SIFAT FISIS DAN MEKANIS PUPUK BIOKOMPOSIT LIMBAH KOTORAN SAPI DENGAN PEREKAT MOLASSES
SKRIPSI
Diajuakan sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik
Oleh :
DIPOSENO NIM. I 1405003
JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET SURAKARTA 2010
30
31
LOGBOOK TIGAS AKHIR SIFAT FISIS DAN MEKANIS PUPUK BIOKOMPOSIT LIMBAH KOTORAN SAPI DENGAN PEREKAT MOLASSES /H27.8.1.4/DT/2009
Oleh :
DIPOSENO NIM. I 1405003
JURUSAN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SEBELAS MARET SURAKARTA 2010 SIFAT FISIS DAN MEKANIS PUPUK BIOKOMPOSIT LIMBAH KOTORAN SAPI DENGAN PEREKAT MOLASSES Disusun oleh:
32
Diposeno NIM. I1405003 Dosen Pembimbing II
Dosen Pembimbing I
Dr. Kuncoro Diharjo, S.T., M.T. NIP. 197101031997021001
Zainal Arifin, S.T., M.T. NIP.197303082000031001
Telah dipertahankan di hadapan Tim Dosen Penguji pada hari jumat tanggal 9 Juli 2010 1.
2.
3.
Bambang Kusharjanta, S.T., M.T. NIP. 196911161997021001.
...............................
Heru Sukanto, S.T., M.,T. NIP. 197207311997021001.
...............................
Wahyu Purwo Raharjo, S.T., M.T. NIP. 197202292000121001.
...............................
Ketua Jurusan Teknik Mesin
Dody Ariawan, S.T., M.T. NIP. 197308041999031003
Koordinator Tugas Akhir
Wahyu Purwo Raharjo, S.T., M.T. NIP. 197202292000121001.
DAFTAR ISI Halaman Abstrak.............................................................................................................. vi Kata Pengantar................................................................................................... viii
33
Daftar Isi............................................................................................................ ix Daftar Tabel....................................................................................................... xi Daftar Gambar................................................................................................... xii Daftar Notasi dan Simbol................................................................................... xiii Daftar Lampiran................................................................................................. xiv BAB I. PENDAHULUAN 1.1 Latar Belakang........................................................................................ 1.2 Perumusan Masalah................................................................................ 1.3 Batasan Masalah..................................................................................... 1.4 Tujuan Penelitian.................................................................................... 1.5 Manfaat Penelitian..................................................................................
1 3 4 4 5
BAB II. DASAR TEORI 2.1 Tinjauan Pustaka...................................................................................... 6 2.2 Landasan Teori........................................................................................ 11 2.2.1 Teori Pegas.................................................................................... 11 2.2.2 Komposit dan Komposit Partikel.................................................. . 12 2.2.3 Biokomposit.................................................................................. . 13 2.2.4 Perekat (matrik)............................................................................ . 13 2.2.5 Molasses (Tetes tebu)................................................................... . 14 2.2.6 Proses Spray-Up............................................................................ . 15 2.2.7 Proses Manufaktur Sampel Biokomposit Metode (Hand Pressed). 16 2.3 Fraksi Berat dan Pengujian Sampel Pupuk Biokomposit......................... 17 2.3.1 Fraksi Berat Pupuk Biokomposit.................................................... 17 2.3.2 Pengujian Kekuatan Tekan............................................................. 18 2.3.3 Pengujian Ketahanan Impak........................................................... 19 2.3.4 Pengujian Densitas......................................................................... 20 2.3.5 Pengujian Hancur Dalam Air......................................................... 21 BAB III. METODE PENELITIAN 3.1 Diagram Alir Penelitian............................................................................. 21 3.2 Waktu dan Tempat Penelitian................................................................... 22 3.3 Bahan Penelitian....................................................................................... 22 3.4 Alat dan Bahan Penelitian......................................................................... 23 3.5 Tahap Penelitian....................................................................................... 24 3.6 Teknik Pelaksanaan.................................................................................. 26 3.6.1 Proses Pencampuran.............................................................................. 26 3.6.2 Proses Pengepresan.......................................................................... 27 3.6.3 Bentuk dan Ukuran Benda Uji Pupuk Biokomposit........................ 27 3.6.4 Pengujian Tekan.............................................................................. 28 3.6.5 Uji Densitas..................................................................................... 28 3.6.6 Uji Hancur Dalam Air..................................................................... 28 3.7 Variasi Penelitian...................................................................................... 29 BAB IV. HASIL DAN ANALISA 4.1 Penyeragaman Kadar Air Pupuk Biokomposit...........................................30 4.2 Kekuatan Tekan Pupuk Biokomposit......................................................... 31
34
4.3 Ketahanan Impak Pupuk Biokomposit....................................................... 33 4.4 Densitas Pupuk Biokomposit...................................................................... 36 4.5 Pengujian Hancur Dalam Air Untuk Sampel Pupuk Biokomposit............. 39 4.6 Analisa Foto Makro Sampel Pupuk Biokomposit Pada Uji Tekan............ 41 4.7 Analisa Foto Makro Sampel Pupuk Biokomposit Pada Uji Ketahanan Impak....................................................................................... 42 BAB V. PENUTUP 5.1 Kesimpulan............................................................................................... 45 5.2 Saran......................................................................................................... 45 DAFTAR PUSTAKA.......................................................................................... 47 LAMPIRAN......................................................................................................... 49
KATA PENGANTAR
35
Puja dan puji syukur atas kehadiran Allah SWT. yang telah memberikan rahmat dan karunia-Nya sehingga penulisan dapat menyelesaikan tugas akhir dengan judul “Sifat Fisis Dan Mekanis Pupuk Biokomposit Limbah Kotoran Sapi Dengan Perekat Molasses”. Dengan segala keterbatasan, penulis menyadari bahwa penyelesaian penelitian ini tidak lepas dari bimbingan, bantuan, arahan, serta dorongan dan waktu yang diluangkan oleh berbagai pihak. Dengan ketulusan dan kerendahan hati, penulis mengucapkan terima kasih kepada : 1. Bapak Dr. Kuncoro Diharjo, S.T.,M.T. Selaku Dosen Pembimbing I tugas akhir. 2. Bapak Zainal Arifin, S.T.,M.T. Selaku Dosen Pembimbing II tugas akhir. 3. Bambang Kusharjanta, S.T.,M.T., Bapak Heru Sukanto, S.T.,M.T., Bapak Wahyo Purwo. R, S.T.,M.T., Selaku Dosen Penguji tugas akhir. 4. Maruto, S.T. Selaku Laborat Laboraturium Material Jurusan Teknik Mesin UNS. 5. Bapak, Ibu, serta kakak dan adik tercinta. 6. Teman-teman Teknik Mesin UNS khususnya angkatan 2005, 2004, 2006 dan 2007.
Penulis menyadari bahwa tugas akhir ini masih banyak kekurangan dan kesalahan serta masih jauh dari sempurna. Oleh karena itu, kritik dan saran yang membangun dari semua pihak dapat menjadi masukan yang berguna bagi penulis. Semoga laporan ini dapat bermanfaat bagi kita semua. Terima kasih.
Surakata, Juli 2010
Penulis
36
SIFAT FISIS DAN MEKANIS PUPUK BIOKOMPOSIT LIMBAH KOTORAN SAPI DENGAN PEREKAT MOLASSES DIPOSENO Teknik Mesin, Universitas Sebelas Maret e-mail:
[email protected] INTISARI
Pondok pesantren Abdurrahman bin Auf memiliki peternakan sapi yang cukup besar. Dengan memiliki 100 ekor sapi, dalam 1 hari peternakan ini mampu menghasilkan 23,6 kg kotoran sapi kering dan 9,1 kg kotoran sapi basah. Limbah kotoran sapi tersebut sangat berpotensi untuk direkayasa menjadi pupuk komersial. Tujuan penelitian ini adalah menyelidiki sifat fisis dan mekanis pupuk organik yang bernama pupuk biokomposit. Proses pencampuran kotoran sapi dengan molasses, mengunakan metode spray up pada tabung tertutup. Pembuatan pupuk biokomposit dilakukan dengan metode cetak tekan hidrolis. Variabel penelitian terdiri dari variasi kandungan molasses (20%, 30%, 40%, 50%) (wk/wm) dan variasi kompaksi (50, 150, 250, 350) (kPa). Pengujian yang dilakukan
37
meliputi, uji tekan, uji ketahanan impak, uji densitas dan uji hancur dalam air. Hasil penelitian menunjukan bahwa semakin besar kandungan molasses akan semakin besar kekuatan tekan, ketahanan impak dan nilai densitas pada sampel. Namun, semakin besar kandungan molasses semakin sulit sampel tersebut untuk dapat hancur dalam air. Kandungan molasses terdapat pada kandungan 50% molasses. Pada variasi tersebut memiliki kekuatan tekan 5.380 Pa, nilai ketahanan impak 158,93, nilai densitas 1.070,68 kg/m³ dan waktu hancur dalam air 197,80 detik. Variasi kompaksi terbaik terdapat pada kompaksi 150 kPa. Pada variasi ini memiliki nilai kekuatan tekan sebesar 4.370 Pa, nilai ketahanan impak 80,12, nilai densitas 1.064,11 kg/m³ dan waktu hancur dalam air 180,4 detik. Berdasarkan hasil di atas, dapat disimpulkan bahwa sampel yang memiliki performance terbaik terjadi pada kompaksi 150 kPa dan kandungan molasses 50%. Kata Kunci: biokomposit, kotoran sapi, molasses, kekuatan tekan, ketahanan impak.
PHYSICAL AND MECHANICAL PROPERTIES OF BIOCOMPOSITE FERTILIZER FROM COW FAECES WITH MOLASSES ADHESIVE
DIPOSENO Mechanical Engineering, Sebelas Maret University e-mail:
[email protected]
ABSTRACT The Pesantren of Aburrahman bin Auf has a large cattle ranch. It has 100 cows. Everyday they are able to produce dry and wet faeces 23,6 kg and 9,1 kg respactively. The faeces is potential to be processed into commercial fertilizer. The purpose of this research is to investigate the physical and mechanical properties of organic fertilizer named biocomposites fertilizer. The process of mixing faeces with molasses used spray-up method in the tube closed. Manufacture of biocomposites fertilizer is made with a hydraulic press mold method. The variable of the research consisted of variations of molasses content (20%, 30%, 40%, 50%) (wk/wm), for
38
variations of compaction (50, 150, 250, 350) (kPa). The testing was conducted on the compresive strength test, impact resistance test, density test and the destroy in water test. The result shows that molasses content increases with the compressive strength, impact resistance and its density value. However, the greater the molasses content, samples that more difficult to destroy in the water The best performance of the sample occurs on 50% of molasses content. For 50% of molasses content and 250 kPa at compaction, the sample has 5.380 Pa of compresive strength, 158,93 point of impack resistance, 1.070,68 kg/m³ of density, and 197,80 second of destroy time in water. For variation of compaction, the sample has the best performance on 150 kPa. For 150 kPa of compaction and 50% molasses content, the sample has 4.370 Pa of compresive strength, 80,12 point of impack resistance, 1.064,11 kg/m³ of density, and 180,40 second of destroy time in water. According to the result, it can be conclude that the best performance sample occurs on 150 kPa of compaction and 50% of molasses content. Keywords: biocomposite, cow manure, molasses, compresive strength, impack resistance.
Assalamualaikum Wr. Wb. saya mengucapkan terimakasih kepada para dosen-dosen yang telah hadir, dosen pembimbing pertama saya dan kedua (........, .......), maupun dosen penguji saya(........., ........) dan menyediakan waktu untuk menghadiri sidang pendadaran saya. Sebelum masuk pada materi persentasi sidang pendadaran ijinkan saya untuk memperkenalkan diri : Nama : Diposeno Nomor Induk Mahasiswa : I1405003 Program Studi : Sarjana Teknik Jurusan : Teknik Mesin Angkatan : 2005 Judul dari materi tugas akhir saya adalah Sifat Fisis Dan Mekanis Pupuk Biokomposit Limbah Kotoran Sapi Dengan Perekat Molasses”. MATERI ...... Atas segala perhatianya saya ucapkan terimakasih.
39
Assalamualaikum Wr. Wb.
Asalamualikum Wr. Wb I would like to thank for the lecturers who have attended my final projek persentasion Before entering the final project persentasion i want to introduce about myself my name is diposeno Main Number Students is i1405003 My study program is non reguler mechanical engineering ok we can start entering the persentasion of material now The title of my final project is PHYSICAL AND MECHANICAL PROPERTIES OF BIOKOMPOSIT FERTILIZER FROM COW MANURE WITH AN ADHESIVE MOLASSES Going forward, I will use Indonesian to explain this persentasion
BAB I PENDAHULUAN
1.1.
Latar Belakang Masalah Pengunaan pupuk organik yang berasal dari kotoran hewan semakin
berkembang. Dahulu limbah kotoran ternak merupakan salah satu masalah yang berdampak sistemik bagi lingkungan di sekitar area peternakan. Dewasa ini kotoran sapi mulai dikembangkan ke arah energi alternatif dan pemanfaatan pupuk organik. Karena kurangnya pengetahuaan para petani akan pedayagunaan pupuk organik maka para petani lebih memilih pupuk kimiawi yang mudah
40
didapat. Sesuai dengan data Lembaga Penelitian Tanah (LPT) akibat pemakaian pupuk kimiawi, 79% tanah sawah di Indonesia bahan organik (BO) sangat rendah. Kondisi ini memerlukan penyembuhan. Untuk meningkatkan kandungan BO, dibutuhkan tambahan bahan-bahan organik (pupuk organik) berkisar 5-10 ton/hektar. Kebutuhan pupuk organik yang sangat besar memicu peneliti dalam mengkaji dalam usaha menciptakan pupuk organik yang tepat guna. Berdasarkan peninjauan di lapangan, Pondok Pesantren Abdurrahman bin Auf yang berada di Klaten (Jawa Tengah) memiliki luas lahan kurang lebih mencapai lima hektar. Pondok Pesantren Abdurahman bin Auf memiliki beberapa unit usaha, diantaranya peternakan ayam, peternakan bebek, peternakan angsa, peternakan kambing dan peternakan sapi perah. Pondok Pesantren memiliki santri sebanyak 120 orang dan 30% diantaranya aktif dalam bidang swadaya peternakan tersebut. Dengan jumlah sapi mencapai 100 ekor, volume kotoran yang dapat dimanfaatkan juga sangat besar. Seekor sapi mampu menghasilkan kotoran padat dan cair sekitar 23,6 kg/hari dan 9,1 kg/hari (undang 2002). Jika Pondok Pesantren tersebut memiliki 100 ekor sapi dengan rata-rata kotoran yang dihasilkan adalah 2.360 kg/hari untuk kotoran sapi berwujud padat dan 910 kg/hari untuk kotoran sapi berwujud cair. Sebagian besar kotoran basah sapi dimanfaatkan untuk kepentingan biogas dan pupuk kandang berwujud cair. Namun, beberapa masalah juga timbul dari kotoran sapi pasca biogas yang dinilai cukup potensial jika diteliti lebih lanjut. Peneliti sebelumnya (Mahasiswa Pertanian UMY) menyatakan bahwa kotoran sapi sisa biogas jauh lebih baik dari pada kotoran sapi baru. Gas metan yang terkandung di dalam kotoran sapi tersebut sangat tidak dibutuhkan oleh tanaman pertanian.
41
Gambar 1.1. Peternakan sapi milik Pondok Pesantren Abdurrahman bin Auf
Beberapa penelitian tentang limbah ternak kotoran sapi semakin banyak mendatangkan manfaat. Selain untuk keperluan biogas, kotoran sapi ini dapat mendatangkan manfaat lain seperti dijadikan pupuk organik untuk keperluan pertanian. Pupuk organik bisa berasal dari kotoran hewan ternak (pupuk kandang) dan bisa pula dari pembusukan dedaunan. Untuk pupuk organik yang berasal dari kotoran hewan, material penyusun utamanya adalah kotoran sapi dan kambing. Namun, selain mudah didapat dalam aplikasinya kotoran sapi lebih banyak digunakan sebagai bahan dasar pupuk kompos organik. Seiring dengan perkembangan teknologi pupuk organik, banyak berbagai macam bentuk pupuk organik diantaranya adalah: 1. Pupuk Organik Granul (berbentuk bulatan dengan demensi tertentu) Pupuk dalam bentuk granul mempunyai keunggulan baik pada proses handling di lapangan (penyebaran) dan proses packing yang cukup baik. Namun, pupuk granul ini memiliki kelemahan pada proses pembuatan yang cukup panjang. Selain itu, pupuk dalam bentuk granul tidak mudah hancur dalam air dan memiliki harga yang cukup mahal. 2. Pupuk Organik Bokhasi (berbentuk box/trapesium dengan dimensi sesuai kebutuhan) pupuk ini sangat mudah dibuat namun dengan mencampurkan kotoran sapi dengan beberapa bahan pendukung seperti, jerami, molasses, air daun dan lain sebagainya. Kelemahan pupuk organik bokhasi adalah bentuk kurang baik dan proses packing yang sulit. 3. Pupuk Organik Curah (serbuk/powder) Proses pembuatan pupuk curah yang cukup mudah karena mirip dengan proses pembuatan pupuk bokhasi yang dilanjutkan dengan proses penghancuran (crushing). Pupuk dalam bentuk serbuk memiliki kelemahan pada proses handling di lapangan yang cukup sulit, karena ukuran partikel serbuk yang terlalu kecil dan ringan. 4. Pupuk Organik Cair (berbentuk cair berasal dari urin sapi dan zat lainya)
42
Pupuk dalam bentuk ini sangat baik jika dilihat dari proses hancurnya. Namun kelemahan dari pupuk berbentuk cair adalah kadungan nutrisi yang ada dalam pupuk ini tidak sebanding dengan pupuk organik yang berasal dari kotoran sapi padat. 5. Pupuk Organik Pelet (berbentuk silinder dan berdimensi sesuai kebutuhan) Bentuk pelet merupakan bentuk baru yang sedang dikembangkan
Sebelumnya beberapa peneliti berusaha menemukan komposisi pupuk organik yang tepat dan bentuk efisien. Namun, dari berbagai bentuk dan faktorfaktor yang ada untuk pupuk organik, penulis menjadikanya sebagai landasan teori dalam melakukan penelitian ini. Peneliti berusaha untuk menggabungkan unsur-unsur keunggulan berbagai macam bentuk pupuk organik, dan meciptakan suatu pupuk organik baru agar dapat meminimalisir segala kekurangan. Dari kotoran sapi yang ada di Pondok Pesantren Abdurrahman bin Auf peneliti akan membuat suatu optimalisasi bentuk pupuk organik baru. Analogi pupuk harus mudah dalam proses pembuatan, baik pada proses handling di lapangan (penyebaran), tidak mudah hancur pada saat proses packing dan mudah hancur dalam air.
1.2.
Perumusan Masalah Adapun perumusan masalah dari penelitian ini adalah:
1. Besar kecilnya kandungan molasses pada pupuk biokomposit sangat mempengaruhi seberapa kuatnya pupuk tersebut terhadap kekuatan tekan, ketahanan impak dan nilai tingkat kepadatan. Karena molasses memiliki daya rekat dan mampu bentuk yang baik dalam proses pembuatan pupuk biokomposit. 2. Gaya kompaksi yang semakin besar akan mempengaruhi kekuatan tekan, ketahanan impak, dan nilai kepadatan. Karena gaya kompaksi berdampak terhadap semakin kuatnya ikatan antar partikel material penyusun pada pupuk biokomposit.
43
3. Kemampuan pupuk organik hancur di dalam air dipengaruhi oleh besar kecilnya kandungan perekat molasses dan besarnya kompaksi pada pupuk biokomposit.
1.3.
Batasan Masalah Untuk menentukan arah penelitian yang baik, ditentukan batasan masalah
sebagai berikut: a. Pengambilan bahan material kotoran sapi sudah melewati tahap pengomposan mengunakan bakteri STARBIO®. b. Distribusi partikel limbah kotoran sapi diasumsikan homogen pada komposisi strukturnya. c. Selama proses pembuatan sampel pupuk biokomposit dengan cara cetak tekan hidrolis dan kompaksi distribusi gaya tekan yang mengenai permukaan bidang kontak diasumsikan merata.
1.4.
Tujuan Penelitian Adapun tujuan dari penelitian ini yaitu:
1.
Mengetahui pengaruh kandungan persentase molasses pada sampel pupuk biokomposit dengan variasi Wpb (Fraksi berat pupuk biokomposit); persentase 50%; 40%; 30%; 20%, (wk/wm), terhadap kekuatan tekan, ketahanan impak, densitas dan kecepatan hancur dalam air.
2.
Mengetahui pengaruh gaya kompaksi pada sampel pupuk biokomposit pada variasi kompaksi; 50, 150, 250, 350 (kPa), terhadap kekuatan tekan, ketahanan impak, densitas dan kecepatan hancur dalam air.
3.
Menganalisa foto makro sampel pupuk biokomposit setalah mengalami uji tekan dan ketahanan impak.
1.5. ·
Manfaat Penelitian Manfaat bagi Mahasiswa: Dapat memahami proses pembuatan, mengetahui fungsi dan menemukan bentuk baru untuk pupuk organik yang berasal dari kotoran sapi.
44
·
Manfaat bagi Perguruan Tinggi: Meyakinkan kepada masyarakat/industri akan kemampuan dalam pengembangan teknologi, khususnya teknologi pupuk organik dibidang pertanian.
·
Manfaat bagi Pemerintah: Mengurangi akan keberadaan pupuk tanaman nasional bersubsidi yang membebani negara dengan adanya pupuk organik yang dikembangkan secara swadaya masyarakat.
·
Manfaat dari aspek ekonomi: Harga pupuk organik komersil lebih murah dan dapat dikembangkan secara mandiri.
·
Manfaat bagi tanah/tanaman pertanian: Meningkatkan kesuburan tanah, memperbaiki struktur, dan menekan pertumbuhan/serangan penyakit tanaman
BAB II DASAR TEORI
2.1. Tinjauan Pustaka Undang (2002) dalam penelitianya seekor sapi mampu menghasilkan kotoran padat dan cair 23,6 kg/hari dan 9,1 kg/hari. Seekor sapi muda yang sudah
45
dikebiri akan memproduksi 15-30 kg kotoran/hari. Namun, kotoran sapi yang masih baru tidak dapat langsung dipakai sebagai pupuk tanaman, tetapi harus mengalami proses pengomposan terlebih dahulu. Beberapa alasan mengapa bahan organik seperti kotoran sapi perlu dikomposkan sebelum dimanfaatkan sebagai pupuk tanaman antara lain adalah: a) Bila tanah mengandung cukup udara dan air, penguraian bahan organik berlangsung cepat sehingga dapat mengganggu pertumbuhan tanaman, b) Penguraian bahan segar hanya sedikit sekali memasok humus dan unsur hara ke dalam tanah, c) Struktur bahan organik segar sangat kasar dan dayanya terhadap air kecil, sehingga bila langsung dibenamkan akan mengakibatkan tanah menjadi sangat remah, d) Kotoran sapi
tidak selalu
tersedia pada saat
diperlukan, sehingga
pembuatan kompos merupakan cara penyimpanan bahan organik sebelum digunakan sebagai pupuk.
Dalam penelitian ini digunakan kotoran sapi sisa hasil biogas. Pada kotoran ini tidak berbau lagi dikarenakan sudah diberikan bakteri pengurai seperti STARBIO®, buatan dari PT. Lembah Hijau Multifarm Solo. Serbuk pengurai limbah organik (tinja, lemak, rambut, sampah makanan dan lain-lain) yang apabila terkena air berubah menjadi miliaran mikroba yang memangsa kotoran organik dalam septic tank anda serta memangsa bakteri yang mengeluarkan bau tidak sedap. STARBIO® merupakan produk terbaru teknologi canggih yang akan membantu kita mengatasi masalah kotoran ternak, septic tank /saluran limbah dengan cara baru. STARBIO® merupakan mikroba /bakteri yang berfungsi menguraikan limbah menjadi bahan asal alami yang tidak berbau. Dalam septic tank, STARBIO® bekerja memangsa endapan isi septic tank yang sudah menahun dan menguraikannya menjadi bahan alami, kembali ke tanah, tanpa bau, beracun, ramah lingkungan, Taufiq (2008). Widyawati (2006) menyatakan bahwa fungsi molasses bagi pupuk kompos adalah dapat menghambat kandungan gas metan (CH4) yang terkandung di dalam kotoran hewan ternak. Kadar metan dalam kotoran hewan merupakan unsur yang
46
paling tidak dibutuhkan oleh tanaman. Selain itu molasses juga berfungsi mengoptimalkan sintesis protein mikroba pada tanah dan juga mampu menyediakan energi tersedia, sumber nitrogen untuk aktivitas dan pertumbuhan mikrobia dalam rumen khususnya bakteri golongan selulolitik dan hemiselulolitik tercermin dari degradasi serat kasarnya. Widyawati (2006) menyatakan bahwa pupuk berbahan dasar organik dewasa ini memang sangat digemari oleh para petani dari pada pupuk kimia lainya. Selain murah, pupuk berbahan dasar organik tidak memiliki dampak yang membahayakan bagi tanaman dan dapat menjaga bahan organik dalam tanah. Karena bahan organik tanah menjadi salah satu indikator kesehatan bagi tanah dan memiliki beberapa peranan kunci bagi kesuburan tanah. Peranan-peranan kunci bahan organik tanah dapat dikelompokkan menjadi tiga kelompok, yaitu: 1) Fungsi Biologi: menyediakan makanan dan tempat hidup (habitat) untuk organisme (termasuk mikroba) tanah menyediakan energi untuk prosesproses biologi tanah dan memberikan kontribusi pada daya pulih (resiliansi) tanah. 2) Fungsi Kimia: merupakan ukuran kapasitas retensi hara tanah penting untuk daya pulih tanah akibat perubahan PH tanah dan menyimpan cadangan hara penting, khususnya N dan K. 3) Fungsi Fisika: mengikat partikel-partikel tanah menjadi lebih remah untuk meningkatkan stabilitas struktur tanah dan meningkatkan kemampuan tanah dalam menyimpan air perubahahan moderate terhadap suhu tanah.
Iwan (2002) meneliti akan kandungan nitrogen (N), phospor (P) dan kalium (K) dalam kotoran sapi potong tertera pada Tabel 1.1. Hasil analisis laboratorium Lokal Penelitian Sapi Potong dan BPTP (Balai Pengkajian Teknologi Pertanian) Jawa Timur terhadap kompos organik (hi-grade) produksi Lokal Penelitian Sapi Potong. Tabel. 1.1. Kandungan unsur kimia dalam suatu kotoran sapi (Iwan, 2002)
47
Kotoran sapi tidak serta merta langsung bisa digunakan sebagai pupuk tanaman atau campuran media tanam karena masih mengandung gas-gas berbahaya yang bisa mematikan tanaman. Oleh karena itu, penggunaan pupuk kandang harus melalui proses pengolahan terlebih dahulu. Tahap pertama kotoran sapi difermentasikan dan dicampur dengan bahan-bahan organik seperti cacahan gedebog pisang atau cacahan rumput. Setelah tercampur ditambah kapur dan difermentasikan kembali selama tiga sampai empat hari sesuai dengan kebutuhan. Jika dalam skala besar biasanya jangka yang diperlukan sekitar 14 sampai 21 hari. Selanjutnaya ditambahkan tepung dedak, tepung jagung, molasses (tetes tebu) dan pemberian starter (bakteri pembusuk). Strater dibuat sendiri di laboratorium tanaman hias. Perkembangan bakteri pembusuk saat ini telah berhasil dibuat dan mengembangkan sebanyak dua belas macam starter diantaranya: DMAZ® (Dekomper MAZ), STARDA® (strater Dahsyat), STARBIO® (Starter bio), STARKO® (Strater komplit), PSBB® (Phosphat solubilizing Bactery Bengkalispelarut fospat dari bengkalis) dan lai sebagainya (Windukencana, 2009). Hidayatullah (2008) meyatakan bahwa pengelolaan limbah yang kurang baik akan menjadi masalah serius pada usaha peternakan sapi perah. Bila limbah ini dikelola dengan baik dapat memberikan nilai tambah bagi peternakan tersebut. Salah satu upaya untuk mengurangi limbah adalah mengintegrasi usaha tersebut dengan beberapa usaha tersebut dengan beberapa usaha lainya, usaha pembuatan kompos, budidaya ikan, budidaya padi sawah, sehingga menjadi suatu sistem yang saling sinergis. Upaya mendukung tanaman, ternak dan ikan di lahan pertanian memiliki manfaat ekologis dan ekonomis. Laju pertumbuhan produktifitas usaha pertanian merupakan interaksi diantara berbagai faktor yang ada dalam sistem usaha tani. Teknologi alternatif diperlukan untuk memeperbaiki
48
prokditivitas lahan dan melalui teknologi sistem usaha peternakan yang menerapkan konsep produksi bersih. Iwan (2002) menyatakan bahwa kotoran sapi dapat dibuat menjadi beberapa jenis kompos yaitu curah, blok, granula dan bokhasi. Kompos sebagai pupuk organik yang berbahan kotoran sapi mempunyai beberapa kelebihan dibandingkan pupuk anorganik. Selain itu, kompos juga mempunyai prospek dan peluang yang besar untuk dipasarkan secara lebih meluas untuk mengurangi ketergantungan petani terhadap pupuk kimia. Penyediaan kompos organik yang berkelanjutan dan praktis dapat mempermudah petani untuk memanfaatkannya sebagai penyubur tanah dan tanaman pertaniannya. Isroi (2009) melakukan penelitian tentang macam-macam bentuk pupuk organik. Pupuk organik yang umum dikemas dalam bentuk granul atau dikenal dengan istilah POG (Pupuk Organik Granul). Bentuk granul dipilih karena petani sudah terbiasa dengan pupuk granul. Dalam hal ini petani mengalami masalah karena terbiasa dengan pemakaian pupuk granul yang sudah dilnilai paling sempurna dalam keseharianya. Bentuk granul juga memudahkan untuk aplikasi dan pengemasan. Salah satu kelemahan POG adalah proses produksinya yang cukup sulit. Pembuatan POG minimal harus melewati 7 tahap pembuatan. Setiap tahapan ada tingkat kesulitannya tersendiri. Isroi (2009) melakukan penelitian tentang perbandingan bentuk pupuk secara fungsional. Keunggulan POP (Pupuk Organik Pelet) bentuk alternatif pupuk organik adalah bentuk pelet. Pelet memiliki keunggulan yang sama dengan POG, yaitu: kemudahan aplikasi, pengemasan, dan transportasi. Keunggulan yang lain adalah proses pembuatan yang lebih singkat dan mudah.. Tidak adanya pupuk organik yang berbentuk pelet di pasaran merupakan salah satu pemicu utama dari dibentuknya POP ini. Tantangan POP kemungkinan adalah resistensi dari petani. Keunggulan penting POP adalah dari sisi teknik dan biaya produksi. Tahapan produksi POP sangat singkat dan sederhana. Tahapan pentingnya hanya 4 tahap saja. Jadi bisa menghemat sekitar tiga tahap. Tahapan ini juga akan berimbas pada ongkos produksi. Karena tahapannya yang sederhana dan singkat dan relatif murah. Harga POP bisa dibuat murah, kira-kira bisa 30-50% dari harga POG. Berikut adalah tahap-tahap dalam pembuatan POP (Pupuk Organik Pelet):
49
1. Pengomposan bahan mentah 2. Pencampuran dengan bahan-bahan lain 3. Pembuatan pelet 4. Pengeringan 5. Pengemasan Adapun peralatan yang dibutuhkan adalah. (Isroi, 2009) : 1. Mesin pelet 2. Pengering (jika perlu) 3. Alat-alat pendukung: a) Meja conveyor b) Pisau pemotong pelet
Gambar 2.1. Konsep mesin pres untuk pembuatan POP (Isroi, 2009)
Sugondo (2000) melakukan penelitian tentang manufaktur pelet, Di mana pelet mentah dapat dibentuk dengan pengepresan uniaksial. Pada proses ini diperlukan bahan pengikat (perekat) dan pelumas (lubricant). Pengikat dimaksudkan untuk menambah daya ikat antar partikel sehingga tidak terjadi keretakan dan laminasi. Pelumas dimaksudkan untuk mengurangi keausan dinding cetakan (die) dan meningkatkan daya geser partikel. Pelumas yang digunakan dalam peletisasi uranium dioksida ialah seng stearat dan tidak digunakan senyawa pengikat lain.
50
2. 2.
LANDASAN TEORI
2. 2. 1. Teori Pegas Untuk tipe Constant Picth ketika berada dalam keadaan diam, setiap pegas memiliki panjang alami, seperti ditunjukkan pada gambar 2.2. Jika pegas di tekan sejauh x dari panjang alami, diperlukan gaya sebesar FT (gaya tekan) yang nilainya berbanding lurus dengan x. k adalah konstanta pegas (ukuran kelenturan/elastisitas pegas) dan besarnya tetap. Ketika ditekan, pegas memberikan gaya reaksi, yang besarnya sama dengan gaya tekan tetapi arahnya berlawanan. Gaya reaksi pegas tersebut dikenal sebagai gaya pemulih. Besarnya gaya pemulih dapat dihitung dengan hukum Hooke : FP = -kx
...........................................................................
(2.1) Tanda minus menunjukkan bahwa arah gaya pemulih berlawanan arah dengan gaya tekan. Persamaan ini berlaku apabila pegas tidak ditekan sampai melewati batas elastisitasnya (x tidak sangat besar) (Riantika, 2008).
Gambar 2. 2. Macam-macam tipe pegas tekan dan Persamaan defleksi pegas (Riantika, 2008)
Dalam pembuatan komposit diperlukan suatu cetakan yang harus bersih dari kotoran dan memiliki permukaan yang halus. Untuk bahan cetakan dapat digunakan dari logam, kayu, gips, dan kaca. Pembuatan komposit dapat dilakukan dengan tiga cara yaitu (Adenholics, 2008) : 1.
Spray Up
51
Sebagai contoh: Resin/ matriks, katalis, dan filler dicampur di dalam penyemprot lalu kemudian disemprotkan ke dalam cetakan. Penyemprotan menggunakan alat-alat sprayer. 2.
Hand Lay up Sebagai contoh: menuang resin yang telah dicampur dengan filler ke dalam cetakan. Setelah itu campuran tersebut diratakan menggunakan roller. pemakaian roller juga bertujuan agar tidak adanya udara yang terjebak di dalam cetakan sehingga hasilnya bisa lebih padat.
3. Injection molding Cara yang satu ini menggunakan mesin injeksi. Sebgai contoh: Resin yang berbentuk padat dan filler dimasukkan ke dalam mesin ini lalu dengan temperatur yang telah diatur supaya resin dapat mencair semuanya kemudian diinjeksikan ke dalam cetakan.
2. 2. 2. Komposit dan Komposit Partikel Zulfia (2008) menyatakan bahwa pengertian komposit merupakan perpaduan dari dua material atau lebih yang memiliki fasa yang berbeda menjadi suatu material baru yang memiliki propertis lebih baik dari keduanya. Jika perpaduan ini terjadi dalam skala makroskopis maka disebut sebagai komposit. Zulfia (2008) menyatakan bahwa kotoran sapi yang sering digunakan sebagai material komposit adalah kotoran kering yang sudah berbentuk butiran atau berbentuk partikel. Hal ini merupakan perpaduan antar dua partikel yang berbeda antara partikel unsur padat dan kering atau disebut gabungan partikel komposit. Fungsi dari komposit partikel atau komposit yang berbentuk partikel lebih bersifat sebagai penguat (Particulate composites). Interaksi antara partikel dan matrik terjadi tidak dalam skala atomik atau molekular. Partikel seharusnya berukuran kecil dan terdistribusi merata ke segala bidang. Sebagai contoh dari large particle composite: cement sebagai matriks dan sand sebagai partikel atau gravel sebagai matriks dan sand sebagai partikel. 2. 2. 3. Biokomposit Harizamrry
(2008)
melakukan
penelitian
tentang
biokomposit.
Biokomposit adalah gabungan dari dua kata bio dan komposit. Bio itu sendiri
52
adalah suatu unsur yang berasal dari bahan-bahan organik. Sedangkan komposit yang berarti suatu material yang terdiri dari dua atau lebih material yang di gabungkan secara makro (digabungkan secara mekanis), membentuk material baru dengan sifat yang lebih baik. Jadi dapat disimpulkan secara umum, biokomposit adalah gabungan dua atau lebih material yang digabungkan secara makro namun material penggabungannya hanya material yang bersifat organik. Hal ini tentunya untuk membentuk material baru yang memiliki sifat lebih baik. Dalam prosesnya pembuatan material biokomposit hampir sama dengan proses pembuatan biomassa namun yang membedakan adalah fungsinya. Biasanya material komposit adalah material yang digunakan untuk komoditas bahan atau material komponen. Sedangkan biomassa biasanya digunakan untuk komoditas bahan bakar pemanfaatan energi alternatif.
2. 2. 4. Perekat (matrik) Vest (2003) meneliti tentang pengepresan material padat. Bahwa pada pengepresan (kompaksi) tekanan rendah membutuhkan bahan perekat untuk membantu pembentukan ikatan diantara partikel pada sampel. Penambahan pengikat yang digunakan dalam pengepresan dapat dibagi menjadi 2 jenis, yaitu bahan perekat organik dan anorganik. Bahan-bahan perekat organik antara lain: molasses, coaltar, bitumen, kanji dan resin; sedangkan bahan pengikat anorganik antara lain: tanah liat, semen, lime, dan sulphite liquior. Ozbayoglu (2003) melakukan penelitian tentang pengaruh macam-macam pengikat pada pengepresan Angouran Smithsonite Fines. Berikut adalah data pengujian pada pengepresan Angouran Smithsonite Fines pada kandungan perekat 5%, kandungan air 6%, tekanan pengepresan 200 kg/cm² dan temperatur pemanassan 100ºC sebagai berikut:
Tabel. 2. 1. Pengaruh macam-macam perekat (Kristanto, 2007). Perekat (%)
Crushing Load (kg/sampel)
53
-
144
Molasses
434
Dextrin
561
Kanji
209
Bentonit
143
Lime
141
Black cement
245 193
Na Cl
218 140
Polyvinyl Acetate
297
Peridur XC3
266
CMC
141
Hinkle dan Rosenthal (2003) menyatakan bahwa fungsi utama perekat dalam proses pengepresan adalah sebagai bahan perekat/pengikat. Dengan adanya perekat, maka sampel yang dihasilkan pemilihan jenis dan kandungan perekat yang tepat akan sangat menentukan kualitas sampel yang akan dibuat. Ada beberapa kriteria yang harus diperhatikan dalam memilih perekat yang akan digunakan sebagai pengikat, antara lain: a) Kesesuaian antara perekat dengan bahan yang akan diikat. b) Kemampuan
perekat
untuk
dapat
meningkatkan
sifat-sifat
material
pengepresan. c) Kemudahan untuk memperolehnya. d) Harga murah.
2. 2. 5. Molasses (Tetes tebu) Winoto (2009) manyatakan bahwa, tebu merupakan salah satu jenis tanaman yang hanya dapat ditanam di daerah yang memiliki iklim tropis. Perkebunan tebu di Indonesia menempati luas areal + 232 ribu hektar, yang tersebar di Medan, Lampung, Semarang, Solo, dan Makassar. Dari seluruh perkebunan tebu yang ada di Indonesia, 50% di antaranya adalah perkebunan
54
rakyat, 30% perkebunan swasta, dan hanya 20% perkebunan negara. Pada tahun 2002 produksi tebu Indonesia mencapai +2 juta ton. Tebu-tebu dari perkebunan diolah menjadi gula di pabrik-pabrik gula. Dalam proses produksi di pabrik gula, ampas tebu dihasilkan sebesar 90% dari setiap tebu yang diproses, gula yang termanfaatkan hanya 5%, sisanya berupa molasses (tetes tebu) dan air. Molasses merupakan salah satu hasil sampingan pabrik gula yang memiliki sukrosa sekitar 30 % dan gula reduksi sekitar 25 %, berupa glukosa dan fruktosa. Molasses masih dapat diolah menjadi beberapa produk lain seperti gula cair, penyedap makanan (MSG), alkohol dan dry yeast untuk roti, protein tunggal, pakan ternak, asa citric dan acetic acid alcohol. (Kristanto, 2007). Selama ini medium fermentasi yang sering digunakan untuk produksi alginat baik oleh bakteri A. Vinelandii maupun P.aerugionosa adalah media sintetis. Molasses merupakan hasil samping industri gula yang mengandung senyawa nitrogen, trace element dan kandungan gula yang cukup tinggi terutama kandungan sukrosa sekitar 34% dan kandungan total karbon sekitar 37% (Suastuti, 1998).
2. 2. 6. Proses Spray-Up Liu (2000) menyatakan bahwa dalam suatu proses pencampuran antar dua unsur yang berbeda diharapkan faktor homogenitasnya diperhatikan. Untuk menjamin homogenitas yang baik metode yang dilakukan adalah spray up dengan cara air spray assited nozzel. Sistem air assisted nozzle digunakan untuk mempercepat cairan (liquid) membentuk lapisan film atau pancaran liquid yang kemudian pecah membentuk ligament-ligament yang akhirnya menjadi dropletdroplet dan membentuk spray. Pada sistem ini energi kinetik aliran udara dari kompresor bertekanan tinggi digunakan untuk membantu memperkuat atomisasi Zulfia (2008) spray-up merupakan proses dari pembuatan komposit secara open mold menggunakan kompresor mekanik dan peralatan sprayer untuk mengumpulkan matrik dengan bahan glass reinforcement. Peralatan sprayer meliputi spray gun yang telah dimodifikasi di mana matrik cair disemprotkan menggunakan spray gun bertekanan dan disemprotkan pada cetakan. Spray-up merupakan metode yang paling efektif menciptakan pencampuran antara matrik
55
dengan dengan core atau bahan yang ingin dibuat di dalam cetakan secara homogen. Keuntungan dari metode ini adalah sederhana dan low cost, proses yang cepat, dan hasil lebih tahan lama. Adapun kekurangan dari metode ini adalah penggunaan matrik yang terlalu banyak terbuang.
Berikut contoh pembutan komposit dengan metode Spray Up : FIBER
CHOPPER-SPRAY GUN
MOLD
RESIN
Gambar 2. 3. Cetakan terbuka untuk metode spray-up (Gibson, 1994).
2. 2. 7. Proses Manufaktur Sampel Biokomposit Metode (Hand Pressed) Sumaryono (1995) menyatakan bahwa pada dasarnya semua jenis limbah biomassa dapat dibriket. Faktor yang berpengaruh pada briket biomassa adalah kandungan air, kandungan abu, densitas, volume rongga dan ukuran butir. Berdasarkan tekanan kompaksi, pemberiketan dapat dibagi menjadi 3 yaitu : ·
Kompaksi tekanan rendah (300-1000 kg/
·
Kompaksi tekanan sedang (1000-2500 kg/
·
Kompaksi tekanan tinggi (≥2500 kg/
) )
)
Sumaryono (1995) meneliti pula tentang kompaksi pada proses pengepresan (pressing), dalam kompaksi dengan tekanan tinggi dan sedang, biasanya tidak diperlukan bahan pengikat. Proses kompaksi dengan tekanan tinggi dan sedang biasanya mengguanakan teknologi screw press dan piston press. Teknologi pengepresan yang lain jarang digunakan karena tingginya biaya dan kompleksnya peralatan. Sedangkan kompaksi tekanan rendah biasanya diperlukan pengikat dan mengguanakan alat yang dioperasikan dengan tangan (hand pressed).
56
Tabel. 2.2. Perbandingan keunggulan dan kelemahan proses pengepresan/ pembriketan (Salim dkk, 1995) : No.
Proses
Keunggulan
A.
Pengepresan Alat sederhana harga relatif dengan proses murah pengepresan dapat biasa dengan motor atau tangan
B.
Pengepresan piston tanpa pemanasan
Kualitas lebih baik dari pengepresan dengan press biasa karena densitasnya lebih tinggi
C.
Pengepresan dengan screw extruder disertai panas
Tidak perlu pengarangan dahulu tidak memerlukan bahan pembantu, tidak menimbulkan asap dan bau, harga jual baik (berpeluang ekspor), mudah pengoperasianya.
Kelemahan Tidak praktis, perlu mencampur dengan perekat, perlu pengarangan dahulu, densitas rendah. Perlu pengarangan dahulu, harga mahal, sampel kurang kuat dibandingkan dengan sistem screw, sulit pemeliharaan mesin Screw mudah aus harga mahal.
Mishra (1996) melakukan penelitian tentang pengepresan biomasa, karena tekanan tinggi menjelaskan tentang mechanical interlocking dan peningkatan gaya tarik adhesi antara partikel, membentuk ikatan intermonokuler pada luasan bidang kontak. Mekanisme pengikat dibawah tekanan tinggi dapat dibagi menjadi gaya adhesi dan kohesi, gaya tarik antara partikel padat, dan ikatan penguncian (interlocking). Fiber dan partikel-partikel dapat saling mengunci sebagai hasil dari pembentukan interlocking atau ikatan tertutup. Kekuatan sampel sebagi hasil pengumpulan tergantung pada interaksi dari karakteristik material.
2. 3.
Fraksi Berat dan Pengujian Sampel Pupuk Biokomposit
2. 3. 1. Fraksi Berat Pupuk Biokomposit Fraksi berat adalah perbandingan antara berat material penyusun dengan berat pupuk biokomposit. Fraksi berat material penyusun dapat dihitung dengan persamaan: wks
(2.2)
Wpb = wm
57
2. 3. 2. Pengujian Kekuatan Tekan Dalam proses pengujian tekan sampel ditekan menggunakan alat uji Universal Testing Machine (UTM). Penekanan sampel diikuti penambahan beban sampai sampel tersebut mengalami retak awal. Retak awal dianggap sebagai kegagalan. Karena suatu sampel dianggap sudah tidak dapat menahan beban desak lebih dari beban yang menimbulkan retakan awal (ASTM D 1475, 2000). Adapun rumus yang digunakan dalam uji tekan adalah : Hitungan kuat tekan :
Cs =
L/pr² kPa 1000 =
(2.3)
(2.4)
Cs = L/pr² psi
Gambar 2. 4. Mesin UTM (Universal Testing Machine) (ASTM D 1475, 2000).
58
2. 3. 3. Pengujian Ketahanan Impak Pengujian ini mangacu pada standard pengujian Fuel Briquettes (ASTM D2677-67T), untuk ketahanan jatuh dari suatu briket dijatuhkan dari ketinggian ± 2 meter dan diamati kerusakanya. Sampel dijatuhkan berulang kali sampai hancur. Pengujian berkisar 3 sampai 6 kali jatuhan. Adapun rumus yang digunakan dalam hal ini adalah: IRI =
100 X Average Number of Drops (2.5)
Average Number of Pieces
Dari rumus ini kita dapat mengambil hasil IRI (Impack Resistance Index) untuk nilai ambang batas yang dipenuhi adalah sebesar 50 poin, jika dihitung menggunakan rumus IRI hasil dari kesepuluh sampel dapat dikatakan baik jika lebih dari nilai 50 (Physical Testing of Fuel Briquettes ,1989). 40
200
Ø3,5
Gambar 2. 5. Alat uji ketahanan impak (Physical Testing of Fuel Briquettes ,1989).
59
2. 3. 4. Pengujian Densitas Densitas suatu material merupakan perbandingan antara berat dan volume dari material tersebut. Penentuan densitas komposit dapat dilakukan dengan beberapa cara, antara lain. Penentuan densitas material komposit dengan membandingkan berat material komposit di udara dengan berat material komposit di fluida cair (ASTM D 792). ρ=
ρw . Wa
(2.6)
Wa - Ww
Membandingkan densitas aktual sampel dengan densitas teoritis campuran dengan cara perhitungan sebagai berikut: ρT =
Mm + Mks Vm + Vks
(2.7)
2. 3. 5. Uji Hancur Dalam Air Ini merupakan salah satu metode untuk water resistace dari suatu sampel briket. Pengujian water resistance dalam arti lain ialah pengujian ketahanan sampel terhadap air. Pengujian ini menggunakan metode wadah yang terisi oleh air, sampel dicelupkan kedalam wadah dan ditutup mengunakan penutup kedap udara. Dalam standard ini juga dapat digunakan untuk mengetahui seberapa cepatkah suatu sempel dapat hancur dalam air. Pertimbangan itu yang menjadi alasan mengapa standard ini digunakan dalam penelitian uji sampel pupuk biokomposit untuk dapat hancur dalam air. Uji hancur dalam air memiliki mekanisme pengujian yang hampir sama dengan pengujian water resistance. Oleh karena itu, dengan mengadopsi standard tersebut, pengujian hancur dalam air dapat dilakukan dengan cara sampel dicelupkan sampel ke dalam wadah yang telah terisi oleh air. Masukan sampel kedalam wadah yang sudah berisi air hingga tercelup sepenuhnya, dan menunggu sampel tersebut sampai sampel terkikis dan hancur di dalam air. Waktu yang diambil merupakan waktu yang dibutuhkan oleh sempel untuk hancur di dalam air. Pengujian ini sering kali dibuat sebagai pertimbangan standard pengujian untuk mampu hancur suatu sampel terhadap air, (Fuel Processing Technology, 1990).
60
BAB II DASAR TEORI
2.1. Tinjauan Pustaka Undang (2002) dalam penelitianya seekor sapi mampu menghasilkan kotoran padat dan cair 23,6 kg/hari dan 9,1 kg/hari. Seekor sapi muda yang sudah dikebiri akan memproduksi 15-30 kg kotoran/hari. Namun, kotoran sapi yang masih baru tidak dapat langsung dipakai sebagai pupuk tanaman, tetapi harus mengalami proses pengomposan terlebih dahulu. Beberapa alasan mengapa bahan organik seperti kotoran sapi perlu dikomposkan sebelum dimanfaatkan sebagai pupuk tanaman antara lain adalah: e) Bila tanah mengandung cukup udara dan air, penguraian bahan organik berlangsung cepat sehingga dapat mengganggu pertumbuhan tanaman, f) Penguraian bahan segar hanya sedikit sekali memasok humus dan unsur hara ke dalam tanah, g) Struktur bahan organik segar sangat kasar dan dayanya terhadap air kecil, sehingga bila langsung dibenamkan akan mengakibatkan tanah menjadi sangat remah, h) Kotoran sapi
tidak selalu
tersedia pada saat
diperlukan, sehingga
pembuatan kompos merupakan cara penyimpanan bahan organik sebelum digunakan sebagai pupuk.
Dalam penelitian ini digunakan kotoran sapi sisa hasil biogas. Pada kotoran ini tidak berbau lagi dikarenakan sudah diberikan bakteri pengurai seperti STARBIO®, buatan dari PT. Lembah Hijau Multifarm Solo. Serbuk pengurai limbah organik (tinja, lemak, rambut, sampah makanan dan lain-lain) yang apabila terkena air berubah menjadi miliaran mikroba yang memangsa kotoran
61
organik dalam septic tank anda serta memangsa bakteri yang mengeluarkan bau tidak sedap. STARBIO® merupakan produk terbaru teknologi canggih yang akan membantu kita mengatasi masalah kotoran ternak, septic tank /saluran limbah dengan cara baru. STARBIO® merupakan mikroba /bakteri yang berfungsi menguraikan limbah menjadi bahan asal alami yang tidak berbau. Dalam septic tank, STARBIO® bekerja memangsa endapan isi septic tank yang sudah menahun dan menguraikannya menjadi bahan alami, kembali ke tanah, tanpa bau, beracun, ramah lingkungan, Taufiq (2008). Widyawati (2006) menyatakan bahwa fungsi molasses bagi pupuk kompos adalah dapat menghambat kandungan gas metan (CH4) yang terkandung di dalam kotoran hewan ternak. Kadar metan dalam kotoran hewan merupakan unsur yang paling tidak dibutuhkan oleh tanaman. Selain itu molasses juga berfungsi mengoptimalkan sintesis protein mikroba pada tanah dan juga mampu menyediakan energi tersedia, sumber nitrogen untuk aktivitas dan pertumbuhan mikrobia dalam rumen khususnya bakteri golongan selulolitik dan hemiselulolitik tercermin dari degradasi serat kasarnya. Widyawati (2006) menyatakan bahwa pupuk berbahan dasar organik dewasa ini memang sangat digemari oleh para petani dari pada pupuk kimia lainya. Selain murah, pupuk berbahan dasar organik tidak memiliki dampak yang membahayakan bagi tanaman dan dapat menjaga bahan organik dalam tanah. Karena bahan organik tanah menjadi salah satu indikator kesehatan bagi tanah dan memiliki beberapa peranan kunci bagi kesuburan tanah. Peranan-peranan kunci bahan organik tanah dapat dikelompokkan menjadi tiga kelompok, yaitu: 4) Fungsi Biologi: menyediakan makanan dan tempat hidup (habitat) untuk organisme (termasuk mikroba) tanah menyediakan energi untuk prosesproses biologi tanah dan memberikan kontribusi pada daya pulih (resiliansi) tanah. 5) Fungsi Kimia: merupakan ukuran kapasitas retensi hara tanah penting untuk daya pulih tanah akibat perubahan PH tanah dan menyimpan cadangan hara penting, khususnya N dan K.
62
6) Fungsi Fisika: mengikat partikel-partikel tanah menjadi lebih remah untuk meningkatkan stabilitas struktur tanah dan meningkatkan kemampuan tanah dalam menyimpan air perubahahan moderate terhadap suhu tanah.
Iwan (2002) meneliti akan kandungan nitrogen (N), phospor (P) dan kalium (K) dalam kotoran sapi potong tertera pada Tabel 1.1. Hasil analisis laboratorium Lokal Penelitian Sapi Potong dan BPTP (Balai Pengkajian Teknologi Pertanian) Jawa Timur terhadap kompos organik (hi-grade) produksi Lokal Penelitian Sapi Potong. Tabel. 1.1. Kandungan unsur kimia dalam suatu kotoran sapi (Iwan, 2002)
Kotoran sapi tidak serta merta langsung bisa digunakan sebagai pupuk tanaman atau campuran media tanam karena masih mengandung gas-gas berbahaya yang bisa mematikan tanaman. Oleh karena itu, penggunaan pupuk kandang harus melalui proses pengolahan terlebih dahulu. Tahap pertama kotoran sapi difermentasikan dan dicampur dengan bahan-bahan organik seperti cacahan gedebog pisang atau cacahan rumput. Setelah tercampur ditambah kapur dan difermentasikan kembali selama tiga sampai empat hari sesuai dengan kebutuhan. Jika dalam skala besar biasanya jangka yang diperlukan sekitar 14 sampai 21 hari. Selanjutnaya ditambahkan tepung dedak, tepung jagung, molasses (tetes tebu) dan pemberian starter (bakteri pembusuk). Strater dibuat sendiri di laboratorium tanaman hias. Perkembangan bakteri pembusuk saat ini telah berhasil dibuat dan mengembangkan sebanyak dua belas macam starter diantaranya: DMAZ® (Dekomper MAZ), STARDA® (strater Dahsyat), STARBIO® (Starter bio), STARKO® (Strater komplit), PSBB® (Phosphat solubilizing Bactery Bengkalispelarut fospat dari bengkalis) dan lai sebagainya (Windukencana, 2009).
63
Hidayatullah (2008) meyatakan bahwa pengelolaan limbah yang kurang baik akan menjadi masalah serius pada usaha peternakan sapi perah. Bila limbah ini dikelola dengan baik dapat memberikan nilai tambah bagi peternakan tersebut. Salah satu upaya untuk mengurangi limbah adalah mengintegrasi usaha tersebut dengan beberapa usaha tersebut dengan beberapa usaha lainya, usaha pembuatan kompos, budidaya ikan, budidaya padi sawah, sehingga menjadi suatu sistem yang saling sinergis. Upaya mendukung tanaman, ternak dan ikan di lahan pertanian memiliki manfaat ekologis dan ekonomis. Laju pertumbuhan produktifitas usaha pertanian merupakan interaksi diantara berbagai faktor yang ada dalam sistem usaha tani. Teknologi alternatif diperlukan untuk memeperbaiki prokditivitas lahan dan melalui teknologi sistem usaha peternakan yang menerapkan konsep produksi bersih. Iwan (2002) menyatakan bahwa kotoran sapi dapat dibuat menjadi beberapa jenis kompos yaitu curah, blok, granula dan bokhasi. Kompos sebagai pupuk organik yang berbahan kotoran sapi mempunyai beberapa kelebihan dibandingkan pupuk anorganik. Selain itu, kompos juga mempunyai prospek dan peluang yang besar untuk dipasarkan secara lebih meluas untuk mengurangi ketergantungan petani terhadap pupuk kimia. Penyediaan kompos organik yang berkelanjutan dan praktis dapat mempermudah petani untuk memanfaatkannya sebagai penyubur tanah dan tanaman pertaniannya. Isroi (2009) melakukan penelitian tentang macam-macam bentuk pupuk organik. Pupuk organik yang umum dikemas dalam bentuk granul atau dikenal dengan istilah POG (Pupuk Organik Granul). Bentuk granul dipilih karena petani sudah terbiasa dengan pupuk granul. Dalam hal ini petani mengalami masalah karena terbiasa dengan pemakaian pupuk granul yang sudah dilnilai paling sempurna dalam keseharianya. Bentuk granul juga memudahkan untuk aplikasi dan pengemasan. Salah satu kelemahan POG adalah proses produksinya yang cukup sulit. Pembuatan POG minimal harus melewati 7 tahap pembuatan. Setiap tahapan ada tingkat kesulitannya tersendiri. Isroi (2009) melakukan penelitian tentang perbandingan bentuk pupuk secara fungsional. Keunggulan POP (Pupuk Organik Pelet) bentuk alternatif pupuk organik adalah bentuk pelet. Pelet memiliki keunggulan yang sama dengan
64
POG, yaitu: kemudahan aplikasi, pengemasan, dan transportasi. Keunggulan yang lain adalah proses pembuatan yang lebih singkat dan mudah.. Tidak adanya pupuk organik yang berbentuk pelet di pasaran merupakan salah satu pemicu utama dari dibentuknya POP ini. Tantangan POP kemungkinan adalah resistensi dari petani. Keunggulan penting POP adalah dari sisi teknik dan biaya produksi. Tahapan produksi POP sangat singkat dan sederhana. Tahapan pentingnya hanya 4 tahap saja. Jadi bisa menghemat sekitar tiga tahap. Tahapan ini juga akan berimbas pada ongkos produksi. Karena tahapannya yang sederhana dan singkat dan relatif murah. Harga POP bisa dibuat murah, kira-kira bisa 30-50% dari harga POG. Berikut adalah tahap-tahap dalam pembuatan POP (Pupuk Organik Pelet): 6. Pengomposan bahan mentah 7. Pencampuran dengan bahan-bahan lain 8. Pembuatan pelet 9. Pengeringan 10. Pengemasan Adapun peralatan yang dibutuhkan adalah. (Isroi, 2009) : 4. Mesin pelet 5. Pengering (jika perlu) 6. Alat-alat pendukung: c) Meja conveyor d) Pisau pemotong pelet
Gambar 2.1. Konsep mesin pres untuk pembuatan POP (Isroi, 2009)
65
Sugondo (2000) melakukan penelitian tentang manufaktur pelet, Di mana pelet mentah dapat dibentuk dengan pengepresan uniaksial. Pada proses ini diperlukan bahan pengikat (perekat) dan pelumas (lubricant). Pengikat dimaksudkan untuk menambah daya ikat antar partikel sehingga tidak terjadi keretakan dan laminasi. Pelumas dimaksudkan untuk mengurangi keausan dinding cetakan (die) dan meningkatkan daya geser partikel. Pelumas yang digunakan dalam peletisasi uranium dioksida ialah seng stearat dan tidak digunakan senyawa pengikat lain.
2. 2.
LANDASAN TEORI
2. 2. 1. Teori Pegas Untuk tipe Constant Picth ketika berada dalam keadaan diam, setiap pegas memiliki panjang alami, seperti ditunjukkan pada gambar 2.2. Jika pegas di tekan sejauh x dari panjang alami, diperlukan gaya sebesar FT (gaya tekan) yang nilainya berbanding lurus dengan x. k adalah konstanta pegas (ukuran kelenturan/elastisitas pegas) dan besarnya tetap. Ketika ditekan, pegas memberikan gaya reaksi, yang besarnya sama dengan gaya tekan tetapi arahnya berlawanan. Gaya reaksi pegas tersebut dikenal sebagai gaya pemulih. Besarnya gaya pemulih dapat dihitung dengan hukum Hooke : FP = -kx
...........................................................................
(2.1) Tanda minus menunjukkan bahwa arah gaya pemulih berlawanan arah dengan gaya tekan. Persamaan ini berlaku apabila pegas tidak ditekan sampai melewati batas elastisitasnya (x tidak sangat besar) (Riantika, 2008).
66
Gambar 2. 2. Macam-macam tipe pegas tekan dan Persamaan defleksi pegas (Riantika, 2008)
Dalam pembuatan komposit diperlukan suatu cetakan yang harus bersih dari kotoran dan memiliki permukaan yang halus. Untuk bahan cetakan dapat digunakan dari logam, kayu, gips, dan kaca. Pembuatan komposit dapat dilakukan dengan tiga cara yaitu (Adenholics, 2008) : 1.
Spray Up Sebagai contoh: Resin/ matriks, katalis, dan filler dicampur di dalam penyemprot lalu kemudian disemprotkan ke dalam cetakan. Penyemprotan menggunakan alat-alat sprayer.
2.
Hand Lay up Sebagai contoh: menuang resin yang telah dicampur dengan filler ke dalam cetakan. Setelah itu campuran tersebut diratakan menggunakan roller. pemakaian roller juga bertujuan agar tidak adanya udara yang terjebak di dalam cetakan sehingga hasilnya bisa lebih padat.
3. Injection molding Cara yang satu ini menggunakan mesin injeksi. Sebgai contoh: Resin yang berbentuk padat dan filler dimasukkan ke dalam mesin ini lalu dengan temperatur yang telah diatur supaya resin dapat mencair semuanya kemudian diinjeksikan ke dalam cetakan.
2. 2. 2. Komposit dan Komposit Partikel Zulfia (2008) menyatakan bahwa pengertian komposit merupakan perpaduan dari dua material atau lebih yang memiliki fasa yang berbeda menjadi suatu material baru yang memiliki propertis lebih baik dari keduanya. Jika perpaduan ini terjadi dalam skala makroskopis maka disebut sebagai komposit. Zulfia (2008) menyatakan bahwa kotoran sapi yang sering digunakan sebagai material komposit adalah kotoran kering yang sudah berbentuk butiran atau berbentuk partikel. Hal ini merupakan perpaduan antar dua partikel yang berbeda antara partikel unsur padat dan kering atau disebut gabungan partikel
67
komposit. Fungsi dari komposit partikel atau komposit yang berbentuk partikel lebih bersifat sebagai penguat (Particulate composites). Interaksi antara partikel dan matrik terjadi tidak dalam skala atomik atau molekular. Partikel seharusnya berukuran kecil dan terdistribusi merata ke segala bidang. Sebagai contoh dari large particle composite: cement sebagai matriks dan sand sebagai partikel atau gravel sebagai matriks dan sand sebagai partikel. 2. 2. 3. Biokomposit Harizamrry
(2008)
melakukan
penelitian
tentang
biokomposit.
Biokomposit adalah gabungan dari dua kata bio dan komposit. Bio itu sendiri adalah suatu unsur yang berasal dari bahan-bahan organik. Sedangkan komposit yang berarti suatu material yang terdiri dari dua atau lebih material yang di gabungkan secara makro (digabungkan secara mekanis), membentuk material baru dengan sifat yang lebih baik. Jadi dapat disimpulkan secara umum, biokomposit adalah gabungan dua atau lebih material yang digabungkan secara makro namun material penggabungannya hanya material yang bersifat organik. Hal ini tentunya untuk membentuk material baru yang memiliki sifat lebih baik. Dalam prosesnya pembuatan material biokomposit hampir sama dengan proses pembuatan biomassa namun yang membedakan adalah fungsinya. Biasanya material komposit adalah material yang digunakan untuk komoditas bahan atau material komponen. Sedangkan biomassa biasanya digunakan untuk komoditas bahan bakar pemanfaatan energi alternatif.
2. 2. 4. Perekat (matrik) Vest (2003) meneliti tentang pengepresan material padat. Bahwa pada pengepresan (kompaksi) tekanan rendah membutuhkan bahan perekat untuk membantu pembentukan ikatan diantara partikel pada sampel. Penambahan pengikat yang digunakan dalam pengepresan dapat dibagi menjadi 2 jenis, yaitu bahan perekat organik dan anorganik. Bahan-bahan perekat organik antara lain: molasses, coaltar, bitumen, kanji dan resin; sedangkan bahan pengikat anorganik antara lain: tanah liat, semen, lime, dan sulphite liquior. Ozbayoglu (2003) melakukan penelitian tentang pengaruh macam-macam pengikat pada pengepresan Angouran Smithsonite Fines. Berikut adalah data
68
pengujian pada pengepresan Angouran Smithsonite Fines pada kandungan perekat 5%, kandungan air 6%, tekanan pengepresan 200 kg/cm² dan temperatur pemanassan 100ºC sebagai berikut:
Tabel. 2. 1. Pengaruh macam-macam perekat (Kristanto, 2007). Perekat (%)
Crushing Load (kg/sampel)
-
144
Molasses
434
Dextrin
561
Kanji
209
Bentonit
143
Lime
141
Black cement
245 193
Na Cl
218 140
Polyvinyl Acetate
297
Peridur XC3
266
CMC
141
Hinkle dan Rosenthal (2003) menyatakan bahwa fungsi utama perekat dalam proses pengepresan adalah sebagai bahan perekat/pengikat. Dengan adanya perekat, maka sampel yang dihasilkan pemilihan jenis dan kandungan perekat yang tepat akan sangat menentukan kualitas sampel yang akan dibuat. Ada beberapa kriteria yang harus diperhatikan dalam memilih perekat yang akan digunakan sebagai pengikat, antara lain: e) Kesesuaian antara perekat dengan bahan yang akan diikat. f) Kemampuan
perekat
untuk
dapat
pengepresan. g) Kemudahan untuk memperolehnya.
meningkatkan
sifat-sifat
material
69
h) Harga murah.
2. 2. 5. Molasses (Tetes tebu) Winoto (2009) manyatakan bahwa, tebu merupakan salah satu jenis tanaman yang hanya dapat ditanam di daerah yang memiliki iklim tropis. Perkebunan tebu di Indonesia menempati luas areal + 232 ribu hektar, yang tersebar di Medan, Lampung, Semarang, Solo, dan Makassar. Dari seluruh perkebunan tebu yang ada di Indonesia, 50% di antaranya adalah perkebunan rakyat, 30% perkebunan swasta, dan hanya 20% perkebunan negara. Pada tahun 2002 produksi tebu Indonesia mencapai +2 juta ton. Tebu-tebu dari perkebunan diolah menjadi gula di pabrik-pabrik gula. Dalam proses produksi di pabrik gula, ampas tebu dihasilkan sebesar 90% dari setiap tebu yang diproses, gula yang termanfaatkan hanya 5%, sisanya berupa molasses (tetes tebu) dan air. Molasses merupakan salah satu hasil sampingan pabrik gula yang memiliki sukrosa sekitar 30 % dan gula reduksi sekitar 25 %, berupa glukosa dan fruktosa. Molasses masih dapat diolah menjadi beberapa produk lain seperti gula cair, penyedap makanan (MSG), alkohol dan dry yeast untuk roti, protein tunggal, pakan ternak, asa citric dan acetic acid alcohol. (Kristanto, 2007). Selama ini medium fermentasi yang sering digunakan untuk produksi alginat baik oleh bakteri A. Vinelandii maupun P.aerugionosa adalah media sintetis. Molasses merupakan hasil samping industri gula yang mengandung senyawa nitrogen, trace element dan kandungan gula yang cukup tinggi terutama kandungan sukrosa sekitar 34% dan kandungan total karbon sekitar 37% (Suastuti, 1998).
2. 2. 6. Proses Spray-Up Liu (2000) menyatakan bahwa dalam suatu proses pencampuran antar dua unsur yang berbeda diharapkan faktor homogenitasnya diperhatikan. Untuk menjamin homogenitas yang baik metode yang dilakukan adalah spray up dengan cara air spray assited nozzel. Sistem air assisted nozzle digunakan untuk mempercepat cairan (liquid) membentuk lapisan film atau pancaran liquid yang kemudian pecah membentuk ligament-ligament yang akhirnya menjadi droplet-
70
droplet dan membentuk spray. Pada sistem ini energi kinetik aliran udara dari kompresor bertekanan tinggi digunakan untuk membantu memperkuat atomisasi Zulfia (2008) spray-up merupakan proses dari pembuatan komposit secara open mold menggunakan kompresor mekanik dan peralatan sprayer untuk mengumpulkan matrik dengan bahan glass reinforcement. Peralatan sprayer meliputi spray gun yang telah dimodifikasi di mana matrik cair disemprotkan menggunakan spray gun bertekanan dan disemprotkan pada cetakan. Spray-up merupakan metode yang paling efektif menciptakan pencampuran antara matrik dengan dengan core atau bahan yang ingin dibuat di dalam cetakan secara homogen. Keuntungan dari metode ini adalah sederhana dan low cost, proses yang cepat, dan hasil lebih tahan lama. Adapun kekurangan dari metode ini adalah penggunaan matrik yang terlalu banyak terbuang.
Berikut contoh pembutan komposit dengan metode Spray Up : FIBER
CHOPPER-SPRAY GUN
MOLD
RESIN
Gambar 2. 3. Cetakan terbuka untuk metode spray-up (Gibson, 1994).
2. 2. 7. Proses Manufaktur Sampel Biokomposit Metode (Hand Pressed) Sumaryono (1995) menyatakan bahwa pada dasarnya semua jenis limbah biomassa dapat dibriket. Faktor yang berpengaruh pada briket biomassa adalah kandungan air, kandungan abu, densitas, volume rongga dan ukuran butir. Berdasarkan tekanan kompaksi, pemberiketan dapat dibagi menjadi 3 yaitu : ·
Kompaksi tekanan rendah (300-1000 kg/
·
Kompaksi tekanan sedang (1000-2500 kg/
·
Kompaksi tekanan tinggi (≥2500 kg/
)
) )
71
Sumaryono (1995) meneliti pula tentang kompaksi pada proses pengepresan (pressing), dalam kompaksi dengan tekanan tinggi dan sedang, biasanya tidak diperlukan bahan pengikat. Proses kompaksi dengan tekanan tinggi dan sedang biasanya mengguanakan teknologi screw press dan piston press. Teknologi pengepresan yang lain jarang digunakan karena tingginya biaya dan kompleksnya peralatan. Sedangkan kompaksi tekanan rendah biasanya diperlukan pengikat dan mengguanakan alat yang dioperasikan dengan tangan (hand pressed).
Tabel. 2.2. Perbandingan keunggulan dan kelemahan proses pengepresan/ pembriketan (Salim dkk, 1995) : No.
Proses
Keunggulan
A.
Pengepresan Alat sederhana harga relatif dengan proses murah pengepresan dapat biasa dengan motor atau tangan
B.
Pengepresan piston tanpa pemanasan
Kualitas lebih baik dari pengepresan dengan press biasa karena densitasnya lebih tinggi
C.
Pengepresan dengan screw extruder disertai panas
Tidak perlu pengarangan dahulu tidak memerlukan bahan pembantu, tidak menimbulkan asap dan bau, harga jual baik (berpeluang ekspor), mudah pengoperasianya.
Kelemahan Tidak praktis, perlu mencampur dengan perekat, perlu pengarangan dahulu, densitas rendah. Perlu pengarangan dahulu, harga mahal, sampel kurang kuat dibandingkan dengan sistem screw, sulit pemeliharaan mesin Screw mudah aus harga mahal.
Mishra (1996) melakukan penelitian tentang pengepresan biomasa, karena tekanan tinggi menjelaskan tentang mechanical interlocking dan peningkatan gaya tarik adhesi antara partikel, membentuk ikatan intermonokuler pada luasan bidang kontak. Mekanisme pengikat dibawah tekanan tinggi dapat dibagi menjadi gaya adhesi dan kohesi, gaya tarik antara partikel padat, dan ikatan penguncian (interlocking). Fiber dan partikel-partikel dapat saling mengunci sebagai hasil dari pembentukan interlocking atau ikatan tertutup. Kekuatan sampel sebagi hasil pengumpulan tergantung pada interaksi dari karakteristik material.
72
2. 3.
Fraksi Berat dan Pengujian Sampel Pupuk Biokomposit
2. 3. 1. Fraksi Berat Pupuk Biokomposit Fraksi berat adalah perbandingan antara berat material penyusun dengan berat pupuk biokomposit. Fraksi berat material penyusun dapat dihitung dengan persamaan: wks
(2.2)
Wpb = wm
2. 3. 2. Pengujian Kekuatan Tekan Dalam proses pengujian tekan sampel ditekan menggunakan alat uji Universal Testing Machine (UTM). Penekanan sampel diikuti penambahan beban sampai sampel tersebut mengalami retak awal. Retak awal dianggap sebagai kegagalan. Karena suatu sampel dianggap sudah tidak dapat menahan beban desak lebih dari beban yang menimbulkan retakan awal (ASTM D 1475, 2000). Adapun rumus yang digunakan dalam uji tekan adalah : Hitungan kuat tekan :
Cs =
L/pr² kPa 1000 =
Cs = L/pr² psi
(2.3)
(2.4)
73
Gambar 2. 4. Mesin UTM (Universal Testing Machine) (ASTM D 1475, 2000).
2. 3. 3. Pengujian Ketahanan Impak Pengujian ini mangacu pada standard pengujian Fuel Briquettes (ASTM D2677-67T), untuk ketahanan jatuh dari suatu briket dijatuhkan dari ketinggian ± 2 meter dan diamati kerusakanya. Sampel dijatuhkan berulang kali sampai hancur. Pengujian berkisar 3 sampai 6 kali jatuhan. Adapun rumus yang digunakan dalam hal ini adalah: IRI =
100 X Average Number of Drops Average Number of Pieces
(2.5)
Dari rumus ini kita dapat mengambil hasil IRI (Impack Resistance Index) untuk nilai ambang batas yang dipenuhi adalah sebesar 50 poin, jika dihitung menggunakan rumus IRI hasil dari kesepuluh sampel dapat dikatakan baik jika lebih dari nilai 50 (Physical Testing of Fuel Briquettes ,1989).
74
40
200
Ø3,5
Gambar 2. 5. Alat uji ketahanan impak (Physical Testing of Fuel Briquettes ,1989).
2. 3. 4. Pengujian Densitas Densitas suatu material merupakan perbandingan antara berat dan volume dari material tersebut. Penentuan densitas komposit dapat dilakukan dengan beberapa cara, antara lain. Penentuan densitas material komposit dengan membandingkan berat material komposit di udara dengan berat material komposit di fluida cair (ASTM D 792). ρ=
ρw . Wa
(2.6)
Wa - Ww
Membandingkan densitas aktual sampel dengan densitas teoritis campuran dengan cara perhitungan sebagai berikut: ρT =
Mm + Mks Vm + Vks
(2.7)
75
2. 3. 5. Uji Hancur Dalam Air Ini merupakan salah satu metode untuk water resistace dari suatu sampel briket. Pengujian water resistance dalam arti lain ialah pengujian ketahanan sampel terhadap air. Pengujian ini menggunakan metode wadah yang terisi oleh air, sampel dicelupkan kedalam wadah dan ditutup mengunakan penutup kedap udara. Dalam standard ini juga dapat digunakan untuk mengetahui seberapa cepatkah suatu sempel dapat hancur dalam air. Pertimbangan itu yang menjadi alasan mengapa standard ini digunakan dalam penelitian uji sampel pupuk biokomposit untuk dapat hancur dalam air. Uji hancur dalam air memiliki mekanisme pengujian yang hampir sama dengan pengujian water resistance. Oleh karena itu, dengan mengadopsi standard tersebut, pengujian hancur dalam air dapat dilakukan dengan cara sampel dicelupkan sampel ke dalam wadah yang telah terisi oleh air. Masukan sampel kedalam wadah yang sudah berisi air hingga tercelup sepenuhnya, dan menunggu sampel tersebut sampai sampel terkikis dan hancur di dalam air. Waktu yang diambil merupakan waktu yang dibutuhkan oleh sempel untuk hancur di dalam air. Pengujian ini sering kali dibuat sebagai pertimbangan standard pengujian untuk mampu hancur suatu sampel terhadap air, (Fuel Processing Technology, 1990).
BAB IV HASIL DAN ANALISA
4. 1. Penyeragaman Kadar Air Pupuk Biokomposit Dari analisa data penyeragaman kadar air pada suhu 100°C dapat diperoleh hasil seperti pada gambar 4.1.
76
Molasses Molasses Molasses Molasses
Gambar 4.1. Kurva laju peyeragaman sampel pupuk biokomposit
Persentase kadar air yang terkandung dalam masing-masing variasi komposisi kadar air adalah berbeda-beda. Perolehan persentase kadar air maksimal dan waktu penyeragaman kadar air sebesar 7,5% dari keempat sampel adalah: ·
Untuk sampel dengan kandungan 50% molasses memiliki kadar air maksimal sebesar 30% dan waktu penyeragaman sampel sebesar 65 menit.
·
Untuk sampel dengan kandungan 40% molasses memiliki kadar air maksimal sebesar 25% dan waktu penyeragaman sampel sebesar 40 menit.
·
Untuk sampel dengan kandungan 30% molasses memiliki kadar air maksimal sebesar 20% dan waktu penyeragaman sampel sebesar 28 menit.
·
Untuk sampel dengan kandungan 20% molasses memiliki kadar air maksimal sebesar 17% dan waktu penyeragaman sampel sebesar 24 menit.
Penurunan kadar air dari masing-masing variasi kandungan molasses pada sampel dipengaruhi adanya pemanasan suhu sebesar 100°C. Perbedaan waktu penyeragaman kadar air disebakan oleh zat penyusun utama dari molasses adalah air. Oleh karena itu, besarnya kandungan molasses mempengaruhi waktu kecepatan penyeragaman kadar air. Semakin besar kandungan molasses akan semakin memperlambat waktu kecepatan penyeragaman kadar air dari sampel pupuk biokomposit. Sebaliknya, semakin sedikit kandungan molasses akan
77
semakin cepat waktu kecepatan penyeragaman kadar air dari sampel pupuk biokomposit.
A B C D
Gambar 4.2. Sampel pupuk biokomposit setelah melalui tahap penyeragaman kadar air 7.5% : A) 50:50, B) 60:40, C) 70:30, D) 80:20 (wk/wm).
4. 2. Kekuatan Tekan Pupuk Biokomposit Dari pengujian tekan untuk variasi kandungan molasses pupuk biokomposit dapat diperoleh hasil seperti terlihat pada gambar 4.3.
Tabel 4.1. Kekuatan tekan dari variasi kandungan molasses sampel pupuk biokomposit Variasi Kandungan Molasses 20% 30% 40% 50%
Tekanan Rata-rata Sampel (Pa) 1.800 2.190 3.710 5.380
Tekanan Maksimal Sampel (Pa) 1.900 2.300 4.150 6.100
Tekanan Minimal Sampel (Pa) 1.700 1.900 3.500 4.700
78
Variasi Kandungan Molasses
Gambar 4.3. Kurva hubungan variasi kandungan molasses dengan kekuatan tekan
Variasi kandungan molasses pada penekanan seragam 250 kPa dari masingmasing sampel memiliki kekuatan tekan yang berbeda-beda. Untuk nilai sampel pupuk biokomposit dengan kandungan 20% molasses memiliki kekuatan tekan rata-rata terendah yaitu sebesar 1.800 Pa. Sampel pupuk biokomposit dengan kandungan 50% molasses memiliki kekuatan tekan rata-rata tertinggi yaitu sebesar 5.380 Pa. Semakin besar kandungan molesses akan semakin tinggi kekuatan tekan dari sampel pupuk biokomposit. Karena molasses lebih bersifat liquid dan mampu membuat ikatan homogen diseluruh luasan bidang kontak yang terkena molasses. Oleh karena itu, molasses sangat baik bila digunakan sebagai matrik (penguat) pada bahan-bahan yang bersifat komposit partikel. Penambahan kadungan molasses akan semakin meningkatkan nilai kekuatan tekan dari sampel pupuk biokomposit. Pengujian tekan pupuk biokomposit variasi kompaksi dapat diperoleh hasil seperti terlihat pada gambar 4.4. Tabel 4. 2. Kekuatan tekan sampel pupuk biokomposit dengan variasi kompaksi Variasi Kompaksi (kPa) 50
Besar Tekanan Rata-rata Sampel (Pa) 2.930
Besar Tekanan maksimal (Pa) 3.200
Besar Tekanan minimal (Pa) 2.500
79
150 250 350
4.370 5.380 6.250
4.850 6.100 6.600
3.950 5.000 5.600
Gambar 4.4. Kurva hubungan variasi kompaksi dengan kekuatan tekan sampel pupuk biokomposit
Kandungan 50% molasses pada variasi kompaksi untuk masing-masing sampel memiliki nilai kekuatan tekan yang berbeda-beda. Dalam pengambilan data variasi kompaksi untuk sampel pupuk biokomposit sebesar 50 kPa memiliki kekuatan tekan rata-rata terendah yaitu sebesar 2.930 Pa. Untuk sampel pupuk biokomposit dengan variasi kompaksi sebesar 350 kPa memiliki kekuatan tekan rata-rata terbesar yaitu sebesar 6.250 Pa. Dari data dapat diambil kesimpulan bahwa kenaikan kekuatan tekan berbanding lurus dengan besarnya kompaksi yang diterima oleh sampel. Jadi semakin besar kompaksi akan meningkatkan kekuatan tekan dari sampel pupuk biokomposit. Hal ini bisa terjadi karena variasi kompaksi membuat kepadatan sampel semakin tinggi. Gaya kompaksi menjelaskan tentang mechanical interlocking dan peningkatan gaya tarik adhesi antara partikel, membentuk ikatan intermonokuler pada luasan bidang kontak. Kompaksi dapat memperkuat ikatan antar butir penyusun sampel dan memperkecil adanya kekosongan antar partikel.
4. 3.
Ketahanan Impak Pupuk Biokomposit
80
Pengujian ketahanan impak sampel pupuk biokomposit. Hasil ketahanan impak untuk variasi kadungan molasses dapat dilihat pada gambar 4.5. Tabel 4. 3. Ketahanan impak sampel pupuk biokomposit terhadap variasi kandungan molasses
No. 1 2 3 4
Variasi Kandungan Molasses 20 % 30 % 40 % 50 %
Banyaknya Nilai Jatuh 6 7 11 22
Banyaknya Sampel 19 19 19 19
IRI (Poin) 31,57 36,84 57,89 115,79
Variasi Kandungan Molasses
Gambar 4.5. Kurva hubungan variasi kandungan molasses dengan ketahanan impak (IRI) poin pupuk biokomposit
Ketahanan suatu sampel pupuk biokomposit ditunjukan dengan nilai IRI poin (impack resistance indect). Untuk variasi kandungan molasses pada masingmasing sampel menunjukan nilai ketahanan impak yang berbeda-beda. Untuk nilai IRI poin pada sampel pupuk biokomposit dengan kandungan 50% molasses menunjukan nilai terendah sebesar 31,57. Sedangkan untuk sampel pupuk biokomposit dengan kandungan 20% molasses menunjukan nilai ketahanan impak terbesar yaitu sebesar 115,79. Dari perolehan data terlihat semakin besar kandungan molasses akan semakin besar nilai ketahanan impak dari suatu sampel. Karena molasses lebih bersifat liquid dan mampu membuat ikatan homogen diseluruh luasan bidang kontak yang terkena molasses. Oleh karena itu, molasses sangat baik bila
81
digunakan sebagai matrik (penguat) untuk bahan-bahan yang bersifat komposit partikel. Penambahan kandungan molasses dapat meningkatkan nilai ketahanan impak sampel pupuk biokomposit. Pengujian ketahanan impak dengan variasi kompaksi sampel pupuk biokomposit hasilnya dapat dilihat pada gambar 4.6. Tabel 4. 4. Ketahanan impak sampel pupuk biokomposit terhadap variasi kompaksi
No. 1 2 3 4
Variasi Kompaksi (kPa) 50 150 250 350
Banyaknya Nilai Jatuh 7 14 22 32
Banyaknya Sampel 19 19 19 19
IRI (Poin) 14,99 73,68 115,78 168,42
Variasi Kompaksi
Gambar 4.6. Kurva hubungan variasi kompaksi dengan nilai ketahanan impak (IRI) poin pupuk biokomposit
Kandungan 50% molasses variasi kompaksi pada masing-masing sampel menunjukan nilai ketahanan impak yang berbeda-beda. Nilai ketahanan impak untuk sampel pupuk biokomposit dengan variasi kompaksi 50 kPa memiliki nilai ketahanan impak terendah sebesar 14,99. Sedangkan untuk sampel pupuk biokomposit dengan variasi kompaksi 350 kPa memiliki nilai ketahanan impak terbesar yaitu sebesar 168,42. Pada kompaksi 150 kPa - 350 kPa memiliki nilai yang sudah melebihi dari ambang batas ketahanan impak (50 poin) nilainya adalah 73,68 – 168,42. Pada
82
sampel dengan kompaksi 50 kPa memiliki nilai di bawah nilai ambang batas ketahanan impak, jadi pada kompaksi ini dinilai tidak baik. Peningkatan nilai ketahanan impak sebanding dengan besarnya kompaksi pada sampel pupuk biokomposit. Hal ini terjadi karena adanya mechanical interlocking dan peningkatan gaya tarik adhesi antara partikel, membentuk ikatan intermonokuler pada luasan bidang kontak. Sehingga kompaksi dapat memperkuat ikatan antar butir penyusun sampel dan memperkecil adanya kekosongan antar partikel. Sehingga nilai ketahanan impaknya akan semakin meningkat seiring dengan besarnya kompaksi yang diterima oleh sampel pupuk biokomposit.
4. 4. Densitas Pupuk Biokomposit Densitas teoritis dari molasses adalah 11,9 pound/galon atau 1.425,90 kg/m³ dan densitas teoritis dari kotoran sapi adalah 1.238,17 kg/m³. Perbandingan antara densitas teoritis campuran antara kotoran sapi dan molasses dengan densitas aktual sampel pupuk biokomposit adalah: Tabel 4. 5. Perbandingan densitas aktual sampel pupuk biokomposit variasi kandungan molasses terhadap densitas teoritis campuran Variasi Kandungan Molasses 20% 30% 40% 50%
Nilai Densitas Aktual Sampel (kg/m³) 946,92 1.043,84 1.056,75 1.070,68
Nilai Densitas Teoritis (kg/m³) 1.271 1.288 1.306 1.325
Untuk perbandingan densitas variasi kandungan molasses sampel pupuk biokomposit dengan densitas teoritis dari campuran kotoran sapi dengan molasses dapat dilihat pada gambar 4.7.
83
Densitas Aktual Sampel Variasi kandungan Densitas Teoritis Tiap Variasi Kandungan
Variasi Kandungan Molasses
Gambar 4.7. Kurva hubungan nilai densitas sampel pupuk biokomposit variasi kandungan molasses kompaksi 250 kPa berbanding densitas teoritis campuran
Untuk tiap-tiap sampel variasi kandungan molasses pada tekanan seragam 250 kPa memiliki nilai densitas yang berbeda-beda. Sampel pupuk biokomposit dengan variasi kandungan 20% molasses memiliki nilai densitas rata-rata terendah yaitu 946,92 kg/m³, sedangkan pada perhitungan teoritis mencapai 1.271 kg/m³. Sampel pupuk biokomposit dengan variasi kandungan 50% molasses memiliki nilai densitas rata-rata terbesar yaitu 1.070,68 kg/m³, sedangkan pada perhitungan teoritis mencapai 1.325 kg/m³. Kenaikan nilai densitas rata-rata berbanding lurus dengan besarnya kandungan molasses pada sampel pupuk biokomposit. Karena molasses yang lebih bersifat liquid dan mampu membuat ikatan homogen diseluruh luasan bidang kontak yang terkena molasses. Namun, untuk perolehan nilai densitas sampel sangatlah jauh lebih rendah jika dibandingkan dengan densitas teoritis campuran kotoran sapi dengan molasses. Dapat disimpulkan bahwa kepadatan pada masing-masing sampel kurang optimal. Hal ini disebabkan oleh adanya proses penyeragaman kadar air yang menyebakan hilangnya beberapa komponen air yang ada pada material sampel pupuk biokomposit. Air yang terlepas menyebabkan adanya void/porositas baik pada bagian dalam ataupun dibagian luar sampel dan terisi oleh udara. Selain itu besarnya gaya kompaksi juga sangat mempengaruhi kepadatan sampel pupuk biokomposi. Nilai kompaksi yang kicil menyebabkan kepadatan sampel yang tidak sempurna. Hal ini menyebabkan kotoran sapi dan molasses tidak dapat terikat secara sempurna.
84
Pengujian densitas teoritis untuk campuran sampel pupuk biokomposit kandungan 50% molasses dengan densitas pupuk biokomposit variasi kompaksi dapat dilihat pada gambar 4.8. Tabel 4. 6. Densitas sampel pupuk biokomposit terhadap variasi kompaksi Variasi Kompaksi (kPa) 50 150 250 350
Nilai Densitas Rata-rata (kg/m3) 1.045,05 1.064,11 1.069,18 1.108,24
Nilai Densitas Maksimal (kg/m³) 1.051,98 1.066,50 1.096,77 1.114,28
Nilai Densitas Minimal (kg/m³) 1.039,59 1.060,75 1.035,78 1.096,79
Perbandingan densitas teoritis untuk campuran sampel pupuk biokomposit kandungan 50% molasses dengan densitas pupuk biokomposit variasi kompaksi dapat dilihat pada gambar 4.8.
Densitas Aktual Sampel Pada Molasses 50% Densitas Teoritis Pupuk Biokomposit
Gambar 4.8. Kurva perbandingan densitas sampel pupuk biokomposit variasi kompaksi untuk kandungan 50% molasess dengan nilai densitas teoritis campuran Sampel dengan kandungan 50% molasses pada masing-masing sampel untuk variasi kompaksi memiliki nilai densitas yang berbeda-beda. Dari pengambilan data untuk kompaksi sebesar 50 kPa memiliki nilai densitas rata-rata terendah yaitu 1.045,05 kg/m³. Pada sampel pupuk biokomposit dengan variasi kompaksi sebesar 350 kPa memiliki nilai densitas rata-rata terbesar yaitu 1.108,24 kg/m³. Namun, nilai terbesar untuk variasi kompaksi masih di bawah nilai densitas teoritis campuran antara kotoran sapi dengan molasses yaitu 1.325 kg/m³.
85
Ikatan intermonokuler pada bidang kontak dapat semakin kuat terjadi seiring dengan bertambah besarnya kompaksi yang diterima oleh sampel pupuk biokomposit. Namun, apabila nilai densitas sampel dibandingkan dengan nilai densitas teoritis campuran akan menunjukan perbedaan yang sangat jelas. Selain disebabkan oleh adanya proses penyeragaman kadar air, variasi kompaksi yang kurang besar menyebabkan kepadatan sampel yang tidak sempurna. Hal ini menyebabkan kotoran sapi dan molasses tidak dapat terikat secara sempurna. Adanya void/porositas baik di bagian dalam ataupun di bagian luar sampel merupakan salah satuidikasi utama dari ketidak sempurnaan gaya kompaksi.
4. 5. Pengujian Hancur Dalam Air Untuk Sampel Pupuk Biokomposit Pengujian hancur dalam air pada variasi kandungan molasses sampel pupuk biokomposit dapat dilihat pada gambar 4.9. Tabel 4. 7. Waktu hancur dalam air untuk sampel pupuk biokomposit terhadap variasi kandungan molasses.
No. 1. 2. 3. 4.
Variasi Kandungan Molasses 20% 30% 40% 50%
Waktu Hancur Rata-rata (detik) 59,8 87,4 167,4 197,8
Waktu Hancur Maksimal (detik) 90 110 210 242
Waktu Hancur Minimal (detik) 38 57 97 150
86 Gambar 4. 9. Kurva hubungan variasi kandungan molasses dengan waktu hancur sampel pupuk biokomposit Variasi kandungan molasses pada penekanan seragam 250 kPa untuk masingmasing sampel memiliki kecepatan waktu hancur yang berbeda-beda. Dari pegujian hancur dalam air untuk sampel pupuk biokomposit dengan kandungan 20% molasses memiliki waktu hancur rata-rata terendah yaitu sebesar 59,8 detik. Untuk sampel pupuk biokomposit dengan kandungan 50% molasses memiliki waktu hancur rata-rata terlama yaitu sebesar 197,8 detik. Dari data pengujian hancur dalam air didapat waktu yang semakin meningkat seiring dengan kenaikan kandungan molasses. Karena molasses yang bersifat sebagai perekat memiliki fungsi yang berkebalikan dengan kemampuan sampel pupuk biokomposit untuk mudah hancur dalam air. Jadi semakin besar kandungan molasses akan semakin kuat sampel pupuk biokomposit tersebut dan semakin sulit hancur dalam air. Pengujian hancur dalam air variasi kompaksi sampel pupuk biokomposit dapat dilihat pada gambar 4.10.
Tabel 4. 8. Waktu hancur dalam air terhadap sampel pupuk biokomposit variasi kompaksi
No. 1. 2. 3. 4.
Variasi Kompaksi (kPa) 50 150 250 350
Waktu Hancur Rata-rata (detik) 75,8 180,4 197,8 453,2
Waktu Hancur Maksimal (detik) 126 231 242 599
Waktu Hancur Minimal (detik) 42 118 150 371
87
Gambar 4.10. Kurva hubungan variasi kompaksi dengan waktu hancur dalam air sampel pupuk biokomposit
Variasi kompaksi dengan kandungan 50% molasses pada masing-masing sampel memiliki waktu hancur dalam air yang berbeda-beda. Dari data pegujian hancur dalam air untuk sampel dengan variasi kompaksi sebesar 50 kPa memiliki waktu hancur ratarata tercepat yaitu 75,8 detik. Sampel dengan variasi kompaksi sebesar 350 kPa memiliki waktu hancur rata-rata terlama yaitu terlama yaitu 453,8 detik. Dari data terlihat bahwa semakin besar kompaksi yang diterima sampel pupuk biokomposit akan semakin sulit sampel tersebut hancur dalam air. Karena gaya kompaksi yang mengenai bidang kontak sampel pupuk biokomposit membentuk ikatan itermonokuler antara perekat molasses dan butiran kotoran sapi. Semakin besar kompaksi akan semakin memperkuat ikatan antar butir penyusun sampel. Besarnya kompaksi juga dapat memperkecil adanya kekosongan antar partikel dan menyebabkan sampel semakin padat.
4. 6. Analisa Foto Makro Sampel Pupuk Biokomposit Pada Uji Tekan Analisa foto makro sampel pupuk biokomposit variasi kandungan molasses setelah melalui uji tekan adalah:
88 (a) Sampel pupuk biokomposit dengan variasi kandungan 50% molasses
(b) Sampel pupuk biokomposit dengan variasi kandungan 40% molasses
(c) Sampel pupuk biokomposit dengan variasi kandungan 30% molasses
(d) Sampel pupuk biokomposit dengan variasi kandungan 20% molasses
Gambar 4.11. Foto makro sampel pupuk biokomposit variasi kandungan molasses setelah mengalami uji tekan
Analisa foto makro dari keempat sampel secara fisis kandungan molasses yang ada di dalam sampel dapat diketahuai dari warna sampel. Karena semakin pekat warna sampel pupuk biokomposit maka akan semakin besar kandungan molasses yang ada di dalamnya. Dari keempat sampel juga dapat disimpulkan bahwa, semakin sedikit kandungan molasses akan semakin melemahkan kekuatan tekannya. Karena semakin sedikit kandungan molasses akan semakin memperlihatkan kerusakan yang nyata pada sampel pupuk biokomposit. Hal ini terlihat pada gambar 4.13. Analisa foto makro sampel pupuk biokomposit variasi kompaksi setelah melalui uji tekan adalah:
(a) Sampel pupuk biokomposit dengan variasi kompaksi 350 kPa
(b) Sampel pupuk biokomposit dengan variasi kompaksi 250 kPa
89
(c) Sampel pupuk biokomposit dengan variasi kompaksi 150 kPa
(d) Sampel pupuk biokomposit dengan variasi kompaksi 50 kPa
Gambar 4.12. Foto makro sampel pupuk biokomposit variasi kompaksi setelah mengalami uji tekan
Analisa foto makro dari keempat sampel variasi kompaksi dapat disimpulkan bahwa, semakin kecil kompaksi akan semakin melemahkan kekuatan tekan sampel. Karena kerusakan pada sampel pupuk biokomposit akan semakin terlihat nyata apabila kompaksi yang diterima oleh sampel semakin kecil. Hal ini terlihat pada gambar 4.14.
4. 7. Analisa Foto Makro Sampel Pupuk Biokomposit Pada Uji Ketahanan Impak Analisa foto makro sampel pupuk biokomposit variasi kandungan molasses setelah melalui 1 kali jatuh pngujian ketahanan impak adalah:
(a) Sampel pupuk biokomposit dengan variasi kandungan 50% molasses
(b) Sampel pupuk biokomposit dengan variasi kandungan 40% molasses
90
(c) Sampel pupuk biokomposit dengan variasi kandungan 30% molasses
(d) Sampel pupuk biokomposit dengan variasi kandungan 20% molasses
Gambar 4.15. Foto makro sampel pupuk biokomposit variasi kandungan molasses setelah mengalami uji tekan Analisa foto makro dari keempat sampel dapat disimpulkan bahwa, ketahanan sampel terhadap beban impak akan semakin berkurang sering dengan semakin sedikitnya kandungan molasses. Serpihan yang terlepas dari badan sampel akan semakin banyak jika variasi kandungan molasses semakin sedikit. Hal ini terlihat pada gambar 4.15. Analisa foto makro sampel pupuk biokomposit variasi melalui 1 kali jatuh pngujian ketahanan impak adalah:
(a) Sampel pupuk biokomposit dengan variasi kompaksi 350 kPa
(b) Sampel pupuk biokomposit dengan variasi kompaksi 250 kPa
(c) Sampel pupuk biokomposit dengan variasi kompaksi 150 kPa
(d) Sampel pupuk biokomposit dengan variasi kompaksi 50 kPa
Gambar 4.16. Foto makro sampel pupuk biokomposit variasi kompaksi setelah mengalami uji tekan Analisa foto makro dari keempat sampel menunjukan bahwa semakin besar kompaksi akan meningkatkan ketahanan sampel terhadap gaya impak. Semakin tinggi kompaksi akan semakin meperkecil serpihan yang terlepas oleh badan sampel pupuk
91 biokomposit. Semakin kecil kompaksi akan semakin memperbanyak jumlah serpihan yang terlepas dari badan sampel pupuk biokomposit. Hal ini terlihat pada gambar 4.16.
BAB V PENUTUP
5. 1. Kesimpulan Kesimpulan
92 1. Kekuatan tekan, ketahanan impak dan densitasnya akan semakin meningkat seiring dengan besarnya variasi kandungan molasses dan besarnya kompaksi yang diterima oleh sampel pupuk biokomposit. Namun, hal ini akan memperlambat sampel biokomposit untuk hancur dalam air. 2. Variasi campuran terbaik dan memiliki sifat ketahanan yang cukup kuat adalah variasi persentase 50% molasses tekanan. Karena kekuatan tekannya mencapai 5.380 Pa, nilai ketahanan impak mencapai 115,79, nilai densitas mencapai 1.070,68 kg/m³ dan waktu hancur dalam air mencapai 197,8 detik. Untuk variasi kompaksi terbaik terdapat pada kompaksi 150 kPa. Pada variasi ini memiliki nilai kekuatan tekan sebesar 4.370 Pa, nilai ketahanan impak 73,68, nilai densitas 1.064,11 kg/m³ dan waktu hancur dalam air 180,4 detik. 3. Untuk analisa foto makro sampel pupuk biokomposit setelah mengalami uji tekan dan ketehanan impak, terdapat suatu kesamaan. Karena semakin besar variasi kandungan molasses dan kompaksi akan memperlihatkan kerusakan yang tidak berati. Namun, semakin kecil variasi kandungan molasses dan kompaksi akan semakin memperlihatkan kerusakan pupuk biokomposit
5. 2. Saran Untuk lebih mengembangkan penelitian tentang pupuk biokomposit, maka penulis menyarankan : 1.
Dalam pembuatan pupuk biokomposit disarankan untuk memilih variasi kandungan molasses 40-50% pada kompaksi 150-250 kPa. Karena pada variasi ini pupuk biokomposit memiliki kekuatan yang cukup kuat (kuat tekan, ketahanan impak dan nilai densitas yang baik) namun, mudah larut dalam air.
2.
Dalam pembuatan pupuk biokomposit seperti ini perlu dilakukan penelitian lebih lanjut, terutama dalam realisasi data penelitian untuk pembuatan pupuk organik berikutnya.
93
Daftar Pustaka
Adenholics., 2008, Komposite Fiber, Adenholics, blogspot.com ASTM D 1475., 2000, Tex-614-J Testing Epoxy Materials, Material of Testing Procedures, USA. ASTM D 792. 1998. Density Test for Composite Material. (Vol – D). Gibson, R, F., 1994, Principles of Composite Material Mechanics, McGraw Hill Inc., New York USA. Harizamrry., 2008, Biokomposit Kelapa Sawit: Dari Bahan Buangan Kepada Kemewahan. Teratak Maya Tempatku Lepak, Blogspot.com. Hidayatullah., 2008, Pengolahan Limbah Cair Usaha Peternakan Sapi Perah Melalui Penerapan Konsep Produksi Bersih., Jurnal BPTP Bengkulu dan Intitut Pertanian Bogor. Hinkle, R. G., dan Rosenthal, R., ____., Of Beer Leather and Beets. A Study of Alternative Binders in Agitation Pelletizing. Isroi., 2009, Perbandingan bentuk pupuk secara fungsional antara POP dan POG,. Artikel Blog. Iwan., 2002, Proses Pembuatan Pupuk dan Bentuk-bentuk Pupuk. Balai pengkajian Teknologi Pertanian (BPTP), Jawa Timur. Juhcini., 2005, Jurnal Pengkajian dan Pengembangan Teknologi Pertanian. Vol. 8. No. 1. Maret :124-136. Kristanto., 2007, Pengaruh Tekana Pembriketan , Jenis Binder dan Kandungan Binder Terhadap Karakteristik Sifat Fisik dan Mekanik Briket Biomasa. Skripsi Sarjana Teknik, UNS, Surakarta. Liu. H., 2000, Science And Engineering Of Droplets, Noyes Publications/ William Andrew Publishing, Llc. Norwich, New York, U.S.A. Mishra, S. K., et al, 1996, Biomass Briquetting: Technology and Practices, Food and Agriculture Organization of The United National, Bangkok. Ozbayoglu, G, dan Tabari, K, R., 2003, Briquetting of Iran – angouran Smithsonite Fines, Physicochemical Problem of Mineral Processing, 37 (2003) 115-122.
94 Riantika., 2008, Ilmu Pengantar Fisika Untuk SMU Sederajat, Jurnal Dep. Pendidikan Nasional. Indonesia. Richards, S. R., 1990, Physical Testing of Fuel briquettes (ASTM D 2677-67T), Elsevier Journal, New ZealandSalim, dkk., 1995. Potensi dan Peluang Pemanfaatan Serbuk Gergaji Untuk Pembuatan Briket Arang di Kabupaten Sukabumi. Jawa Barat, Indonesia. Rudy., 2008, Composite Manufaktur, Erlangga. Bandung. Santoso., 1998, Data Peternakan Kabupaten Tambanan, Artikel Ilmiah., blogspot.com. Suastuti., 1998, Ampas Tetes Tebu sebagai Limbah Dalam Proses Pembuatan Gula, Artikel Ilmiah, blogspot.com Sugondo., 2000, Pengepresan Uniaksial Untuk Briket dan Pelet, Artikel Ilmiah, blogspot.com. Sumaryono,. Basyuni, Y., Suripno., 1995, Proses Pembuatan Biocoal dan Rancangan Tungku Pembakaran, Pslitbang. Taufiq., 2008, Starbio Plus, Multiply, blogspot.com. Undang., 2002, Pemenfaatan Secara Komperhasif Peternakan Sapi, Jurnal BPTP Jawa Timur, Indonesia. Vest, Heino, Dr. Ing., 2003,Small Scale Briquietting and Carbonisationof Organic Residues for Fuel, Infogate journal, Germany. Widyawati., 2006, Perbaikan Produktivitas Ternak Ruminansia Pada Peternakan Rakyat Melalui Pemberian Growth Promoting Feed Supplemen,. Fakultas Pertanian UNS, Penelitian, Dikti, Hibah Pekerti, Surakarta. Windukencana., 2009, Mengembalikan Kesuburan Tanah Dengan Pupuk Kandang, SHVOONG, Sains, Blogspot.com. Winoto, A. J., 2009, Produksi Furfural Dan Turunannya : Alternatif Peningkatan Nilai Tambah Ampas Tebu Indonesia, Situs Kimia Indonesia. Zulfia., 2007, Composite Fabrication. PPT, blogspot.com. .
95