Struktur Inti Atom Massa Atom 99,9 % terdapat dalam inti yang terdiri dari proton (muatan = e +) massa energi 938,28 Mev dan netron (muatan =0) massa energi 929,57 Mev sedangkan elektron berada di kulit atom. Nomor massa ( A ) Proton ( Z ) Netron A - Z Sifat kimia dari atom lebih banyak ditentukan oleh Z bukan A. Sifat kimiawinya identik jika Z nya sama.
Struktur Inti Atom Atom yang memiliki Z sama tetapi A berbeda disebut Isotop (isotope) Contoh . Hidrogen Deuteriumon
Tritium Soal. Tuliskan minimal 4 isotop yang lainnya
Struktur Inti Atom Soal. Tuliskan minimal 4 isotop yang lainnya Carbon Uranium Oksigen Helium dll
Struktur Inti Atom Kerapatan inti atom tergantung netron dan proton dapat dituiskan
Maka jari-jari atom akan sebanding dengan akar pangkat sepertiga nomor massa Ro = 1,2 10 -15 meter = 1,2 fm
Struktur Inti Atom Soal Latihan (oleh-oleh S1 sem3 reg Adan B) 1. Hitunglah jari-jari inti dari karbon (A=12), Germanium (A=70), Bismuth (A=209) 2.
Hitunglah kerapatan inti atom karbon dan massa total inti atom karbon (A=12). Massa diam elektron (me) = 9,1 10-31 kg Massa diam proton (mp) = 1,67 10-27 kg
Struktur Inti Atom Jawab 1. Carbon R= 1,2 fm. (A)1/3 = 1,2 .(12)1/3 = 2,7 fm Germanium R= 1,2 fm.(A)1/3 = 1,2 .(70)1/3 = 4,9 fm Bismuth R= 1,2 fm. (A)1/3 = 1,2 .(209)1/3 = 7,1 fm 2. kerapatan inti atom karbon dan massa total inti atom karbon (A=12).
Struktur Inti Atom Energi total inti atom hidrogen Secara umum dituliskan m(atom) = m(inti atom) + Z m (elektron) +energi ikat elektron total
Binding energy (energi ikat)
Strukrur Inti Aatom Contoh Deuterium memiliki massa atom = 2,014102 u, massa atom hidrogen (mp)= 1,007825 u, massa netron(mn )1,008665 u. Berapakah energi total ikat inti atom deuterium? Jawab. B = (1,008665 u + 1,007825 u - 2,014102 u ) = 0,002388 u = 0,002388 u . 931,5 Mev/u. B = 2,224 Mev
Struktur Inti Atom Soal.. Hitunglah energi ikat total ( B ) dari a.
b.
Struktur Inti Atom Jawab. P = 26 N = 56 – 26 = 30 mFe= 55,8447 u
B = (30 .1,008665 u + 26 . 1,007825 u - 55,8447 u) = 30,25995 + 26,20345- 55,8447 = 56,4634- 55,8447 = 0,6187u = 0,6187 u . 931,5 Mev/u. = 576,31905 Mev
Struktur Inti Atom Jawab.
P = 92 N = 238 – 92 = 146 mU= 238,02891u
B =(146. 1,008665 u + 92 . 1,007825 u - 238,02891 u) = (147,26509 + 92,7199 - 238,02891) u = 1,95608 . 931,5 Mev/u. = 1822,08852 Mev = 1822,08852 .1,6 10-13 Joule = 2,915 10-10 Joule = 0,2915 nJ = 291,5 pJ
Gaya Inti Atom 1. Lebih besar dibanding gaya elektromagnet, grafitasi, dan gaya lain disebut juga strong force 2. Jangkauan sangat pendek 10-15 m = 1 fm penambahan nukleon kerapatan inti tidak berubah energi ikat per nukleon tetap 3. Tidak tergantung jenis nukleon gaya inti n-p = n-n = p–p 4. Selang waktu hadirnya energi 5. Jarak tempuh yang dicapai partikel x = c ∆t 6. Energi diam yang diperlukan partikel mc2 = 200 Mev (jangkauan 1 fm)
Radioaktif Suatu zat radioaktif (radioactive substance) didefinisikan sebagai sesuatu zat yang memiliki sifat untuk mengemisikan radiasi secara spontan.
Radioaktif Semua inti atom stabil N = Z berat N > Z dan tidak ada inti stabil dengan A=5 atau 8 . Contoh Helium stabil
Radioaktif
Peluruhan radioaktif Peluruhan alfa Peluruhan beta Peluruhan gamma
Peluruhan Radioaktif Satuan peluruhan 1curie = 3,7 1010 peluruhan per detik Biasanya dinyatakan dalam mCi, atau μCi Orde peluruhan 1023 untuk cuplikan 1 Ci memiliki probabilitas 10-13 Aktifitas peluruhan α = λ N N = jumlah inti radioaktif λ = probabilitas peluruhan Tanda minus menunjukan N menurun terhadap bertambahnya waktu. –dN/dt
Peluruhan Radioaktif Aktifitas peluruhan peluruhan per satuan waktu Maka ln N = - λt + c
Peluruhan Radioaktif Aktifitas peluruhan Meluruhkan separoh maka λt ½ = ln 2 Waktu paruh
Radioaktif Latihan soal hal 363 λ. = 0,693/T = 2,97 10-6 s-1 Probabilitas tiap detik 2,97 10-6 N = m/M 6,02 1023 = 3,04 1015 Ao = λ.N =9,03 109 peluruhan/detik = 0,244 Ci A = Ao e-λt =1,5 109 peluruhan/detik
Hukum kekekalan Peluruhan 1. Kekekalan Energi = X akan meluruh menjadi X’ yang lebih ringan mNX C2 = mNX’ C2 + mN x C2 + Q (Q=kelebihan energi) (X’ +x = massa diam mN massa inti) 2. Kekekalan momentum linear Px’ + Px = 0 3. Kekekalan momentum sudut (momentum sudut spin s dan momentum sudut orbital L ) L= r. P ( sX = sx’ + sx +Lz ) 4. Kekekalan muatan elektrik = muatan elektrik sebelum dan sesudah peluruhan tetap dilihat nomer atom. 5. Kekekalan nomor massa jumlah nomor massa A tidak berubah dalam peluruhan dilihat nomer massa
Peluruhan Alfa
Energi yang terbebaskan energi kinetik α dan partikel anak X’ Q = m (X) - m (X’) - mα c2 Q= KX’ + K α Momentum liniernya PX’ = P α Maka hasil energi kinetik α K α = (A-4) Q/A Soal Hitunglah …
Peluruhan Alfa Soal 1. Hitunglah Energi kinetik peluruhan alfa yang dipancarkan oleh atom Ra meluruh menjadi Rn Ra =226,025406 Rn = 222,017574 α. = 4,002603
Peluruhan Alfa Soal 1. Hitunglah Energi kinetik peluruhan alfa yang dipancarkan oleh atom Ra Jawab. Ra Rn + α Ra =226,025406 Rn = 222,017574 α. = 4,002603 Q = 226,025406 - 222,017574 - 4,002603 = 4,871 Mev K α. = (A-4).Q/A = 4,785 Mev
Latihan Soal Latihan soal Hitunglah energi kinetik partikel alfa yang dipancarkan dalam peluruhan alfa dari 226Ra!
Jawab Q = m Ra – m Rn – mα Q = (226,025406 – 222,017574 – 4,002604) u = 0,005226 X 931,5 Mev = 4,87 Mev Kα = (A-4)Q/A (226-4) 4,87/226 = 4,783 Mev
Peluruhan Beta
Untuk peluruhan betta moner massa tetap Energi yang terbebaskan n p +e + v Peluruhan dapat terjadi dalam inti atom Z dan N meluruh ke inti atom lain Z + 1 dan N-1 Sehingga Q = ( m AX) - m AX’) c2
Latihan Soal Latihan soal Inti 23Ne meluruh ke inti 23Na dengan memancarkan beta negatif. Hitunglah energi kinetik maksimum elektron yang dipancarkan? Jawab Q = m Ne – m Na Q = (22,994466 – 22,989770) 931,5 Mev = 4, 374 Mev
Peluruhan Gamma
E = E awal- Eakhir 100 keV – MeV Usia paruh eksitasi inti 10-9 sampai 10-12 sekon.
Latihan Soal Latihan soal Inti 12N meluruh beta ke suatu keadaan eksitasi dari 12C yang sudah itu meluruh ke keadaan dasarnya dengan memancarkan sinar gamma 4,43 Mev . Hitunglah energi kinetik maksimum partikel beta yang dipancarkan? Jawab Massa C dalam keadaan tereksitasi m C = (12,00000 + 4,43/931,5 ) = 12,004756 u Q = (m N - m C – 2me ) 931,5 Mev Q = (12,08613 – 12,004756 – 2 X 0,000549 ) 931,5 Mev = 74,77 Mev
Rarioaktifitas Alam Sebagian besar unsur radioaktif alam memiliki waktu paruh dalam orde hari atau tahun << umur bumi +- 4,5 109 th sedikit unsur yang teramati meluruh dengan orde waktu paruh = umur bumi. Sbg latar belakang natural radioactivity. Proses radioaktif mengubah A jadi A-4 (peluruhan alfa) A tetap peluruhan beta dan gamma.
Sinar X Panjang gelombang sinar X +- 0,01 s/d 10 nm. Energinnya +- 100 eV s/d 100 keV dan reaksi terhadap materi dan inti atom
Sinar X Pembuatan sinar X Tabung hampa udara ( vakum ) ada filamen panas, katode, dan anode ( logam target ). Elektron dari filamen panas secara emisi termionik, dipercepat ke anode ( target ) V oltase tinggi (kV.) Elektron berenergi tinggi menumbuk target logam, sinar x akan dipancarkan oleh target.
Sinar X 1. Jika potensial antara anode dengan katode dinaikkan daya tembus sinar x lebih besar dan panjang gelombang lebih kecil. energi kinetik elektron meningkat. 2. Jika filamen panas diperbesar maka katode dibuat lebih panas elektron yang dikeluarkan lebih banyak sinar x mempunyai intensitas lebih tinggi..
Sinar X Sifat-sifat sinar x 1. Sinar x merambat menurut garis lurus 2. Sinar x dapat menghitamkan pelat pemotret 3. Daya tembus sinar x bergantung jenis bahan kayu beberapa cm, pelat aluminium setebal 1 cm, besi, tembaga, dan khususnya timah hitam setebal beberapa mm bahkan tidak ditembus sama sekali 4. Sinar x tidak dapat terlihat oleh mata manusia . 5. Sinar x dapat dipancarkan ketika sinar katode menumbuk zat padat.
Sinar X kegunaan sinar x a. Dalam bidang kedokteran, sinar x digunakan untuk membantu dokter diagnosis suatu penyakit atau kelainan dari bagian dalam tubuh b. Dalam bidang industri, sinar x digunakan untuk menemukan cacat pada las atau keretakan logam c. Dalam bidang pengetahuan, misalnya fisika seperti mempelajari pola-pola difraksi pada kristal zat padat
Sinar X Bahaya sinar x Energi yang dimiliki sangat tinggi, sehingga sinar x memiliki efek yang besar pada jaringan hidup sinar x dosis tinggi dapat menyebabkan kanker dan cacat lahir
Reaksi Fisi Nuklir Reaksi pembelahan Pembelahan uranium sekali pembelahan menghasilkan energi 200 Mev Baik U238 maupun U235 dapat dibelah dengan netron cepat hanya U235 yang dapat dibelah dengan netron lambat membelah menjadi > 100 macam isotop selain kripton dan barium. Jumlah Atom berkisar 34 sampai 58 Selain melepas netron juga beta dengan penambahan energi 15 Mev.
Reaksi fisi
Reaksi fisi uranium adalah salah satu atom berat.
Reaksi Fisi Nuklir Reaksi pembelahan fisi uranium berlangsung berantai jika lambat dan dapat dikendalikan dalam reaktor. Jika berlangsung cepat tak terkendali menjadi Bom nuklir. Contoh Pada suatu reaktor pembangkit listrik 3000 Mwatt. Berapa kali terjadi reaksi fisi? Jawab 3000 Mwatt setiap detik energinya 3000 Mjoule. Sekali fisi 200 MeV.
Reaksi Fisi Nuklir 200 Mev
2 108 x 1,6 10-19 = 3,2 10-11 J
Jika 3 109 Joule = 0,94 1020 reaksi pembelahan Setiap atom uranium U235 massa 235 x 1,6 10-27 kg = 3,9 10-25 kg Banyaknya 0,94 1020 x 3,9 10-25 kg = 37 mg
Berikut jumlah energi nuklir yang bisa dihasilkan per kg materi: Fisi nuklir: Uranium-233: 17,8 Kt/kg Uranium-235: 17,6 Kt/kg Plutonium-239: 17,3 Kt/kg Fusi nuklir: Deuterium + Deuterium: 82,2 Kt/kg Tritium + Deuterium: 80,4 Kt/kg Lithium-6 + Deuterium: 64,0 Kt/kg
= 17800 Ton TNT/kg = 17600 Ton TNT/kg = 17300 Ton TNT/kg
= 82200 Ton TNT/kg = 80400 Ton TNT/kg = 64000 Ton TNT/kg
Dahsyatnya Bom Nuklir
foto diambil tertanggal 3 Juli 1970 oleh seorang tentara Perancis Fangataufa. Code bom ini Canopus, kekuatan 914 kt. Bom ini dihasilkan oleh Perancis (CMIIW)
O
Dahsyatnya Bom Nuklir
O
Dahsyatnya Bom Nuklir
operasi Upshot-Knothole, di Nevada Proving Ground antara Maret 17 and Juni 4, 1953, mengetes bom jenis beru yang menggunakan teori fission dan fusion. Rumah dalam gambar terletak 3500 kaki dari pusat ledakan, kameranya sendiri dilindungi lapisan setebal 2 inchi, hanya butuh 2,6 detik saja dari awal bom tersebut meldak sampai ledakannya O menghancurkan rumah tersebut
Dahsyatnya Bom Nuklir
1 Juli 1946, di Pulau Marshall, ledakan berbentuk jamur/cendawan di Samudra Pasifik Utara, ledakan pertama dari 2 ledakan dalam operasi O Crossroads.
Dahsyatnya Bom Nuklir
uji coba bom Bravo yang terburuk dalam sejarah US karena bencana yang disebabkan oleh radiasinya. Kesalahan tersebut terjadi karena US salah menganalisa keadaan cuaca sehingga terjadi bencana radiasi O tersebut.
Dahsyatnya Bom Nuklir
bom Trinity adalah ujicoba bom atom 1 oleh US, 16 Juli 1945, dilakukan 35 miles tenggara Socorro, New Mexico, sekarang White Sands Missile Range. Saudaranya, The Fat Man yang menggunakan konsep dan design serupa, adalah bom yang dijatuhkan di Nagasaki. Kekuatan bom ini “hanya” 20 kiloton dan merupakan bom pertama yang memulai Zaman O Atom atau Atomic Age.
Dahsyatnya Bom Nuklir
bom BADGER adalah bom berkekuatan 23 kiloton, ditembakkan pada April 18, 1953 di Nevada Test Site, bom ini merupakan bagian dari O Operation Upshot-Knothole.
bom atom Hiroshima dan Nagasaki oleh US bom pertama Little Boy 6 Agustus 1945, bom kedua “The Fat Man” Nagasaki 9 Agustus 1945. kematian 200.000 jiwa.
O
Dahsyatnya Bom Nuklir
Hasil ledakan bom nuklir di Hiroshima
The Fat Man 5 ton dan tinggi 10,6 kaki. ( Nagasaki )
O
Little Boy 4-5 ton dan tinggi 9 kaki (Hirosima )
O
diambil 1 milisekon setelah ledakan bom, duri runcing di bawah ledakan , suhunya 20.000 Kelvin, 3,5 kali panas permukaan matahari
O
Tanggal/Waktu
terkini
Miniatur
Dimensi
Pengguna
Komentar
14:37, 8 November 2009
781×804 (121 KB) Fastfission
(fix fonts, metadata)
23:59, 25 Juli 2006
781×804 (127 KB) Fastfission
(convert text to outlines..)
781×804 (120 KB) Fastfission
(A simple graphic showing comparative nuclear fireball diameters for a number of different tests and warheads. From largest to smallest, the sizes are: *w:Tsar Bomba — 50 Mt — 2.3 km *w:Castle Bravo — 15 Mt — 1.42 km *w:W59 warhea)
20:20, 25 Juli 2006
Reaksi Fusi Reaksi penggabungan dua inti ringan menjadi inti berat.
Reaksi Fusi Contohnya adalah penggabung 2 deutron energi yang dibebaskan 3,2 MeV atau 0,8 Mev per nukleon.
Reaksi Fusi Gaya elektrostatik antara 2 deutron yag jari-jari +- 1,3 fm jarak antara keduanya = 3 fm maka energinya +- 0,5 Mev. memerlukan energi kinetik (K = 0,5 Mev ) untuk memicu reaksi fusi. Dapat dilakukan dengan mempercepat deutron(K) atau membuat panas (Q). • orde arus deutron dari akselerator mikro ampere daya total 4 watt per nuleon. •Memanaskan dengan energi 5 1012 joule memerlukan suhu 109 K .
Reaksi Fusi Reaksi fusi pada Matahari
Energi yang terbebaskan Q = (mi - mf) c2 = ( 4 mp – mHe) 931,5 Mev = (4 1,007825 – 4,002603) 931,5 Mev = 26,7 Mev
Reaksi Fusi Daya matahari sampai bumi 1,4 103 W/m2 jarak rata-rata bumi dan matahari 1,5 1011 m. Maka energi matahari akan tersebar keseluruh permukaan berupa selimut bola ( 28 1022 m2 maka energinya akan 4 1026 Watt
Contoh Reaksi Fusi Lithium-6 + Deuterium -> Helium-4 + Helium-4 6Li
+ D
->
4He
+
4He
6Li
+ D
isotop helium-4 ( partikel alfa ) ditulis dg simbol α Jadi, bisa juga ditulis: 6Li + D -> α + α atau: 6Li(D,α)α (bentuk yang dipadatkan)
-> 2 4He
massa isotop Lithium-6 massa isotop Deuterium massa isotop Helium-4 Lithium-6 + Deuterium 6,015122795 + 2,0141017778 8,0292245728
: 6,015122795 : 2,0141017778 : 4,00260325415 Helium-4 + Helium-4 4,00260325415 + 4,00260325415 8,0052065083
Massa yang hilang: 8,0292245728 - 8,0052065083 = 0,0240180645 u (0,3%) (dibulatkan) 2 E = mc E = mc2 = 1u x c2 = 1,660538782×10−27 kg x (299.792.458 m/s)2 = 149241782981582746,248171448×10−27 Kg m2/s2 = 149241782981582746,248171448×10−27 J = 931494003,23310656815183435498209 ev = 931,49 Mev (dibulatkan) Jadi, massa 1u = 931,49 Mev
Reaksi Fusi
Energi kinetik yang dibutuhkan ini setara dengan temperatur sekitar 20-30 juta derajat
Fisika Dasar III Oleh Tenes Widoyo MPd Daftar Pustaka 1. Fisika Holliday & Resnick Jilid I 2. Baequni , Fisika Modern/ struktur muatan 3. Fisika Modern Kenneth Krane 4. Phisics international edition James S Walker 5. Sears Zemansky Fisika untuk Universitas 3 Disampaikan pada mata kuliah fisika dasar III STT Migas Balikpapan Tahun pembelajaran 2012/2013 semester gasal.