PREDIKSI HARGA SAHAM BERDASARKAN DATA HISTORIS MENGGUNAKAN MODEL REGRESI YANG DIBANGUN DENGAN ALGORITMA GENETIKA Asyrofa Rahmi, Wayan Firdaus Mahmudy, Budi Darma Setiawan Program Studi Informatika / Ilmu Komputer Program Teknologi Informasi dan Ilmu Komputer Universitas Brawijaya, Malang 65145, Indonesia
ABSTRAK
Jual beli saham merupakan hal yang sangat menarik. Karena saham bisa membuat para investor memperoleh keuntungan yang besar namun bisa sebaliknya. Untuk mendapatkan keuntungan yang besar, investor perlu melakukan analisa dalam memprediksi harga saham. Namun, memprediksi harga saham adalah hal yang sulit dilakukan karena harga saham mengalami fluktuasi setiap waktu dengan cepat. Sehingga investor perlu memprediksi harga saham sesingkat mungkin. Salah satu teknik yang dapat dipakai untuk memprediksi adalah menggunakan pendekatan Algoritma Genetika. Algoritma Genetika sendiri memiliki ruang pencarian yang sangat luas sehingga bisa mendapatkan solusi terbaik untuk berbagai macam permasalahan. Dalam mengimplementasikan algoritma genetika ini, representasi kromosom yang digunakan adalah real coded, proses crossover yang digunakan adalah extended intermadiate, random mutation pada proses mutasi dan metode seleksi replacement selection. Dari hasil pengujian yang dilakukan, sistem mampu menghasilkan prediksi terbaik pada ukuran terbaik populasi 1200, generasi terbaik sebanyak 1500, kombinasi terbaik cr 0,5 dan mr 0,5 serta periode saham terbaik pada 5 hari. Prediksi terbaik dibuktikan dari nilai MSE terkecil 47,5023 yang didapatkan oleh harga prediksi hasil perhitungan Algoritma Genetika. Hal ini membuktikan bahwa koefisien (kromosom) terbaik hasil perhitungan Algoritma Genetika tersebut dapat digunakan untuk memprediksi harga saham di masa mendatang dengan lebih baik dibandingkan dengan koefisien hasil perhitungan manual regresi dengan aplikasi MiniTab.. Kata Kunci : Algoritma Genetika, Prediksi Harga Saham, Regresi ABSTRACT Selling and buyyng stocks is very interesting. Because the stock could make investors earn huge profits but could otherwise. To earn huge profits, investors need to do analysis in predicting stock prices. However, predicting stock prices is a difficult thing to do because stock prices fluctuate all the time quickly. So investors need to predict the stock price as short as possible. One technique that can be used to predict is to use Genetic Algorithm approach. Genetic algorithm itself has a very broad search space so that it can get the best solution for a wide variety of problems. In implementing this genetic algorithm, the chromosome representation is real coded, the crossover process is extended intermadiate, the random mutation in the process of mutation and the selection methods is replacement selection. From the results of tests performed, the system is able to produce the best prediction at best population size in 1200, the best generation in 1500, the best combination mr cr 0.5 and 0.5 as well as the best stock in the period 5 days. The best prediction proved from the smallest MSE value 47,5023 that obtained by the prediction of the results of the price calculation Genetic Algorithm. This proves that the coefficients (chromosomes) best result Genetic Algorithm calculations can be used to predict future stock prices better than the manual calculation of regression coefficients using Minitab applications
1 Rahmi, A, Mahmudy, WF & Setiawan, BD 2015, 'Prediksi harga saham berdasarkan data historis menggunakan model regresi yang dibangun dengan algoritma genetika', DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 12.
Keywords : Genetic Algorithm, Stock Price Prediction, Regression
Berkaitan dengan permasalahan diatas pembahasan utama dalam penelitian ini adalah bagaimana mengimplementasikan algoritma genetika untuk menyelesaikan permasalahan prediksi harga saham. Pada penelitian ini algoritma genetika diterapkan untuk mendapatkan kromosom terbaik yang merepresentasikan koefisien periode saham yang diproses dengan bentuk persamaan regresi yang berlaku untuk semua data.
1. PENDAHULUAN Saham merupakan tanda bukti penyertaan kepemilikan modal/dana suatu perusahaan (Tambunan, 2006).Keuntungan memiliki saham sangatlah menjanjikan. Dengan memperjualbelikan saham investor bertujuan mendapatkan keuntungan yang maksimal dan resiko yang minimal. Keuntungan bisa diperoleh dari dividen (pembagian laba/keuntungan kepada para pemegang saham perusahaan), memperoleh keuntungan modal saat saham dijual kembali dengan bunga yang lebih mahal (capital gain) dan masih banyak lagi (Fahmi, 2013). Selain mendapatkan keuntungan yang besar, saham juga merupakan bisnis yang sangat beresiko dan menimbulkan kerugian (Torben, 2007). Sehingga, para investor harus berhati-hati dalam memperjual belikan sahamnya. Fakor internal, eksternal membuat fluktuasi harga saham tidak tentu setiap detik (Fakhruddin, Hendy & Tjiptono, 2011).hal ini membuat para investor kesulitan dalam memprediksi harga saham. apakah harga saham akan naik atau turun keesokan harinya, apakah saham harus dijual atau dibeli agar terhindar dari kerugian danbisa mendapatkan keuntungan yang diinginkan. Pasar saham sendiri merupakan sebuah sistem yang sangat kompleks, dan menurut Setyowati (2013) analisa yang baik dalam pengembangannya merupakan kunci sukses trading. Maka dari itu diperlukan pendekatan secara Artificial Intelligence agar mendapatkan hasil prediksi harga saham yang lebih akurat. Terdapat beberapa penelitian yang mendukung. Penelitian yang dilakukan oleh Wati, dkk (2013) yang menunjukkan metode regresi lebih baik digunakan dalam memprediksi jumlah produksi dibandingkan metode fuzzy mamdani. Kemudian pada penelitian oleh Bonde (2010) yang menggunakan Algoritma Strategi Evolusi dan Algoritma Genetika dalam memprediksi harga saham. Tingkat akurasi yang diperoleh sebesar sebesar 71,77% untuk Strategi Evolusi dan 73,78% untuk Algoritma Genetika. Kemudian penelitian oleh Sularno (2006). Pada penelitian tersebut prediksi menggunakan model regresi yang terbaik diperoleh dari koefisien terbaik. Koefisien terbaik dibangun dengan membandingkan Algoritma Pemrograman Genetik dan Ekspresi Gen.
2. PERMASALAHAN Dari paparan pendahuluan, penelitian ini merumuskan permasalahan bagaimana mengimplementasikan algoritma genetika pada prediksi harga saham dan bagaimana hasil pengujiannya. 3. DASAR TEORI 3.1 Saham Saham merupakan tanda bukti penyertaan kepemilikan modal/dana suatu perusahaan. Pihak yang memiliki saham, akan memperoleh beberapa keuntungan, yaitu (Fahmi, 2010): 1. Memperoleh dividen (pembagian laba/keuntungan kepada para pemegang saham perusahaan) yang akan diberikan setiap akhir tahun. 2. Memperoleh keuntungan modal saat saham yang dimiliki tersebut dijual kembali dengan harga yang lebih mahal (capital gain). 3. Memiliki hak suara bagi pemegang saham jenis saham biasa 3.2 Prediksi Saham Prediksi dalam Kamus Besar Bahasa Indonesia Kontemporer karya Salim (2002) memiliki arti ramalan, yaitu melihat atau meduga keadaan yang akan terjadi. Prediksi harga saham berarti menduga harga saham di masa mendatang. 3.3 Metode Regresi Model ini menggunakan data historis untuk meramal dan mengasumsikan bahwa faktor yang diramalkan menunjukkan suatu hubungan sebab akibat dengan satu atau lebih variabel bebas, sehingga dari bentuk hubungan tersebut variabel tak bebas dapat digunakan untuk meramalkan nilai
2 Rahmi, A, Mahmudy, WF & Setiawan, BD 2015, 'Prediksi harga saham berdasarkan data historis menggunakan model regresi yang dibangun dengan algoritma genetika', DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 12.
mendatang(Makridakis, Steven & Victor, 1999). Terdapat pemodelan regresi berganda, dimana terdapat sebuah variabel tidak bebas (y) dan beberapa variabel bebas (x1, x2, .....,xn) dengan tujuan mencari suatu fungsi yang dapat menghubungkan y dan semua variabel bebas. Bentuk umum dari regresi berganda adalah :
1.
(1) Dimana : Y’ = Prediksi harga saham di masa mendatang , = Koefisien regresi = Hasil rata-rata harga saham dari harga open dan close periode 1 = Hasil rata-rata harga saham dari harga open dan close periode n
3.
2.
4. 5.
Mengumpulkan data historis harga open dan close saham BCA selama dua tahun dimulai dari tanggal 30 Oktober 2012 – 30 Oktober 2014 yang didapatkan dari yahoo finance dan dihitung rataratanya. Menganalisa dan merancang sistem menggunakan data yang sudah diperoleh. Membuat sistem berdasarkan analisa dan perancangan yang dilakukan Melakukan uji coba terhadap sistem Melakukan evaluasi (analisa) hasil prediksi yang diperoleh dari ujicoba tersebut dengan membandingkan hasil tiap generasi populasi
4.2 Alur Penyelesaian Masalah Menggunakan Algoritma Genetika Dalam penelitian ini menggunakan saham 4 periode. Data historis saham 4 periode dapat dilihat pada Tabel 1. Tabel 1 Data Saham 4 Periode
3.4 Algoritma Genetika Algoritma genetika pertama kali ditemukan oleh John Holland dari Universitas Michigan pada awal 1970an di New York, Amerika Serikat. Kemudian pada tahun 1975 John Holland bersama murid – murid serta rekan kerjanya menghasilkan buku yang berjudul “Adaption in Natural and Artificial Systems”. Konsep algoritma genetika diilhami oleh ilmu alam (Mahmudy, 2013).Dimana individu yang lebih baik yang mampu bertahan, sehingga individu tersebut akan menjadi solusi optimal dari sebuah masalah. Proses dalam algoritma genetika dimulai dengan tahap inisialisasi, yaitu menciptakan individu – individu secara acak yang memiliki susunan gen (kromosom) tertentu. Kromosom ini mewakili solusi dari permasalahan. Tahap selanjutnya adalah reproduksi untuk menghasilkan offspring dari individu yang ada dipopulasi. Setelah reproduksi akan lahir individu baru sehingga jumlah individu bertambah. Setiap kromosom mempunyai fitness, makin besar fitness makin baik kromosom tersebut untuk dijadikan solusi. Tahap menghitung fitness ini disebut tahap evaluasi. Tahap akhir adalah seleksi yaitu memilih individu dari himpunan populasi dan offspring. Individu hasil seleksi dipertahankan hidup pada generasi berikutnya (Mahmudy, 2013).
N o 1 2 ; ; 9 10
Tangg al 29/10/14 28/10/14
Y 13375 13325
X1 13325 13175
X2 13175 13325
X3 13325 13275
X4 13275 13025
17/10/14 16/10/14
12575 12600
12600 12675
12675 12625
12625 12600
12600 12800
Satu persamaan regresi (1) berlaku untuk keseluruhan data saham. Langkah selanjutnya adalah melakukan proses perhitungan memprediksi harga saham menggunakan algoritma genetika 4.2.1 Representasi Kromosom Representasi kromosom menggunakan real-coded genetic algorithm. Pembentukannya dengan membangkitkan nilai random pada interval [-100,100]. Hasil nilai random tersebut menyatakan proporsi koefisien regresi. Panjang kromosom sama dengan banyaknya koefisien untuk periode tertentu. Jika periode yang digunakan adalah 4, maka jumlah koefisien regresinya adalah 5. Index ke-1 menyatakan koefisien awal yaitu a, index ke-2 menyatakan koefisien ke-2 yaitu serta koefisien dari harga saham periode ke-1, dan seterusnya sampai index ke-5.
4. METODOLOGI PENELITIAN 4.1 Tahapan Penelitian Tahap-tahap implementasi algoritma genetika dalam prediksi harga saham adalah :
1 a -50,848
2
3
4
5
90,7864
93,5881
-32,552
-79,771
Gambar 1 Representasi Kromosom Parent 1
3 Rahmi, A, Mahmudy, WF & Setiawan, BD 2015, 'Prediksi harga saham berdasarkan data historis menggunakan model regresi yang dibangun dengan algoritma genetika', DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 12.
(57,19912575 – 55,49344067) = 56,68055508 C2 = P2 + α (P1 – P2) = 57,19912575 + 0,594645 (55,49344067 – 57,19912575) = 56,01201134
4.2.2 Perhitungan Fitness Tujuan pembentukan koefisien adalah untuk mendapatkan hasil prediksi yang optimal dengan error yang minimal. Maka perhitungan fitness dimulai dengan menghitung prediksi harga dengan fungsi regresi pada semua data.. = =(
) ( ) )
( (
) (
)
4.2.4 Mutasi Mutasi yang digunakan yaiturandom mutation. Banyaknya offspring dari proses mutasi yang dihasilkan adalah mr x popSize. Parent dipilih secara random. Pada tiap kromosom yang mengalami mutasi, setiap gen yang terpilih akan mengalami mutasi. x’i x’i + r (maxi - minj) (5) Nilai r dibangkitkan secara acak pada interval yang telah ditentukan sebelumnya, Nilai maxi merupakan batas atas range pada gen ke-i dan nilai mini merupakan batas bawah range pada gen ke-i. x’i= x’i + r (maxi - minj)
=
Kemudian dilanjutkan dengan mencari nilai error (Mean Squared Error) dengan rumus : √∑
(
)
(2) )
√(
(
)
294634,567
Selanjutnya adalah menghitung hasil fitness yang dapat diperoleh diperoleh dari : (3)
= -81,4037 + -0,01235 (100 – (100)) = -83,8738
Hasil pembentukan awal kromosom tersebut dapat dilihat pada Gambar 2. 1 a
2
3
4
5
55,49 34
21,51 89
63,99 87
15,15 8
14,31 86
4.2.5 Seleksi Seleksi yang digunakan adalah Replacement selection.Seleksi ini menjamin individu terbaik selalu lolos namun tidak menutup peluang individu dengan nilai Fitness rendah untuk lolos ke generasi berikutnya. Metode seleksi Replacement selection mempunyai dua aturan (Mahmudy, 2013) : 1. Offspring yang diproduksi melalui proses mutasi menggantikan induknya jika mempunyai nilai Fitness yang lebih baik 2. Offspring yang diproduksi melalui proses corssover (menggunakan dua induk) akan menggantikan induk yang terlemah jika mempunyai nilai Fitness yang lebih baik daripada induk yang terlemah tersebut.
Fitness (1/error)
1,15195E-13
Gambar 2 Hasil Perhitungan Fitness 4.2.3 Crossover Crossover digunakan untuk menghasilkan individu baru dengan gen – gen yang berbeda dari individu sebelumnya. Pada penelitian ini crossover dilakukan dengan extended intermediate. Extended intermediate crossover menghasilkan offspring dari kombinasi nilai dua induk. Banyaknya offspring yang dihasilkan dalam proses crossover adalah cr x popSize. Misalkan P1 dan P2 adalah dua kromosom adalah parent, maka offspring C1 dan C2 dapat dibangkitkan sebagai berikut : C1 = P1 + α (P2 – P1) C2 = P2 + α (P1 – P2) (4) Nilai α dibangkitkan secara acak pada interval yang telah ditentukan sebelumnya.
5. IMPLEMENTASI Antarmuka sistem terdiri dari dua form. Form pertama yaitu Form Sistem Prediksi Harga Saham. Form ini terdiri dari 2 tab yaitu Tab Home yang digunakan me-load data historis untuk mendapatkan periode saham dan memasukkan parameter algoritma genetika. Kemudian Tab Hasil Proses AlGen yang akan menampilkan hasil seleksi akhir proses algoritma genetika, hasil kromosom terbaik setiap generasi dan hasil rekomendasi koefisien
α = 0,695975136 C1 = P1 + α (P2 – P1) = 55,49344067 + 0,695975136
4 Rahmi, A, Mahmudy, WF & Setiawan, BD 2015, 'Prediksi harga saham berdasarkan data historis menggunakan model regresi yang dibangun dengan algoritma genetika', DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 12.
terbaik. Gambar implementasi antarmuka yang dapat dilihat pada Gambar 3 dan Gambar 4.
dicatat Fitness terbaiknya kemudian dihitung rata – rata Fitness untuk mengetahui ukuran populasi yang optimum. Hasil pengujian menunjukkan semakin besar ukuran populasi semakin baik Fitness yang dihasilkan. Fitness rata – rata terbaik didapatkan pada ukuran populasi 1200. Tabel 2 Percobaan Populasi Popu lasi 200
Gambar 3 Tampilan Halaman Tab Home
400 600 800 1000 1200 1400
Gambar 4 Tampilan Halaman Tab Hasil Proses Algen Form kedua adalah Form Daftar Document. Form ini akan muncul ketika menekan tombol load. Form ini berfungsi untuk memilih periode data historis saham yang terdapat pada file “periode_urut.xls” atau “periode_mix.xls” sebelum memasuki proses algoritma genetika. Pada Form ini akan ditampilkan daftar sheet pada file .xls yang sudah dipilih. Gambar implementasi antarmuka form daftar document dapat dilihat pada Gambar 5.
Nilai fitness Percobaan ke 1 ... 10 0,1249 0,1117 77467 24392 0,1240 0,1273 65577 61379 0,1277 0,1274 61452 2429 0,1248 0,1263 09907 1111 0,1274 0,1258 83999 43817 0,1266 0,1265 49353 19787 0,1274 0,1273 11568 77306
Ratarata fitness 1,082E01 1,220E01 1,254E01 1,252E01 1,264E01 1,268E01 1,266E01
Ratarata Time 0:15 0:33 0:51 1:10 1:36 1:32 1:55
Gambar 6 Uji Coba Ukuran Populasi Pada Gambar 6 dapat dilihat bahwa rata – rata fitness terbaik didapatkan pada ukuran populasi 1200 yaitu 1,268E-01 dengan rata-rata waktu komputasi 1 menit 32 detik. Titik stabil percobaan berada pada populasi 600. Percobaan dihentikan pada range populasi ke 1400 karena semakin besar ukuran populasi yang digunakan, waktu komputasi untuk menghasilkan solusi terbaik juga semakin lama. Namun hal ini tidak terjadi pada ukuran populasi 1200. Hal ini menandakan bahwa populasi 1200 lebih optimal dalam mencari solusi, yang ditunjukkan dengan rata-rata fitness terbaik dengan range waktu komputasi yang tidak terlalu lama daripada populasi sebelumnya. Selain itu, ukuran populasi yang terlalu besar tidak akan terjadi lagi kenaikan fitness yang signifikan. Hal ini dapat dilihat pada selisih rata-rata fitness terbaik dari populasi titik stabilnya yaitu 600 hingga ukuran populasi 1400. Pengaruh ukuran populasi terhadap rata-rata fitness, jika ukuran populasi
Gambar 5 Tampilan Form Daftar Document 6. PENGUJIAN DAN ANLISA 6.1 Pengujian Analisa Uji Coba Populasi Ukuran populasi yang diujikan adalah kelipatan 200. Kombinasi crossover rate (cr) dan mutation rate (mr) yang digunakan adalah 0.7 : 0.3 dengan generasi sebanyak 500 dan pengujian dilakukan 10 kali. Setiap percobaan
5 Rahmi, A, Mahmudy, WF & Setiawan, BD 2015, 'Prediksi harga saham berdasarkan data historis menggunakan model regresi yang dibangun dengan algoritma genetika', DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 12.
yang terlalu kecil, area eksplorasi (area baru dalam mencari solusi) akan semakin sempit, sehingga solusi yang ditemukan tidak akan terlalu baik. Begitu juga jika ukuran populasi terlalu besar, waktu komputasi yang diperlukan semakin lama dan kenaikan fitness tidak terlalu signifikan sehingga terjadi konvergensi. Pada saat konvergensi, proses eksplorasi tidak berjalan dengan baik, offspring yang dihasilkan akan mirip dengan induknya (Mahmudy, 2013)
fitness tidak terlalu signifikan. Banyaknya generasi mempengaruhi kenaikan rata – rata fitness. Jika jumlah generasi terlalu sedikit area pencarian algoritma semakin sempit, sehingga solusi yang ditemukan kurang optimal. Begitu juga sebaliknya, semakin tinggi jumlah generasi kenaikan nilai tidak terlalu signifikan sehingga terjadi konvergensi. Kondisi seperti ini mengakibatkan proses reproduksi menghasilkan offspring yang hampir sama dengan induknya (Mahmudy, 2013)
6.2 Pengujian Analisa Uji Coba Generasi Ukuran generasi yang digunakan mulai dari 250 hingga 1750, dengan kombinasi crossover rate (cr) dan mutation rate (mr) 0.7 : 0.3, dan ukuran populasi terbaik dari hasil uji coba ukuran populasi yaitu ukuran populasi 1200. Tabel 3 Percobaan Generasi Gene rasi 250 500 750 1000 1250 1500 1750
1 0,0930 40505 0,1257 54332 0,1280 37769 0,1280 60432 0,1280 68968 0,1280 62095 0,1281 0548
Nilai fitness Percobaan ke 2 ... 0,0660 656 0,1263 33261 0,1280 74604 0,1280 23151 0,1280 80399 0,1281 25344 0,1280 94207
10 0,1060 96239 0,1268 92376 0,1279 38654 0,1280 83344 0,1280 63517 0,1281 08138 0,1280 93015
6.3 Pengujian Analisa Uji Coba Cr dan Mr Ukuran populasi yang digunakan adalah hasil ukuran populasi terbaik pada uji coba ukuran populasi yaitu 1200 dengan generasi terbaik pada uji coba generasi yaitu 1500, dan kombinasi cr dan mr antara 0 dan 1. Masing – masing percobaan diulang hingga 10 kali, kemudian dihitung Fitness rata – rata. Tabel 4 Percobaan Kombinasi Cr dan Mr
Ratarata fitness 9,3154 E-02 1,2650 E-01 1,2795 E-01 1,2806 E-01 1,2808 E-01 1,2809 E-01 1,2808 E-01
Kombi nasi
Gambar 7 Uji Coba Banyaknya Generasi Pada Gambar 7 dapat dilihat kenaikan rata – rata fitness mulai dari generasi 250 hingga generasi 1750. Kenaikan rata – rata fitness terbaik didapatkan pada generasi 1500 yaitu 1,2809E-01. Dan pada generasi 1750 rata – rata fitness turun, namun hanya mengalami penurunan 0,000011. Pengujian generasi dihentikan pada generasi 1750 karena titik stabil pada percobaan ini berada pada generasi ke 750 yang ditunjukkan pada rata-rata fitness terbaiknya. Dan jika percobaan dilanjutkan pada generasi yang lebih besar, kenaikan
Nilai fitness
cr
mr
1
0
0,9
0,1
0,128 04914
0,8
0,2
0,128 06556
0,7
0,3
0,128 08998
0,6
0,4
0,128 10816
0,5
0,5
0,128 10795
0,4
0,6
0,128 06465
0,3
0,7
0,127 93615
0,2
0,8
0,124 60005
0,1
0,9
0,099 06233
0
1
0,042 2961
1 0,128 12722
Percobaan ke 2 ... 0,128 10397 0,128 10048 0,128 11416 0,128 06564 0,128 08698 0,128 09259 0,128 06316 0,127 90273 0,123 7234 0,082 1315 0,057 8597
10 0,128 1022 0,128 077 0,128 0842 0,128 0972 0,128 1099 0,128 0888 0,128 0663 0,127 7434 0,124 6702 0,098 4695 0,102 6408
Ratarata fitness 1,2807 E-01 1,2809 E-01 1,2809 E-01 1,2807 E-01 1,2808 E-01 1,2809 E-01 1,2805 E-01 1,2789 E-01 1,2399 E-01 9,1802 E-02 5,3653 E-02
6 Rahmi, A, Mahmudy, WF & Setiawan, BD 2015, 'Prediksi harga saham berdasarkan data historis menggunakan model regresi yang dibangun dengan algoritma genetika', DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 12.
Gambar 8 Uji Coba Kombinasi Cr dan Mr Representasi Kombinasi Cr dan Mr pada Gambar 8 ditunjukkan pada Gambar 9. Cr Mr
1 1 0
2 0,9 0,1
3 0,8 0,2
4 0,7 0,3
5 0,6 0,4
6 0,5 0,5
7 0,4 0,6
8 0,3 0,7
9 0,2 0,8
10 0,1 0,9
15 hari 20 hari 25 hari
11 0 1
Gambar 9 Representasi Kombinasi Cr dan Mr Pada Gambar 9 dapat dilihat Fitness rata – rata terbaik adalah 1,2809E-01 yaitu pada kombinasi 6 dengan nilai crossover rate (cr) 0.5 dan mutation rate (mr) 0.5. Rata – rata Fitness terburuk terdapat pada kombinasi 11 dengan nilai crossover rate (cr) 0 dan mutation rate (mr) 1. Dapat disimpulkan bahwa kombinasi crossover rate dan mutation rate (mr) terbaik adalah 0.5 : 0.5. Apabila menggunakan cr rendahdan nilai mr tinggi maka algoritma genetika akan bekerja seperti random search dan tidak mampu mengeksplorasi daerah pencarian secara efektif (Mahmudy, Marian, & Luong, 2014).
1 hari 2 hari 3 hari 4 hari 5 hari 10 hari
1 0,1281 118 0,1279 784 0,1279 421 0,1280 74 0,1276 909 0,0943 346
10 0,1280 928 0,1279 07 0,1279 459 0,1280 581 0,1289 800 0,0995 295
0,0291 745 0,0310 846 0,0207 401
4,87E02 3,27E02 2,22E02
6.4.2 Periode Saham Kombinasi Harian dan Mingguan Percobaan periode selanjutnya adalah periode kombinasi saham harian dan rata-rata mingguan. Percobaan ini dilakukan untuk mencari faktor yang paling berpengaruh dan paling dominan untuk memprediksi harga saham. Pada percobaan ini, periode saham harian yang digunakan adalah yang paling akhir pada percobaan periode saham harian sebelumnya, yaitu saham dengan periode 25 hari. Setelah itu dilanjutkan dengan periode saham rata-rata mingguan. Periode saham ratarata mingguan diperoleh dari rata-rata harga saham selama 5 hari setelahnya. Tabel 6 Percobaan Periode Kombinasi Saham Harian dan Mingguan
6.4.1 Periode Saham Harian Ukuran periode yang digunakan adalah periode harian dari periode 1 hari hingga 5 hari secara berturut-turut dan dilanjutkan periode saham harian dengan kelipatan 5 yang merepresentasikan hari kerja. Periode saham harian yang digunakan sampai dengan periode dengan 25 hari. Tabel 5 Percobaan Periode Saham Harian Nilai fitness Percobaan ke 2 ... 0,1280 843 0,1279 363 0,1279 342 0,1281 087 0,1288 185 0,0713 798
0,0527 003 0,0295 252 0,0243 631
Gambar 10 Uji Coba Periode Saham harian Berdasarkan Tabel 5 dan Gambar 10, hasil uji coba banyaknya periode saham harian memiliki fitness rata – rata terbaik sebesar 1,298E-01 pada periode 5 hari. Hal ini menunjukkan bahwa periode yang optimal adalah periode awal 5 hari kerja.
6.4 Pengujian Analisa Uji Coba Periode Ukuran populasi yang digunakan adalah hasil ukuran populasi terbaik pada uji coba ukuran populasi yaitu populasi 1200, generasi yang digunakan adalah hasil generasi terbaik pada uji coba generasi yaitu 1500, kombinasi cr dan mr yang digunakan adalah hasil kombinasi terbaik pada uji coba kombinasi cr dan mr yaitu nilai cr 0.5 dan nilai mr 0.5. Masing – masing percobaan diulang hingga 10 kali, kemudian dihitung fitness rata – rata.
Perio de
0,0467 031 0,0322 466 0,0216 783
Perio de
Ratarata fitness 1,28E01 1,28E01 1,28E01 1,28E01 1,29E01 9,75E02
25 hari 26 hari 27 hari
1 0,0216 783 0,0254 299 0,0187 89
Nilai fitness Percobaan ke 2 ... 0,0243 631 0,0207 400 0,0235 586
10 0,0207 401 0,0211 576 0,0247 506
Ratarata fitness 2,22E02 2,21E02 2,18E02
7 Rahmi, A, Mahmudy, WF & Setiawan, BD 2015, 'Prediksi harga saham berdasarkan data historis menggunakan model regresi yang dibangun dengan algoritma genetika', DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 12.
harga hasil prediksi perhitungan menggunakan koefisien regresi. Pada analisa perbandingan ini didapatkan error (MSE) sebesar 47,5023 dan error regresi sebesar 50,3577. Semakin kecil nilai MSE maka semakin kecil perbedaan harga prediksi dengan harga aktualnya. Nilai MSE terkecil didapatkan oleh harga prediksi hasil perhitungan optimasi algoritma genetika. Hal ini menunjukkan bahwa koefisien yang terbaik untuk memprediksi saham adalah menggunakan koefisien hasil optimasi menggunakan algoritma genetika. Pada penjelasan sebelumnya dinyatakan bahwa harga prediksi hasil optimasi algoritma genetika lebih baik sehingga koefisiennya dapat digunakan untuk memprediksi harga saham di masa mendatang meskipun data historis harga saham yang digunakan adalah harga rata-rata saham harian (rata-rata harga open dan harga close). Selanjutnya dilakukan perbandingan kesesuaian pola dari harga prediksi hasil dari percobaan sebelumnya yang menggunakan harga rata-rata saham harian dengan harga aktual open dan harga aktual closenya. Pada proses perbandingan ini, data yang digunakan sebanyak 10 hari secara berturut-turut dari tanggal 16/10/2014 sampai 29/10/2014 dengan periode terbaik yaitu 5 hari. Perbandingan harga aktual open dan close serta harga prediksi hasil optimasi algoritma genetika dapat dilihat pada Gambar 13.
Gambar 11 Uji Coba Periode Kombinasi Saham Harian dan Mingguan Pada percobaan periode kombinasi dapat dilihat pada Tabel 6 dan Gambar 11. Periode saham terbaik adalah periode saham 25 hari dengan nilai fitness rata-rata terbesar yaitu 2,22E-02. Dari hasil percobaan dua macam periode tersebut, periode terbaik untuk memprediksi harga saham ditunjukkan pada periode 5 hari dengan fitness rata-rata yang paling baik. Sehingga hasil koefisien yang digunakan untuk memprediksi harga saham adalah koefisien dengan periode 5 hari. Koefisien tersebut ditunjukkan pada persamaan berikut :
Hasil koefisien terbaik proses perhitungan Algoritma Genetika dilakukan perbandingan prediksi harga saham dengan koefisien yang diperoleh dari proses perhitungan metode regresi menggunakan aplikasi MiniTab16. Pada proses analisa ini digunakan data sebanyak 10 hari secara berturut-turut dari tanggal 16/10/2014 sampai 29/10/2014. Hal ini bertujuan untuk mengetahui seberapa baik koefisien hasil prediksi harga saham dengan optimasi Algoritma Genetika dapat digunakan untuk memprediksi saham di masa mendatang.
Gambar 13 Grafik Perbandingan Harga Aktual open, close, dan Harga Prediksi Berdasarkan grafik, dapat dilihat bahwa grafik harga prediksi hasil perhitungan optimasi algoritma genetika mampu mengikuti pola dari harga aktual close dan high. Hal ini membuktikan bahwa harga rata-rata saham harian (rata-rata harga open dan harga close) dapat digunakan untuk memprediksi harga saham di masa mendatang dengan menggunakan koefisien terbaik hasil perhitungan dari optimasi algoritma genetika
Gambar 12 Hasil Prediksi Harga Saham Pada Gambar 12 dapat dilihat perbandingan harga aktual dengan harga hasil prediksi perhitungan Algoritma Genetika dan
7. KESIMPULAN
8 Rahmi, A, Mahmudy, WF & Setiawan, BD 2015, 'Prediksi harga saham berdasarkan data historis menggunakan model regresi yang dibangun dengan algoritma genetika', DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 12.
Berdasarkan hasil uji coba dari penelitian skripsi dengan judul Prediksi Harga Saham Berdasarkan Data Historis Menggunakan Algoritma Genetika ini, dapat disimpulkan bahwa : 1. Representasi kromosom real coded yang digunakan mampu menyelesaikan permasalahan dalam memprediksi harga saham. Algoritma genetika dalam kasus ini mampu menentukan koefisien terbaik yang mampu menghasilkan harga prediksi yang mendekati harga aslinya. 2. Dari hasil uji coba dapat disimpulkan bahwa parameter algoritma genetika yang optimal dalam memprediksi harga saham adalah ukuran populasi 1200, crossover rate (cr) 0,5 mutation rate (mr) 0,5 dan ukuran generasi 1500. 3. Periode yang optimal dalam memprediksi harga saham pada saham BBCA menggunakan Algoritma Genetika adalah 5 hari dengan nilai fitness sebesar 1,2869E01. 4. Pada proses evaluasi, digunakan nilai MSE untuk menghitung tingkat error. Nilai MSE terkecil didapatkan oleh harga prediksi hasil perhitungan Algoritma Genetika sebesar 47,5023. Hal ini membuktikan bahwa koefisien (kromosom) terbaik hasil perhitungan Algoritma Genetika pada proses evaluasi tersebut dapat digunakan untuk memprediksi harga saham di masa mendatang dengan lebih baik dibandingkan dengan koefisien hasil perhitungan manual regresi dengan aplikasi MiniTab.
alternative production plans in flexible manufacturing system using hybrid genetic algorithm– Part 1 : Modelling and representation, 5th International Conference on Knowledge and Smart Technology (KST), Chonburi, Thailand, 31 Jan – 1 Feb, pp. 75-80 Makridakis, Steven & Victor. 1999, “Metode dan Aplikasi Peramalan”. Erlangga : Jakarta Salim, Peter. Yenny Salim. 2002, “Kamus Besar Bahasa Indonesia Kontemporer”. Modern English Press : Jakarta. Setyowati, Rully Ayu Dwi., 2013, “Penerapan Fuzzy Iterative Dichotomiser 3 (Fuzzy ID3) Pada Data Fluktuasi Harga Saham”, Universitas Brawijaya : Malang Sularno, Aris. 2006, “Prediksi Nilai Saham Menggunakan Pemrograman Genetik dan Pemrograman Ekspresi Gen”, Fakultas Teknologi Industri Universitas Gunadarma, Depok Tambunan, Andy Porman. 2006. “Menilai harga Wajar Saham Stock Valuation”. Gramedia :Jakarta Torben, G.A. and Lund J. 1997. Estimating Continuos Time Stochastic Volatility Models Of The Short Term Interest Rate. Journal of Econometrics 77, pp. 343-378 Wati, SE, Sebayang, Djakaria., Sitepu, Rachmad. 2013, “Perbandingan MetodeFuzzy dengan Regresi Linier Berganda dalam Peramalan Jumlah Produksi. Studi Kasus : Produksi Kelapa Sawit di PT. Perkebunan III (PERSERO) Medan Tahun 2011-2012”, Jurnal Fakultas MIPA Universitas Sumatera Utara Vol. 1, No. 3 (2013), pp. 273-284.
DAFTAR PUSTAKA Bonde, Ganesh., Khaled Rasheed, 2010, Stock Price Prediction Using Genetic Algorithm and Evolution Strategies. The 2012 International Conference on Genetic and Evolutionary Methods No.2 Fahmi, Irham. 2012, Manajemen Investasi: Teori dan Soal Tanya Jawab, SalembaEmpat, Jakarta Selatan Fakhruddin, Hendy M. & Tjiptono Darmadji. 2011. “Edisi 3 Pasar Modal Di Indonesia, Pendekatan Tanya Jawab”. Salemba Empat : Jakarta Mahmudy, Wayan Firdaus, 2013, Algoritma Evolusi, Program Teknologi Informasi dan Ilmu Komputer Universitas Brawijaya : Malang Mahmudy, WF, Marian, RM & Luong, LHS 2013a, Optimization of part type selection and loading probPrelem with
9 Rahmi, A, Mahmudy, WF & Setiawan, BD 2015, 'Prediksi harga saham berdasarkan data historis menggunakan model regresi yang dibangun dengan algoritma genetika', DORO: Repository Jurnal Mahasiswa PTIIK Universitas Brawijaya, vol. 5, no. 12.