitas dukung ultimit dari data Sondir. Kapasitas dukung ujung persatuan luas (qb) diperoleh sebagai berikut : qca (base) ………………………………………………(2.4) Fb
qb =
Dimana : qca (base)
= Perlawanan konus rata-rata 1,5D diatas ujung tiang, 1,5D dibawah ujung tiang dan Fb adalah faktor empirik tergantung pada tipe tanah.
Tahanan kulit persatuan luas (f) diprediksi sebagai berikut : F = qc (side)
αs Fs
……………………………………………...(2.5)
Dimana : qc (side)
= Perlawanan konus rata-rata pada masing lapisan sepanjang tiang.
Fs
= Faktor empirik yang tergantung pada tipe tanah.
Fb
= Faktor empirik yang tergantung pada tipe tanah. Faktor Fb dan Fs diberikan pada Tabel II.1 dan nilai-nilai faktor empirik α s
diberikan pada Tabel II.2. Tabel II.1 Faktor empirik Fb dan Fs Tipe Tiang Pancang
Fb
Fs
Tiang Bor
3,5
7,0
Baja
1,75
3,5
Beton Pratekan
1,75
3,5
Sumber : Titi & Farsakh, 1999
Universitas Sumatera Utara
Tabel II.2 Nilai faktor empirik untuk tipe tanah yang berbeda αs αs (%) Tipe Tanah Tipe Tanah Tipe Tanah (%) Pasir
Lempung berpasir Lempung berpasir dengan lanau
αs (%)
1,4
Pasir berlanau
2,2
2,4
Pasir kelanauan
2,0
Pasir berlanau dengan lempung
2,8
Pasir kelanauan dengan lempung
2,4
Lanau
3,0
Lempung berlanau dengan pasir
3,0
Pasir berlempung dengan lanau
2,8
Lanau berlempung dengan pasir
3,0
Lempung berlanau
4,0
Pasir berlempung
3,0
Lanau berlempung
3,4
Lempung
6,0
2,8
Sumber : Titi & Farsakh, 1999 Pada umumnya nilai αs untuk pasir = 1,4 persen, nilai αs untuk lanau = 3,0 persen dan nilai αs untuk lempung = 1,4 persen. Untuk menghitung daya dukung tiang pancang berdasarkan data hasil pengujian sondir dapat dilakukan dengan menggunakan metode Meyerhoff. Daya dukung ultimit pondasi tiang dinyatakan dengan rumus : Qult = (qc x Ap)+(JHL x K11)……………………………….(2.6) Dimana : Qult
= Kapasitas daya dukung tiang pancang tunggal.
qc
= Tahanan ujung sondir.
Ap
= Luas penampang tiang.
JHL
= Jumlah hambatan lekat.
K11
= Keliling tiang.
Universitas Sumatera Utara
Daya dukung ijin pondasi dinyatakan dengan rumus : Qijin =
qc xAc JHLxK11 …………………………………….(2.7) + 3 5
Dimana : Qijin
= Kapasitas daya dukung ijin pondasi.
qc
= Tahanan ujung sondir.
Ap
= Luas penampang tiang.
JHL
= Jumlah hambatan lekat.
K11
= Keliling tiang.
2.10.2. Kapasitas daya dukung tiang pancang dari SPT Standart Penetrasi Test (SPT) adalah sejenis percobaan dinamis dengan memasukkan suatu alat yang dinamakan split spoon ke dalam tanah. Dengan percobaan ini akan diperoleh kepadatan relatif (relative density), sudut geser tanah (ϕ) berdasarkan nilai jumlah pukulan (N). SPT yang dilakukan pada tanah tidak kohesif tapi berbutir halus atau lanau, yang permeabilitasnya rendah, mempengaruhi perlawanan penetrasi yakni memberikan harga SPT yang lebih rendah dibandingkan dengan tanah yang permeabilitasnya tinggi untuk kepadatan yang sama. Hal ini mungkin terjadi bila jumlah tumbukan N > 15, maka sebagai koreksi Terzagi dan Peck (1948) memberikan harga ekivalen N0 yang merupakan hasil jumlah tumbukan N yang telah dikoreksi akibat pengaruh permeabilitas yang dinyatakan dengan : N0 = 15 + ½ (N-15) ………………………………………...(2.8)
Universitas Sumatera Utara
Gibs dan Holtz (1957) juga memberikan harga ekivalen N0 yang merupakan hasil jumlah tumbukan N yang telah terkoreksi akibat pengaruh tekanan berlebih yang terjadi untuk jenis tanah dinyatakan dengan : N0 = N Dimana
……………………………………….…(2.9)
adalah tegangan efektif berlebih, yang tidak lebih dari 2,82 kg/cm².
Dari pelaksanaan pengujian dengan metode SPT, maka angka N dari suatu lapisan dapat diketahui dan dari angka tersebut dapat ditentukan karakteristik suatu lapisan tanah seperti pada tabel II.3 berikut: Table II.3 Hal-hal yang Perlu Dipertimbangkan untuk Penentuan Harga N Hal-hal yang perlu diperhatikan dan Klasifikasi dipertimbangkan Hal yang perlu
Unsur tanah, variasi daya dukung vertikal
dipertimbangkan secara
(kedalaman permukaan dan susunannya), adanya
menyeluruh dari hasil-
lapisan lunak (ketebalan konsolidasi atau penurunan),
hasil survei sebelumnya
kondisi drainase dan lain-lain Berat isi, sudut geser dalam,
Tahan pasir
ketahanan terhadap penurunan Hal-hal yang perlu diperhatikan langsung
(tidak kohesif)
dan daya dukung tanah
Tahan lempung
Keteguhan, kohesi, daya dukung dan ketahanan
(kohesif)
terhadap hancur
Sumber : Mekanika Tanah & Teknik Pondasi, Sosrodarsono Suyono Ir. 1983
Harga
N
yang
diperoleh
dari
SPT
tersebut
diperlukan
untuk
memperhitungkan daya dukung tanah. Daya dukung tanah tergantung pada kuat
Universitas Sumatera Utara
geser tanah. Hipotesis pertama mengenai kuat geser tanah diuraikan oleh Coulomb yang dinyatakan dengan: τ = c + σ tan ϕ ……………………………………………..…(2.10) dimana : τ = Kekuatan geser tanah (kg/cm²) c = Kohesi tanah (kg/cm²) σ = Tegangan normal yang terjadi pada tanah (kg/cm²) ϕ = Sudut geser tanah (º) Untuk mendapatkan sudut geser tanah dari tanah tidak kohesif (pasiran) biasanya dapat dipergunakan rumus Dunham (1962) sebagai berikut : 1. Tanah berpasir berbentuk bulat dengan gradasi seragam, atau butiran pasir bersegi-segi dengan gradasi tidak seragam, mempunyai sudut geser sebesar : ϕ=
………………………………..………….…(2.11)
ϕ=
…………...……………………………...….(2.12)
2. Butiran pasir bersegi dengan gradasi seragam, maka sudut gesernya adalah : ϕ = 0,3 N + 27 ………………………………………………(2.13) Angka penetrasi sangat berguna sebagai pedoman dalam eksplorasi tanah dan untuk memperkirakan kondisi lapisan tanah. Hubungan antara angka penetrasi standart dengan sudut geser tanah dan kepadatan relatif untuk tanah berpasir, secara perkiraan dapat dilihat pada tabel II.4 berikut :
Universitas Sumatera Utara
Tabel II.4 Hubungan antara angka penetrasi standard dengan sudut geser dalam dan kepadatan relatif pada tanah pasir Sudut Geser Dalam ϕ Angka Penetrasi Kepadatan Relatif Standart, N
Dr (%)
0-5
0-5
5 - 10
5 - 30
10 - 30
30 - 60
30 - 50
60 - 65
(º) 26 - 30 28 - 35 35 - 42 38 - 46
Sumber : Braja M. Das-Noor Endah, Mekanika Tanah. 1985 Hubungan antara harga N dengan berat isi yang sebenarnya hampir tidak mempunyai arti karena hanya mempunyai partikel kasar (tabel II.5). Harga berat isi yang dimaksud sangat tergantung pada kadar air. Table II.5 Hubungan antara N dengan Berat Isi Tanah Harga N < 10 10 - 30 Tanah tidak
30 – 50
> 50
kohesif
Berat isi γ kN/m³
12 - 16
14 – 18
16 – 20
18 – 23
Tanah
Harga N
<4
4 – 15
16 – 25
> 25
kohesif
Berat isi γ kN/m³
14 -18
16 - 18
16 - 18
> 20
Sumber : Mekanika Tanah & Teknik Pondasi, Sosrodarsono Suyono Ir. 1983 Pada tanah tidak kohesif daya dukung sebanding dengan berat isi tanah, hal ini berarti bahwa tinggi muka air tanah banyak mempengaruhi daya dukung pasir. Tanah dibawah air mempunyai berat isi efektif yang kira-kira setengah berat isi tanah diatas muka air.
Universitas Sumatera Utara
Tanah dapat dikatakan mempunyai daya dukung yang baik, dapat dinilai dari ketentuan berikut ini : 1. Lapisan kohesif mempunyai nilai SPT, N > 35 2. Lapisan kohesif mempunyai harga kuat tekan (qu) 3 – 4 kg/cm² atau harga SPT, N > 15 Hasil percobaan pada SPT ini hanya merupakan perkiraan kasar, jadi bukan merupakan nilai yang teliti. Dalam pelaksanaan umumnya hasil sondir lebih dapat dipercaya dari pada percobaan SPT. Perlu menjadi catatan bagi kita bahwa jumlah pukulan untuk 15 cm pertama yang dinilai N1 tidak dihitung karena permukaan tanah dianggap sudah terganggu. 1. Daya dukung pondasi tiang pada tanah non kohesif Qp = 40 x N – SPT x
x Ap ……………………………….…(2.14)
2. Tahanan geser selimut tiang pada tanah non kohesif Qs = 2 x N – SPT x p x Li ………………………………….…..(2.15) Dimana : Li = Panjang Lapisan Tanah (m) p
= Keliling Tiang (m)
3. Daya dukung pondasi tiang pada tanah kohesif Qp = 9 x cu x Ap …………………………………...……….….…(2.16) Dimana : Ap = Luas Penampang Tiang (m²) cu
= Kohesi Undrained (kN/m²)
cu = N – SPT x
x 10 ……………………………………….…..(2.17)
Universitas Sumatera Utara
4. Tahanan geser selimut tiang pada tanah kohesif Qs = α x cu x p x Li …………………...……………………….…(2.18) Dimana : α
= Koefisien adhesi antara tanah dan tiang
cu
= Kohesi undrained (kN/m²)
p
= Keliling tiang (m)
Li = Panjang lapisan tanah (m)
2.10.3. Berdasarkan bacaan manometer alat hydraulic jack Kapasitas daya dukung tiang pancang dapat diketahui berdasarkan bacaan manometer yang tersedia pada alat pancang hydraulic jack. Kapasitas daya dukung tiang dapat dihitung dengan rumus : Q = P x A ……………………………………………………(2.19) Keterangan : Q = Daya dukung tiang pada saat pemancangan (ton) P = Bacaan manometer (kg/cm²) A = Total luas efektif penampang piston (cm²) Pada setiap mesin mempunyai dua buah piston. Untuk mesin kapasitas 320 ton : Diameter piston hydraulic jack (1)
= 180 mm = 18 cm
(2)
= 220 mm = 22 cm
(1)
= πr²
Luas penampang piston
= π . 9² cm = 254,47 cm² Luas penampang piston
(2)
= π . 11² cm = 380,132 cm²
Universitas Sumatera Utara
Total luas efektif penampang piston = (2 x 254,47) + (2 x 380,132) = 1269,204 cm² 2.11. Tiang Pancang Kelompok Pada keadaan sebenarnya jarang sekali didapat tiang pancang yang berdiri sendiri (single pile), akan tetapi kita sering mendapatkan pondasi pondasi tiang pancang dalam bentuk kelompok (pile group). Untuk mempersatukan tiang-tiang pancang tersebut dalam satu kelompok tiang biasanya di atas tiang tersebut diberi poer (footing). Daya dukung kelompok tiang sangat bergantung pada penentuan bentuk pola dari susunan tiang pancang kelompok dan jarak antara satu tiang dengan tiang lainnya. Bila beberapa tiang pancang dikelompokkan, maka intensitas tekanan bergantung pada beban dan jarak antar tiang pancang yang jika cukup besar sering kali tidak praktis karena poer di cor di atas kelompok tiang pancang (pile group) sebagai dasar kolom untuk menyebarkan beban pada beberapa tiang pancang dalam kelompok tersebut. Dalam perhitungan poer dianggap/dibuat kaku sempurna, sehingga : 1. Bila beban-beban yang bekerja pada kelompok tiang tersebut menimbulkan penurunan, maka setelah penurunan bidang poer tetap merupakan bidang datar. 2. Gaya yang bekerja pada tiang berbanding lurus dengan penurunan tiang-tiang.
Universitas Sumatera Utara
Gambar 2.7 Pola-pola kelompok tiang pancang khusus : (a) Untuk kaki tunggal, (b) Untuk dinding pondasi Sumber : Bowles, 1991
Universitas Sumatera Utara
2.11.1 Jarak antar tiang dalam kelompok Berdasarkan pada perhitungan, Daya Dukung tanah oleh Dirjen Bina Marga Departemen P.U diisyaratkan :
S ≥ 2,5 D S ≥ 3,0 D
Dimana : S = Jarak masing-masing D = Diameter tiang Biasanya jarak antara 2 tiang dalam kelompok diisyaratkan minimum 0,60 m dan maximum 2,00 m. ketentuan ini berdasarkan pada pertimbanganpertimbangan sebagai berikut : 1. Bila S < 2,5 D a. Kemungkinan tanah di sekitar kelompok tiang akan naik terlalu berlebihan karena terdesak oleh tiang-tiang yang dipancang terlalu berdekatan. b. Terangkatnya tiang-tiang di sekitarnya yang telah dipancang terlebih dahulu. 2. Bila S > 3 D Apabila S > 3 D maka tidak ekonomis, karena akan memperbesar ukuran/dimensi dari poer (footing).
Universitas Sumatera Utara
N=
……………………………….………..……………(2.20)
dimana : N = Beban yang diterima oleh tiap-tiap tiang pancang V = Resultan gaya-gaya normal yang bekerja secara sentries n = Banyaknya tiang pancang Pada perencanaan pondasi tiang pancang biasanya setelah jumlah tiang pancang dan jarak antara tiang-tiang pancang yang diperlukan kita tentukan, maka kita dapat menentukan luas poer yang diperlukan untuk tiap-tiap kolom portal. Bila ternyata luas poer total yang diperlukan lebih kecil dari pada setengah luas bangunan, maka kita gunakan pondasi setempat dengan poer di atas kelompok tiang pancang. Dan bila luas poer total diperlukan lebih besar daripada setengah luas bangunan, maka biasanya kita pilih pondasi penuh (raft fondation) di atas tiang-tiang pancang.
Gambar 2.8. Pengaruh tiang akibat pemancangan
Universitas Sumatera Utara
2.11.2. Analisa gaya yang bekerja pada tiang pancang Pondasi tiang pancang mempunyai bentuk yang sebenarnya sama, hanya berbeda di dalam meneruskan gaya-gaya yang bekerja ke tanah dasar pondasi. Penerusan gaya-gaya ke tanah dasar pondasi melalui tiang, yakni beban diteruskan melalui ujung tiang lekatan atau gesek pada dinding tiang. Sedangkan beban luar yang diterima oleh bangunan diteruskan melalui tiang. Bila kapasitas dukung rendah, maka bangunan akan terperosok masuk ke dalam tanah, sedangkan bila kapasitas dukung tiang terlalu besar, bangunan tersebut kurang ekonomis. Untuk mengetahui beban yang dipikul kelompok tiang pancang yang menimbulkan gaya vertikal, horizontal dan momen satu arah maka perhitungan tersebut dihitung sebagai berikut dihitung sebagai berikut : Pmaks =
..............................................................(2.21) P Y
M
x
D
Gambar 2.9 Kelompok tiang
Sedangkan tiang yang menerima momen lebih dari satu arah (dua arah) penurunan rumusnya adalah :
P1 =
…………………………….……(2.22)
Universitas Sumatera Utara
Dimana : P1
= Beban yang diterima satu tiang pancang (ton) = Jumlah beban vertikal (ton)
n
= Jumlah tiang pancang
Mx
= Momen yang bekerja pada kelompok tiang searah sumbu x (tm)
My
= Momen yang bekerja pada kelompok tiang searah sumbu y (tm)
Xi
= Jarak tiang pancang terhadap titik berat tiang kelompok pada arah X (m)
Yi
= Jarak tiang pancang terhadap titik berat tiang kelompok pada arah Y (m) = Jumlah kuadrat tiang pancang arah x (m²) = Jumlah kuadrat tiang pancang arah y (m²)
2.12. Kapasitas Kelompok dan Effisiensi Tiang Pancang Jika kelompok tiang pancang dalam tanah lempung lunak, pasir tidak padat atau timbunan, dengan dasar tiang yang bertumpu pada lapisan kaku, maka kelompok tiang tersebut tidak mempunyai resiko akan mengalami keruntuhan geser umum asalkan diberikan faktor aman yang cukup terhadap bahaya keruntuhan tiang tunggalnya. Akan tetapi, penurunan kelompok tiang masih tetap harus di pancang secara keseluruhan ke dalam tanah lempung lunak. Pada kelompok tiang yang dasarnya bertumpu pada lapisan lempung lunak, faktor aman terhadap keruntuhan blok harus diperhitungkan. Terutama untuk jarak tiang-tiang yang dekat. Pada tiang yang dipasang pada jarak yang besar, tanah diantara tiang-tiang bergerak sama sekali ketika tiang bergerak kebawah oleh akibat beban yang bekerja. Tetapi, jika jarak tiang-tiang terlalu dekat saat tiang turun oleh akibat beban tanah diantara tiang-tiang juga ikut
Universitas Sumatera Utara
bergerak turun. Pada kondisi ini, kelompok tiang dapat dianggap sebagai satu tiang besar dengan lebar yang sama dengan lebar kelompok tiang. Saat tanah yang mendukung beban kelompok tiang ini mengalami keruntuhan, maka model keruntuhannya disebut keruntuhan blok . Jadi, pada keruntuhan blok tanah yang terletak diantara tiang bergerak kebawah bersama-sama dengan tiangnya. Mekanisme keruntuhan yang demikian dapat terjadi pada tipe-tipe tiang pancang maupun tiang bor.
Gambar 2.10 Tipe keruntuhan dalam kelompok tiang : (a) Tiang tunggal, (b) Kelompok tiang Sumber : Hardiyatmo, H.C., 2002
Umumnya model keruntuhan blok terjadi bila rasio jarak tiang dibagi diameter (S/D) sekitar kurang dari 2 (dua). Whiteker (1957) memperlihatkan bahwa keruntuhan blok terjadi pada jarak 1,5 d untuk kelompok tiang yang berjumlah 3 x 3, dan lebih kecil dari 2,25 d untuk tiang yang berjumlah 9 x 9.
Universitas Sumatera Utara
Gambar 2.11 Daerah friksion pada kelompok tiang dari tampak samping
Gambar 2.12 Daerah friksion pada kelompok tiang dari tampak atas
Effisiensi kelompok tiang tergantung pada beberapa faktor, diantaranya : 1. Jumlah tiang, panjang, diameter, pengaturan, dan terutama jarak antara as tiang. 2. Modus pengalihan beban (gesekan selimut atau tahanan ujung). 3. Prosedur pelaksanaan konstruksi (tiang pancang atau bor). 4. Urutan instalasi tiang. 5. Jangka waktu setelah pemancangan. 6. Interaksi antara pile cap dan tanah di permukaan.
Universitas Sumatera Utara
Kapasitas ultimit kelompok tiang dengan memperlihatkan faktor efisiensi tiang dinyatakan dengan rumus sebagai berikut : Qg = Eg . n . Qa ……………………………………………(2.23) Dimana : Qg
= Beban maksimum kelompok tiang yang mengakibatkan keruntuhan
Eg
= Efisiensi kelompok tiang
n
= Jumlah tiang dalam kelompok
Qa
= Beban maksimum tiang tunggal Beberapa persamaan efisiensi tiang telah diusulkan untuk menghitung
kapasitas kelompok tiang, namun semuanya hanya bersifat pendekatan. Persamaan-persamaan yang diusulkan didasarkan pada susunan tiang dengan mengabaikan panjang tiang, variasi bentuk tiang yang meruncing, variasi sifat tanah dengan kedalaman dan pengaruh muka air tanah. Berikut adalah metodemetode untuk perhitungan efisiensi tiang tersebut adalah: •
Converse-Labarre Formula, sebagai berikut : Eg = 1 – θ
………………………..……(2.24)
Dimana : Eg = Efisiensi kelompok tiang m
= Jumlah baris tiang
n’
= Jumlah tiang dalam satu baris
θ
= Arc tg d/s, dalam derajat
s
= Jarak pusat ke pusat tiang
Universitas Sumatera Utara
•
Metode Los Angeles Group Eg = 1 –
[ m (n’-1) + n’ (m-1) +
(m-1) (n’-1)] ….. (2.25)
Dimana: Eg
= Efisiensi kelompok tiang.
m
= Jumlah baris tiang.
n’
= Jumlah tiang dalam satu baris.
s
= Jarak pusat ke pusat tiang.
d
= Diameter tiang
2.13. Faktor Keamanan Untuk memperoleh kapasitas ujung tiang, maka diperlukan suatu angka pembagi kapasitas ultimit yang disebut dengan faktor aman (keamanan) tertentu. Faktor keamanan ini perlu diberikan dengan maksud : 1. Untuk memberikan keamanan terhadap ketidakpastian metode hitungan yang digunakan; 2. Untuk memberikan keamanan terhadap variasi kuat geser dan kompresibilitas tanah; 3. Untuk meyakinkan bahwa bahan tiang cukup aman dalam mendukung beban yang bekerja; 4. Untuk meyakinkan bahwa penurunan total yang terjadi pada tiang tunggal atau kelompok tiang masih dalam batas – batas toleransi; 5. Untuk meyakinkan bahwa penurunan tidak seragam diantara tiang-tiang masih dalam batas-batas toleransi;
Universitas Sumatera Utara
Sehubungan dengan alasan butir (4) dari hasil banyak pengujian pengujian beban tiang, baik tiang pancang maupun tiang bor yang berdiameter kecil sampai sedang (600 mm), penurunan akibat beban kerja (working load) yang terjadi lebih kecil dari 10 mm untuk faktor aman yang tidak kurang dari 2,5. Besarnya beban bekerja (working load) atau kapasitas tiang izin dengan memperhatikan keamanan terhadap keruntuhan adalah nilai kapasitas ultimit (Qu) dibagi dengan faktor aman (F) yang sesuai. Variasi besarnya faktor aman yang telah banyak digunakan untuk perancangan pondasi tiang, tergantung pada jenis tiang dan tanah berdasarkan data laboratorium sebagai berikut: Qa =
…………………………………………….(2.26)
Beberapa peneliti menyarankan faktor keamanan yang tidak sama untuk tahanan gesek dinding dan tahanan ujung. Kapasitas izin dinyatakan dalam persamaan sebagai berikut : Qa =
………………………………….….(2.27)
Penggunaan faktor keamanan 1,5 untuk tahanan gesek dinding (Qs) yang harganya lebih kecil dari faktor keamanan tahanan ujung yang besarnya 3, karena nilai puncak tahanan gesek dinding dicapai bila tiang mengalami penurunan 2 sampai 7 mm, sedang tahanan ujung (Qb) membutuhkan penurunan yang lebih besar agar tahanan ujungnya bekerja secara penuh. Jadi maksud penggunaan faktor keamanan tersebut adalah untuk meyakinkan keamanan tiang terhadap keruntuhan dengan mempertimbangkan penurunan tiang pada beban kerja yang diterapkan.
Universitas Sumatera Utara