SUKU BANYAK A. Teorema Sisa 1) F(x) = (x – b)· H(x) + S, maka S = F(b) 2) F(x) = (ax – b)· H(x) + S, maka S = F( b ) a
3) F(x) : [(x – a)(x – b)], maka S(x) = (x – a)S2 + S1, dengan S2 adalah sisa pembagian pada tahap ke–2 Dengan H(x): Hasil pembagian dan S: sisa pembagian B. Teorema Faktor (x – b) adalah faktor dari f(x) bila S = f(b) = 0 C. Akar Rasional Persamaan Suku Banyak Bentuk umum : axn + bxn –1 + cxn –2 + … + d = 0. Akar–akarnya adalah x1, x2, …, xn. 1) x1 + x2 + …+ xn = b a
2) x1 · x2 · …· xn =
d a
(bila berderajat genap)
3) x1 · x2 · …· xn = da (bila berderajat ganjil) 4) x1 · x2 + x1 · x3 + x2 · x3 + … = c a
LATIHAN By marcoes
SOAL 1. Diketahui suku banyak P(x) = 2x4 + ax3 – 3x2 + 5x + b. Jika P(x) dibagi (x – 1) sisa 11, dibagi (x + 1) sisa – 1, maka nilai (2a + b) = … a. 13 b. 10 c. 8 d. 7 e. 6 Jawab : c
PENYELESAIAN
2. Diketahui suku banyak f(x) = ax3 + 2x2 + bx + 5, a ≠ 0 dibagi oleh (x + 1) sisanya 4 dan dibagi oleh (2x – 1) sisanya juga 4. Nilai dari a + 2b adalah … a. –8 b. –2 c. 2 d. 3 e. 8 Jawab : b 3. Diketahui (x – 2) dan (x – 1) adalah factor– faktor suku banyak P(x) = x3 + ax2 –13x + b. Jika akar–akar persamaan suku banyak tersebut adalah x1, x2, x3, untuk x1> x2> x3 maka nilai x1 – x2 – x3 = … a. 8 b. 6 c. 3 d. 2 e. –4 Jawab : d
4. Faktor–faktor persamaan suku banyak x3 + px2 – 3x + q = 0 adalah (x + 2) dan (x – 3). Jika x1, x2, x3 adalah akar–akar persamaan suku banyak tersebut, maka nilai x1 + x2 + x3 = …. a. –7 b. –5 c. –4 d. 4 e. 7 Jawab : d 5. Diketahui (x – 2) adalah faktor suku banyak f(x) = 2x3 + ax2 + bx – 2. Jika f(x) dibagi (x + 3), maka sisa pembagiannya adalah – 50. nilai (a + b) = …
polinomial
LATIHAN By marcoes
a. 10 b. 4 c. –6 d. –11 e. –13 Jawab: c 6. Suku banyak 2x3 + ax2 + bx + 2 dibagi (x + 1) sisanya 6, dan dibagi (x – 2) sisanya 24. Nilai 2a – b = … a. 0 b. 2 c. 3 d. 6 e. 9 Jawab: e 7. Suku banyak f(x) jika dibagi (x – 1) bersisa 4 dan bila dibagi (x + 3) bersisa – 5. Suku banyak g(x) jika dibagi (x – 1) bersisa 2 dan bila dibagi (x + 3) bersisa 4. Jika h(x) = f(x) g(x), maka sisa pembagian h(x) oleh (x2 + 2x – 3) adalah … a. 6x + 2 b. x + 7 c. 7x + 1 d. –7x + 15 e. 15x – 7 Jawab : c
8. Salah satu faktor suku banyak P(x) = x3 – 11x2 + 30x – 8 adalah … a. (x + 1) b. (x – 1) c. (x – 2) d. (x – 4) e. (x – 8) Jawab : d
9. Suku banyak f(x) dibagi (x + 1) sisanya 10 dan jika dibagi (2x – 3) sisanya 5. Jika suku banyak f(x) dibagi (2x2 – x – 3), sisanya adalah … a. –2x + 8 b. –2x + 12 c. –x + 4 d. –5x + 5 e. –5x +15
polinomial
LATIHAN By marcoes
Jawab : a 10. Sisa pembagian suku banyak f(x) oleh (x + 2) adalah 4, jika suku banyak tersebut dibagi (2x – 1) sisanya 6. Sisa pembagian suku banyak tersebut oleh 2x2 + 3x – 2 adalah … a. 4 x 5 3
5 5 4 b. x22 5 5
c. 4x + 12 d. 4x + 4 e. 4x – 4 Jawab : a 11. Akar–akar persamaan x3 – x2 + ax + 72 = 0 adalah x1, x2, dan x3. Jika salah satu akarnya adalah 3 dan x1< x2 < x3, maka x1 – x2 – x3 = … a. –13 b. –7 c. –5 d. 5 e. 7 Jawab : e
12. Sisa pembagian suku banyak (x4 – 4x3 + 3x2 – 2x + 1) oleh (x2 – x – 2) adalah … a. –6x + 5 b. –6x – 5 c. 6x + 5 d. 6x – 5 e. 6x – 6 Jawan : a 13. Suku banyak x4 – 2x3 – 3x – 7 dibagi dengan (x – 3)(x + 1), sisanya adalah … a. 2x + 3 b. 2x – 3 c. –3x – 2 d. 3x – 2 e. 3x + 2 Jawab : e 14. Suatu suku banyak F(x) dibagi (x – 2) sisanya 5 dan (x + 2) adalah faktor dari F(x). Jika F(x) dibagi x2 – 4, sisanya adalah … a. 5x – 10
polinomial
LATIHAN By marcoes
b.
5 x5 4 2
c. 5x + 10 d. –5x + 30 e.
5x7 4
2
Jawab : b 15. Suku banyak f(x) dibagi 2x –1 sisanya 7 dan x2 + 2x – 3 adalah faktor dari f(x). Sisa pembagian f(x) oleh 2x2 + 5x – 3 adalah … a. 2x + 6 b. 2x – 6 c. –2x + 6 d. x + 3 e. x – 3 Jawab : a 16. Suku banyak (2x3 + ax2 – bx + 3) dibagi oleh (x2 – 4) bersisa (x + 23). Nilai a + b = … a. –1 b. –2 c. 2 d. 9 e. 12 Jawab : e
polinomial
LATIHAN By marcoes
KUMPULAN SOAL Menggunakan aturan teorema sisa atau teorema faktor 1. Diketahui suku banyak 8. Akar–akar persamaan x3 – x2 + ax + 72 = 0 4 3 2 P(x) = 2x + ax – 3x + 5x + b. Jika P(x) adalah x1, x2, dan x3. Jika salah satu akarnya dibagi (x – 1) sisa 11, dibagi (x + 1) sisa – adalah 3 dan x1< x2 < x3, maka x1 – x2 – x3 = 1, maka nilai (2a + b) = … … a. 13 c. 8 e. 6 a. –13 c. –5 e. 7 b. 10 d. 7 b. –7 d. 5 2. Diketahui suku banyak f(x) = ax3 + 2x2 + bx + 5, a ≠ 0 dibagi oleh (x + 1) sisanya 4 dan dibagi oleh (2x – 1) sisanya juga 4. Nilai dari a + 2b adalah … a. –8 c. 2 e. 8 b. –2 d. 3 3. Sukubanyak 3x3 + 5x + ax + b jika dibagi (x + 1) mempunyai sisa 1 dan jika dibagi (x – 2) mempunyai sisa 43. Nilai dari a + b = .... a. 4 c. 0 e. 4 b. 2 d. 2 4. Suku banyak (2x3 + ax2 – bx + 3) dibagi oleh (x2 – 4) bersisa (x + 23). Nilai a + b = … a. –1 c. 2 e. 12 b. –2 d. 9 5. Diketahui (x – 2) adalah faktor suku banyak f(x) = 2x3 + ax2 + bx – 2. Jika f(x) dibagi (x + 3), maka sisa pembagiannya adalah – 50. nilai (a + b) = … a. 10 c. –6 e. –13 b. 4 d. –11 6. Suku banyak 2x3 + ax2 + bx + 2 dibagi (x + 1) sisanya 6, dan dibagi (x – 2) sisanya 24. Nilai 2a – b = … a. 0 c. 3 e. 9 b. 2 d. 6 7. Diketahui (x – 2) dan (x – 1) adalah factor– faktor suku banyak P(x) = x3 + ax2 –13x + b. Jika akar–akar persamaan suku banyak tersebut adalah x1, x2, x3, untuk x1> x2> x3 maka nilai x1 – x2 – x3 = … a. 8 c. 3 e. –4 b. 6 d. 2
9. Faktor–faktor persamaan suku banyak x3 + px2 – 3x + q = 0 adalah (x + 2) dan (x – 3). Jika x1, x2, x3 adalah akar–akar persamaan suku banyak tersebut, maka nilai x1 + x2 + x3 = …. a. –7 c. –4 e. 7 b. –5 d. 4 10. Sisa pembagian suku banyak (x4 – 4x3 + 3x2 – 2x + 1) oleh (x2 – x – 2) adalah … a. –6x + 5 c. 6x + 5 e. 6x – 6 b. –6x – 5 d. 6x – 5 11. Suku banyak x4 – 2x3 – 3x – 7 dibagi dengan (x – 3)(x + 1), sisanya adalah … a. 2x + 3 c. –3x – 2 e. 3x + 2 b. 2x – 3 d. 3x – 2 12. Salah satu faktor suku banyak P(x) = x3 – 11x2 + 30x – 8 adalah … a. (x + 1) c. (x – 2) e. (x – 8) b. (x – 1) d. (x – 4) 13. Suku banyak 6x3 + 13x2 + qx + 12 mempunyai faktor (3x – 1). Faktor linear yang lain adalah….. a. 2x – 1 c. x – 4 e. x + 2 b. 2x + 3 d. x + 4 14. Suatu suku banyak F(x) dibagi (x – 2) sisanya 5 dan (x + 2) adalah faktor dari F(x). Jika F(x) dibagi x2 – 4, sisanya adalah … a. 5x – 10
c. 5x + 10
b. 54 x 52
d. –5x + 30
e. 5 x 7 4
2
15. Suku banyak f(x) dibagi 2x –1 sisanya 7 dan x2 + 2x – 3 adalah faktor dari f(x). Sisa pembagian f(x) oleh 2x2 + 5x – 3 adalah … a. 2x + 6 c. –2x + 6 e. x – 3 b. 2x – 6 d. x + 3
polinomial
LATIHAN By marcoes
16. Sisa pembagian suku banyak f(x) oleh (x + 2) adalah 4, jika suku banyak tersebut dibagi (2x – 1) sisanya 6. Sisa pembagian suku banyak tersebut oleh 2x2 + 3x – 2 adalah … a. 54 x 5 53 c. 4x + 12 e. 4x – 4 b. 54 x 2 52
18. Suku banyak f(x) = x3 + ax2 + bx – 6 habis dibagi oleh (x – 2) dan (x + 1). Jika f(x) dibagi (x + 2) maka sisa dan hasil baginya adalah….. a. 4 dan x2 + 5 d. 11 dan x2 – 1 2 b. – 4 dan x + 5 e. –11 dan x2 – 1 c. –11 dan x2 + 5
d. 4x + 4
17. Suku banyak f(x) dibagi (x + 1) sisanya 10 dan jika dibagi (2x – 3) sisanya 5. Jika suku banyak f(x) dibagi (2x2 – x – 3), sisanya adalah … a. –2x + 8 c. –x + 4 e. –5x +15 b. –2x + 12 d. –5x + 5
19. Suku banyak f(x) jika dibagi (x – 1) bersisa 4 dan bila dibagi (x + 3) bersisa – 5. Suku banyak g(x) jika dibagi (x – 1) bersisa 2 dan bila dibagi (x + 3) bersisa 4. Jika h(x) = f(x) g(x), maka sisa pembagian h(x) oleh (x2 + 2x – 3) adalah … a. 6x + 2 c. 7x + 1 e. 15x – 7 b. x + 7 d. –7x + 15
polinomial