Az oktatási anyag a szerzők szellemi terméke. Az anyag kizárólag a 2014.01.2223--i OKF Továbbképzés céljaira 2014.01.22-23 használható. Sokszorosítás, utánközlés és mindennemű egyéb felhasználás a szerzők engedélyéhez kötött.
SÚLYOS BALESETEK ELEMZÉSE 4. téma: QRA OKF Továbbképzés Budapest, 2014. január 21-23.
CZAKÓ Sándor KELEMEN István
CK-Trikolor Kft.
1
Valószínűségelméleti alapok - 1 ESEMÉNYEK VALÓSZÍNŰSÉGE Tegyük fel, hogy egy előre meg nem határozható, azaz véletlen kimenetelű kisérletben a lehetséges kimenetelek: E1, E2, E3, E4, … A kisérletet N-szer megismételve megszámolható pl. az E1 kimenetel száma: n . Az n/N hányados a relatív gyakoriság. Ha N minden határon túli növelésével az n/N hányados véges értékhez közelít, akkor ezt a határértéket az E1 esemény valószínűségének n tekintjük: = P(E1)
Következmények:
lim( ) N
N→∞
0 ≤ P(E1) ≤ 1 P(E1) = 1 : A biztos esemény P(E1) = 0 : A lehetetlen esemény
2
Valószínűségelméleti alapok - 2 Tfh. a kimenetelek kölcsönösen kizáróak, azaz egy kisérleten belül nem következhet be két kimenetel. Ekkor pl. A és B bekövetkezésének valószínűsége: P(A vagy B) = P(A) + P(B) valószínűségek összeadásának szabálya Nem egymást kizáró, azaz nem független eseményekre általános érvényű képletet kell alkalmazni. PÉLDA: Kockadobás kimenetele A={2} A={2} B={páros szám} B={2,4,6} „2” esetén nem csak A, hanem B is bekövetkezik. Egy kisérletben két kimenetel következett be, azaz A és B nem függetlenek.
P(A vagy B) = P(A) + P(B) - P(A és B) Három eseményre: P(AvBvC) = P(A) + P(B) + P(C) - P(AésB) - P(AésC) - P(BésC) - P(AésBésC)
3
Valószínűségelméleti alapok - 3 Két fontos következmény Az általános képlet egymást kizáró eseményekre az összeadási szabályt adja. Az összeadási szabály mindig a valószínűség értékének felső becslését adja. PÉLDA: Kockadobás kimenetele A={2} A={2} P(A)=1/6 B={páros szám} B={2,4,6} P(B)=3/6 P(A) + P(B)=1/6 + 3/6 = 4/6 P(A vagy B) = P(A) + P(B) - P(A és B) =1/6 + 3/6 - 1/6 = 3/6
4
„2” 1/6 valószínűséggel következik be
Valószínűségelméleti alapok - 4
„PONTOS” képlet
1. rendű közelítés („rare event”)
5
Valószínűségelméleti alapok - 5 Upper Bound eljárás: Minimális Hibakombinációk (MHK): A;
BC;
BD
Siker valószínűsége: (1-P(A))*(1-P(B)P(C))*(1-P(B)P(D) Hiba Valószínűsége: 1- (1-P(A))*(1-P(B)P(C))*(1-P(B)P(D))
6
1. PÉLDA - kvantifikálás
7
1. PÉLDA… folyt.
8
1. PÉLDA … folyt.
9
1. PÉLDA … folyt.
10
1. PÉLDA … folyt.
11
4. GYAKORLÓ FELADAT Kvantifikálás különféle módszerekkel Az „upper bound”, a „Min/Max” (=PONTOS!!) és a „rare event” (= 1. rendű közelítés) eljárások alkalmazása. Számolja ki a rendszer meghibásodási valószínűségét (nem rendelkezésre állását) a megadott valószínűségekkel. MHK: A*B; A*C Esemény valószínűségek P(A)=0,01 P(B)=0,02 P(C)=0,03 12
Exponenciális eloszlás Az egyik legjellegzetesebb meghibásodási mérőszám a λ meghibásodási ráta, mely a meghibásodásoknak valamely időintervallum alatti számával egyenlő. Ezt kifejezhetjük a Meghibásodások Közötti Átlagos Működési Idővel (MTBF) is. Állandó meghibásodási ráta esetén ez az MTBF egyenlő . A meghibásodási ráta, amelyet kockázati aránynak is nevezhetünk gyakran időfüggvény, és „kádgörbe” alakot mutat, amelyben három szakaszt különböztethetünk meg (ld. az alábbi ábrát):
Hibaráta
I
II
III
Konstans hibaráta idő zavarelhárítási szakasz
13
normál használati szakasz
elhasználódási szakasz
2014.01.22.
Exponenciális eloszlás I. Az élettartam korai szakaszában nagy a meghibásodási ráta a „bejáratási hibák” miatt (ezeket „csecsemőhalandóságnak” vagy „elhárítási szakasznak” is hívják) vagy a minőségbiztosítás alacsony színvonalával összefüggésbe hozható meghibásodások miatt. Minél magasabb színvonalú a minőségbiztosítás az adott rendszerelem esetében, annál alacsonyabban kezdődik a görbének ez a része és annál hamarabb vége lesz ennek a szakasznak. A szélturbina megbízhatóságát ebben a szakaszban nem tudjuk számszerűen mérni, minőségi elemzéssel és egy minőségbiztosítási programmal azonban javíthatjuk ennek a szakasznak a megbízhatóságát és biztonságát. II. A második szakaszban a meghibásodási ráta általában kicsi, nagyjából állandó, és véletlenszerű meghibásodásokat reprezentál. E szakaszt általában kvantitatív megbízhatóság-elemzéssel határozzák meg. III. Az utolsó szakaszban az alkatrész kora és elhasználódása miatt újra megnő a meghibásodási ráta. A görbe utolsó részének szintjét és kezdőpontját meghatározó tevékenységek közé tartozik a megelőző karbantartás és a rendszeres megfigyelés.
14
•Az exponenciális eloszlás az egyetlen, amely állandó meghibásodási rátára épül. 2014.01.22.
Exponenciális eloszlás Ezt meghibásodási valószínűségeloszlást gyakran használják megbízhatósági és biztonsági tanulmányokban. Az eloszlás az egymást követő hibaesemények közötti időre vonatkozik, és állandó meghibásodási ráta jellemzi. Ebből következik , hogy bármely két egymást követő meghibásodás között eltelt idő átlagosan azonos. Tegyük fel, hogy üzemi adataink vannak valamely t idő alatt bekövetkezett rendszer-meghibásodásokról. Megállapíthatjuk, hogy MTTF óránként átlagosan egy hiba következik be.
MTTF =
üzemidő Hibák száma
Az exponenciális eloszlásra elfogadjuk, hogy:
λ = konstans =
15
1 . MTTF
Exponenciális eloszlás Nulla meghibásodás t idő alatti valószínűsége a rendszer megbízhatóságát reprezentálja, vagyis: R (t) = exp(-λt). A meghibásodás valószínűsége t idő alatt így adható meg: F(t) =1 - R(t) =1 - exp( - λ t). Az exponenciális eloszlás meghibásodás-sűrűsége vagy valószínűségi sűrűségfüggvénye: f(t) = dF(t)/dt = exp( - λ t).
16
Exponenciális eloszlás tulajdonságai 1
λ
F(t)
λ(t)
f(t) t
17
Megbízhatóság •
18
A megbízhatóság egy elem (termék, rendszer, stb.) képessége arra, hogy tervezett működési feltételek mellett, tervezett időtartamban vagy ciklusszámban működjön. A megbízhatóság annak a valószínűsége, hogy egy termék vagy rendszer megfelelően teljesíti az előírt funkcióját (vagyis meghibásodás nélkül, meghatározott teljesítési korlátokon belül) egy bizonyos időben, meghatározott időtartam alatt, meghatározott környezeti és használati feltételek mellett.
Rendelkezésre állás (készenlét) A rendelkezésreállás alatt a megbízhatóság és a karbantarthatóság kombinációjának tekinthetjük. Ha nem végzünk karbantartást vagy javítást, a megbízhatóságot pillanatnyi rendelkezésreállásnak tekinthetjük. A rendelkezédsreállás meghatározásánál a következő definíciókat használhatjuk: A rendelkezésreállás annak valószínűsége, hogy egy termék vagy rendszer bármely időpontban kielégítően fog működni, ahol a vonatkoztatási időbe beleértjük az üzemidőt, az aktív javítási időt; az adminisztrációs időt és a logisztikai időt. alternatív definíció: a rendelkezésreállás annak valószínűsége, hogy egy rendszer egy meghatározott funkciót vagy feladatot adott feltételek mellett előírt idő alatt sikeresen el tud látni vagy végezni.
19
Karbantarthatóság
• A karbantarthatóság annak a valószínűsége, hogy egy termék vagy rendszer meghatározott feltételeknek felel meg egy adott időszak alatt, amikor a karbantarthatósági tevékenységet előírt eljárásoknak megfelelően végzik el.
20
Meghibásodás és megbízhatóság kapcsolata
Tegyük fel, hogy a meghibásodás T idejének valószínűségi sűrűségfüggvénye f(t). A hibaeloszlási függvény annak a valószínűsége, hogy egy elem [0,t] időintervallum alatt meghibásodik.
A megbízhatósági függvény vagy túlélési függvény egy olyan egység valószínűsége, amely egy [0,t] időintervallum alatt nem hibásodik meg.
21
Meghibásodási ráta Annak valószínűsége, hogy ugyanaz az egység meghibásodik a t≤T≤t+∆t időintervallumban, az a feltételes valószínűség, hogy nem hibásodik meg t idő előtt és meghibásodik t ≤ T ≤ t+∆t-ben, vagyis
Az egység meghibásodási rátája:
22
Átlagos működési idő a meghibásodásig Valamely egység átlagos működési ideje a meghibásodásig (MTTF):
Ha az egység egy olyan rendszerben van, amelyet meg lehet javítani vagy ki lehet cserélni, akkor a meghibásodások közötti átlagos működési időre (MTBF) vonatkozó információnak több értelme van. Amikor a javításhoz vagy cseréhez szükséges idő sokkal rövidebb, mint az MTTF, akkor az MTBF körülbelül megegyezik az MTTF-fel.
Amikor a javításhoz vagy cseréhez szükséges időt nem lehet figyelmen kívül hagyni, akkor az átlagos helyreállítási időt (MTTR) kell figyelembe venni.
23
Javítható rendszerek készenléte A készenlétnek háromféle használata: 1. Pillanatnyi (adott időpontban) készenlét: a(t) annak valószínűsége, hogy a rendszer (vagy berendezés) a t időpontban működőképes. 2. Határértékes pillanatnyi készenlét: a-t így definiáljuk: a = lim a(t ) t →∞
3.
Az átlagos készenlétet egy meghatározott T időtartamra így definiálhatjuk: a=
1 T a(t )dt T 0
∫
Meghatározhatjuk a határértékes átlagos készenlétet is:
24
1 T a l = lim a(t )dt T →∞ T 0
∫
Pillanatnyi készenlét A pillanatnyi készenlét leggyakrabban használt modellje az exponenciális eloszlás: t a(t ) = exp − λ(θ )dθ 0
∫
ahol a(t) annak valószínűsége, hogy a rendszerelem működőképes állapotban lesz a t időpontban, feltéve hogy a t=0 időpontban működőképes. Ezt megfordítva a q(t) használhatatlanságot így határozhatjuk meg:
q(t)=1-a(t).
25
Pillanatnyi készenlét – berendezések megbízhatósági modelljei 1. 2. 3. 4.
26
Nem javítható komponensek. Az előző dián bemutatott modell arra vonatkozik, amikor λ(θ) a pillanatnyi meghibásodási rátát jelöli. Időtől független meghibásodású komponensek. A meghibásodás valószínűsége és a javítási idő (ha van) független az időtől. (q= állandó) Javítható komponensek, amelyek esetében a meghibásodást azonnal megállapítják (észlelt meghibásodás, monitorozott berendezés). Készenlétben lévő, periodikusan tesztelt komponensek, amelyek esetében az esetleges meghibásodást teszteléssel állapítják meg (rendszeres időközönként ellenőrzött rendszerként is ismert).
1. Nem javítható komponens A nem javítható komponens készenléti tényezője: a(t ) = exp − ∫ λ(θ )dθ = e-λt Nem rendelkezésre állás: q(t)= 1- e-λt ~ λt, ha λt< 0,1 ; [F(t)=q(t)] t
0
λ: működési hiba gyakoriság t: vonatkoztatási üzemidő q(t)= λt
27
2. Állandó hibavalószínűségű komponens A nem javítható komponens készenléti tényezője: a(t)=a Nem rendelkezésre állás: q(t)=q q(t)= q
28
3. Javítható komponens •
mivel a komponens javítható, a készenlét számításába belép a javítási ráta. Ezekben az esetekben a(t)-t az alábbi szokásos differenciálegyenlet-rendszerből kaphatjuk meg: da(t ) = − λ(t )a(t ) + µ(t )q(t ), dt dq(t ) = λ(t )q(t ) + µ(t )a(t ), dt
ahol λ(t) a meghibásodási ráta és µ(t) a javítási ráta. A fenti differenciálegyenlet-rendszer megoldása a következő eredményt adja a készenléti tényezőre: a(t ) =
29
µ λ + exp[− (λ + µ )t ] λ+ µ λ+ µ
3. Javítható komponens Nem rendelkezésre állás: λ λ λTr −( λ +µ ) t q(t ) = ( 1− e ) ≅ = ≅ λTr λ+µ λ + µ 1 + λTr ha λTr<0,1 λ: működési hiba gyakoriság Tr: átlagos javítási idő
q(t)= λTr
30
4. Készenlétben lévő periódikusan tesztelt és javítható komponens Nem rendelkezésre állás:
( 1− e ) T + (1 − e ) q(t ) = 1 − λT T − λT
( e q( t ) = 1 +
− λT
− λT
r
)
− 1 λT ≅ λT 2
T: tesztelési intervallum λ: készenléti hiba gyakoriság q(t)= λT/2
31
ha Tr<
5. GYAKORLÓ FELADAT MHK: V1; H1; P1*P2; P1*VP2; P2*VP1; VP1*VP2 Alapesemények: V1 = kézi működtetésű szelep H1 = kézi működtetésű szelep P1= üzemelő szivattyú tévesen leáll P2 = tartalék szivattyú nem indul VP1, VP2 = villamos hajtású szelep
32
2014.01.22.
5. GYAKORLÓ FELADAT (folyt.)
Alap-esemény
33
Meghibá-sodási gyakoriság λ (per h)
Tesztelési periódus T (h)
Tr
V1
1x10-8
H1
5x10-7
8
P1
3x10-6
24
P2
3x10-6
VP1
1x10-6
VP2
1x10-6
q
7x104
720 8 720
2014.01.22.
6. GYAKORLÓ FELADAT A hidrogénező reaktor hibafa kvantitatív kiértékelése a szétosztott feladatlap alapján.
34
6. GYAKORLÓ FELADAT - Adatok Bázis események
35
Bázis események jelölése
f
p
λ
T
Hot spot in reactor
R
0.2/év
Quench Fails (Closed)
Q
0.3/év
Temp. Switch 1 fails
T1
3E-5/év
8760 h
Temp. Switch 2 fails
T2
3E-5/év
8760 h
PSV fails to open
PSV
0,2E-6/év
17520 h
Operator fails to depressure
OP
0.1
q
Házi feladat Nem rendelkezésre állás meghatározása rendszer és komponens szinten.
36
Bemenő adatok, adatforrások Adatgyűjtés, adatelemzés – – –
HF részletezettségéhez illeszkedik Nincs komponens specifikus gyártóművi megbizhatósági adat → általános adatok Nincs gyűjtött adat → általános adatok
Kvalitativ/kvantitativ elemzések –
HAZOP: ok → eltérés → következmény (szcenário) VÉDELEM
– –
37
EF: ok → következmény kapcsolat lehetséges variációi FT: VÉDELEM mely elemeinek milyen meghibásodása vezet a következményhez
OREDA megbízhatósági adatok Az olaj- és földgáz kutatásban, ill. -termelésben használt berendezések széles körének megbízhatósági adataira vonatkozik. Elsősorban felszíni és tenger alatti berendezésekre használják, de néhány szárazföldi kutató és termelő berendezés is beleértendő. Az OREDA a hardver elemekről és rendszerekről összegyűjtött meghibásodási adatokra korlátozódik, az emberi hibákról szóló információt nem tartalmazza. Ennek ellenére elképzelhető, hogy az egységek meghibásodását emberi hibák okozhatták, ezért implicit módon emberi hibák is szerepelnek a meghibásodási ráták becsléseiben.
38
Adatok II.1.1. sz. táblázat: Rendszer
A II-V. projektfázisban gyűjtött adatok [II.3] II. fázis (1987-90.)
Berendezésosztály
Megfigy.
Forgógépek
III. fázis (1990-92.)
Meghib.
Megfigy.
Meghib.
Egyéb felszíni berendezések
Vízalatti berendezések
Összesen
Megfigy.
Meghib.
Megfigy.
Összesen
Meghib.
Megfigy.
Meghib.
109
2587
54
2667
56
1986
28
931
247
8171
Kompresszorok
50
1557
45
1915
75
900
56
1221
226
5593
49
810
87
367
8
94
144
1271
39
390
64
234
103
624
Vill. generátorok Belsőégésű motorok
56
92
122
111
178
203
Szivattyúk
271
3122
103
1549
294
1395
152
625
820
6691
Edények
329
411
54
356
148
632
51
369
582
1768
Kemencék és kazánok
8
41
1
118
9
159
Turbóexpanderek
7
75
8
45
15
120
Hőcserélők
170
116
75
239
51
91
17
102
313
548
Szelepek
645
410
899
726
821
769
349
155
2714
2060
Tűz- és gázérzékelők
5828
2339
79
69
779
294
6686
2702
Techn. mérő- és jelzőber.
487
507
140
47
69
16
696
570
Szabályozórendszerek
14
29
11
73
17
287
42
389
21
16
20
31
83
58
141
131
16
23
144
10
163
36
1
7
Kútfej és karácsonyfa
17
26
Csővezetékek
3
3
7
4
Idomszerek Többcsonkos csőelágazók
4
0
5
7
29
10
36
14
Hosszabítócsövek
42
5
42
5
Beépítőszerszámok
6
4
6
4
15
6
13183
31063
Egyéb berendez. (II. fázis)
39
V. fázis (1997-00.)
Gázturbinák
Villanymotorok
Statikus berendezések
IV. fázis (1993-96.)
15
6
1616
8242
7629
11153
1909
6988
2029
4680
Adatok Taxonomy no
Item Population Installation Aggregated time in service (106 h) Calendar time Operational time No of Failure mode Failure rate (per 106 h) failures Lower Mean Upper SD n/τ
Comments
40
No of demands Active Repair (manpowers) rep. hrs Min Mean Max
Adatok I I . 4 .1 . s z . á b r a : P é l d a a M e g b íz h a t ó s á g i A d a tt á b l á r a ( S z i v a t t y ú ) ( [ I I. 1 ] p .1 2 2 ) R en d szá m 1 .3 . 1 . 5 . 1 S ok a sá g 6
B eren d ezés F o r g ó g é p e k > S z i v a tt y ú k > C e n tr if u g á l > G á z - s e g é d r e n d s z e r e k > ( 1 - 5 0 k W ) L é te s ítm é n y 2
H ib a m ó d K r it ik u s N e m in d u l t N e m já r t G y e n g é n s z á ll ít o t t D e g r a d á c ió K ü lső tö m ö rtelen ség N e m já r t K o m o ly k ü lső tö m ö rtlsg . V ib rá ció K ü s z ö b ö n á lló m e g h ib . K ü lső tö m ö rtelen ség E g y éb h ib a m ó d o k
Ö ssz e s h ib a m ó d
41
M e g je g y z é s –
Ü z e m b e n tö ltö tt ö ssz id ő (1 0 6 ó r a ) N a p tá r i id ő 0 ,2 1 0 2 M eg h ib á sod á sok szá m a *
*
Ü z e m id ő 0 ,1 0 3 1
M ű k ö d é si ig é n y ek sz á m a –
†
M e g h ib á s o d á s i r á ta ( p e r 1 0 6 ó r a ) A lsó
Á tla g érték
F első
SD
n /τ
A k tív ja v ít á s i id ő (óra)
4 4† 2* 2† 1* 1† 1* 1† 10* 10† 5* 5† 3* 3† 1* 1† 1* 1† 22* 22† 21* 21† 1* 1†
1 ,7 2 3 ,5 0 0 ,4 2 0 ,8 6 0 ,2 1 0 ,4 3 0 ,2 1 0 ,4 3 9 ,6 7 1 9 ,7 3 1 ,2 8 2 ,6 0 3 ,9 0 7 ,9 5 0 ,2 1 0 ,4 3 0 ,2 1 0 ,4 3 4 5 ,1 7 9 2 ,1 3 2 5 ,3 2 5 1 ,6 4 0 ,1 8 0 ,3 6
1 6 ,6 5 3 3 ,9 5 9 ,5 1 1 9 ,4 0 4 ,7 6 9 ,7 0 4 ,7 6 9 ,7 0 4 2 ,6 4 8 6 ,9 6 2 0 ,2 1 4 1 ,2 3 1 4 ,2 7 2 9 ,1 0 4 ,7 6 9 ,7 0 4 ,7 6 9 ,7 0 9 7 ,9 8 1 9 9 ,8 4 8 9 ,7 8 1 8 3 ,1 1 5 ,9 5 1 2 ,1 3
4 4 ,6 7 9 1 ,1 1 2 9 ,5 0 6 0 ,1 6 1 4 ,7 5 3 0 ,0 8 1 4 ,7 5 3 0 ,0 8 9 4 ,8 1 1 9 3 ,3 7 5 8 ,9 8 1 2 0 ,3 0 2 9 ,9 4 6 1 ,0 7 1 4 ,7 5 3 0 ,0 8 1 4 ,7 5 3 0 ,0 8 1 6 7 ,1 6 3 4 0 ,9 3 1 8 6 ,5 1 3 8 0 ,4 1 2 0 ,0 2 4 0 ,8 3
1 4 ,2 7 2 9 ,1 0 1 0 ,0 9 2 0 ,5 8 5 ,0 4 1 0 ,2 9 5 ,0 4 1 0 ,2 9 2 7 ,1 7 5 5 ,4 1 1 9 ,5 4 3 9 ,8 5 8 ,2 4 1 6 ,8 0 5 ,0 4 1 0 ,2 9 5 ,0 4 1 0 ,2 9 3 7 ,7 5 7 7 ,0 0 5 0 ,9 5 1 0 3 ,9 2 7 ,1 3 1 4 ,5 5
1 9 ,0 3 3 8 ,8 0 9 ,5 1 1 9 ,4 0 4 ,7 6 9 ,7 0 4 ,7 6 9 ,7 0 4 7 ,5 6 9 7 ,0 1 2 3 ,7 8 4 8 ,5 1 1 4 ,2 7 2 9 ,1 0 4 ,7 6 9 ,7 0 4 ,7 6 9 ,7 0 1 0 4 ,6 4 2 1 3 ,4 3 9 9 ,8 9 2 0 3 ,7 3 4 ,7 6 9 ,7 0
– – – – – – – – – – – – – – – – – – – – – – – –
36* 36†
3 3 ,3 5 6 8 ,0 2
1 5 0 ,3 4 3 0 6 ,6 3
3 3 6 ,5 5 6 8 6 ,4 2
9 6 ,9 1 1 9 7 ,6 6
1 7 1 ,2 3 3 4 9 ,2 4
– –
J a v ítá s (e m b e r ór a ) M in .
Á tla g
M ax.
7 ,0
1 1 2 ,3
2 4 6 ,0
7 ,0
1 2 6 ,5
2 4 6 ,0
1 0 1 ,0
1 0 1 ,0
1 0 1 ,0
9 5 ,0
9 5 ,0
9 5 ,0
4 ,0
3 4 ,0
1 5 5 ,0
4 ,0
1 2 ,6
4 5 ,0
2 5 ,0
9 0 ,0
1 5 5 ,0
4 ,0
4 ,0
4 ,0
5 9 ,0
5 9 ,0
5 9 ,0
3 ,0
2 6 ,3
9 4 ,0
3 ,0
2 6 ,3
9 4 ,0
–
–
–
3 ,0
3 8 ,4
2 4 6 ,0
Adatok Minden meghibásodási ráta becslése azon a feltevésen alapul, hogy a meghibásodási ráta függvénye konstans és időtől független, vagyis λ(t) = λ. ∧
λ=
42
A meghibásodások száma Number of failures
Aggregated in service összestime üzemidő
=
n τ
Meghibásodási ráta modellezése – Bayes féle adatfrissítés Egy, számos szivattyút tartalmazó technológiai rendszer kockázatelemzését végezzük. Az egyes szivattyúk meghibásodási valószínűségének becsléséhez egy olyan vizsgálat eredményeit vesszük alapul, ahol 10 szivattyút folyamatosan, a meghibásodásig működtettek. A vizsgálat eredményeit táblázatosan adjuk meg, ahol közöljük az egyes szivattyúkhoz tartozó, a meghibásodásig tartó időket (évben).
43
szivattyúk
1 2 3 4 5 6 7 8 9 10
meghibásodásig tartó idő
0,24 3,65 1,25 0,2 1,79 0,6 0,74 1,43 0,53 0,13
Meghibásodási ráta modellezése – Bayes féle adatfrissítés A minta adataiból kiszámíthatjuk a megfigyelt meghibásodási idők átlagértékét. Ez 1,06 évre jön ki, és ezért a meghibásodások éves száma (a meghibásodási ráta) a 0,95 reciprok érték. Ha például feltételezzük hogy csak az első év alatt meghibásodott szivattyúk számát használjuk (vagy csak az áll rendelkezésünkre), akkor az ahhoz tartozó (meghibásodási ráta) érték 2,46 lesz. Az illeszkedésvizsgálat használata alátámasztja az exponenciális eloszlású meghibásodási idők hipotézisét, vagyis a valószínűségi sűrűségfüggvény a következő lesz:
f (t ) = 0.95 exp( −0.95t )
44
Meghibásodási ráta modellezése – Bayes féle adatfrissítés Tegyük fel, hogy a megbízhatósági elemzést egy másik típusú szivattyúra vizsgáljuk, melyhez csak kevés specifikus meghibásodási adatunk van. Csak három meghibásodást észleltünk (ld. az alábbi táblázatot). Ezért úgy döntöttünk, hogy az általunk vizsgált szivattyúhoz előzetes információként egy másik típusú szivattyúra vonatkozó valószínűségi sűrűségfüggvényt használunk (mert az rendelkezésre áll).
szivattyú
meghibásodási idő
1 2 3
45
3,2 3,5 3,3
Meghibásodási ráta modellezése – Bayes féle adatfrissítés A probléma megoldásához a Bayes-i megközelítést alkalmazzuk. Ebben a megközelítésben a valószínűség-eloszlás λ paraméterét ( f (t ) = λ exp( − λt ) ) nem pontos értéknek vesszük, hanem valószínűségi változónak tekintjük, melyhez egy h(λ) valószínűségeloszlás tartozik; ez utóbbit a λ paraméter előzetes valószínűségeloszlásának hívunk. Ezekből következtetni lehet a λ paraméter frissített valószínűségeloszlására a Bayes-tétel egyik alakjának felhasználásával: ∧
L( λ x )h( λ)
∧
h( λ x ) =
∧
∫ L( λ x)h( λ)dλ Λ
∧
ahol xˆ = ( x1, x 2 , x 3 ) = (3.2,3.5,3.3) , és L( λ x ) a valószínűségi T
T
függvény, melyet a meghibásodási időkre elfogadott valószínűségi sűrűségfüggvényre a következőképpen lehet kiszámítani:
46
Meghibásodási ráta modellezése – Bayes féle adatfrissítés 3
L( xˆ λ) =
∏ λ exp(− λx ) i
i =1
Ha feltételezzük, hogy a λ paraméterre az előzetes valószínűségeloszlás normális eloszlást követ, s e normális eloszlás paramétereit (vagyis az átlagos működési időt a meghibásodásig és a szórást) a 10 szivattyú-meghibásodás alapján határoztuk meg, akkor ki tudjuk számítani λ paraméter frissített valószínűségeloszlását. Ezt jeleníti meg a következő ábra:
47
Meghibásodási ráta modellezése – Bayes féle adatfrissítés 2.5
Jelmagyarázat: 2
Posterior Prior: előzetes
1.5
Likelihood
Posterior: frissített
1
Likelihood
Prior
0.5
0 0
48
0.5
1
1.5
2
2.5
Meghibásodási ráta modellezése – Bayes féle adatfrissítés Bayes szabálya különböző forrásokból származó információk kombinálásának módját adja meg, így a szubjektív információ és a kísérleti eredmények kombinálását teszi lehetővé a mennyiségi kockázatelemzésekben. Az ábrából látszik, hogy míg a bizonytalan meghibásodási rátára vonatkozó előzetes valószínűség-sűrűség szimmetrikus (és mellesleg a negatív tartományban is értelmezhető!), addig a frissített valószínűségi sűrűségfüggvényt erősen befolyásolja a valószínűségi függvény és csak a meghibásodási ráta pozitív értékeit engedi meg. 49
Meghibásodási ráta modellezése – Bayes féle adatfrissítés Előzetesen feltételezve, hogy a meghibásodások száma exponenciális eloszlású, annak valószínűsége, hogy valamely szivattyú T időtartam alatt meghibásodik állandó meghibásodási ráta mellett: F (T λ) = 1 − exp( − λT ) Azonban, mivel a meghibásodási ráta bizonytalan: ∞
∫
∧
F (T ) = 1 − exp(− λT ) h( λ x )dλ 0
•
50
Ez adja a meghibásodás teljes (nem feltételes) valószínűségét. Ebben a példában a meghibásodás valószínűségre 0,38 adódik, de amennyiben a meghibásodási rátához a frissített valószínűségi sűrűségfüggvényt vesszük alapul. Ezt összevethetjük meghibásodási valószínűség 0,61 értékével, melyet az előzetes valószínűségi sűrűségfüggvény felhasználásával kaptunk.
Közös okú hibák modellezése („CCF”) Az alapesemények meghibásodásáról általában feltételezett – –
Véletlenül következnek be Függetlenek egymástól
Számos ok miatt még sem pontosan ez a tapasztalat. – – – –
Rendszerek közötti kölcsönhatás Függőség Közös okú meghibásodás Közös módú meghibásodás
A következmény: a meghibásodási gyakoriság értékének növekedése, amelyet célszerű a modellben figyelembe venni. 51
Közös okú hibák típusai Közös okú meghibásodások tipusai –
Ismert stochasztikus kapcsolat („Type 1”) – környezeti hőmérséklet növekedése (pl. tűz), tervezettet meghaladó feszültségek (pl. földrengésből eredő járulékos terhelések), több komponenst érintő hibás karbantartási eljárás.
–
Ismert determinisztikus kapcsolat („Type 2”) – funkcionális kapcsolat (segéd renszer), rendszerek közös komponense, kezelői hibák
–
Ismeretlen stochasztikus kapcsolat („Type 3”) – Ismeretlen meghibásodási mechanizmus, amelyet adatok igazolhatnak.
52
Közös okú hibák kvantifikálása Direkt elemzési módszer hibafa és eseményfa szinten – –
Ismert stochasztikus kapcsolat („Type 1”) Ismert determinisztikus kapcsolat („Type 2”)
Paraméteres módszerek alkalmazása –
53
Ismeretlen stochasztikus kapcsolat („Type 3”)
Direkt módszer alkalmazása
54
2014.01.22.
Direkt módszer alkalmazása
55
2014.01.22.
Paraméteres módszerek alkalmazása Burkoló érték rendszer szinten értelmezi λCCF értékét, régen volt használatban
β-faktor
két komponensre értelmezett
Többparaméteres módszerek Kettőnél több komponens között feltételezett meghibásodási mechanizmus modellezésére – Görög betűk módszer (Multiple Greek Letter) – Alap paraméter módszer (Basic Parameter) – Binomiális meghibásodási gyakoriság módszer (Binomial Failure Rate)
56
β-faktor módszer λ=λi+λc , β= λc/λ : a meghibásodási gyakoriság azon részaránya, amely a közös oknak tulajdonítható λc= (β/(1- β))·λi , kis β esetén λc~ β·λi , azaz λ=(1+β)·λi PÉLDA: A és B komponensekből álló rendszer, λi =2E-5 /h, T=1E3 h, β=0,05 MHK: A*B független eset: qr=qA·qB= q2=(λi ·T)2=(2E-5 ·1E3)2= 4E-4 közös okú hibával: qr= (1- β)·q2+ β· λi·T=0,95·4E-4 + 0,05·2E-5·1E3= 1,38E-3 kb. 3x növekedés!
57
Görög betűk módszer –
Görög betűk módszer (Multiple Greek Letter) β-faktor kiterjesztése nagyobb számú redundanciák esetére Pl. 4 redundáns komponens esetében a görög betűk az alábbiak szerint értelmezhetőek β: annak a feltételes valószínűsége, hogy egy adott hibaok egy vagy több komponens meghibásodását eredményezi γ: annak a feltételes valószínűsége, hogy egy adott hibaok, amely egy vagy több komponens meghibásodását eredményezi, kettő vagy több komponensre is kihat δ: annak a feltételes valószínűsége, hogy egy adott hibaok, amely kettő vagy több komponens meghibásodását eredményezi, az összes komponens meghibásodását okozza.
58
Érzékenység és bizonytalanság elemzés A hibafa számszerűsítése nem csak a rendszerbiztonsági paraméter értékéről arról ad információt, hanem a rendszermegbízhatósági paraméter értékét meghatározó fontosabb és kevésbé fontos tényezőkről is. Ez alapján gyakran nem lehetséges megállapítani, hogy vajon egy rendszermódosítás tényleges javulást jelent-e vagy sem. Például ahhoz, hogy csökkentsük a működési igénytől függő meghibásodás valószínűségét, fölösleges pl. egy komponens javítási idejének rövidítésére törekedni. A javítási idő megfelezése (pl. egy tartaléktápegység elérhetőségének biztosítása) semmilyen hatással nincs a működési igénytől függő meghibásodási teljes valószínűségére. A működési igénytől függő meghibásodási valószínűséget leginkább az érzékelők és a „kettőből egy” logika határozta meg.
59
Érzékenység és bizonytalanság elemzés Az érzékenységi vizsgálatokat a rendszerelemek adatainak vagy a hibafa-modellek variációinak vagy változásainak hatásvizsgálata céljából végzik. Érzékenység elemzést, mint a meghibásodások hatásának értékelését egy hibafa valamely konkrét eseményének megnövelt és csökkentett meghibásodási rátájára lehet elvégezni. Ha a kiszámított rendszermegbízhatósági paraméter nem változik jelentősen, akkor az alapesemény nem fontos és nem kell tovább vizsgálni. Ha a kiszámított rendszer-megbízhatósági paraméter jelentősen változik, akkor pontosabb adatokra van szükség vagy tovább kell bontani az eseményt alapvetőbb okokra. Ha pl. egy komponens periódikus tesztelési intervalluma évente 4- vagy 8-szorosára növekszik, az adott komponens hozzájárulása a működési igénytől függő meghibásodási valószínűségéhez 2,1E-04-ről 9E-05-ra fog csökkenni, és így a működési igénytől függő meghibásodási teljes valószínűsége is csökkenni fog.
60
Érzékenység és bizonytalanság elemzés •
61
Az előző számszerűsítés pontértékeket ad. A valóságban a rendszer-megbízhatósági paraméter kiszámított értékének vannak bizonytalanságai. Hangsúlyoznunk kell, hogy a kvantitatív megbízhatósági elemzéssel kiszámított pontértékeket nem szabad rögzített számoknak tekinteni. Egy bizonyos rendszermegbízhatósági paraméterre kiszámított érték mindig közelítő érték, amelynek bizonyos szórása van. Az input paraméterek bizonytalanságát figyelembe véve megbecsülhetjük a kiszámított rendszer-megbízhatósági paraméter bizonytalanságát. Ennek a leggyakrabban használt módszere a Monte Carlo szimulációs technika.
Érzékenységi mutatók Érzékenység vizsgálatok Az érzékenység vizsgálatok eredményei megmutatják, hogy melyek a rendszer és eseménylánc analízisek végeredményeit legnagyobb mértékben meghatározó jellemzõk. Az elemzés azt vizsgálja, hogy a mesterségesen felvett változtatásoknak mekkora a végeredményekre gyakorolt hatása. A végeredményeket befolyásoló paramétereket az alábbi csoportosítás szerint szokás vizsgálni: alapesemények - a modellben szereplõ minden elemi eseményhez tartozó érzékenységi tényezõ kiszámításra kerül, alapeseméyek csoportja - definiált esemény-csoportra együttesen jellemzõ érzékenységi tényezõk, az egyes események egyedi megbízhatósági jellemzõi vagy csak valamely csoportja - pl. egy adott rendszer tesztelési ciklusideje változtatása hatásának számszerûsítése.
62
Érzékenységi mutatók A felsorolt egyes paraméter-változtatások hatásának mértékét általánosságban az alábbi tényezõ jellemzi: IB(X)=d(ZF(X))/dX ahol: X ZF(X) IB(X) -
a vizsgált paraméter, pl. alapesemény valószínûség, a vizsgált esemény gyakorisága, függvénye az X paraméternek, az X paraméterre vonatkozó érzékenységi tényezõ (az angol terminológiában az ún. Birnbaum importance)
IB(X) azt mutatja, hogy az X paraméterben feltételezett egységnyi változás hatására a vizsgált esemény gyakorisága abszolút értékben milyen mértékben változik meg. A gyakorlatban egyéb tényezõket is szokás alkalmazni. Ezek a bemeneti változtatások mértékétõl - a névleges körüli kismértékû eltérések, illetve a teljes szóba jöhetõ tartománybeli változások feltételezésétõl - függõen alapvetõen két csoportba sorolhatók.
63
Érzékenységi mutatók Kismértékû változtatások A kérdéses paraméterek értékét azonos mértékben csökkentve és növelve meghatározásra kerül a végeredmény így kapott két szélsõ értékének aránya. S(X)=ZF(X)U/ ZF(X)L ahol:ZF(X)U,L - a vizsgált esemény frekvenciájának felsõ, illetve alsó értéke. A vizsgált esemény frekvenciája annál érzékenyebb a bemenõ X paraméterre, minél nagyobb S(X) 1-nél (általában S(X≥ ≥1). Ha S(X) = 1, akkor az X paraméter hatása a ZF-re elhanyagolható. A definiált érzékenységi tényezõk számítása során a paraméter-változtatások mértékét szokás azonos mértékûnek - pl. mind a csökkentés, mind a növelés irányában 10szeres szorzóval módosítottnak - felvenni.
64
Érzékenységi mutatók Nagymértékû változtatások, Fontossági tényezők A kérdéses paraméter értékét az elvileg lehetséges minimumra (0) csökkentve és maximumra (1, ∞) növelve meghatározásra kerül a végeredmény két szélsõ értéke, majd ennek segítségével az alábbi tényezõk
ahol:
IiR=ZF/ZF(Xi=0), IiI=ZF(Xi=1)/ZF, IiF=1-(1/IiR) IiR - a kockázatcsökkentési tényezõ, (Risk Reduction Factor) IiI - a kockázatnövelési tényezõ, (Risk Increase Factor) IiF - a kockázat-hozzájárulási tényezõ, (Fractional Contribution, Fussel-Wesely importance).
A vizsgált esemény gyakoriságát azok az alapesemények határozzák meg alapvetõen, amelyek kockázat-hozzájárulási tényezõje nagy, közel van az egységhez (IiF ≤1). Az ilyen alapeseményeknél egyidejûleg a vonatkozó kockázatcsökkentési tényezõ nagy értékû, távol van az egységtõl (IiR ≥ 1). Azaz a kockázatcsökkentési tényezõ megmutatja, hogy ha ezen alapesemény hatását ki lehetne küszöbölni, akkor ennek eredményeként a gyakoriság hányad részére csökkenne. A gyakorlatban ezen két tényezõt szokás értékelni, a kockázatnövelési tényezõt (IiI ≥ 1) csak kiegészítõ jelleggel.
65
Bizonytalanság elemzés – input paraméterek bizonytalanságai •
•
66
A kockázatelemzésben használt különböző modellek paramétereit az adatok kis száma vagy hiánya, az üzemek és/vagy rendszerelemek, mint statisztikai sokaságán belüli változatosság és a szakértők által készített hipotézisek miatt nem ismerjük pontosan. Az input paraméterek bizonytalanságai azok a bizonytalanságok, amelyek jelenleg a leginkább számszerűsíthetők. Az input paraméterek bizonytalanságának számszerűsítését általában egy kockázatelemzési eredmény (pl. nem kívánt esemény gyakorisága) figyelembevételével, mint a rendszer modell outputjával adják meg, amely a modell inputparamétereinek valószínűségi változóiból kerül előállításra. Ekkor minden paraméter feltételes valószínűségi sűrűségfüggvénye azt a bizonytalanságot számszerűsíti, amely vagy a paraméter pontos értékéről szóló ismeretek hiánya vagy a paraméter értékének egy adott sokaság elemei közötti tényleges különbözőségére vezethető vissza.
Monte Carlo szimuláció •
•
• 67
Azoknál a hibafa-alkalmazásoknál, ahol egy alapeseményt jobban jellemez egy valószínűségeloszlás, mint egyetlen érték, néha szükségessé válhat meghatározni a csúcsesemény valószínűségeloszlását. Ezt analitikusan nehezen vagy egyáltalán nem lehet megtenni. A Monte Carlo technika véletlenszerű értékeket vesz az alapesemény valószínűségére ahhoz, hogy megállapítható legyen a csúcsesemény valószínűségeloszlása. Ennek a folyamatnak a sokszori megismétlésével felépíthető a csúcsesemény valószínűségeloszlása. Ez azonban jelentős számítógépidő-igényt kívánhat meg. A Monte Carlo szimuláció nem igényel bonyolult matematikai analízist, ezért vonzó alternatív megközelítés lehet. Ez viszonylag könnyű módja a komplex rendszerek modellezésének és az input algoritmusok könnyen érthetőek. A paramétereknek vannak bizonyos korlátjai az input-feltételezések természetét illetően, mint például a meghibásodási és javítási ráták, ezért használhatunk nem konstans értékeket. Könnyen modellezhetőek az olyan aspektusok is, mint a javítások sorrendje, a javítási prioritások és egyebek. A Monte Carlo szimuláció lényege egy vagy több specifikus valószínűségi változóhoz tartozó értékek sorozatának generálása; annak vizsgálata, hogy miként változik a rendszer ezen véletlenszerű értékpárokra, majd az eredmény táblázatba foglalása úgy, mintha az egy kísérlet kimenetele lenne.
Példa a Monte-Carlo szimulációval végzett bizonytalanság-elemzésre •
68
Vegyünk egy egyszerű, két elemből álló rendszert. A rendszer meghibásodik, ha mindkét alkatrész meghibásodik, vagyis az elemek párhuzamosan vannak kapcsolva. Mindkét elem meghibásodásig tartó működési ideje exponenciális eloszlást mutat, rendszerelemenként más-más paraméterekkel. Az eloszlások paramétereit, az MTTF-eket nem ismerjük teljes bizonyossággal, de tudjuk, hogy ezek intervallumértékek. Legyen MTTF1∈[10, 100], míg MTTF2∈[100, 1000]. Számítsuk ki a rendszer megbízhatóságának bizonytalanságát!
Példa a Monte-Carlo szimulációval végzett bizonytalanság-elemzésre (1) Vegyük a rendszermegbízhatóság kiszámításának képletét R(t) = 1 – (1 – exp{-t/MTTF1})⋅(1 – exp{-t/MTTF2}) és rögzítsük a t időt. (2) Generáljunk két véletlen MTTF1 és MTTF2 számot a véletlenszámgenerátor által előállított valószínűség-eloszlásból. (3) Helyettesítsük be e véletlen számokat a rendszermegbízhatósági képletbe, számítsuk ki az értéket. (4) Ismételjük meg a 2. és 3. lépést sokszor és készítsünk egy reprezentatív mintát az {Ri(t)} értékeiből. (5) Miután e mintát előállítottuk, megkereshetjük az átlagértéket, a szórásnégyzetet, stb. Valószínűségi hisztogramot is készíthetünk, valamint közelíthetjük a valószínűségeloszlást valamely standard eloszlással illesztési vizsgálat segítségével.
69
Példa a Monte-Carlo szimulációval végzett bizonytalanság-elemzésre A fenti eljárást követve generálunk egy 100-elemű megbízhatósági mérőszám mintát (MS Excelben) R(10) átlagértéke= 0,942 A szórás = 0,024 A 3-szigma tartomány = [0,870; 1,0]
Gyakorisági hisztogram 25
20
15
10
5
0 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
70
1
Kezelői, emberi hibák modellezése • Az emberi hibák azonosítása és elemzése azzal foglalkozik, hogy az emberi hiba következtében mi romolhat el a vizsgált rendszerben •Nemzetközi módszerek alapján •Hibák azonosítása: •Baleset előtti tevékenység tesztelés, karbantartás során •Baleset utáni tevékenység baleset utáni további következmények megakadályozása • Hibák típusa: Szükség esetén nem tesz meg valamit Tévesen avatkozik be
71
2014.01.22.
Kezelői, emberi hibák modellezése Mulasztásból eredő hibák – egy szükséges tevékenységet nem végeztek el a) A teljes feladatot kihagyták b) A feladatból egy lépést hagytak ki Végrehajtás során előforduló hibák – a tevékenységeket nem megfelelően végezték el a) Kiválasztási hiba – rossz tárgyat, pozíciót, parancsot vagy információt választottak b) Sorrendi hiba – a tevékenységeket rossz sorrendben végezték el c) Időzítésbeli hiba – túl korán vagy túl későn d) Minőségi hiba – túl sok, túl kevés, rossz irány Nem oda tartozó tevékenységek - rossz vagy szükségtelen tevékenységeket hajtottak végre.
72
2014.01.22.
Kezelői, emberi hibák modellezése Készség alapú – amikor úgy vagyunk képesek egy rutinfeladatot végrehajtani, hogy csak a lehető legkisebb mértékig kell magára a feladatra gondolnunk (pl. sebességváltás saját autónkban) Szabály alapú – ahol mi „összekapcsoljuk a mintákat" az olyan problémák előkészített szabályaival vagy megoldásaival, amire oktattak minket (pl. megállunk a közlekedési lámpánál, ha az pirosat mutat) Tudás alapú – lassú, tudatos kísérleteket teszünk új problémák megoldására (pl. a motortérből hallatszó, eddig még nem hallott zaj- mi lehet az ? forduljak vissza inkább?)
73
HRA – Emberi megbízhatóság értékelése Az emberi megbízhatóság értékelése részben minőségi, részben mennyiségi: A HRA minőségi része: a lehetséges emberi hibák és a teljesítményt befolyásoló tényezők azonosítása Mennyiségi / minőségi rész: meghibásodási valószínűségek hozzárendelése bizonyos emberi tevékenységekhez és a teljesítményt befolyásoló tényezők súlyozása. Az emberi hibákkal kapcsolatban használt adatok többsége ráadásul eredetileg szakértői becsléseken alapult. Mennyiségi rész: valószínűségek kiszámítása 74
HRA – Emberi megbízhatóság értékelése Az emberi megbízhatóság iránti érdeklődés az 1950-es években indult meg. Ekkor az emberi tényező számszerűsítését úgy képzelték el, ahogy a megbízhatósági mérnökök számszerűsítették a berendezések meghibásodási rátáit. Az első emberi megbízhatósági adatbankot (ún. adattárat) az 1960-as években hozták létre. A legtöbb módszer azonban a hibaadatok és szakértői becslések keverékén alapult. Később további adatbankok csatlakoztak, mégpedig a THERP módszerrel és annak származékaival dolgozó adatbank (ld. lábjegyzet) és a brit CORE adatbázis (nukleáris). [Referenciák: Az emberi tévesztési ráta előrejelzésének módszere (THERP), NUREG/CR1278; Baleseti eseménysor értékelő program, emberi megbízhatósági elemzési eljárás, NUREG/CR-4772; Nukleáris számítógépes könyvtár a reaktorok megbízhatóságának értékelésére, NUREG/CR-4639. ]
75
HRA – Emberi megbízhatóság értékelése
76
Hollnagelnek az emberi tényezőkről szóló szakirodalom területén 1993ban végzett felmérése az alábbiakat mutatta ki: Az 1960-as években (amikor az emberi megbízhatóság és az emberi hiba kezdett a figyelem középpontjába kerülni) az emberi hiba balesetekben játszott szerepét 20% körülire becsülték. Az 1990-es évekre azonban ez a szám megnégyszereződött, és elérte a 80%-ot. E drámai növekedés néhány lehetséges oka: A mechanikus / elektronikus alkatrészek megbízhatósága jelentősen megnőtt az elmúlt harminc évben. Az ember ugyanaz maradt. Az iparágak összetettebbé váltak, a legtöbb helyen elterjedt az automatizálás. A rendszerek komplexitása magában hordozza a szervezési balesetek lehetőségét, amelyekben látens technológiai és műszaki hibák keverednek működési meghibásodásokkal, és így a védelmi zárak hatástalanná válnak. Az emberi hiba előtérbe kerülése következtében természetesen újra kell gondolni, hogy amit eddig műszaki hibának tekintettünk, azt mostantól a karbantartási vagy a konstrukciós hibák közé kell-e sorolnunk
HEP – Emberi hiba valószínűsége a hiba előfordulásának gyakorisága a hiba előfordulásának lehetősége
Tehát ha 100 esetből 1-szer a „fel” helyett véletlenül a „le” billentyűt nyomom meg a billentyűzeten, akkor a HEP = 0,01.
77
ASEP módszer Pl. ASEP módszer (Accident Sequence Evaluation Program) – Baleset előtti kezelői hibák modellezésére Alap HEP érték: PEOM+PECOM= 0,02+0,01=0,03 –
–
78
PEOM: szükséges beavatkozás elmaradásának valószínűsége PECOM: téves beavatkozás vagy végrehajtás valószínűsége
ASEP módszer ASEP módszer: 4 alapfeltétel és 4 optimum feltétel alapján korrekciós tényezőkkel módosítja az alap HEP értékét. Az alap HEP éréke mindig > lesz, mint a módosított értékek A módosító feltételek figyelembe veszik: – – – –
79
Jelzés meglétét az adott komponens működőképtelenségéről Karbantartás, teszt utáni ellenőrzést Karbantartás, tesztet elvégző személyzet utáni másik személy által végzett ellenőrzést Komponens állapotának napi vagy műszakonkénti ellenőrzését
HEART módszer HEART módszer megkülönböztet: (A) általános feladattípusokat, ahol minden egyes feladattípushoz egy hibavalószínűség (HEP) tartozik, valamint (B) egy sor hiba-előidéző körülményt (EPC), amelyek a fent említett valamennyi feladat elvégzésére hatással lehetnek, vagy várhatóan hatással vannak.
80
HEART módszer A HEART egy régóta fennálló, viszonylag nagy emberi megbízhatósági adatbázison alapul. A hiba-előidéző körülmények súlyozási tényezői az emberi tényezőről (HF) szóló szakirodalom adatain alapulnak. A feltételezett emberi teljesítmény a hibaelőidéző körülmények kölcsönhatása esetén általában csökken (pl. ha egyszerre áll fenn célkonfliktus és az időhiány); 81
HEART módszer; példa Általános feladatok (a)
HEP (5-95% tartomány)
82
(A) Teljesen ismeretlen feladat, amelyet gyorsan, a várható következmények valós ismerete nélkül hajtanak végre.
0,55 (0,35-0,97)
(B) Egy rendszer átállítása egy új állapotra, illetve visszaállítása az eredeti állapotra – egyszeri próbálkozásra, felügyelet vagy eljárások nélkül.
0,26 (0,14-0,42)
(C) Összetett feladat, amely nagyfokú hozzáértést és ügyességet követel meg.
0,16 (0,12-0,28)
(D) Viszonylag egyszerű feladat, amelyet gyorsan vagy különösebb odafigyelés nélkül hajtanak végre.
0,09 (0,06-0,13)
(E) Rutinszerű, begyakorolt, gyors feladat, amely nem követel különösebb ügyességet.
0,02 (0,007-0,045)
(F) Egy rendszer átállítása egy új állapotra, illetve visszaállítása az eredeti állapotra – eljárások alapján, némi ellenőrzéssel.
0,003 (0,0008 –0,007)
HEART módszer; példa Általános mulasztások (a)
HEPnőknél x 1,4 férfiaknál (5-95% tartomány)
83
(A) A megfelelés egyértelműen kényelmetlen. A mulasztás lehetséges elkövetőjét semmilyen hallgatólagos követelmény nem kényszeríti a megfelelésre. Könnyű a mulasztást elkövetni. A lelepleződés valószínűsége kicsi.
0,42 (0,28-0,58)
(B) A megfelelés viszonylag lényegtelen. Könnyű a mulasztást elkövetni. Nincs késztetés a megfelelésre.
0,35 (0,20-0,59)
(C) A megfelelés viszonylag lényeges lehet, de a mulasztás leleplezésének valószínűsége kicsi. A mulasztás jelentős, és közvetlen személyes előnyökkel jár.
0,38 (0,21-0,54)
(D) A mulasztás személyes előnyökkel jár, de a leleplezés valószínűsége közepes vagy nagy. A megfelelés viszonylag lényeges, de a mulasztás leleplezésének esélye kicsi.
0,18 (0,11-0,25)
HEART módszer; példa EPC módosító tényezők: Egy esetleg lényeges, ugyanakkor újszerű vagy ritkán előforduló helyzet nem ismerése (x 17) Nincs elég idő a hiba felismerésére és kijavítására (x 11) Alacsony jel-zaj hányados, amikor a helyzet valóban rossz (x 10) Túl könnyen hozzáférhető információk kiszűrése (x 9) Térbeli és működési információk hiánya vagy elégtelensége (x 8) Nincs egyértelmű lehetőség egy véletlen beavatkozás megfordítására (x 8) Egy begyakorolt módszer helyett egy olyan módszer alkalmazása, amely egy ellentétes filozófia alkalmazását követeli meg (x 6)
84