perpustakaan.uns.ac.id
digilib.uns.ac.id
PERBANDINGAN PENAKSIR KAPLAN – MEIER DAN BERLINER – HILL PADA ANALISIS TAHAN HIDUP PENDERITA KANKER PAYUDARA
oleh USWATUN KHAYANATUN M 0106019
SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SEBELAS MARET SURAKARTA commit to user 2011 i
perpustakaan.uns.ac.id
digilib.uns.ac.id
commit to user
ii
perpustakaan.uns.ac.id
digilib.uns.ac.id
ABSTRAK Uswatun Khayanatun, 2011. PERBANDINGAN PENAKSIR KAPLAN – MEIER DAN BERLINER – HILL PADA ANALISIS TAHAN HIDUP PENDERITA KANKER PAYUDARA. Fakultas Matematika dan Ilmu Pengetahuan Alam, UNS. Analisis tahan hidup merupakan prosedur statistik yang digunakan untuk menggambarkan analisis data yang berhubungan dengan waktu tahan hidup yaitu dari waktu awal yang sudah ditentukan sampai waktu adanya suatu kejadian. Salah satu metode yang digunakan dalam analisis tahan hidup adalah metode nonparametrik. Dua teori yang berdasarkan pada penaksir nonparametrik untuk data tak lengkap (tersensor dan tidak tersensor) adalah penaksir Kaplan – Meier dan penaksir Berliner – Hill. Penaksir Kaplan – Meier dibandingkan dengan distribusi prediktif Berliner – Hill untuk waktu tahan hidup dari pasien baru yang diberi perlakuan pengobatan, keduanya bertujuan untuk memprediksi fungsi tahan hidup yang tepat. Pada kasus penderita kanker payudara di mana lebih banyak pasien dengan waktu hidup tersensor daripada pasien yang meninggal menunjukkan bahwa nilai estimasi menggunakan penaksir Berliner - Hill lebih besar dibandingkan menggunakan penaksir Kaplan – Meier. Selain itu berdasarkan nilai estimasi kesalahan baku, diketahui bahwa estimasi fungsi tahan hidup menggunakan penaksir Berliner - Hill lebih baik dibanding menggunakan penaksir Kaplan Meier karena memberikan nilai kesalahan baku yang lebih kecil. Hasil analisis tahan hidup penderita kanker payudara menggunakan penaksir Berliner - Hill menunjukkan bahwa secara keseluruhan, probabilitas penderita kanker payudara mampu bertahan hidup selama 48 bulan adalah sebesar 33,635%. Sedangkan probabilitas penderita kanker payudara stadium II mampu bertahan hidup selama 48 bulan adalah sebesar 42,15%, stadium III sebesar 25,627%, dan stadium IV sebesar 16,818%. Dalam kedokteran dapat dikatakan bahwa stadium IV merupakan klasifikasi kanker payudara yang serius dan menunjukkan prognosis (perkiraan keadaan akhir) paling jelek dari klasifikasi kanker payudara yang lain. Kata Kunci : Kanker Payudara, fungsi tahan hidup, penaksir Kaplan-Meier, penaksir Berliner – Hill, kesalahan baku
commit to user
iii
perpustakaan.uns.ac.id
digilib.uns.ac.id
ABSTRACT Uswatun Khayanatun, 2011. COMPARISON OF THE KAPLAN – MEIER AND BERLINER – HILL ESTIMATORS FOR SURVIVAL ANALYSIS OF BREAST CANCER PATIENTS. Mathematics and Science Faculty, UNS. Survival analysis is the statistic procedures used to describe the analysis of data that correspond to the survival time from a well-define time origin until the occurrence of some particular event. One of the method that has been used in survival analysis is nonparametric method. Two theory that based on nonparametric estimator for incomplete data (censored and uncensored) are Kaplan – Meier and Berliner – Hill estimators. The Kaplan – Meier estimator is compared with Berliner – Hill predictive distribution for the survival time of a new patient give a treatment, both for prediction the true survival function. In the case of survival breast cancer patients where there are more patients with censored life time than patients who died shows that estimation value using Berliner – Hill estimator higher than using Kaplan – Meier estimator. In addition, based on the value of standard error estimation is known that survival function estimation using Berliner – Hill better than using Kaplan – Meier estimator cause give smaller the value of standard error estimation. Result of survival analysis of breast cancer patients using Berliner – Hill estimator shows that overall data, probability of breast cancer patients stage II survive for 48 months is 33,635%. Where as probability of breast cancer patients survive for 48 months is 42,15%, stage III is 25,627%, and stage IV is 16,818%. In medicine can be said that stage IV is classification of breast cancer seriously and indicate prognosis (approximate final state) the worst of breast cancer other classification. Key words : Breast Cancer, survival function, Kaplan-Meier estimator, Berliner – Hill estimator, standard error
commit to user
iv
perpustakaan.uns.ac.id
digilib.uns.ac.id
MOTO
Sesungguhnya bersama kesulitan ada kemudahan (Q.S. Alam Nasyrah : 6)
Maka nikmat Tuhan yang manakah yang akan kamu dustakan? (Q.S. Ar-Rahman : 13)
Manusia diciptakan bersifat suka mengeluh, apabila dia ditimpa kesusuahan dia berkeluh kesah (Q.S. Al-Ma’arij : 19-20)
commit to user
v
perpustakaan.uns.ac.id
digilib.uns.ac.id
PERSEMBAHAN
Alhamdulillahirobbil ‘aalamiin... Karya ini kupersembahkan untuk Ibu dan Bapak... yang selalu membekali doa di manapun mereka berada Mas Imam dan Mbak Wanti... yang selalu menasehatiku dengan petuah – petuahnya Sahabat-sahabatku... yang tak henti-hentinya memberikan motivasi dan inspirasi
commit to user
vi
perpustakaan.uns.ac.id
digilib.uns.ac.id
KATA PENGANTAR
Puji syukur Alhamdulillah penulis panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan skripsi ini dengan baik.
Skripsi ini dapat diselesaikan dengan baik karena adanya bantuan dan dukungan dari berbagai pihak, baik secara langsung maupun tidak langsung. Pada kesempatan ini penulis ingin menyampaikan ucapan terima kasih kepada : 1. Bapak Drs. Sugiyanto, M.Si dan Drs. Sutrima, M.Si selaku Dosen Pembimbing I dan Dosen Pembimbing II dalam penulisan skripsi ini. 2. Bapak dan Ibu dosen yang tergabung dalam Tim Penguji. 3. Ibu, Bapak, dan keluarga tercinta yang tidak henti-hentinya memberi doa dan dukungan sampai selesainya skripsi ini. 4. Pihak RSUP Dr. Soeradji Tirtonegoro. 5. Sahabat – sahabat terbaik Brilianita, Ummi, Siti, Damar, Dhesi, Nurul yang selalu memberikan bantuan dan semangat di saat – saat terpenting penulis. 6. Rekan-rekan Matematika angkatan 2006. 7. Semua pihak yang telah membantu dalam penyelesaian skripsi ini.
Semoga Allah SWT selalu melimpahkan rahmat-Nya kepada kita semua. Akhir kata penulis berharap semoga skripsi ini dapat bermanfaat bagi semua pihak.
Surakarta,
Maret 2011
Penulis
commit to user
vii
perpustakaan.uns.ac.id
digilib.uns.ac.id
DAFTAR ISI
JUDUL
…………………………………………………………..............................................
HALAMAN PENGESAHAN
……………………………………………………….............
ii
………………………………………………………............................................
iii
…………………………………………………………......................................
iv
…………………………………………………………...............................................
v
ABSTRAK ABSTRACT MOTO
i
PERSEMBAHAN
…………………………………………………………..........................
vi
……………………………………………………….........................
vii
………………………………………………………........................................
viii
KATA PENGANTAR DAFTAR ISI
DAFTAR GAMBAR DAFTAR TABEL
………………………………………………………….......................
x
…………………………………………………………............................
xi
DAFTAR NOTASI DAN SIMBOL …………………………………………………………..
xii
BAB I
1
BAB II
PENDAHULUAN
………………………………….............................................
1.1
Latar Belakang Masalah
…………………………………..........................
1
1.2
Perumusan Masalah
………………………………….................................
4
1.3
Batasan Masalah
…………………………………......................................
4
1.4
Tujuan Penelitian
………………………………..........................................
4
1.5
Manfaat penulisan
…………………………………...................................
4
…………………………………..........................................
6
…………………………………......................................
6
LANDASAN TEORI 2.1
Tinjauan Pustaka 2.1.1
Kanker Payudara
………………………………….........................
2.1.2
Konsep Dasar Statistika
2.1.3
Konsep Dasar Distribusi Waktu Hidup
…………………………………................
6 7
……………………............
9
2.1.3.1
Model Kontinu ……………………………………………..
9
2.1.3.2
Model Diskrit …………………………………………........
10
2.1.4
Kategori Penyensoran
…………………………………...................
2.1.5
Metode Maksimum likelihood
2.1.6
Estimasi Kaplan – Meier
2.1.7
An
11
……………………………….........
12
…………………………………..............
13
…………………………………………………………………... commit to user
13
viii
perpustakaan.uns.ac.id
digilib.uns.ac.id
…………………………………................
14
…………………………………...................
14
…………………………………..................................
15
…………………………………....................................
17
…………………………………..................................................
19
4.1
Deskripsi data ………………………………….............................................
19
4.2
Estimasi Kaplan – Meier
19
2.2
2.1.8
Estimasi Berliner – Hill
2.1.9
Uji Mantel - Haenszel
Kerangka Pemikiran
BAB III
METODE PENELITIAN
BAB IV
PEMBAHASAN
4.3
………………………………...............................
4.2.1
Estimasi Fungsi tahan Hidup untuk Keseluruhan Data
4.2.2
Estimasi Fungsi tahan Hidup Berdasarkan Klasifikasi Stadium
4.2.3
Plot Estimasi Fungsi tahan Hidup
…………………………………
24
4.2.4
Estimasi Variansi Kaplan - Meier
…………………………………
26
………………………………….............................
27
Estimasi Berliner – Hill
................... ….
Estimasi Fungsi tahan Hidup untuk Keseluruhan Data
4.3.2
Estimasi Fungsi tahan Hidup Berdasarkan Klasifikasi Stadum
…...
29
4.3.3
Plot Estimasi Fungsi tahan Hidup …………………………………..
30
4.3.4
Estimasi Variansi Berliner – Hill
32
…………………………………..
4.4
Perbandingan Penaksir Kaplan – Meier dan Berliner – Hill
4.5
Uji Mantel – Haenszel
4.5.2
33
………………………………………………...........
35
Uji Mantel – Haenszel untuk Fungsi Tahan Hidup Penderita Kanker
PENUTUP
35
Uji Mantel – Haenszel untuk Fungsi Tahan Hidup Penderita Kanker Payudara Stadium II dan IV ……………………………......................
4.5.3
27
………………..
Payudara Stadium II dan III ………………………..…………………
BAB V
22
4.3.1
4.5.1
…………...
20
36
Uji Mantel – Haenszel untuk Fungsi Tahan Hidup Penderita Kanker Payudara Stadium III dan IV …………………………………………
37
…………………………………………………………………………
39
5.1
Kesimpulan
……………………………………………………………........
39
5.2
Saran
……………………………………………………………………….
40
DAFTAR PUSTAKA LAMPIRAN commit to user
ix
perpustakaan.uns.ac.id
digilib.uns.ac.id
DAFTAR GAMBAR
Gambar 4.1 Plot Estimasi Fungsi Tahan Hidup Keseluruhan Data
……....... 24
Gambar 4.2 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara
24
Stadium II ……………………………………………................... Gambar 4.3 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara
25
Payudara Stadium III …………………………………………….. Gambar 4.4 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara
25
Payudara Stadium IV ……………………………………………. Gambar 4.5 Plot Estimasi Fungsi Tahan Hidup Keseluruhan Data
………
Gambar 4.6 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara
30 31
Payudara Stadium II ……………………………………………... Gambar 4.7 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara
31
Payudara Stadium III …………………………………………….. Gambar 4.8 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara
31
Payudara Stadium IV ……………………………………………. Gambar 4.9 Plot Perbandingan Penaksir Kaplan – Meier dan Berliner – Hill ... 33
commit to user
x
perpustakaan.uns.ac.id
digilib.uns.ac.id
DAFTAR TABEL
Tabel 4.1
Ringkasan Data Penderita Kanker Payudara
……...................... 19
Tabel 4.2
Nilai Estimasi Kesalahan Baku Penaksir Kaplan – Meier dan
34
Berliner – Hill ……………………………………………………. Tabel 4.3
Perhitungan Statistik Mantel Haenszel untuk Fungsi Tahan Hidup 35 Penderita Kanker Payudara Stadium II dan III …………………..
Tabel 4.4
Perhitungan Statistik Mantel Haenszel untuk Fungsi Tahan Hidup 36 Penderita Kanker Payudara Stadium II dan III …………………..
Tabel 4.5
Perhitungan Statistik Mantel Haenszel untuk Fungsi Tahan Hidup 37 Penderita Kanker Payudara Stadium II dan III …………………..
commit to user
xi
perpustakaan.uns.ac.id
digilib.uns.ac.id
DAFTAR NOTASI DAN SIMBOL
S
: ruang sampel
T
: variable random
f(.)
: fungsi densitas probabilitas
S(.)
: fungsi tahan hidup
λ(.)
: fungsi hazard
tj
: waktu kematian ke – j
nj
: banyak individu yang beresiko pada waktu tj
dj
: banyak individu yang meninggal pada waktu tj
An
: spesifikasi langsung
I(.)
: interval [tj, tj+1)
m(.)
: banyak observasi tersensor tiap interval I(.)
L(.)
: fungsi likelihood
P(.)
: probabilitas : statistik uji Mantel – Haenszel
var(.) : variansi kb(.)
: kesalahan baku
commit to user
xii
perpustakaan.uns.ac.id
digilib.uns.ac.id
BAB I PENDAHULUAN Bab ini meliputi latar belakang masalah, perumusan masalah, batasan masalah, tujuan penulisan, dan manfaat penulisan.
1.1 Latar Belakang Masalah Analisis tahan hidup adalah prosedur statistik yang digunakan untuk menggambarkan analisis data yang berhubungan dengan waktu tahan hidup yaitu dari waktu awal yang sudah ditentukan sampai waktu adanya suatu kejadian. Waktu tahan hidup didefinisikan sebagai variabel random nonnegatif, sehingga analisis tahan hidup dapat didefinisikan sebagai prosedur statistik pada variabel random nonnegatif yang berfungsi untuk mengetahui ketahanan hidup objek yang diteliti. Distribusi dari waktu tahan hidup dapat dideskripsikan dengan fungsi tahan hidup. Fungsi tahan hidup (survival function) didefinisikan sebagai probabilitas tahan hidup sampai waktu tertentu. Fungsi ini dapat diestimasi melalui dua metode, yaitu metode parametrik dan metode nonparametrik. Metode parametrik digunakan jika terlebih dahulu diasumsikan distribusi populasinya, sedangkan metode nonparametrik adalah metode yang tidak bergantung pada asumsi distribusi populasinya. Metode ini sering disebut dengan metode bebas distribusi (distribution-free method). Metode nonparametrik untuk mengestimasi fungsi tahan hidup pada data tak lengkap (tersensor dan tidak tersensor) adalah penaksir Kaplan – Meier dan penaksir Berliner – Hill. Penaksir Kaplan – Meier atau sering disebut sebagai product-limit diperkenalkan pertama kali oleh Kaplan dan Meier (1958). Menurut Lawless (1982), penaksir Kaplan – Meier merupakan modifikasi dari fungsi tahan hidup empiris untuk menangani masalah data tak lengkap. Menurut Yan (2002), penaksir Kaplan – Meier memberikan estimasi probabilitas tahan hidup yang sangat bermanfaat dan memberikan representasi grafis tentang distribusi dari waktu tahan hidup. Alasan praktis di mana penaksir Kaplan – Meier dapat dikembangkan yaitu nilai estimasi menggunakan penaksir Kaplan – Meier commitestimasi to user pada ekor atas distribusi waktu menunjukkan kecenderungan di bawah 1
perpustakaan.uns.ac.id
digilib.uns.ac.id
tahan hidup (Hill, 1992). Hal itu ditunjukkan dengan hasil estimasi menggunakan penaksir Kaplan – Meier memberikan probabilitas tahan hidup nol ketika pasien baru akan dinyatakan meninggal sebelum seluruh pasien yang diobservasi tersebut meninggal dalam sampel. Selain itu jika tidak terdapat observasi tersensor setelah sampel terakhir meninggal, maka penaksir Kaplan – Meier memberikan nilai nol pada interval terakhir meninggal sampai tidak terbatas. Hal ini tidak layak apabila terdapat observasi tersensor yang besar. Penaksir Kaplan – Meier mengabaikan hal tersebut dan memberikan nilai nol pada interval berdasarkan pada sampel terakhir meninggal (Hill, 1992). Untuk mengatasi permasalahan ini, maka dilakukan pengembangan terhadap penaksir ini. Berliner dan Hill (1988) memperkenalkan penaksir Berliner – Hill yang merupakan distribusi prediktif nonparametrik untuk waktu tahan hidup pasien baru yang memberikan nilai estimasi yang lebih layak dibanding penaksir Kaplan – Meier pada estimasi ekor atas distribusi waktu tahan hidup (Hill, 1992). Di negara maju, kanker payudara merupakan karsinoma yang terbanyak dan sekaligus penyebab kematian terutama pada wanita (Dalimartha, 2004). Meski demikian pria pun memiliki kemungkinan menderita penyakit ini. Kemungkinan kanker payudara pada pria hanya 1 persen terhadap wanita. Artinya, diantara 100 wanita hanya 1 pria saja yang memiliki kemungkinan menderita kanker payudara (Isna, 2009). Sedangkan di Indonesia, kanker payudara merupakan kanker terbanyak kedua pada wanita sesudah kanker leher rahim. Menurut Sutjipto (2006), kanker payudara (Breast Cancer atau Carsinoma mammae) terjadi karena adanya pertumbuhan abnormal sel payudara. Organ – organ dan kelenjar dalam tubuh (termasuk payudara) terdiri dari jaringan yang berisi sel – sel. Umumnya pertumbuhan sel normal mengalami pemisahan dan mati ketika sel menua sehingga dapat digantikan sel – sel baru. Tetapi ketika sel – sel lama tidak mati dan sel – sel baru terus tumbuh, jumlah sel – sel yang berlebihan bisa berkembang tidak terkendali sehingga membentuk tumor. Tumor ganas tersebut dapat tumbuh di dalam jaringan payudara seperti kelenjar susu, commit to user saluran susu, jaringan lemak, maupun jaringan ikat pada payudara. 2
perpustakaan.uns.ac.id
digilib.uns.ac.id
Seperti kanker pada umumnya hingga saat ini penyebab yang pasti dari kanker payudara masih belum diketahui, namun ada beberapa faktor yang dicurigai sebagai faktor resiko yang memicu seseorang dapat menderita kanker payudara. Faktor tersebut adalah usia, faktor genetik, riwayat keluarga, faktor hormonal, dan pernah memiliki riwayat menderita penyakit payudara non-kanker (Mardiana, 2004). Menurut Wahyuni (2006), di Indonesia kanker payudara menduduki peringkat kedua setelah kanker leher rahim di antara kanker yang menyerang wanita. Menurut data WHO tahun 2005, kanker merupakan penyebab kematian kelima di Indonesia. Dari seluruh dunia kanker payudara (Breast Cancer atau Carcinoma mammae) merupakan salah satu penyakit kanker yang menyebabkan kematian nomor lima setelah kanker paru – paru, kanker rahim, kanker hati, dan kanker usus. Klasifikasi kanker payudara dibagi menjadi beberapa stadium yaitu stadium I, stadium II, stadium III, dan stadium IV. Pengobatan biasanya dilakukan setelah dilakukan penilaian secara menyeluruh terhadap kondisi penderita, yaitu sekitar 1 minggu atau lebih setelah dilakukannya biopsi. Pengobatan untuk kanker payudara dapat berupa terapi pembedahan, terapi penyinaran, kemoterapi, atau terapi hormonal (Medicastore, 2002). Insiden kanker di Indonesia masih belum diketahui secara pasti karena belum ada registrasi kanker berbasis populasi yang dilaksanakan, tetapi IARC (International Agency for Research on Cancer) memperkirakan insidens kanker payudara di Indonesia pada tahun 2002 sebesar 26 per 100.000 perempuan (Kusminarto, 2005). Kasus ini perlu diwaspadai secara serius untuk dicari penanganannya. Penanganan secara klinik dapat dilakukan melalui ketepatan pengobatan. Ketepatan pengobatan secara statistika mempengaruhi waktu hidup dan tahan hidup penderita kanker payudara. Besarnya probabilitas untuk bertahan hidup dapat diukur dengan mengestimasi fungsi tahan hidup. Oleh karena itu, penulis tertarik menggunakan penaksir Kaplan – Meier dan Berliner – Hill untuk commitmengestimasi to user melakukan analisis tahan hidup dengan fungsi tahan hidup sehingga 3
perpustakaan.uns.ac.id
digilib.uns.ac.id
diketahui probabilitas individu dapat bertahan hidup hingga sampai waktu tertentu.
1.2 Perumusan Masalah Berdasarkan latar belakang masalah, disusun perumusan masalah sebagai berikut 1. bagaimana melakukan analisis tahan hidup penderita kanker payudara menggunakan penaksir Kaplan – Meier dan penaksir Berliner – Hill untuk keseluruhan data maupun berdasarkan klasifikasi stadium? 2. bagaimana hasil perbandingan penaksir Kaplan – Meier dan penaksir Berliner – Hill dalam melakukan analisis tahan hidup penderita kanker payudara?
1.3 Batasan Masalah Agar tidak memperluas pembahasan, penulisan skripsi ini dibatasi pada hal berikut: data penelitian yang digunakan adalah data waktu tahan hidup penderita kanker payudara dari tahun 2006 – 2009 yang diambil dari Rumah Sakit Umum Provinsi (RSUP) Dr. Soeradji Tirtonegoro.
1.4 Tujuan Penulisan Tujuan penulisan skripsi ini antara lain 1. dapat
melakukan
analisis
tahan
hidup
penderita
kanker
payudara
menggunakan penaksir Kaplan – Meier dan penaksir Berliner – Hill untuk keseluruhan data maupun berdasarkan klasifikasi stadium, 2. membandingkan hasil penaksir Kaplan – Meier dan penaksir Berliner – Hill dalam melakukan analisis tahan hidup penderita kanker payudara.
1.5 Manfaat Penulisan Manfaat penulisan skripsi ini adalah dapat mengembangkan ilmu pengetahuan dalam bidang statistika dan kesehatan. Pada bidang statistika, dapat mengaplikasikan penaksir Kaplan – Meier dan penaksir Berliner – Hill pada commit to usersedangkan pada bidang kesehatan analisis tahan hidup penderita kanker payudara, 4
perpustakaan.uns.ac.id
digilib.uns.ac.id
dapat memberikan masukan kepada instansi terkait sebagai sarana untuk meningkatkan kualitas pengobatan dan pelayanan medis khususnya terhadap penderita kanker payudara.
commit to user 5
perpustakaan.uns.ac.id
digilib.uns.ac.id
BAB II LANDASAN TEORI Bab ini dibagi menjadi dua bagian yaitu tinjauan pustaka dan kerangka pemikiran.
2.1 Tinjauan Pustaka Teori – teori yang relevan dengan pembahasan diperlukan untuk mencapai tujuan penelitian. Teori – teori yang meliputi penyakit kanker payudara, konsep dasar statistika, konsep dasar analisis tahan hidup, kategori penyensoran, estimasi maksimum likelihood, estimasi Kaplan – Meier, estimasi Berliner – Hill, dan uji mantel – Haenszel.
2.1.1 Kanker Payudara Kanker payudara (Breast Cancer atau Carsinoma mammae) terjadi karena adanya pertumbuhan abnormal sel payudara. Organ – organ dan kelenjar dalam tubuh (termasuk payudara) terdiri dari jaringan yang berisi sel – sel. Umumnya pertumbuhan sel normal mengalami pemisahan dan mati ketika sel menua sehingga dapat digantikan sel – sel baru. Tetapi ketika sel – sel lama tidak mati dan sel – sel baru terus tumbuh, jumlah sel – sel yang berlebihan bisa berkembang tidak terkendali sehingga membentuk tumor. Tumor ganas tersebut dapat tumbuh di dalam jaringan payudara seperti kelenjar susu, saluran susu, jaringan lemak, maupun jaringan ikat pada payudara. Kanker payudara terbilang penyakit kanker yang paling umum menyerang kaum wanita, meski demikian pria pun memiliki kemungkinan mengalami penyakit ini meskipun dengan angka yang relatif kecil yaitu hanya sekitar 1%. Kanker payudara pada pria harus diwaspadai sejak dini karena bisa mengakibatkan kematian sebagaimana yang terjadi pada wanita (Harningsih, 2007). Diagnosa dari kanker payudara dibagi mejadi beberapa klasifikasi stadium, dimulai dari stadium 0 yang merupakan kanker in situ di mana sel – sel kanker masih berada pada tempatnya di dalam jaringan payudara yang normal. commit to user Memasuki stadium I berupa tumor dengan garis tengah kurang dari 2 cm dan 6
perpustakaan.uns.ac.id
digilib.uns.ac.id
belum menyebar keluar payudara. Stadium IIa berupa tumor dengan garis tengah 2 – 5 cm dan belum menyebar ke kelenjar getah bening ketiak atau tumor dengan garis tengah kurang dari 2 cm tetapi sudah menyebar ke kelenjar getah bening ketiak. Stadium IIb berupa tumor dengan garis tengah lebih besar dari 5 cm dan belum menyebar ke kelenjar getah bening ketiak atau tumor dengan garis tengah 2 – 5 cm tetapi sudah menyebar ke kelenjar getah bening ketiak. Stadium IIIa merupakan tumor dengan garis tengah kurang dari 5 cm dan sudah menyebar ke kelenjar getah bening ketiak disertai perlengketan satu sama lain (perlengketan ke struktur lainnya) atau tumor dengan garis tengah lebih dari 5 cm dan sudah menyebar ke kelenjar getah bening ketiak. Stadium IIIb berupa tumor yang telah menyusup keluar payudara yaitu ke dalam kulit payudara atau ke dinding dada (telah menyebar ke kelenjar getah bening di dalam dinding dada dan tulang dada). Stadium IV berupa tumor yang telah menyebar keluar daerah payudara dan dinding dada, misalnya ke hati, tulang, atau paru – paru (Medicastore, 2002). Pengobatan biasanya dilakukan setelah dilakukan penilaian secara menyeluruh terhadap kondisi penderita, yaitu sekitar 1 minggu atau lebih setelah dilakukannya biopsi. Pengobatan untuk kanker payudara dapat berupa terapi pembedahan, terapi penyinaran, kemoterapi, atau terapi hormonal. Pilihan pengobatan yang paling baik untuk kanker payudara dipilih berdasarkan stadium dari penyakit. Pada stadium I biasanya pengobatan yang dipilih berupa operasi dan kemoterapi. Stadium II dilakukan operasi, dilanjutkan dengan kemoterapi ditambah dengan terapi hormonal. Stadium III diobati dengan operasi, dilanjutkan dengan kemoterapi ditambah terapi radiasi. Sedangkan stadium IV diobati dengan kemoterapi yang dilanjutkan dengan terapi radiasi dan terapi hormonal. Untuk kanker payudara pada stadium yang sudah lanjut, biasanya pengobatan yang dilakukan hanya untuk meningkatkan kualitas hidup penderita (Medicastore, 2002). 2.1.2 Konsep Dasar Statistika Definisi-definisi yang berhubungan dengan konsep dasar statistika berikut ini dirujuk dari buku Bain dan Engelhardt (1992). commit to user 7
perpustakaan.uns.ac.id
digilib.uns.ac.id
Definisi 2.1 Himpunan semua hasil (outcome) yang mungkin dari suatu eksperimen disebut ruang sampel dan dinotasikan dengan S. Tujuan pokok dari suatu eksperimen adalah membangun suatu model yang dapat menggambarkan perilaku populasi, dalam statistik sering disebut fungsi densitas probabilitas. Pembentukan fungsi densitas probabilitas diawali dengan pendefinisian variabel random yang sesuai dengan tujuan eksperimen. Definisi 2.2 Variabel random T adalah fungsi yang memetakan setiap hasil yang mungkin pada ruang sampel S dengan suatu bilangan real t, sedemikian hingga . Dari definisi variabel random di atas dapat dihasilkan suatu model yang disebut fungsi densitas probabilitas yang memenuhi ketentuan definisi sebagai berikut. Definisi 2.3 Jika himpunan seluruh nilai yang mungkin dari variabel random T merupakan himpunan terhitung,
atau
maka T disebut
variabel random diskrit. Fungsi
menyatakan probabilitas untuk tiap-tiap nilai t yang mungkin, selanjutnya disebut fungsi densitas probabilitas diskrit. Definisi 2.4 Variabel random T disebut variabel random kontinu jika terdapat fungsi
yang merupakan fungsi densitas probabilitas dari T, sehingga fungsi
distribusi kumulatifnya dapat dinyatakan . Fungsi distribusi kumulatif mempunyai sifat : 1. 2.
dan
3.
untuk
Definisi 2.5 Fungsi
merupakan fungsi densitas probabilitas dari variabel
random kontinu T jika dan hanya jika memenuhi sifat 1.
, untuk semua t dan commit to user 8
perpustakaan.uns.ac.id
digilib.uns.ac.id
2. Definisi 2.6 Fungsi distribusi kumulatif dari variabel random kontinu T didefinisikan untuk sebarang bilangan real t dengan . Definisi 2.7 Probabilitas bersyarat dari kejadian A diberikan kejadian B didefinisikan sebagai . Definisi 2.8 Statistik nilai
yang digunakan untuk mengestimasi
disebut estimator dari
disebut estimasi dari
dan nilai statistik,
. Selanjutnya estimator T dinotasikan .
2.1.3 Konsep Dasar Distribusi Waktu Hidup 2.1.3.1 Model Kontinu Misalkan T adalah variabel random kontinu nonnegatif yang menunjukkan waktu hidup dari suatu individu (Lawless, 1982). Semua fungsi yang berkaitan dengan T didefinisikan dalam interval [0,¥) karena T merupakan variabel random nonnegatif. Menurut Cox dan Oakes (1984), secara matematika fungsi densitas probabilitas ditulis . Menurut Lawless (1982), fungsi distribusi kumulatif ditulis . Masih menurut Lawless (1982), fungsi tahan hidup didefinisikan sebagai probabilitas bertahan hidup sampai dengan waktu t, sebagai berikut . Fungsi tahan hidup adalah fungsi monoton turun dengan sifat 1. S(0) = 1,
commit to user 9
perpustakaan.uns.ac.id
digilib.uns.ac.id
2. S(t) = 0, untuk t → ¥. Hubungan fungsi densitas probabilitas
dan fungsi tahan hidup
(Elandt dan Johnson, 1980), dapat ditunjukkan dengan .
(2.1)
Fungsi hazard adalah laju kematian sesaat dari suatu individu dengan syarat individu tersebut mampu bertahan hidup sampai waktu t
yang
didefinisikan sebagai
.
(2.2)
Berdasarkan dari persamaan (2.1) dan (2.2) hubungan antara fungsi hazard dan fungsi tahan hidup
adalah .
2.1.3.2 Model Diskrit Misal T adalah variabel random diskrit, dengan T mempunyai nilai t1, t2, … dengan Menurut Lawless (1982), secara matematika fungsi peluangnya dapat ditulis , j = 1, 2, ... Masih menurut Lawless (1982), maka fungsi tahan hidup didefinisikan sebagai commit to user 10
.
(2.3)
perpustakaan.uns.ac.id
digilib.uns.ac.id
Seperti pada penjelasan model kontinu, dengan
dan
adalah fungsi monoton turun
. Fungsi hazard diskrit didefinisikan dengan
(2.4) Berdasarkan dari persamaan (2.4), fungsi peluangnya dapat ditulis (2.5) Seperti dalam kasus kontinu, fungsi probabilitas, fungsi tahan hidup, dan fungsi hazard memberikan spesifikasi yang sama terhadap distribusi T. Karena
diketahui,
maka
.
Kemudian fungsi tahan hidup yang berhubungan dengan fungsi hazard dapat ditunjukkan dengan
(2.6)
2.1.4 Kategori Penyensoran Data waktu hidup dikatakan tersensor bila terdapat individu yang mempunyai nilai batas atas atau batas bawah pada waktu hidupnya (Lawless, 1982). Menurut Kleln dan Moeschberger (1997) dan Lawless (1982), beberapa jenis penyensoran yang digunakan dalam penelitian tahan hidup yaitu tersensor kanan, tersensor kiri, dan sensor umum. 1. Tersensor kanan Diasumsikan terdapat waktu hidup T dan ditentukan waktu sensor di R, waktu hidup T dari suatu individu diketahui jika dan hanya jika T ≤ R. Jika T > R maka individu dikatakan bertahan hidup dengan waktu tersensor di R. Data tersensor kanan dapat dinyatakan dalam pasangan variabel random dengan t sama dengan T untuk waktu hidup yang diobservasi dan δ menyatakan apakah waktu hidup T sehingga diperoleh
tak tersensor
commit to user 11
atau tersensor
perpustakaan.uns.ac.id
digilib.uns.ac.id
2. Tersensor kiri Diasumsikan terdapat waktu hidup T dan ditentukan waktu sensor di L, waktu hidup T dari suatu individu diketahui jika dan hanya jika T ≥ L. Jika T < L maka individu dikatakan bertahan hidup dengan waktu tersensor di L. Data tersensor kiri dapat dinyatakan dalam pasangan variabel random dengan t sama dengan T untuk waktu hidup yang diobservasi dan ε menyatakan apakah waktu hidup T
tak tersensor
atau tersensor
sehingga diperoleh
3. Sensor Umum Suatu sampel dikatakan tersensor secara umum jika terdapat data sejumlah n objek yang diamati pada waktu 0 dan masing – masing objek diamati sampai gagal (meninggal) atau tidak. Jika objek tersebut tidak gagal (tidak meninggal), maka data tersebut merupakan data tersensor. 2.1.5 Metode Maksimum Likelihood Berikut ini diberikan definisi yang berhubungan fungsi likelihood dan estimasi maksimum likelihood menurut Bain dan Engelhardt (1992). Definisi 2.9 Jika fungsi densitas probabilitas bersama dari n variabel random yang dengan
diobservasi
di
dinotasikan
, maka fungsi likelihood dari himpunan pengamatan dinyatakan sebagai ,
dengan
adalah parameter yang belum diketahui.
Definisi 2.10 Jika dengan
adalah fungsi likelihood suatu himpunan pengamatan parameter yang tidak diketahui, maka suatu harga
dalam ruang parameter
yang memaksimumkan
estimasi maksimum likelihood dari
disebut sebagai
, dapat ditulis . .
commit to user 12
perpustakaan.uns.ac.id
Setiap
digilib.uns.ac.id
yang memaksimumkan
akan memaksimumkan log-likelihood
juga, sehingga alternatif bentuk persamaan likelihood maksimum yaitu
2.1.6 Estimasi Kaplan-Meier Estimasi Kaplan-Meier disebut juga estimasi product limit. Kaplan dan Meier adalah orang pertama yang membahas estimasi fungsi ini (Kaplan, 1958). Misal T variabel random kontinu nonnegatif. Semua fungsi yang berkaitan dengan T didefinisikan dalam interval [tj, tj+1).
Estimasi Kaplan-Meier merupakan
modifikasi dari fungsi tahan hidup empiris. Fungsi tahan hidup empiris untuk keseluruhan data didefinisikan sebagai : . (2.7) Jika terdapat data tak lengkap, persamaan (2.7) diubah menjadi estimasi product-limit atau disebut dengan estimasi Kaplan-Meier. Misal t1 < t2 < … < tk menggambarkan observasi waktu kematian dalam sampel berukuran n dari populasi homogen dengan fungsi tahan hidup S. Dengan asumsi dj adalah jumlah kematian pada saat tj tersensor dalam interval di mana
dan
, mj adalah jumlah
pada waktu
untuk j = 0, 1, …, k
,
adalah jumlah
individu beresiko pada saat tj, estimasi Kaplan-Meier untuk fungsi tahan hidup didefinisikan sebagai
.
(2.8)
2.1.7 Penaksir Berliner – Hill Berliner dan Hill (1988) memperkenalkan penaksir Berliner – Hill yang merupakan distribusi prediktif nonparametrik untuk waktu tahan hidup pasien baru yang diberikan perlakuan dengan tujuan estimasi fungsi tahan hidup commit to user berdasarkan pada An. 13
perpustakaan.uns.ac.id
digilib.uns.ac.id
Konsep umum yang mendasari penggunaan An untuk analisis tahan hidup yaitu setiap l pasien tersensor akan meninggal tepatnya pada salah satu k + 1 interval
yang terbentuk berdasar pada k pasien yang mengalami kematian.
Anggap terdapat n observasi yang terdiri k observasi meninggal dan komponen l observasi tersensor. Misalkan kematian dan
merupakan waktu
merupakan waktu tersensor. Sehingga data terdiri
dari waktu kematian Tj = tj untuk j = 1, 2, …, k dan waktu sensor Tk+i > yi untuk i = 1, 2, …, l. Data dari pasien tersensor dapat ditulis sebagai berikut . Distribusi prediktif berhubungan hanya atas interval Ij di mana pasien sensor akhirnya meninggal pada interval tersebut. Untuk setiap observasi tersensor yi, i = 1, 2, …,
didefinisikan ui adalah nilai tidak tersensor
terbesar (nilai t) sebelum yi , jika tidak ada maka ui = 0. Dengan kata lain, ui adalah indeks dari interval di mana yi terjadi. Didefinisikan Informasi Sensor Sebagian (Partial Censoring Information), disingkat menjadi PCI sebagai berikut ; i = 1, 2, ..., l Fungsi hazard dari penaksir Berliner-Hill adalah untuk j = 0,1, 2, …, k Berdasarkan PCI,
(2.9)
f(0)=λ(0). Dengan menggunakan fungsi hazard
Berliner-Hill pada persamaan (2.9) dan fungsi tahan hidup model diskrit pada persamaan (2.6) maka fungsi tahan hidup Berliner-Hill didefinisikan sebagai berikut:
.
(2.10)
2.1.8 Uji Mantel - Haenszel Salah satu uji yang dapat digunakan untuk membandingkan ketahanan hidup dari suatu unit populasi adalah uji Mantel – Haenszel. Menurut Mantel (1963), apabila sampel diambil dari dua populasi yang berbeda maka kedua sampel yang diambil akan mempunyai sifat yang berbeda pula (independen). user – Haenszel menganjurkan uji Kaitannya dengan analisis tahancommit hidup, toMantel 14
perpustakaan.uns.ac.id
digilib.uns.ac.id
homogenitas untuk dua sampel yang independen dengan formula tabel 2 x 2. Probabilitas kematian sampel 1 dan sampel 2 mendasari uji homogenitas dari dua populasi tersebut. Apabila sampel 1 dan sampel 2 kecil, maka uji Mantel – Haenszel dikatakan mendekati distribusi chi-kuadrat dengan derajat bebas 1. Langkah-langkah dalam uji Mantel – Haenszel dijelaskan sebagai berikut. 1. Membuat tabel kontingensi 2 x 2 dari dua data yang berasal dari sampel yang berbeda level Faktor 1 Faktor 2 i Ai Bi Ci Di 1 A1 B1 C1 D1 2 A2 B2 C2 D2 . . . . . . . . . . . . . . . j Aj Bj Cj Dj 2. Statistik uji Mantel – Haenszel sebagai berikut
Jumlah T1 T2 . . . Tj
(2.11)
(2.12)
(2.13) 2.2 Kerangka Pemikiran Kanker payudara merupakan tumor ganas yang tumbuh di dalam jaringan commit user payudara. Kanker bisa tumbuh di dalamto kelenjar susu, saluran susu, jaringan 15
perpustakaan.uns.ac.id
digilib.uns.ac.id
lemak, maupun jaringan ikat pada payudara. Kanker payudara terbilang penyakit kanker yang paling umum menyerang kaum wanita, meski demikian pria pun memiliki kemungkinan mengalami penyakit ini meskipun dengan angka yang relatif kecil yaitu hanya sekitar 1%. Kanker payudara pada pria harus diwaspadai sejak dini karena bisa mengakibatkan kematian sebagaimana yang terjadi pada wanita (Harningsih, 2007). Waktu tahan hidup penderita kanker payudara dapat diukur mulai dari seseorang didiagnosa terkena kanker payudara sampai meninggal. Adapun data yang digunakan adalah data penderita kanker payudara di RSUP Dr. Soeradji Tirtonegoro. Analisis tahan hidup dilakukan dengan mengestimasi fungsi tahan hidup dari penderita kanker payudara. Penaksir yang digunakan dalam mengestimasi fungsi tahan hidup adalah penaksir Kaplan – Meier dan Berliner – Hill. Penaksir Kaplan-Meier yang memiliki kecenderungan di bawah estimasi pada ekor atas distribusi waktu tahan hidup akan dibandingkan dengan distribusi prediktif Berliner – Hill sebagai perkembangan penaksir Kaplan – Meier yang memberikan nilai estimasi yang lebih layak pada estimasi ekor atas distribusi waktu tahan hidup. Yang pertama dilakukan adalah mengestimasi fungsi tahan hidup baik menggunakan penaksir Kaplan – Meier maupun Berliner – Hill. Selanjutnya dengan diperolehnya estimasi fungsi tahan hidup tersebut maka dapat diketahui probabilitas tahan hidup penderita kanker payudara. Langkah selanjutnya membandingkan kedua penaksir dalam mengestimasi fungsi tahan hidup dengan membandingkan plot estimasi dan nilai estimasi kesalahan baku dari kedua penaksir tersebut. Kemudian dilakukan uji Mantel – Haenszel antara fungsi tahan hidup penderita kanker payudara berdasarkan klasifikasi stadium kanker payudara untuk membandingkan ketahanan hidup.
commit to user 16
perpustakaan.uns.ac.id
digilib.uns.ac.id
BAB III METODE PENELITIAN
Metode yang digunakan dalam penelitian ini adalah studi literatur. Studi literatur dilakukan dengan mempelajari ulang teori tentang penaksir Kaplan – Meier dan Berliner – Hill yang diterapkan pada data penderita kanker payudara. Studi literatur dilakukan dalam dua tahap, yaitu tahap pengumpulan data dan analisis data. 1. Tahap pengumpulan data Tahap ini dilakukan dengan menggunakan metode penelitian dokumenter, yaitu mengambil data penderita kanker payudara di Rumah Sakit Umum Provinsi (RSUP) Dr. Soeradji Tirtonegoro. Data yang diambil meliputi identitas (nama, jenis kelamin, umur), tanggal masuk dan keluar rumah sakit commit to user (sembuh, pulang paksa, meninggal, rawat jalan). Jika ada pasien yang sembuh, 17
perpustakaan.uns.ac.id
digilib.uns.ac.id
rawat jalan, atau pulang paksa dianggap sebagai data tersensor karena waktu hidupnya tidak diketahui secara pasti. Waktu kelangsungan hidup pasien dimulai saat didiagnosa menderita kanker payudara sampai dinyatakan meninggal oleh dokter. 2. Tahap analisis data Pada tahap ini data diolah dengan menggunakan software Microsoft Excel 2007 dan Mathematica 5.2. Ada beberapa langkah dalam tahapan ini, yaitu 1.1
mengestimasi
fungsi
tahan
hidup
penderita
kanker
payudara
menggunakan penaksir Kaplan-Meier dan Berliner – Hill dengan software Microsoft Excel 2007 untuk keseluruhan data maupun berdasarkan klasifikasi stadium kanker payudara, 1.2
membuat plot estimasi fungsi tahan hidup penderita kanker payudara dengan software Mathematica 5.2,
1.3
membandingkan penaksir Kaplan – Meier dan Berliner – Hill dalam mengestimasi fungsi tahan hidup pasien penderita kanker payudara dengan membandingkan plot estimasi dan nilai estimasi kesalahan baku dari kedua metode estimasi tersebut,
1.4
melakukan uji Mantel – Haenszel untuk membandingkan ketahanan hidup penderita kanker payudara berdasarkan klasifikasi stadium kanker payudara.
commit to user 18
perpustakaan.uns.ac.id
digilib.uns.ac.id
BAB IV PEMBAHASAN
Pada bab ini dilakukan analisis untuk keseluruhan data maupun berdasarkan klasifikasi stadium kanker payudara. Analisis meliputi estimasi Kaplan - Meier, estimasi Berliner - Hill, perbandingan penaksir Kaplan – Meier dan Berliner – Hill dalam mengestimasi fungsi tahan hidup, dan uji Mantel – Haenszel. 4.1 Deskripsi Data Data penderita kanker payudara diambil dari RSUP Dr. Soeradji Tirtonegoro meliputi data penderita dari tahun 2006 – 2009. Waktu tahan hidup penderita kanker payudara dihitung mulai dari penderita didiagnosa terkena kanker payudara sampai dinyatakan meninggal oleh dokter. Penderita kanker commit user payudara yang pulang paksa, rawat jalan,todan sembuh dikategorikan sebagai data 19
perpustakaan.uns.ac.id
digilib.uns.ac.id
tersensor, sedangkan penderita kanker payudara yang diketahui lamanya waktu perawatan dari mulai didiagnosa menderita kanker payudara hingga dinyatakan meninggal oleh dokter di RSUP dikategorikan sebagai data tidak tersensor. Ringkasan data keseluruhan dan berdasarkan klasifikasi stadium kanker payudara dapat dilihat pada Tabel 4.1.
Tabel 4.1 Ringkasan Data Penderita Kanker Payudara Banyak Penderita
Stadium
Jumlah
Tidak Tersensor
Tersensor
II
4
18
22
III
5
38
43
IV
7
47
54
Jumlah
16
103
119
4.2 Estimasi Kaplan – Meier Untuk menganalisis data, tahap awalnya adalah bagaimana mengestimasi fungsi tahan hidup dari keempat kategori data dengan menggunakan penaksir Kaplan-Meier. Pada subbab ini akan dibagi menjadi dua bagian, yaitu estimasi fungsi tahan hidup untuk keseluruhan data dan estimasi fungsi tahan hidup berdasarkan klasifikasi stadium.
4.2.1 Estimasi Fungsi Tahan Hidup untuk Keseluruhan Data Penaksir Kaplan-Meier dapat dilakukan pada n individu dengan k kematian. Estimasi fungsi tahan hidup Kaplan-Meier dengan asumsi tidak terdapat observasi rangkap pada pada n sampel observasi dapat diperoleh sebagai berikut: Misal t1 < t2 < … < tk menggambarkan observasi waktu hidup dalam sampel berukuran n dari populasi homogen dengan fungsi tahan hidup waktu tahan hidup pada tj
Observasi
dibagi menjadi k interval yaitu
dengan t0 = 0 dan tk+1 = ∞ untuk j = 0, 1, …, k. Distribusi waktu hidup yang memiliki fungsi tahancommit hidup to user adalah 20
perpustakaan.uns.ac.id
digilib.uns.ac.id
dengan dj = jumlah kegagalan pada saat tj
dan nj = jumlah
individu beresiko pada saat tj . Jika diasumsikan tidak terdapat observasi rangkap maka jumlah yang gagal
dan Didefinisikan
pada waktu
adalah banyaknya observasi tersensor dalam interval Ij , maka
dengan j = 0,1,...,k. Sehingga diperoleh fungsi hazard dari penaksir Kaplan-Meier adalah untuk j = 1, 2, …, k diketahui fungsi hazard pada saat t0 = 0 adalah
.
Diasumsikan kegagalan individu – individu dalam sampel saling independen sehingga diperoleh . Dengan
yang diestimasi dengan maka estimasi fungsi tahan hidup dalam k
interval adalah
(4.1)
untuk j = 1, 2, …, k. Estimasi fungsi tahan hidup Kaplan-Meier pada saat t0 = 0 adalah 1. Untuk mengestimasi fungsi tahan hidup Kaplan-Meier dapat juga dengan menggunakan estimasi maksimum likelihood sebagai berikut. Estimasi Kaplan - Meier dari
didefinisikan seperti pada persamaan
commit toterdapat user (2.8). Dari persamaan (2.8) diasumsikan k waktu terjadinya kematian 21
perpustakaan.uns.ac.id
digilib.uns.ac.id
yang berbeda t1 < t2 < ... < tk, dengan dj banyaknya kematian pada saat tj. Pada interval
terdapat mj waktu pengamatan tersensor, dinyatakan dengan Lji dan t0 = 0, tk+1 = ∞, j =0, 1, 2, ..., k. Fungsi likelihoodnya dapat
dinyatakan sebagai
(4.2) Persamaan (4.2) akan dimaksimumkan dengan membuat besar dan dinyatakan
dan
kecil. Misal diasumsikan
,
dan
untuk semua i dan j. Misal
=Pj sehingga persamaan (4.2) menjadi
dengan Dengan memisalkan dan
(4.3)
dan diberikan maka persamaan (4.3) menjadi
.
(4.4)
Logaritma dari persamaan (4.4) adalah
commit to user 22
.
(4.5)
perpustakaan.uns.ac.id
digilib.uns.ac.id
Turunan parsial dari persamaan (4.5) terhadap
adalah
.
(4.6)
Untuk memperoleh estimasi dari pj maka persamaan (4.6) sama dengan nol agar L maksimum,
. Oleh karena nj > 0, 0 < dj < nj, dan 0 < pj < 1, maka nilai
untuk setiap j. Agar setiap j
, maka untuk
, sehingga .
(4.7)
Estimasi maksimum likelihood dari Pj adalah
sehingga
diperoleh estimasi fungsi tahan hidup secara keseluruhan adalah
.
(4.8)
Hasil estimasi fungsi tahan hidup penderita kanker payudara secara keseluruhan dapat dilihat pada Lampiran 2. 4.2.2 Estimasi Fungsi Tahan Hidup Berdasarkan Kalsifikasi Stadium Untuk mengestimasi fungsi tahan hidup berdasarkan klasifikasi stadium kanker payudara digunakan estimasi fungsi tahan hidup
. Berdasarkan fungsi
tahan hidup pada persamaan (2.6) untuk variabel random diskrit, dapat diubah untuk klasifikasi berdasarkan c stadium yaitu : commit to user 23
perpustakaan.uns.ac.id
digilib.uns.ac.id
.
(4.9)
Persamaan (2.5) disubstitusikan ke dalam persamaan (4.9) menjadi
.
(4.10)
Hubungan antara fungsi hazard berdasarkan klasifikasi stadium dengan fungsi hazard secara umum adalah
. Pada landasan teori telah disebutkan bahwa fungsi hazard merupakan laju kematian sesaat pada waktu t sehingga estimasi fungsi hazard tersebut , dengan dj adalah banyaknya kematian pada saat tj .Banyaknya kematian saat tj pada klasifikasi stadium c adalah dcj, maka estimasi fungsi hazard pada stadium c adalah
. Sehingga diperoleh estimasi fungsi hazard berdasarkan klasifikasi stadium adalah
dengan dcj merupakan jumlah kematian pada saat tj dengan klasifikasi data c. Estimasi dari persamaan (4.10) adalah commit to user 24
perpustakaan.uns.ac.id
digilib.uns.ac.id
.
(4.11)
Hasil estimasi fungsi tahan hidup penderita kanker payudara berdasarkan klasifikasi stadium kanker payudara dapat dilihat selengkapnya pada Lampiran 2. 4.2.3 Plot Estimasi Fungsi Tahan Hidup Langkah selanjutnya dalam menganalisis data adalah membuat plot estimasi fungsi tahan hidup terhadap waktu tahan hidupnya. Langkah ini berfungsi untuk melihat kecenderungan estimasi fungsi tahan hidup terhadap waktu yang semakin lama dan dapat melihat dengan jelas perbedaan antara hasil estimasi fungsi tahan hidup untuk setiap stadium kanker payudara. Berdasarkan estimasi pada persamaan (4.8) dan (4.11), dengan hasil estimasi fungsi tahan hidup pada Lampiran 2, diberikan plot estimasi fungsi tahan hidup untuk keempat kategori data terhadap waktu hidupnya, seperti terlihat pada Gambar 4.1 sampai dengan Gambar 4.4 Keseluruhan
Data
1
0.6
`
S t
0.8
0.4
0
10
HL
20 30 t bulan
40
Gambar 4.1 Plot Estimasi Fungsi Tahan Hidup Keseluruhan Data
commit to user 25
perpustakaan.uns.ac.id
digilib.uns.ac.id
Stadium
II
0.75 0.7
`
S1 t
0.65 0.6 0.55 0.5 0.45 10
20 t
HL 30 bulan
40
Gambar 4.2 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara Stadium II Stadium
III
0.5
0.4
`
S2 t
0.45
0.35 0.3 0.25 10
20 t
HL 30 bulan
40
Gambar 4.3 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara Stadium III
commit to user 26
perpustakaan.uns.ac.id
digilib.uns.ac.id
Stadium
IV
0.45 0.4
`
S3 t
0.35 0.3 0.25 0.2
HL
0.15 0
10
20 30 t bulan
40
Gambar 4.4 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara Stadium IV
Dari Gambar 4.1, 4.2, 4.3, dan Gambar 4.4 terlihat bahwa estimasi fungsi tahan hidup semakin mengecil untuk waktu yang semakin lama. Ini berarti semakin lama menderita kanker payudara maka semakin kecil probabilitas pasien penderita kanker payudara untuk bertahan hidup. Secara keseluruhan, probabilitas penderita kanker payudara dapat bertahan hidup sampai 48 bulan adalah sebesar 22,879%. Sedangkan probabilitas penderita kanker payudara stadium II dapat bertahan hidup sampai 48 bulan adalah sebesar 42%, stadium III sebesar 25,421%, dan stadium IV sebesar 11,439%. 4.2.4 Estimasi Variansi Kaplan – Meier Berdasarkan estimasi fungsi tahan hidup Kaplan – Meier pada persamaan (4.1) diperoleh hasil
maka variansi untuk
adalah
.
(4.12)
Misal pada percobaan binomial dengan parameter nj dan pj dengan pj adalah probabilitas tahan hidup setelah interval Ij dengan syarat hidup setelah commit to user 27
perpustakaan.uns.ac.id
digilib.uns.ac.id
interval Ij-1. Jumlah observasi yang dapat bertahan adalah sebanyak nj – dj, dengan menggunakan hasil variansi dari binomial variabel random maka diperoleh . Oleh karena itu diperoleh variansi dari
adalah
. Variansi dari
(4.13)
dapat diperoleh dengan menggunakan hasil umum
dari perhitungan variansi dari fungsi variabel random. Variansi fungsi variabel random dinyatakan dengan (4.14) Menggunakan persamaan (4.14), perhitungan variansi
adalah
(4.15) dan mensubstitusikan persamaan (4.13) ke persamaan (4.15) maka diperoleh
(4.16) Dengan mensubstitusikan persamaan (4.16) ke persamaan (4.12) maka diperoleh
(4.17) Aplikasi lebih lanjut dari persamaan (4.14) adalah .
(4.18)
Sehingga diperoleh nilai variansi estimasi fungsi tahan hidup Kaplan-Meier yaitu .
(4.19)
Dengan mensubstitusikan persamaan (4.17) ke persamaan (4.19) maka diperoleh
(4.20) Menurut Kleln (1997), kesalahan baku dari penaksir Kaplan-Meier adalah commit to user (4.21) 28
perpustakaan.uns.ac.id
digilib.uns.ac.id
Hasil estimasi variansi fungsi tahan hidup penderita kanker payudara dapat dilihat selengkapnya pada Lampiran 2. 4.3 Estimasi Berliner – Hill Pada subbab ini akan dibagi menjadi dua bagian, yaitu estimasi fungsi tahan hidup untuk keseluruhan data dan estimasi fungsi tahan hidup berdasarkan klasifikasi stadium. 4.3.1 Estimasi Fungsi Tahan Hidup untuk Keseluruhan Data Berliner-Hill merupakan distribusi prediktif nonparametrik untuk waktu hidup pasien baru yang diberikan perlakuan dengan tujuan estimasi fungsi tahan hidup berdasarkan pada An. Menurut Hill (1992), spesifikasi langsung yang didefinisikan dengan An memiliki 3 ketentuan yaitu: 1. Jumlah random T1, T2, …, Tn yang diamati dapat ditukar. 2. Ties (observasi rangkap) memiliki probabilitas 0. 3. Diberikan data tj dengan j = 1, 2, …, n, probabilitas untuk observasi akan datang terjadi pada interval
adalah
untuk setiap j = 0,
1, 2, …, n. Hal ini berlaku untuk semua t1,t2, …, tn yang mungkin. Anggap terdapat n observasi yang terdiri dari k + l pasien. Misalkan waktu tahan hidup pasien adalah T1, T2, …, Tn yang merupakan vektor random yang menggambarkan waktu sebenarnya. Waktu tahan hidup dengan asumsi T1, T2, …, Tn dapat ditukar dan pada observasi rangkap memiliki probabilitas 0. Misalkan merupakan waktu kematian dan
merupakan
waktu tersensor. Sehingga data terdiri dari waktu kematian Tj = tj untuk j = 1, 2, …, k dan waktu sensor Tk+i > yi untuk i = 1, 2, …, l. Data dari pasien tersensor dapat ditulis sebagai berikut
.
Konsep umum yang mendasari penggunaan An untuk analisis tahan hidup yaitu untuk setiap
pasien tersensor akan meninggal tepatnya pada salah satu
interval Ij yang terbentuk berdasar pada k pasien yang mengalami commit to user kematian. Distribusi prediktif berhubungan hanya atas interval Ij di mana pasien 29
perpustakaan.uns.ac.id
digilib.uns.ac.id
tersensor akhirnya meninggal pada interval tersebut. Dikondisikan hanya pada interval
di mana observasi tersensor terjadi. Untuk setiap observasi tersensor
yi, i = 1, 2, …,
didefinisikan ui adalah nilai tidak tersensor terbesar (nilai t)
sebelum yi , jika tidak ada maka ui = 0. Dengan kata lain, ui adalah indeks dari interval di mana yi terjadi. Didefinisikan Informasi Sensor Sebagian (Partial Censoring Information), disingkat menjadi PCI sebagai berikut ; i = 1, 2, ..., l. Didefinisikan observasi tersensor tiap interval Ij adalah m(j), maka
dengan j = 0,1,...,k Fungsi hazard dari penaksir Berliner-Hill adalah untuk j = 0,1, 2, …, k. (4.22) Estimasi Berliner – Hill untuk fungsi tahan hidup didasarkan pada fungsi tahan hidup model diskrit seperti pada persamaan (2.6) ,maka fungsi tahan hidup Berliner-Hill didefinisikan sebagai berikut:
.
(4.23)
Berdasarkan PCI,
Untuk m(0) = 0 maka
sehingga diperoleh hasil
Sedangkan jika waktu hidup pasien tersensor
dengan asumsi
pertukaran maka waktu hidup sensor dapat ditulis kembali menjadi Tk+1 , …, Tk+m(0) di mana observasi m(0) adalah waktu hidup tersensor pada interval I0 . Berdasarkan informasi sensor sebagian, terjadinya sensor untuk observasi ini commit to user hanya Tk+i ≥ 0, untuk i = 1, 2, …, m(0). Sehingga dapat dikatakan observasi yang 30
perpustakaan.uns.ac.id
digilib.uns.ac.id
terjadi pada j = 0 adalah sepenuhnya tidak informatif, maka observasi m(0) dapat dihapus dari perhitungan f(0). Dalam kasus ini, pengurangan jumlah observasi n – m(0) untuk jumlah tersesiko, jadi dapat dikatakan bahwa tidak ada observasi tersensor pada interval. Perhitungan dengan probabilitas bersyarat dapat ditunjukkan sebagai berikut:
Pengurangan data dilakukan dengan menghapus kumpulan observasi sensor m(0) dalam interval I0. Untuk perhitungan estimasi probabilitas prediktif f(1) sampai f(k) ditunjukkan sebagai berikut:
Untuk j = 1 dan
. Diberikan
dengan observasi m(1)
terjadi dalam interval I1 dan informasi sensor sebagian meletakkan t1 pada kejadian yang terjadi, seperti dalam kasus j = 0 dengan sensor diasumsikan tidak informatif sehingga observasi sensor m(1) dalam interval I1 dapat dihapus pada waktu perhitungan dilakukan. Diperoleh probabilitas bersyarat untuk probabilitas prediktif adalah
Selanjutnya dengan cara yang sama diperoleh rumus umum yaitu
(4.24) Hasil estimasi fungsi tahan hidup penderita kanker payudara secara keseluruhan dapat dilihat pada Lampiran 2. 4.3.2 Estimasi Fungsi Tahan Hidup Berdasarkan Kalsifikasi Stadium Untuk mengestimasi fungsi tahan hidup berdasarkan klasifikasi stadium kanker payudara digunakan estimasi fungsi tahan hidup
. Berdasarkan fungsi
tahan hidup pada persamaan (2.6) untuk variabel random diskrit, dapat diubah untuk klasifikasi berdasarkan c stadium : commityaitu to user 31
perpustakaan.uns.ac.id
digilib.uns.ac.id
.
(4.25)
Kemudian persamaan (4.24) tersebut disubstitusikan ke dalam persamaan (4.25) menjadi
(4.26) Persamaan (4.23) merupakan estimasi fungsi tahan hidup secara keseluruhan dengan mengabaikan klasifikasi data. Estimasi fungsi tahan hidup dengan mempertimbangkan klasifikasi data c adalah
(4.27) Hasil estimasi fungsi tahan hidup penderita kanker payudara berdasarkan klasifikasi stadium kanker payudara dapat dilihat selengkapnya pada Lampiran 2. 4.2.3 Plot Estimasi Fungsi Tahan Hidup Berdasarkan estimasi pada persamaan (4.23) dan (4.27), dengan hasil estimasi fungsi tahan hidup pada Lampiran 2, diberikan plot estimasi fungsi tahan hidup untuk keempat kategori data terhadap waktu hidupnya, seperti terlihat pada Gambar 4.5 sampai dengan Gambar 4.8 Keseluruhan
Data
1 0.9
`
S t
0.8 0.7 0.6 0.5 0.4 0
10
HL
20 30 t bulan
40
Gambar 4.5 Plot Estimasicommit Fungsito Tahan user Hidup Keseluruhan Data 32
perpustakaan.uns.ac.id
digilib.uns.ac.id
Stadium
II
0.9
0.7
`
S1 t
0.8
0.6 0.5 10
20 t
HL 30 bulan
40
Gambar 4.6 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara Stadium II Stadium
III
0.5
`
S2 t
0.6
0.4 0.3 10
20 t
HL 30 bulan
40
Gambar 4.7 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara Stadium III Stadium
IV
0.6
`
S3 t
0.5 0.4 0.3 0.2 0
10
HL
20 30 t bulan
40
Gambar 4.8 Plot Estimasi Fungsi Tahan Hidup Penderita Kanker Payudara Stadium IV commit to user 33
perpustakaan.uns.ac.id
digilib.uns.ac.id
Dari Gambar 4.5, 4.6, 4.7, dan Gambar 4.8 terlihat bahwa estimasi fungsi tahan hidup semakin mengecil untuk waktu yang semakin lama. Ini berarti semakin lama menderita kanker payudara maka semakin kecil probabilitas pasien penderita kanker payudara untuk bertahan hidup. Secara keseluruhan, probabilitas penderita kanker payudara dapat bertahan hidup sampai 48 bulan adalah sebesar 33,635%. Sedangkan probabilitas penderita kanker payudara stadium II dapat bertahan hidup sampai 48 bulan adalah sebesar 42,15%, stadium III sebesar 25,627%, dan stadium IV sebesar 16,818%.
4.3.3 Estimasi Variansi Berliner – Hill
Dengan asumsi perhitungan proporsi binomial
sehingga diperoleh
(4.28) Dengan mensubstitusikan persamaan (4.28) ke persamaan (4.12) maka diperoleh
(4.29) Kemudian mensubstitusikan persamaan (4.29) ke persamaan (4.19) maka diperoleh
(4.30) Oleh karena itu kesalahan baku dari penaksir Berliner-Hill
diperoleh
sebagai berikut (4.31) Hasil estimasi variansi fungsi tahan hidup penderita kanker payudara dapat dilihat selengkapnya pada Lampiran 2. to user commit 34
perpustakaan.uns.ac.id
digilib.uns.ac.id
4.4 Perbandingan Penaksir Kaplan – Meier dan Berliner – Hill Untuk melihat perbandingan hasil estimasi fungsi tahan hidup yang diperoleh dengan menggunakan penaksir Kaplan – Meier dan Berliner – Hill, maka dibuat plot estimasi fungsi tahan hidup keduanya. Keseluruhan
Data
1
0.6
`
S t
0.8
0.4
0
10
HL
20 30 t bulan Stadium
40
II,III ,IV
0.8
`
Si t
0.6 0.4 0.2 0 0
10
HL
20 30 t bulan
40
Gambar 4.9 Plot Perbandingan Penaksir Kaplan – Meier dan Berliner – Hill Dari Gambar 4.9 terlihat bahwa plot estimasi fungsi tahan hidup menggunakan penaksir Berliner – Hill berada di atas penaksir Kaplan – Meier. Hal ini menunjukkan bahwa nilai estimasi fungsi tahan hidup penderita kanker payudara menggunakan penaksir Berliner – Hill lebih besar dari penaksir Kaplan – Meier. Selain membandingkan plot estimasi fungsi tahan hidup keduanya, dapat dibandingkan nilai estimasi kesalahan baku untuk mengetahui penaksir yang commit to user 35
perpustakaan.uns.ac.id
digilib.uns.ac.id
lebih baik diantara yang lain. Hasil estimasi kesalahan baku dengan menggunakan persamaan (4.21) dan (4.31) diperoleh sebagai berikut Tabel 4.2 Nilai Estimasi Kesalahan Baku Penaksir Kaplan – Meier dan Berliner - HIll Kesalahan Baku time
Kaplan - Meier
Berliner - Hill
4
0,00889
0,00881
5
0,01344
0,01332
6
0,01694
0,01677
9
0,02079
0,02057
10
0,02469
0,02441
12
0,02914
0,02877
14
0,03344
0,03298
15
0,03724
0,03671
16
0,04198
0,04133
24
0,05072
0,04967
25
0,05947
0,05801
26
0,06982
0,06777
27
0,08160
0,07875
29
0,11728
0,10886
37
0,15870
0,14252
44
0,18019
0,16698
Berdasarkan nilai estimasi kesalahan baku pada Tabel 4.2 diketahui bahwa estimasi kesalahan baku dari fungsi tahan hidup menggunakan penaksir Berliner – Hill lebih kecil daripada estimasi kesalahan baku dari fungsi tahan hidup menggunakan penaksir Kaplan – Meier. Hal ini menunjukkan bahwa penggunaan penaksir Berliner – Hill lebih baik digunakan untuk mengestimasi fungsi tahan hidup penderita kanker payudara.
commit to user 36
perpustakaan.uns.ac.id
digilib.uns.ac.id
4.5 Uji Mantel – Haenszel Uji Mantel – Haenszel dilakukan untuk membandingkan ketahanan hidup berdasarkan klasifikasi stadium kanker payudara. 4. 5.1 Uji Mantel – Haenszel untuk Fungsi Tahan Hidup Penderita Kanker Payudara Stadium II dan III Hipotesis yang akan diuji adalah dan dengan S1 fungsi tahan hidup penderita kanker payudara stadium II dan S2 fungsi tahan hidup penderita kanker payudara stadium III. Berdasarkan persamaan (2.11), (2.12), dan (2.13) diperoleh hasil uji Mantel – Haenszel ini sebagai berikut: Tabel 4.3 Perhitungan Statistik Mantel Haenszel untuk Fungsi Tahan Hidup Penderita Kanker Payudara Stadium II dan III time [0,6)
Ai 0
Bi 8
Ci 0
Di 4
E(Ai) var(Ai) 0,00000 0,00000
[6,9)
1
5
0
7
0,46154 0,24852
[9,10)
0
1
1
2
0,25000 0,18750
[10,14)
0
0
1
8
0,00000 0,00000
[14,15)
0
0
1
1
0,00000 0,00000
[15,16)
1
0
0
5
0,16667 0,13889
[16,24)
1
3
0
6
0,40000 0,24000
[24,25)
1
1
0
2
0,50000 0,25000
[25,26)
0
0
1
1
0,00000 0,00000
[26,∞)
0
0
1
2
0,00000 0,00000
Jumlah
4
18
5
38
1,77821 1,06491
Dari Tabel 4.3 diperoleh hasil uji Mantel – Haenszel ini sebagai berikut
. commit to user 37
perpustakaan.uns.ac.id
digilib.uns.ac.id
Dengan tingkat signifikansi a = 10%, daerah kritisnya adalah H0 ditolak apabila >
= 2,71. Oleh karena
>
= 2,71. maka H0 ditolak. Hal
ini berarti fungsi tahan hidup penderita kanker payudara stadium II lebih besar daripada fungsi tahan hidup penderita kanker payudara stadium III. 4. 5.2 Uji Mantel – Haenszel untuk Fungsi Tahan Hidup Penderita Kanker Payudara Stadium II dan IV Hipotesis yang akan diuji adalah dan dengan S1 fungsi tahan hidup penderita kanker payudara stadium II dan S2 fungsi tahan hidup penderita kanker payudara stadium IV. Berdasarkan persamaan (2.11), (2.12), dan (2.13) diperoleh hasil uji Mantel – Haenszel ini sebagai berikut: Tabel 4.4 Perhitungan Statistik Mantel Haenszel untuk Fungsi Tahan Hidup Penderita Kanker Payudara Stadium II dan IV time [0,4)
Ai 0
Bi 6
Ci 0
Di 1
E(Ai) var(Ai) 0,00000 0,00000
[4,5)
0
2
1
10
0,16667 0,13018
[5,6)
0
0
1
3
0,00000 0,00000
[6,12)
1
6
0
10
0,43750 0,24221
[12,15)
0
0
1
1
0,00000 0,00000
[15,16)
1
0
0
3
0,33333 0,18750
[16,24)
1
3
0
4
0,57143 0,25000
[24,27)
1
1
0
5
0,33333 0,20408
[27,29)
0
0
1
7
0,00000 0,00000
[29,37)
0
0
1
1
0,00000 0,00000
[37,44)
0
0
1
1
0,00000 0,00000
[44,∞)
0
0
1
1
0,00000 0,00000
Jumlah
4
18
7
47
1,84226 1,01397
Dari Tabel 4.4 diperoleh hasil uji Mantel commit to user – Haenszel ini sebagai berikut 38
perpustakaan.uns.ac.id
digilib.uns.ac.id
. Dengan tingkat signifikansi a = 10%, daerah kritisnya adalah H0 ditolak apabila >
= 2,71. Oleh karena
>
= 2,71. Maka H0 ditolak. Hal
ini berarti fungsi tahan hidup penderita kanker payudara stadium II lebih besar daripada fungsi tahan hidup penderita kanker payudara stadium IV. 4. 5.3 Uji Mantel – Haenszel untuk Fungsi Tahan Hidup Penderita Kanker Payudara Stadium III dan IV Hipotesis yang akan diuji adalah dan dengan S1 fungsi tahan hidup penderita kanker payudara stadium III dan S2 fungsi tahan hidup penderita kanker payudara stadium IV. Berdasarkan persamaan (2.11), (2.12), dan (2.13) diperoleh hasil uji Mantel – Haenszel ini sebagai berikut: Tabel 4.5 Perhitungan Statistik Mantel Haenszel untuk Fungsi Tahan Hidup Penderita Kanker Payudara Stadium III dan IV time [0,4)
Ai 0
Bi 2
Ci 0
Di 1
E(Ai) var(Ai) 0,00000 0,00000
[4,5)
0
0
1
10
1,00000 0,00000
[5,9)
0
9
1
3
0,30769 0,21302
[9,10)
1
2
0
5
0,62500 0,23438
[10,12)
1
5
0
5
0,45455 0,24793
[12,14)
0
3
1
1
0,40000 0,24000
[14,25)
1
14
0
7
0,31818 0,21694
[25,26)
1
1
0
3
0,60000 0,24000
[26,27)
1
1
0
2
0,50000 0,25000
[27,29)
0
0
1
7
1,00000 0,00000
[29,37)
0
1
1
1
0,66667 0,22222
[37,44)
0
0
1,00000 0,00000
[44,∞)
0
1 1 0 commit1 to user 1 39
1,00000 0,00000
perpustakaan.uns.ac.id
Jumlah
digilib.uns.ac.id
5
38
7
47
7,87209 1,86449
Dari Tabel 4.5 diperoleh hasil uji Mantel – Haenszel ini sebagai berikut
. Dengan tingkat signifikansi a = 10%, daerah kritisnya adalah H0 ditolak apabila >
= 2,71. Oleh karena
>
= 2,71. Maka H0 ditolak. Hal
ini berarti fungsi tahan hidup penderita kanker payudara stadium III lebih besar daripada fungsi tahan hidup penderita kanker payudara stadium IV. Dengan
menggunakan
uji
Mantel
–
Haenszel
tersebut
dengan
membandingkan fungsi tahan hidup berdasarkan klasifikasi stadium diketahui bahwa fungsi tahan hidup penderita kanker payudara stadium IV paling kecil dibanding fungsi tahan hidup penderita kanker payudara stadium II dan III. Hal ini dalam kedokteran dapat dikatakan bahwa stadium IV merupakan klasifikasi kanker payudara yang serius dan menunjukkan prognosis (perkiraan keadaan akhir) paling jelek dari klasifikasi kanker payudara yang lain.
commit to user 40
perpustakaan.uns.ac.id
digilib.uns.ac.id
BAB V PENUTUP
5.1 Kesimpulan Berdasarkan uraian pada pembahasan diperoleh kesimpulan sebagai berikut. 1. Estimasi fungsi tahan hidup penderita kanker payudara untuk keseluruhan data maupun berdasarkan klasifikasi stadium kanker payudara semakin mengecil untuk waktu yang semakin lama. Hal ini berarti bahwa semakin lama menderita kanker payudara maka semakin kecil probabilitas penderita kanker payudara bertahan hidup. 2. Pada kasus tahan hidup penderita kanker payudara di mana lebih banyak pasien dengan waktu hidup tersensor daripada pasien yang meninggal menunjukkan bahwa nilai estimasi menggunakan penaksir Berliner - Hill lebih besar dibandingkan menggunakan penaksir Kaplan - Meier. 3. Berdasarkan nilai estimasi kesalahan baku, diketahui bahwa estimasi fungsi tahan hidup penderita kanker payudara menggunakan penaksir Berliner - Hill lebih baik dibanding menggunakan penaksir Kaplan - Meier karena memberikan nilai kesalahan baku yang lebih kecil. 4. Hasil analisis tahan hidup penderita kanker payudara menggunakan penaksir Berliner - Hill menunjukkan bahwa secara keseluruhan, probabilitas penderita kanker payudara mampu bertahan hidup sampai 48 bulan adalah sebesar commit to user 33,635%. Sedangkan probabilitas penderita kanker payudara stadium II mampu 41
perpustakaan.uns.ac.id
digilib.uns.ac.id
bertahan hidup sampai 48 bulan adalah sebesar 42,15%, stadium III sebesar 25,627%, dan stadium IV sebesar 16,818%. 5. Berdasarkan uji Mantel – Haenszel dengan membandingkan ketiga fungsi tahan hidup penderita kanker payudara stadium II, III, dan IV didapatkan hasil bahwa fungsi tahan hidup penderita kanker payudara stadium IV paling kecil dibanding fungsi tahan hidup penderita kanker payudara stadium II dan III. Hal ini dalam kedokteran dapat dikatakan bahwa stadium IV merupakan klasifikasi kanker payudara yang serius dan menunjukkan prognosis (perkiraan keadaan akhir) paling jelek dari klasifikasi kanker payudara yang lain.
5.2 Saran Dalam mengestimasi fungsi tahan hidup dengan menggunakan penaksir Kaplan – Meier dan Berliner – Hill diasumsikan waktu hidup pasien yang mengalami kematian dan tersensor adalah independen, maka disarankan untuk dilakukan pengembangan dengan menggunakan kovariat dalam estimasi Kaplan – Meier dan Berliner – Hill. Selain itu bagi pembaca yang berminat dapat melanjutkan penelitian ini dengan analisis tahan hidup pada bidang selain kesehatan seperti bidang teknik ataupun bidang sosial.
commit to user 42
perpustakaan.uns.ac.id
digilib.uns.ac.id
DAFTAR PUSTAKA
Bain, L. J. and M. Engelhardt. (1992). Introduction to Probability and Mathematical Statistics, 2nd ed. Duxbury Press Belmont, California. Cox, D. R. and D. Oakes. (1984). Analysis of Survival Data. Chapman and Hall, London. Dalimartha, Dr. Setiawan. (2004). Deteksi Dini Kanker dan Simplisia Anti Kanker. Jakarta: Penebar Swadaya. Elandt, R. C. and N. L. Johnson. (1980). Survival Models and Data Analysis. John Wiley and Sons, New York. Harningsih, Sri. (2007). Waspada Kanker Payudara. www.kesehatan.07.net. Diakses pukul 14.15 tanggal 7 Maret 2010. Hill, B.M. (1992). Bayesian Nonparametric Survival Analysis A Comparison of the Kaplan-Meier and Berliner-Hill Estimators. In J.P. Klein and P.K. Goel (Eds.), Survival Analysis: State of the Art, NATO ASI series, pp: 2546. Kluwer Academic Publishers. Isna ,
N.R. (2009). Kanker Payudara Juga Ada Pada Pria. http://inioke.com/konten/495/kankerpayudarajuga-ada-pada-pria.htm. Diakses pukul 08.00 tanggal 15 Juli 2010.
Kaplan, E.L. and P. Meier (1958). Nonparametric Estimation from Incomplete Observations. Journal of the American Statistical Association, Vol. 53, pp: 457-481. commit to user 43
perpustakaan.uns.ac.id
digilib.uns.ac.id
Kleln, J. P. and Moeschberger. (1997). Survival Analysis Techniques for Censored and Truncated Data. Springer-Verlag, New York. Kusminarto. (2005). Deteksi Dini Kanker Payudara, Jawaban untuk Menghindari.http://www.depkes.go.id/index.php?option=articles&task=vi ewarticle&artid=402&Itemid=3. Diakses pukul 08.00 tanggal 16 Juli 2010. Lawless, J. F. (1982). Statictical Model and Methods for Lifetime Data. John Wiley and Sons, New York. Mantel, Nathan. (1963). Chi-Square Tests With One Degree Of Freedom; Extensions Of The Mantel-Haenszel Procedure. Journal of the American Statistical Association, No. 303 Vol. 58, pp:690-700. Mardiana, Lina. (2004). Kanker Pada Wanita Pencegahan Dan Pengobatan Dengan Tanaman Obat. Jakarta: Penebar Swadaya. Medicastore. (2002). Kanker Payudara. http://www.medicastore.com/med/detail _pyk.php?idktg=21&iddtl=1045&UID=20070628141536202.73.118.239. Diakses pukul 10.00 pada tanggal 16 Juli 2010. Supit, Nina I.S. (2002). Deteksi dini Keganasan Payudara dalam Deteksi dini Kanker. Jakarta: FK UI. Sutjipto Sp.B.(K) Onk, Dr. (2006). Berdamai dengan Kanker Payudara. Sehat Plus. No. 12 Vol. 4. Jakarta: PT. Citra Niskala Nusantara. Wahyuni, Arlinda Sari. (2006). Hubungan Jenis Histologi dengan Ketahanan Hidup 5 Tahun Penderita Kanker Payudara. Majalah Kedokteran Nusantara Vol. 39 No. 1 Maret 2006: 7-11. Yan, K.J. (2002). Nonparametric Predictive Inference with Right-Censored Data. Ph-D Thesis, University of Durham.
commit to user 44
perpustakaan.uns.ac.id
digilib.uns.ac.id
commit to user 45