Prečo práve relativita? Pre vznik každej teórie sú dôležité historické fakty a súvislosti (akýsi duch vtedajšej doby), ktoré nám umožňujú jasnejšie pochopiť, prečo vlastne daná teória vznikla a ako sa k nej vedci dopracovali. Aj my preto budeme podrobnejšie sledovať vývoj udalostí vo fyzike pred príchodom špeciálnej teórie relativity (ŠTR). Lepšie totiž spoznáme, prečo musela prísť práve taká zvláštna teória, akou ŠTR nepochybne je. A možno bude potom pre nás jednoduchšie prijať jej výsledky. Klasická mechanika Začneme hlbšie v minulosti, presnejšie v roku 1687. Vtedy vyšlo dielo “Matematické princípy prírodnej filozofie” od Isaaca Newtona (Obr. 1), ktoré úplne zmenilo svet. Tento spis priniesol celkom nový pohľad na fyziku a vedu všeobecne. Newton si dal za ciel vysvetliť pomocou malého počtu počiatočných predpokladov (postulátov) čo najväčšie množstvo javov. Ako nepostrádateľnú pomôcku použil matematiku a jediným kritériom správnosti jeho teórie bol jej súhlas s experimentom1. Takýto prístup sa postupne preniesol do všetkých oblastí vedy a dodnes sa na ňom nič nezmenilo. V Princípoch položil Newton základy mechaniky, vedy o pohyboch telies a jeho príčinách. Dve storočia potom fyzici aplikovali Newtonovu mechaniku v rôznych oblastiach fyziky. Nakoniec sa im podarilo na mechaniku previesť napríklad akustiku, hydrodynamiku, astronómiu (najmä pokiaľ ide o pohyby hviezd a planét) a s pomocou štatistiky aj termodynamiku. Fyzici mali preto dobré dôvody veriť, že nakoniec sa všetky javy (nielen fyzikálne) podarí vysvetliť pomocou mechaniky2. Všeobecne prijímaným sa stal aj pojem absolútneho priestoru a času, zavedený Newton v Obr. 1 Isaac Newton a jeho prelomové dielo. Princípoch. Absolútny priestor bol „javiskom“, na ktorom sa odohrávajú všetky fyzikálne deje. Ako nám hovorí naša každodenná skúsenosť, tento priestor je trojrozmerný, pravouhlý, vzdialenosti medzi dvoma bodmi sú v ňom určené pomocou Pythagorovej vety. Prijateľný je tiež predpoklad, že absolútny priestor si svoje vlastnosti zachováva bez ohľadu na rozloženie hmoty v ňom a jej pohybový stav, takže fyzikálne deje nemajú na vlastnosti priestoru vplyv. Vlastnosti absolútneho priestoru sú pre nás úplne prirodzené. Podobne absolútne a prirodzené vlastnosti mal aj čas. Plynul nezávisle bez ohľadu na pohyb pozorovateľov, telies alebo ich hmotnosť. V absolútnom priestore zavádzame vzťažnú sústavu. Je to sústave súradníc (troch navzájom kolmých osí) vzhľadom na ktorú potom určujeme polohy jednotlivých telies. Vo vzťažnom systéme sa odohrávajú všetky deje. Úlohou času je určovať poradie, v akom vidíme jednotlivé „momentky“ prebiehajúcich udalostí. Čas je na úplne nezávislý na priestore aj na všetkom, čo sa v ňom nachádza a čo sa v ňom odohráva. Ak napríklad potočíte svoju sústavu súradníc okolo osi, plynutie času to neovplyvní, podobne ako prechod ku sústave iného pozorovateľa, nech by sa pohyboval akokoľvek a nech by bol v blízkosti ľubovoľne ťažkého telesa. Newtonovi tiež vďačíme za pojem inerciálneho vzťažného systému. Vzťažný systém je inerciálny vtedy, ak v ňom voľné telesá (nepôsobia na ne vonkajšie sily) zotrvávajú v pokoji alebo v rovnomernom priamočiarom pohybe. Z každodennej skúsenosti by sa nám mohlo zdať, že ak na teleso nepôsobia sily, musí po istom čase nevyhnutne zostať stáť. My však nemôžeme pri našich mechanických pohyboch nikdy vylúčiť silu trenia ani silu gravitácie. Ak si ale v duchu tieto sily odmyslíme, nie je potom až také ťažké predstaviť si, že teleso sa môže pohybovať stále rovnakou rýchlosťou a nemusí nevyhnutne zastať. Aby sme si to priblížili, predstavme si, že cestujeme vlakom po priamych rovných koľajniciach rovnomernou rýchlosťou (takéto ideálne podmienky v skutočnosti neexistujú, vždy to trochu “drcá”). V jedálenskom vozni sedíme pri šálke kávy. Jej hladina je rovná, šálka stojí na svojom mieste. Keď s takýmto 1 2
Dovtedy sa stačilo odvolať na uznávanú autoritu, napríklad Aristoteles bol zárukou kvality. Aj väčšina učiva fyziky na základných a stredných školách pozostáva práve z Newtonovej mechaniky a jej aplikácií.
vlakom spojíme súradnicovú sústavu, dostaneme inerciálny vzťažný systém. To, že pohyb v takomto systéme po istom čase zastane, je spôsobené prítomnosťou trecej sily a nie nedokonalou inerciálnosťou. Ako náhle však začne vlak brzdiť alebo prechádza po nerovnostiach na trati, hladina kávy sa nahne prípadne začne byť „nepokojná“. Dokonca sa môže šálka šmyknúť po stole. Takýto systém je potom neinerciálny a dochádza v ňom k zmene pohybového stavu aj bez nejakého zjavného vonkajšieho pôsobenia (šálka spadne na podlahu, hoci sa jej nik nedotkol). Ďalší typický príklad neinerciálneho systému je rotujúci kolotoč. Pri stojacom kolotoči budú reťaze všetkých sedačiek smerovať kolmo dolu. Aby ste takýto stav dosiahli pri kolotoči rotujúcom, museli by ste sedačky priviazať (musíte na ne pôsobiť silou), inak by sa začali vychyľovať od osi otáčania – často krát sa v tomto prípade zavádza trochu nešťastný pojem odstredivej sily, ktorú nemožno vysvetliť vzájomným pôsobením s inými telesami. Je známe, že ak existuje čo len jediný inerciálny systém, tak každý iný systém, pohybujúci sa vzhľadom naň konštantnou rýchlosťou, je inerciálny. Navyše ak sme v istom inerciálnom systéme, nijakým mechanickým experimentom nemôžeme rozhodnúť, či sa náš systém pohybuje alebo stojí. Keby nás zrazu premiestnia do vlaku s nepriehľadnými oknami a ten vlak sa pohybuje rovnomerne priamočiaro, nebudeme môcť pomocou žiadnych mechanických pomôcok rozhodnúť, či sa pohybujeme alebo stojíme. Až keď vyhliadneme von a uvidíme „utekať“ domy, bude nám to jasné. V Newtonovej mechanike teda platí, že absolútny pohyb neexistuje. Vždy musíme pohyb určovať vzhľadom na vhodnú vzťažnú sústavu (hovoríme o inerciálnych sústavách). Toto konštatovanie sa označuje ako Galileiho princíp relativity. Medzi inerciálnymi vzťažnými sústavami môžeme prechádzať pomocou jednoduchých transformácií. Keď si predstavíme sústavu S, vzhľadom na ktorú sa sústava S’ pohybuje rýchlosťou v pozdĺž osi x (obr. 2), tak pre súradnice v čiarkovanej a nečiarkovanej sústave platia takzvané Galileiho transformácie3 x = v.t + x’, y = y’, z = z’, t = t’. Pri týchto transformáciách sa nemenia ani dĺžkové rozmery ani rýchlosť plynutia času, presne ako nám to hovorí naša každodenná skúsenosť. Galileiho transformácie majú v Newtonovej mechanike veľmi dôležité postavenie. Všetky mechanické fyzikálne zákony sú totiž invariantné voči týmto transformáciám. To znamená, že všetky mechanické fyzikálne zákony Obr. 2 Modrý bod je v pokoji v súradnicovom majú v inerciálnych sústavách rovnaký tvar (to je matematické systéme S’ a jeho súradnice sú v tomto systéme vyjadrenie Galileiho princípu relativity). Ak by to totiž nepla- (x’,y’). Vzhľadom na systém S sa pohybuje S’ rýchlosťou v v smere osí . Súradnice bodu v netilo, vedeli by sme zistiť pohybový stav inerciálnej sústavy bez čiarkovanom systéme budú (x = v.t + x’, y = y’). toho, aby sme sa museli “pozrieť von” a Galileiho princíp relativity by bol porušený. Ako sme už spomínali, fyzici chceli vysvetliť všetky fyzikálne javy pomocou mechaniky a tým získať jednotnú teóriu fyziky. Logicky teda očakávali, že všetky fyzikálne zákony by mali byť invariantné voči Galileiho transformáciám a pomocou nijakého experimentu by sme nemali vedieť určiť pohybový stav inerciálnej sústavy. Koniec Newtonovej idyly Postupné porozumenie javom elektriny a magnetizmu začalo pomaly nahlodávať vieru fyzikov vo všemocnosť Newtonovej teórie. V roku 1873 vyšla kniha “Pojednanie o elektrine a magnetizme” od Jamesa Clerka Maxwella (Obr. 3). V tomto diele zhrnul výsledky svojich niekoľkoročných bádaní, pri ktorých sa mu podarilo spojiť elektrinu a magnetizmus do jednej teórie. Vychádzal pritom z prác geniálneho experimentátora Michaela Faradaya. Ten bol známy svojou zručnosťou a jedinečným intuitívnym prístupom k fyzike. Ako asi jediný svetoznámy fyzik nepoužíval žiadne matematické vzorce, ale to už je iný príbeh. Maxwell zhrnul celú teóriu elektriny a magnetizmu do systém štyroch rovníc. Tie určovali základné vlastnosti elektrického a magnetického poľa a ich závislosť od zdrojov (nábojov a prúdov). Maxwellove rovnice popisovali všetky dovtedy známe elektromagnetické javy a dali sa z nich odvodiť aj nové 3
Tu uvažujeme len špeciálny prípad, že počiatky súradníc oboch sústav boli totožné v čase 0. Všeobecný prípad posunutých a pootočených sústav je len matematicky komplikovanejší a fyzikálne neprináša nič nové.
2
skutočnosti. K novinke v tej dobe patrili elektromagnetické vlny, v ktorých fyzici následne spoznali staré známe svetlo. Elektromagnetické vlnenie sa však podstatne odlišuje od vlnenia akustického (zvuku). Zvuk už mali fyzici dobre preskúmaný a nijako sa nevymykal z rámca Newtonovej mechaniky. Elektromagnetické vlny napríklad prechádzajú aj cez prázdny priestor (vákuum), v ktorom sa zvuk nešíri. Fyzici situáciu zachraňovali predpokladom, že svetelné vlny sa šíria vo zvláštnej elastickej substancii nazvanej éter. Myšlienka, že by elektromagnetické vlny mali vlastnú identitu, nezávislú na akomkoľvek telese, ich v tej dobe ešte nenapadla4. No éter by musel mať vskutku éterické vlastnosti. Musel byť veľmi tuhý, lebo svetelné vlny majú vysokú frekvenciu, zároveň však musel byť dostatočne riedky, aby nekládol odpor pohybu (nič také sa totiž nepozorovalo). A navyše musel byť „nevážiteľný“ a „všetkoprenikajúci“. Ďalšia nepríjemnosť spočívala v tom, že Maxwellove rovnice, popisujúce elektromagnetické pole, neboli invariantné voči Galileiho transformáciám. To znamenalo, že tieto rovnice by platili v takom tvare, v akom ich Maxwell odvodil, len v sústave pevne spojenej s nehybným éterom. V každej inej inerciálnej sústave by už bol ich tvar iný. To by prinášalo rôzne viac alebo menej “prijateľné” efekty. Napríklad elektrický náboj, pohybujúci sa voči éteru, by budil aj isté magnetické pole, hoci by bol voči nám v pokoji. Takéto správanie sa vôbec nepozorovalo. Tak isto rýchlosť svetla, ako vlnenia éteru, by musela závisieť od rýchlosti inerciálnej sústavy voči éteru, čo bol vcelku logický predpoklad. Inerciálna sústava pevne spojená s éterom by teda mala výnimočné postavenie a pomocou elektromagnetických experimentov by sa dal zistiť pohyb hocakej inej sústavy voči nej (to samozrejme narušilo Galileiho princíp relativity). Tejto možnosti sa chytili mnohí experimentátori a začali vykonávať pokusy aby určili rýchlosť našej Zeme voči éteru. Ťažko bolo Obr. 3 James Clerk Maxwell totiž možné predpokladať, že naša Zem, letiaca po kružnici okolo Slnka rýchlosťou 30 km/s, by bola voči éteru nehybná. Teoretici usilovne rozpracovávali rôzne teórie, aby vysvetlili všetky podivnosti spojené s éterom. Stokes s Hertzom napríklad tvrdili, že éter je pohybujúcimi sa telesami úplne strhávaný, takže pri Zemi by sme nepozorovali nijaké zvláštne efekty. Tomu však protirečili výsledky Fizeauovho a Hoekovho pokusu,. Tie sa dali vysvetliť pomocou čiastočného strhávania éteru pohybujúcimi sa telesami. Čiastočne strhávaný éter nie je ale zasa v súhlase s aberáciou hviezd, ďalším dobre známym efektom. A tak najväčší úspech mala teória Hendrika Lorentza pracujúca s úplne nehybným éterom. Pomocou svojej teórie Lorentz dokázal správne vysvetliť rôzne problematické pokusy. A keď prišiel pokus, ktorý vysvetliť nedokázal, pridal do svojej teórie dodatočné predpoklady aby opravil jej výsledky. Takto postupoval aj v prípade slávneho Michelsonovho-Morleyho pokusu, asi najznámejšieho pokusu s negatívnym výsledkom. Michelson zaň dokonca dostal v roku 1907 Nobelovu cenu. Myšlienka tohto pokusu bola jednoduchá. Šlo vlastne len o to, zmerať rýchlosť svetla voči Zemi a tak zistiť jej pohybový stav voči éteru. Dokonca aj keď je éter čiastočne strhávaný Zemou, mali by sme zmerať zmenu rýchlosti svetla, ktorá by závisela napríklad aj od nadmorskej výšky. Michelson preto vyhotovil prístroj pozostávajúci z dvoch navzájom kolmých rovnako dlhých ramien, ktoré mali na konci zrkadlá (obr. 4). Jedno rameno bolo orientované v smere pohybu Zeme a druhé kolmo naň. Lúč svetla sa rozdelil pomocou polopriepustného zrkadla na dva. Tieto lúče prešli každý jedným ramenom prístroja a pomocou polopriepustného zrkadla sa oba dostali na tienidlo. Na tienidle potom vznikol rad interferenčných prúžkov (zrkadlá neboli presne kolmé, rame- Obr. 4 Schéma prístroja použitého pri Michelsoná neboli presne rovnako dlhé). Otáčaním prístroja by sa mal novom-Morleyho pokuse. 4
Podľa súčasných predstáv podstatou elektromagnetických vĺn je pole, forma hmoty rovnocenná s látkou.
3
meniť čas, ktorý lúče potrebujú na prechod jednotlivými ramenami, keďže sa mení ich rýchlosť. To by následne spôsobilo posun jednotlivých interferenčných prúžkov. Aby bol pozorovateľný efekt čo najväčší, dĺžka ramien sa pomocou viacnásobných odrazov zväčšila až na 30 m. Aby nedochádzalo k otrasom, prístroj plával na ortuti. Presnosť Michelsonových pokusov z roku 1881 nebola ešte dostatočná, ale Morleyho premeranie v roku 1904 nadobro vylúčilo možnosť, že Zem sa voči éteru pohybuje. Nedošlo totiž k žiadnemu posunu interferenčných prúžkov. Tento pokus sa mnohokrát opakoval, dokonca pomocou balónov. V súčasnosti je dokázané, že rýchlosť Zeme voči éteru je nulová s chybou menšou ako 30 m/s. Takže aj Lorentzova teória nehybného éteru dostala poriadnu ranu. Aj ďalšie experimenty (TroutonovNobleho, Rayleighov-Braceov, Troutonov-Ranhinov) postupne podkopávali možnosť existencie éteru. Aj napriek očakávaniam sa teda vytrvalo ukazovalo, že nie je možné určiť pohybový stav Zeme ani pomocou elektromagnetických pokusov. Takže Galileiho princíp bolo treba rozšíriť aj na elektromagnetickú teóriu. To bolo v priamom rozpore s tým, že Maxwellove rovnice nie sú invariantné voči Galileiho transformáciám. Navyše sa tiež začalo ukazovať, že rýchlosť svetla zrejme nezávisí od rýchlosti zdroja vysielajúceho svetelné lúče. Aby Lorentz vysvetlil negatívny výsledok Michelsonovho experimentu, musel prijať do svojej teórie predpoklad, že dĺžka predmetov sa pohybom skracuje5. V roku 1904 získal dokonca transformácie, pri ktorých sa nemení tvar Maxwellových rovníc pri prechádzaní medzi inerciálnymi sústavami. Tieto Lorentzove transformácie sa stali základom Einsteinovej ŠTR. Lorentz ich však bral len ako matematickú pomôcku. Ako sám povedal “nebol dosť pochabý” na to, aby v nich vystupujúcemu času pripísal fyzikálnu realitu. Dopracoval sa tiež k závislosti hmotnosti elektrónu od jeho rýchlosti, čo je ďalší známy výsledok ŠTR. Všestranný génius Henry Poincaré odvodil Lorentzove transformácie v roku 1905 a dokonca začal požadovať, aby sa našli také zákony mechaniky, ktoré budú voči nim invariantné, takže nijakými experimentmi nebude možné zistiť pohybový stav inerciálnej sústavy (dostal sa teda na krok k ŠTR). Na druhej strane boli aj takí, ktorí sa snažili nájsť nové rovnice elektromagnetizmu, invariantné voči Galileiho transformáciám (ako ukázal ďalší vývoj, mali smolu). To sa však už 26. septembra 1905 objavil v časopise “Annalen der Physik” článok “K elektrodynamike pohybujúceho sa telesa” od pomerne neznámeho úradníka z Bernu Alberta Einsteina (Obr. 5). Einsteinovo riešenie Ako je všeobecne známe, Einstein nakoniec všetko objasnil. Bez milosti zavrhol éter a dva výsledky, ku ktorým sa postupne pred ním dopracovali niekoľký fyzici (konštantnosť rýchlosti svetla a nemožnosť zistiť pohybový stav sústavy nijakým experimentom), povýšil na základné postuláty. Z nich potom odvodil potrebné vzťahy a predpovedal mnohé prekvapivé javy. Postupom času sa ukázalo, že ŠTR vysvetľuje tiež všetky experimenty. Nepríjemnou stránkou jeho teórie však bolo to, že úplne rozbila dovtedajšie predstavy o priestore a čase (o tom si podrobnejšie povieme v budúcom čísle). Poctivo treba priznať, že Einsteinov článok bol na svoju dobu dosť netypický. Jeho štýl bol bližší súčasnému. Einstein ho napísal v hektickom tempe za 6 týždňov a na jeho kvalite to bolo poznať. Neobsahoval dokonca ani bibliografické poznámky. V tomto prvom článku sa Einstein nezaoberal ani výsledkami experimentov. Hlavnou motiváciou bola krása a jednoduchosť jeho novej teórie. V roku 1940 sa sám Einstein ešte raz k tomuto článku vrátil. Nezachoval sa mu totiž pôvodne písaný originál a tak sa podujal svoj 36 stranový článok ešte raz prepísať vlastnou rukou. Chcel ho totiž venovať vláde USA, aby jeho predajom získala peniaze na vojnovú pomoc (teraz je v knižnici Kongresu). Aby mu to šlo rýchlejšie, diktovala mu ho sekretárka. Ako neskôr spomínala, viac krát chcel na ňom niečo zmeniť, prípadne preformulovať. Sekretárka však požadovala doslovný prepis a tak sme prišli o možnosť zistiť, čo sa Einsteinovi v roku 1940 na Einsteinovi z roku 1905 nepáčilo. Obr. 5 Albert Einstein V ŠTR Einstein vyžadoval od fyzikov vzdanie sa všetkých Newtonových predstáv o absolútnom priestore a čase. Taký radikálny krok sa im najprv zdal zbytočný, pretože Lorentzova teória vysvetľovala uspokojivo všetky pokusy. 5
Hypotézu o skracovaní (kontrakcii) dĺžok pohybujúcich sa predmetov vyslovil už G. F. FitzGerald v roku 1890.
4
Nemožno sa preto čudovať, že zo začiatku nebola ŠTR vôbec kladne prijatá. Navyše aj v ďalších rokoch bolo mnoho vedcov, ktorí sa k nej postavili kladne a zle pritom pochopili jej základné myšlienky. Ako povedal Max von Laue “ŠTR je dnes velebená aj urážaná. Najväčším krikľúňom na oboch stranách je spoločné to, že jej zúfalo málo rozumejú.” Jediným prominentným zástancom ŠTR od jej začiatkov bol Max Planck (čo nebolo zas až tak málo). Nezávisle od Einsteina sa prakticky až k ŠTR dopracoval aj francúzsky všestranný génius Henry Poincaré. O významnejší podiel na jej objave ho pripravil len drobný časový rozdiel, ku ktorému výrazne prispela aj rýchlosť s akou bol jeho článok publikovaný6. Čiže pre všetkých to až taká prekvapujúca teória naozaj nebola. Prekvapujúci je fakt, že zo začiatku boli dokonca Einsteinova a Lorentzova teória, aj napriek zásadným odlišnostiam, kritizované pod spoločným názvom. Ich výsledky boli totiž úplne ekvivalentné. Lorentz pritom vychádzal z iných predpokladov a formuloval svoju teóriu filozoficky prijateľnejším spôsobom. Hoci Lorentzova teória bola obmedzená len na elektromagnetizmus, dlho sa prehliadalo to, že ŠTR platí na oveľa širšie spektrum javov. Objavili sa navyše experimentálne testy (Walter Kaufmann, 1906) favorizujúce nám už úplne neznámu teóriu Maxa Abrahama. Až v roku 1916 v nich bola odhalené chyba. Na začiatku teda ŠTR nepriala zhoda niekoľkých okolností. Einstein však postupne získaval stále viac priaznivcov a dokonca v roku 1911 vyšla aj prvá učebnica ŠTR od Maxa von Laueho. Jej definitívne prijatie prišlo ale až po pozorovaniach, ktoré potvrdili všeobecnú teóriu relativity. V tej dobe bolo totiž podstatne menej možností testovať predpovede ŠTR ako teraz, kedy v urýchľovačoch získavajú častice obrovské rýchlosti a fyzici môžu doslova každodenne pozorovať jej efekty. Peter Kluvánek
6
Vzťahu medzi Einsteinom a Poincarém tieto udalosti rozhodne neprospeli. K ich „dobrým“ zvykom patrilo, že v svojich článkoch o ŠTR zásadne necitovali práce toho druhého.
5