PENINGKATAN EFISIENSI BIAYA PERCOBAAN DENGAN MENGGUNAKAN RANCANGAN FAKTORIAL PECAHAN 2k-1
MARTA SUNDARI
DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2007
ABSTRAK MARTA SUNDARI. Peningkatan Efisiensi Biaya Percobaan dengan Menggunakan Rancangan Faktorial Pecahan 2k-1. Dibimbing oleh BAGUS SARTONO dan YENNI ANGRAINI. Rancangan faktorial pecahan 2k-1 adalah salah satu alternatif bentuk rancangan perlakuan yang dapat dipilih ketika terdapat kendala dalam hal pengadaan kombinasi perlakuan pada rancangan yang melibatkan banyak faktor. Rancangan faktorial pecahan 2k-1 adalah sebuah rancangan yang hanya menggunakan setengah kombinasi perlakuan rancangan faktorial 2k. Rancangan faktorial pecahan yang baik adalah rancangan faktorial pecahan yang memiliki perbandingan nilai kuadrat tengah galat yang tidak berbeda jauh dengan nilai kuadrat tengah galat rancangan faktorial 2k. Rancangan faktorial pecahan yang baik juga memiliki nilai dugaan pengaruh faktor dan interaksi dengan arah yang sama serta P-value faktor dan interaksi yang tidak berbeda jauh dibandingkan dengan rancangan faktorial 2k. Biaya pengadaan satuan percobaan rancangan faktorial pecahan lebih sedikit dibandingkan dengan rancangan faktorial 2k sehingga rancangan faktorial pecahan dapat dijadikan sebagai salah satu alternatif dalam efisiensi biaya penelitian.
PENINGKATAN EFISIENSI BIAYA PERCOBAAN DENGAN MENGGUNAKAN RANCANGAN FAKTORIAL PECAHAN 2k-1
MARTA SUNDARI
Skripsi sebagai salah satu syarat untuk memperoleh gelar Sarjana Sains pada Departemen Statistika
DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR 2007
RIWAYAT HIDUP Penulis dilahirkan di Kotabumi, 15 November 1982 dari ayah Soemarno dan ibu Sri Rahayu, merupakan anak ketiga dari delapan bersaudara. Penulis menamatkan pendidikan menengah umum di SMUN 2 Kotabumi pada tahun 2000 dan pada tahun yang sama diterima di IPB melalui jalur Undangan Seleksi Masuk IPB. Penulis memilih Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam. Selama mengikuti perkuliahan, penulis juga aktif di beberapa organisasi kemahasiswaan seperti di Asrama Putri IPB Baranangsiang dan Himpunan Mahasiswa Islam Cabang Bogor. Penulis juga mengikuti program magang yang diadakan oleh Lembaga Penelitian IPB selama dua bulan dan program magang Departemen Statistika di Jurusan Sosial Ekonomi Pertanian, Universitas Lampung. Penulis pernah menjadi pengajar dan asisten pengajar dalam beberapa pelatihan aplikasi penggunaan perangkat lunak statistik, menjadi tenaga analis di lembaga swadaya masyarakat internasional dan nasional di Bogor. Pernah menjadi salah satu staf guru di sebuah sekolah menengah umum di Bogor dan pernah bekerja di dua perusahaan production house nasional di Jakarta.
PRAKATA Puji syukur penulis panjatkan kepada Allah SWT, atas kuasanya karya ilmiah ini dapat diselesaikan. Pada lembar ini, penulis menyampaikan ucapan terimakasih yang tak berhingga atas bantuan yang telah diberikan sehingga penulis dapat menyelesaikan tugas terakhir ini. Penulis mengucapkan terimakasih kepada : 1. Bapak Bagus Sartono M.Si dan Ibu Yenni Angraini M.Si sebagai pembimbing atas motivasi dan masukannya 2. Bapak, Mamak, Ius, Ria, Rani, Wan, de’Ida yang telah menemani perjalanan hidup penulis 3. Keluarga Besar APIPB, terutama Ita, Nono, Karin, Riska, Dina, Hilma, Ila 4. Keluarga besar Istri Ucup, Mbak Ayu, Cici Oliv, Usi Nona, Ditha, Dedek Cilla 5. Temen senasib dan sependeritaan, Chaeriwati, Eneng Dahlia, Rina Hasyim 6. Slamet Ari Adi yang banyak mengganggu 7. Semuanya yang pernah kenal dan dikenal yang dapat dipastikan kontribusinya namun tak tersebutkan namanya, terima kasih banyak. Penulis menyadari karya ini masih amat jauh dari kata “sempurna” dan banyak sekali ”lubang” kekurangan, namun penulis mengharapkan semoga karya kecil ini dapat bermanfaat. Bogor, Maret 2007
Penulis
DAFTAR ISI Halaman DAFTAR TABEL········································································································· viii DAFTAR LAMPIRAN································································································
ix
PENDAHULUAN Latar Belakang········································································································· Tujuan ·····················································································································
1 1
TINJAUAN PUSTAKA Perancangan Percobaan···························································································· Rancangan Faktorial ································································································ Rancangan Faktorial 2k ··································································································· Percobaan Screening······································································································· Rancangan Faktorial Pecahan 2k-p ·················································································· Rancangan Faktorial Pecahan 2k-1 ·················································································· Ulangan Tunggal ····································································································· Efisiensi Relatif ·······································································································
1 1 2 2 3 3 4 4
BAHAN DAN METODE ···························································································
4
HASIL DAN PEMBAHASAN ··················································································
5
KESIMPULAN ·············································································································
7
DAFTAR PUSTAKA ··································································································
8
LAMPIRAN ···················································································································
9
viii
DAFTAR TABEL Halaman k
1. Analisis ragam untuk rancangan faktorial 2 dalam rancangan acak lengkap dan ulangan sebanyak n ·······································································································
2
2. Nilai dugaan pengaruh utama faktor dan pengaruh interaksi faktor ·······························
5
4
3. Analisis ragam rancangan faktorial 2 ·················································································
5
4-1
4. Kombinasi perlakuan rancangan faktorial pecahan 2 menggunakan defining relation I = ABCD·········································································································
6
4-1
5. Analisis ragam rancangan faktorial pecahan 2 dengan defining relation I = ABCD ···························································································································
6
4-1
6. Kombinasi perlakuan rancangan faktorial pecahan 2 menggunakan defining relation I = -ABCD ·······································································································
6
4-1
7. Analisis ragam rancangan faktorial pecahan 2 dengan defining relation I = ABCD ··························································································································
7
4
8. Perbandingan p-value faktor serta interaksi faktor dari rancangan faktorial 2 dan rancangan faktorial pecahan 24-1 ····················································································
7
9. Perbandingan dugaan pengaruh faktor rancangan faktorial pecahan 24-1 ··························
7
ix
DAFTAR LAMPIRAN Halaman 1. Data pengaruh jenis larutan perendam, cara ekstraksi, jenis bahan pengendap, dan jumlah penambahan tepung terhadap kadar protein kacang kedelai ··························
9
2. Plot kenormalan nilai dugaan pengaruh faktor dan pengaruh interaksi faktor ·················
10
4
3. Analisis ragam rancangan faktorial 2 ················································································· 4
10
4. Plot nilai dugaan galat dan nilai dugaan kadar protein rancangan faktorial 2 ··················
10
5. Plot kenormalan galat rancangan faktorial 24··································································
10
4-1
dengan I =ABCD ·············································
11
7. Plot nilai dugaan galat dan nilai dugaan kadar protein rancangan faktorial pecahan 24-1 dengan I =ABCD ·······················································································
11
6. Ragam rancangan faktorial pecahan 2
8. Plot kenormalan galat rancangan faktorial pecahan 2
4-1
dengan I =ABCD······················· 4-1
9. Perbandingan analisis ragam rancangan faktorial pecahan 2
11
dengan I =-ABCD ···········
11
10. Plot nilai dugaan galat dan nilai dugaan kadar protein rancangan faktorial pecahan 24-1 dengan I = -ABCD···························································································
12
11. Plot kenormalan galat rancangan faktorial pecahan 2
4-1
dengan I = -ABCD······················
12
1
PENDAHULUAN Latar Belakang Pada sebagian besar kasus yang terjadi, sebuah respon biasanya dipengaruhi secara simultan oleh dua faktor atau lebih. Secara umum, rancangan faktorial adalah rancangan yang paling efisien untuk jenis percobaan yang melibatkan banyak faktor. Dalam langkah awal sebuah percobaan besar atau disebut percobaan pendahuluan, ketika terdapat banyak faktor yang diteliti, keadaan ini mendorong ditemuinya beberapa kendala terutama kendala biaya pengadaan kombinasi perlakuan. Sebuah rancangan yang berisi lebih sedikit kombinasi perlakuan dengan jumlah giliran/run dari sebanyak k faktor tetap dapat dipelajari ke dalam rancangan faktorial lengkap. Salah satu bentuk khusus rancangan faktorial yang dapat menjawab masalah ini adalah rancangan faktorial 2k, dimana pada setiap faktor yang dicobakan hanya memiliki dua taraf yang dapat berbentuk kuantitatif maupun kualitatif. Jika peneliti dapat mengasumsikan bahwa interaksi tingkat tinggi tertentu diabaikan, maka informasi mengenai pengaruh utama dan interaksi tingkat rendah dapat diperoleh dengan menggunakan salah satu pecahan dari percobaan faktorial lengkap dan disebut sebagai rancangan faktorial pecahan. Rancangan faktorial pecahan merupakan jenis rancangan yang umum digunakan untuk produk dan rancangan proses serta untuk perkembangan proses. Tujuan Membandingkan tingkat efisiensi rancangan faktorial pecahan 2k-1 terhadap rancangan faktorial 2k .
mungkin dipengaruhi galat percobaan. Perancangan percobaan menghasilkan data sensitif yang dapat menyatakan apa yang secara sah disimpulkan mengenai hipotesis terbaru dan dapat mendorong gagasan baru yang mesti dipertimbangkan (Box et all. 1978). Sedangkan percobaan bertujuan memilih peubah terkendali (X) yang paling berpengaruh terhadap peubah respon (Y), memilih gugus peubah X yang paling mendekati nilai harapan Y dan menyebabkan paling kecil serta keragaman (σ2) menyebabkan pengaruh peubah tak terkendali paling kecil. Prinsip dasar percobaan adalah harus ada ulangan, dilakukan pengacakan, dan pengendalian lingkungan (Mattjik & Sumertajaya 2002). Beberapa istilah yang digunakan, perlakuan yaitu suatu prosedur atau metode yang diterapkan pada satuan percobaan. Kombinasi perlakuan adalah kombinasi kumpulan faktor-faktor yang berbeda dalam percobaan dan biasanya disebut sebagai giliran. Faktor adalah peubah bebas yang dicobakan sebagai penyusun struktur perlakuan, taraf faktor adalah nilainilai peubah bebas yang dicobakan dalam percobaan. Sebuah rancangan percobaan merupakan satu kesatuan rancangan yang terdiri atas rancangan perlakuan, rancangan lingkungan, dan rancangan pengukuran. Rancangan perlakuan merupakan rancangan yang berkaitan dengan bagaimana perlakuan tersebut dibentuk, rancangan lingkungan merupakan rancangan yang berkaitan dengan bagaimana perlakuan tersebut ditempatkan, dan rancangan pengukuran merupakan rancangan yang membicarakan bagaimana respon percobaan diambil dari satuan percobaan yang diteliti (Mattjik & Sumertajaya 2002). Rancangan Faktorial
TINJAUAN PUSTAKA Perancangan Percobaan Perancangan percobaan adalah serangkaian uji baik uji menggunakan statistika deskripsi maupun statistika inferensia yang bertujuan untuk mengubah masukan menjadi suatu keluaran yang merupakan respon dari percobaan. Perancangan percobaan bertujuan mencari bentuk rancangan yang paling efisien yang memungkinkan peneliti menjawab pertanyaannya setegas mungkin dan sesedikit
Rancangan faktorial adalah salah satu rancangan perlakuan yang merupakan komposisi dari kemungkinan kombinasi dari taraf-taraf dua faktor atau lebih. Untuk membentuk sebuah rancangan faktorial lengkap dibutuhkan sebanyak lA x lB x ... x lK kombinasi perlakuan dan disebut sebagai rancangan faktorial lA x lB x ... x lK dimana li adalah taraf faktor ke-i dan A, B, ..., K adalah faktor yang dicobakan (Box et all. 1978). Keuntungan dari percobaan faktorial adalah mampu mendeteksi respon dari taraf masingmasing faktor (lebih lanjut disebut pengaruh
2
utama faktor) serta pengaruh interaksi antar faktor. Rancangan perlakuan faktorial ini dapat diterapkan ke dalam berbagai bentuk rancangan lingkungan. Asumsi yang diperlukan adalah pengaruh lingkungan dan perlakuan bersifat aditif, galat percobaan saling bebas dan menyebar normal dan ragam galat homogen (Montgomery 2001). Rancangan Faktorial 2k Rancangan faktorial 2k adalah salah satu bentuk khusus rancangan faktorial yang melibatkan sebanyak k faktor dimana masingmasing faktor dibatasi hanya memiliki 2 taraf. Model statistik untuk rancangan 2k termasuk k pengaruh utama, C2k interaksi dua faktor,
C3k interaksi tiga faktor, ..., satu interaksi kfaktor. Untuk rancangan 2k model lengkap akan berisi 2k-1 pengaruh (Montgomery 2001). Tabel 1 Analisis ragam untuk rancangan faktorial 2k dalam rancangan acak lengkap dan ulangan sebanyak n Sumber Keragaman k Pengaruh Utama A B … K
Jumlah Derajat Kuadrat Bebas JK JK … JK
1 1 … 1
C2k Interaksi Dua Faktor AB AC … JK
JK JK … JK
1 1 … 1
JK JK … JK …
1 1 … 1 …
JK JK JK
1 2 (n-1) n2k-1)
C 3k Interaksi Tiga Faktor ABC ABD … IJK …
C kk = 1 Interaksi k Faktor ABC…K Galat Total
k
Rancangan faktorial 2k memiliki sebanyak 2 x 2 x ... x 2 = 2k kombinasi perlakuan. Asumsi yang diperlukan untuk jenis rancangan faktorial 2k adalah faktor bersifat tetap sehingga kesimpulan yang diperoleh hanya terbatas pada perlakuan-perlakuan yang dicobakan dan tidak dapat diambil kesimpulan yang berlaku secara umum, galat menyebar normal dan kehomogenan ragam. Aturan untuk menulis sebuah faktorial 2k lengkap ke dalam urutan standar secara umum adalah kolom ke-i (Xi) dimulai dengan 2i-1 ulangan dari tanda negatif (taraf rendah) diikuti 2i-1 ulangan dari tanda positif (taraf tinggi). Untuk menduga sebuah pengaruh atau menghitung jumlah kuadrat dari sebuah pengaruh, pertama kali tentukan kontras yang dihubungkan dengan pengaruh. Secara umum, dapat ditentukan kontras untuk pengaruh AB...K dengan mengembangkan sisi kanan dari: KontrasAB...K = (a±1)( b±1) ... (k±1) Tanda positif-negatif dalam masingmasing tanda kurung berubah menjadi negatif jika faktor dimasukkan ke dalam pengaruh dan berubah menjadi positif jika tidak dimasukkan. Kita dapat menduga pengaruh dan menghitung jumlah kuadrat berdasarkan 2 AB...K= k .KontrasAB...K n2 dan JKAB...K=
1 .( KontrasAB...K)2 k n2
dimana n adalah jumlah ulangan yang diterapkan pada rancangan (Montgomery 2001). Tabel 1 memperlihatkan bentuk umum dari sebuah tabel analisis ragam untuk sebuah rancangan faktorial 2k dalam rancangan acak lengkap dengan ulangan sebanyak n. Percobaan Screening Percobaan screening adalah sebuah percobaan yang merupakan sebuah tahap awal dari sebuah perancangan percobaan besar dan bertahap yang bertujuan untuk mengidentifikasi faktor-faktor yang memiliki pengaruh besar (Montgomery 2001). Faktorfaktor yang teridentifikasi sebagai faktor penting kemudian diteliti lebih jauh dalam percobaan berikutnya. Biasanya, percobaan screening menggunakan bentuk rancangan percobaan rancangan faktorial 2k. Namun ketika jumlah faktor yang dicobakan dalam
3
jumlah yang banyak, maka peneliti akan mengalami kendala biaya dan kendala sumber daya dalam hal pengadaan kombinasi perlakuan maka pemecahan yang biasanya diambil menggunakan rancangan faktorial pecahan. Rancangan Faktorial Pecahan 2k-p Sebuah rancangan fraksional 2k-p adalah rancangan faktorial yang berisi sebanyak 2k-p kombinasi perlakuan dari sebanyak 2k kombinasi perlakuan pada rancangan faktorial 2k penuh. (1/2)p atau 2-p disebut sebagai derajat fraksinasi yang menggambarkan fraksi pengamatan dari sebuah rancangan 2k yang dibutuhkan. Masalah yang timbul ketika menggunakan rancangan fraksional 2k-p adalah ketika pengaruh utama sebuah faktor atau pengaruh interaksi faktor tidak dapat diduga secara bebas dan bersih atau mengalami confounding dengan pengaruh utama faktor atau interaksi faktor lain. Confounding terjadi ketika beberapa pengaruh perlakuan dapat berupa pengaruh utama faktor maupun pengaruh interaksi faktor diduga dengan kombinasi linier yang sama pada pengamatan percobaan sebagai pengaruh blok. Confounding juga digunakan sebagai istilah umum yang mengindikasikan bahwa nilai dugaan pengaruh utama faktor berasal dari pengaruh utama faktor itu sendiri dan terkontaminasi atau mengalami bias dari pengaruh interaksi faktor orde tinggi (Montgomery 2001). Tujuan dari percobaan pendahuluan adalah mengidentifikasi faktor-faktor yang memiliki pengaruh besar terhadap respon, sehingga interaksi tingkat tinggi yang mengalami confounded atau disebut beralias dengan pengaruh utama faktor biasanya dapat diabaikan. Dan jika memungkinkan pengaruh utama faktor yang berpotensial memiliki pengaruh terhadap respon seharusnya tidak dialiaskan dengan pengaruh utama faktor potensial lain. Rancangan faktorial pecahan membutuhkan seleksi dari p independent generator. Generator dapat membangkitkan (melalui perkalian) pola confounding lengkap yang berisi kumpulan lengkap alias untuk rancangan faktorial pecahan 2k. Defining relation adalah kumpulan generator rancangan untuk sebuah rancangan faktorial, berisi semua generator baru yang dibentuk dari generator lama. Terdapat sebanyak 2p – 1 word atau deretan angka pada defining relation untuk sebuah rancangan faktorial
pecahan 2k-p (Montgomery 2001). Contoh pada rancangan faktorial pecahan 24-1 word yang terbentuk sebanyak 21 -1 yaitu satu I = ABCD (atau I = -ABCD ) Aturan dalam membangun sebuah rancangan faktorial pecahan adalah 1. Susun sebuah rancangan faktorial 2k-p 2. Tambahkan kolom untuk p faktor berikutnya dengan mengalikan kolom lama yang diindikasikan menggunakan generator rancangan yang tepat 3. Matriks rancangan resultan menghasilkan sebanyak 2k-p giliran untuk sebuah rancangan faktorial pecahan k faktor (Box et all. 1978). Konsep resolusi rancangan mengacu pada kemampuan rancangan untuk menduga atau memutuskan berbagai model. Secara umum, resolusi pada rancangan faktorial 2k sama dengan jumlah terkecil atau panjang deretan terpendek huruf-huruf pada word dalam defining relationship. Contoh diatas, hanya memiliki satu word yaitu I = ABCD (atau I = -ABCD), sehingga defining relation rancangannya hanya memiliki satu genarator rancangan. Rancangan faktorial pecahan ini memiliki resolusi empat dan dapat ditulis 2 4IV−1 . Berikut resolusi rancangan yang sering digunakan: 1. Rancangan Resolusi III. Rancangan ini adalah rancangan yang didalamnya tidak ada pengaruh utama yang dialiaskan dengan pengaruh utama lain, tetapi pengaruh utama dialiaskan dengan pengaruh interaksi dua faktor dan pengaruh utama interaksi dua faktor dapat dialias kan dengan yang lain. 2. Rancangan Resolusi IV. Rancangan ini adalah rancangan yang didalamnya tidak ada pengaruh utama dialiaskan dengan pengaruh utama lain atau dengan interaksi dua faktor, namun interaksi dua faktor diinteraksikan dengan interaksi dua faktor yang lainnya. 3. Rancangan Resolusi V. Rancangan ini adalah rancangan yang didalamnya tidak terdapat pengaruh utama atau interaksi dua faktor yang diinteraksikan dengan pengaruh utama atau interaksi dua faktor lain, namun interaksi dua faktor dialias kan dengan interaksi tiga faktor (Montgomery 2001). Rancangan Faktorial Pecahan 2k-1 Rancangan faktorial pecahan 2k-1 adalah sebuah rancangan yang hanya menggunakan
4
setengah kombinasi perlakuan rancangan faktorial 2k. Rancangan faktorial 2k-1 dibentuk dengan memilih hanya kombinasi perlakuan yang memiliki tanda positif di kolom interaksi tertinggi (AB...K ). AB..K ini disebut sebagai generator atau pembangkit pada fraksi tersebut. Kadang kita menyebut AB...K sebagai sebuah word. Kolom identitas I selalu bertanda positif, dan I = AB...K disebut sebagai defining relation untuk rancangan kita. Fraksi setengah dengan I = +AB...K disebut sebagai fraksi utama dan fraksi setengah yang kombinasi perlakuannya dihubungkan dengan tanda minus pada kolom AB...K disebut sebagai fraksi alternatif (Montgomery 2001). Ulangan Tunggal Ulangan tunggal digunakan ketika terdapat kendala terbatasnya sumberdaya yang dibutuhkan sehingga jumlah ulangan untuk rancangannya dibatasi. Kelemahan ulangan tunggal adalah dugaan galat internal rancangan tidak dapat diperoleh sehingga pendekatan yang dilakukan untuk menganalisis rancangan yang memiliki ulangan tunggal adalah dengan mengasumsikan interaksi orde tinggi tertentu diabaikan dan mengkombinasikan kuadrat tengah untuk menduga galatnya. Efisiensi Relatif Efisiensi relatif digunakan untuk mengetahui tingkat efisiensi sebuah rancangan jika dibandingkan dengan rancangan yang lain. Besaran ini menunjukkan besarnya peningkatan ulangan yang diperlukan untuk mendapatkan efisiensi yang sama. (db f + 1)(db ff + 3) σˆ 2ff ER = x ( db f + 3)(db ff + 1) σˆ 2f dimana dbf adalah derajat bebas galat dari rancangan faktorial 24, dbff adalah derajat bebas galat dari rancangan faktorial pecahan 24-1, σˆ 2ff dan σˆ 2f adalah ragam galat dari rancangan faktorial 24 dan rancangan faktorial pecahan 24-1 yang diduga dari Kuadrat Tengah Galat dari masing-masing rancangan (Mattjik & Sumertajaya 2002).
BAHAN DAN METODE Data yang digunakan merupakan data hasil penelitian Kustaman (1976) yang meneliti pengaruh jenis larutan perendam (disebut sebagai faktor A), cara ekstraksi (faktor B), jenis bahan pengendap (faktor C), dan jumlah penambahan tepung “skim milk” (faktor D) terhadap kadar protein “soft curd” kacang kedelai. Rancangan perlakuan yang digunakan adalah rancangan faktorial 24 dengan ulangan tunggal. Larutan perendam diukur pada dua taraf yaitu dengan air saluran dengan pH 7.5 (disebut sebagai taraf rendah faktor A) dan larutan dengan pH 10 (taraf tinggi faktor A). Cara ekstraksi diukur pada taraf ekstraksi dingin (taraf rendah faktor B) dan ekstraksi panas (taraf tinggi faktor B). Jenis bahan pengendap diukur pada taraf pemberian CaSO4 0.3 % (taraf rendah faktor C) dan asam laktat (taraf tinggi faktor C). Dan yang terakhir jumlah penambahan tepung “skim milk” diukur pada pemberian tepung susu sebesar 0 % (taraf rendah faktor D) dan 25 % (taraf tinggi faktor D). Data lengkap dapat dilihat di Lampiran 1. Tahapan untuk memperoleh perbandingan kuadrat tengah galat dari rancangan faktorial 24 penuh dengan kuadrat tengah galat dari rancangan faktorial pecahan 24-1 adalah disusun sebagai berikut: 1. Menyusun nilai dugaan pengaruh utama dan pengaruh interaksi faktor, kemudian memutuskan pengaruh yang akan digunakan 2. Melakukan analisis ragam untuk mendapatkan pengaruh utama faktor dan interaksi yang telah dipilih sebelumnya dengan menggunakan data rancangan faktorial 2k penuh 3. Mencari bentuk struktur rancangan faktorial 2k-1 agar pengaruh utama faktor dan pengaruh interaksi faktor yang diinginkan tidak saling beralias 4. Melakukan analisis ragam untuk mencari pengaruh utama faktor dan interaksi faktor yang yang telah dipilih sebelumnya dengan menggunakan data perlakuan dari rancangan faktorial 2k-1 yang dipilih 5. Membandingkan kuadrat tengah galat, pvalue, dan arah dugaan pengaruh yang diperoleh dari rancangan faktorial 2k dengan kuadrat tengah galat, p-value, dan arah dugaan pengaruh dari rancangan faktorial 2k-1 6. Menarik kesimpulan dari hasil perbandingan.
5
HASIL DAN PEMBAHASAN Percobaan yang meneliti tentang pengaruh jenis larutan perendam (faktor A), cara ekstraksi (faktor B), jenis bahan pengendap (faktor C), dan jumlah penambahan tepung “skim milk” (faktor D) terhadap kadar protein “soft curd” kacang kedelai menggunakan rancangan faktorial 24. Dalam rancangan ini, setiap faktor dicoba pada dua taraf sehingga perlakuan yang dibutuhkan sebanyak 2 x 2 x 2 x 2 = 24 = 16 kombinasi perlakuan. Setiap kombinasi perlakuan diulang sebanyak satu kali sehingga jumlah satuan percobaan yang dibutuhkan sebanyak 16 x 1 = 16 satuan percobaan. Rancangan lingkungan yang digunakan adalah rancangan acak lengkap (RAL) dimana kondisi lingkungan di sekitar satuan percobaan dianggap seragam. Nilai dugaan pengaruh utama faktor dan nilai dugaan pengaruh interaksi faktor yang telah diurutkan dapat dilihat di Tabel 2. Tabel 2 Nilai dugaan pengaruh utama faktor dan pengaruh interaksi faktor Pengaruh Nilai Dugaan D - 16.49* C 9.09* A 6.47* B - 2.94* BC - 1.16* AD 1.04 AC 0.96 ABD 0.92 BCD 0.86 CD - 0.84 ABCD - 0.57 AB - 0.46 ABC 0.43 BD 0.18 ACD 0.08 Ket : * = dipilih untuk dianalisis Nilai dugaan pengaruh jumlah penambahan tepung “skim milk” -16.49 menyatakan bahwa rata-rata kadar protein jika ditambahkan tepung “skim milk” sebesar 25 % lebih rendah 16.49 % dibandingkan jika tidak ditambahkan tepung “skim milk”. Ratarata kadar protein lebih tinggi 9.09 % jika jenis bahan pengendapnya asam laktat dibandingkan CaSO4 0.3 %, rata-rata kadar protein lebih tinggi 6.47 % jika menggunakan
air saluran dengan pH 7.5 dibandingkan menggunakan larutan dengan pH 10 dan ratarata kadar protein lebih tinggi 2.94 jika diekstraksi dingin ketimbang mengalami ekstraksi panas. Rata-rata beda antara pengaruh cara ekstraksi pada jenis bahan pengendap asam laktat lebih rendah 1.16 % dibandingkan menggunakan CaSO4 0.3 %. Dari Tabel 2, dipilih faktor A, faktor B, faktor C, faktor D dan interaksi faktor B*C untuk dianalisis lebih lanjut. Analisis ragam rancangan faktorial 2k dapat dilihat pada Tabel 3. Dari analisis ragam dihasilkan kuadrat tengah galat sebesar 2.18 dengan R2-adj rancangan sebesar 98.01 %. Asumsi galat menyebar normal dan bersifat bebas dapat dilihat pada plot gambar pada Lampiran 4 dan 5. Sebuah percobaan baru disusun dengan rancangan perlakuan yang hanya menyertakan setengah dari keseluruhan data rancangan faktorial 24. Dalam rancangan ini terdapat sebanyak delapan kombinasi perlakuan dari keseluruhan enam belas kombinasi perlakuan rancangan faktorial 24. Rancangan ini disebut sebagai rancangan faktorial pecahan 24-1 tanpa menghilangkan informasi penting yang diinginkan. Tabel 3 Analisis ragam rancangan faktorial 24 Sumber db JK KT A 1 167.64 167.64 B 1 34.6 34.6 C 1 330.24 330.24 D 1 1087.19 1087.19 B*C 1 3.7 3.7 Galat 10 21.81 2.18 Total 15 1645.17 Ket : db = derajat bebas, JK = Jumlah Kuadrat, KT = Kuadrat Tengah Rancangan faktorial pecahan 24-1 yang dipilih menggunakan defining relation I =ABCD dan defining relation I = ABCD karena dengan menggunakan rancangan ini pengaruh utama faktor dan pengaruh interaksi faktor yang kita inginkan tidak saling beralias. Rancangan faktorial pecahan 24-1 defining relation I = ABCD atau disebut sebagai fraksi utama memiliki struktur alias yang sama dengan struktur alias rancangan faktorial pecahan 24-1 defining relation I = -ABCD atau yang disebut fraksi alternatif. Struktur alias untuk kedua fraksi ini adalah pengaruh utama faktor A beralias dengan pengaruh interaksi faktor BCD, pengaruh utama faktor B beralias dengan pengaruh interaksi faktor
6
ACD. Pengaruh utama faktor C beralias dengan pengaruh interaksi faktor ABD, pengaruh utama faktor D beralias dengan pengaruh interaksi faktor ABC. Pengaruh interaksi faktor AB beralias dengan pengaruh interaksi faktor CD, pengaruh interaksi faktor AC beralias dengan pengaruh interaksi faktor BD, dan pengaruh interaksi faktor AD beralias dengan pengaruh interaksi faktor BC. Jika digunakan defining relation lain, akan diperoleh struktur alias yang didalamnya terdapat minimal satu pengaruh utama faktor atau pengaruh interaksi faktor yang saling beralias dengan pengaruh utama faktor dan pengaruh interaksi faktor lain yang diinginkan tidak beralias. Sebagai contoh jika digunakan defining relation I = ABC maka pengaruh utama faktor A akan beralias dengan pengaruh interaksi faktor BC, jika digunakan defining relation I = AB maka pengaruh utama faktor A akan beralias dengan pengaruh faktor utama B dan hal ini tidak diinginkan terjadi. Demikian halnya jika digunakan kemungkinan defining relation lain yang ada dalam rancangan faktorial pecahan 24-1. Tabel 4 Kombinasi perlakuan rancangan faktorial pecahan 24-1 menggunakan defining relation I = ABCD Run A B C D = ABC K.Perl 1 (1) 2 + + ad 3 + + bd 4 + + ab 5 + + cd 6 + + ac 7 + + bc 8 + + + + abcd Ket : K.Perl = kombinasi perlakuan Kombinasi perlakuan rancangan faktorial pecahan 24-1 yang menggunakan defining relation I = ABCD secara lengkap ditunjukkan oleh Tabel 4. Tanda positif yang terdapat dalam kolom faktor pada Tabel 4 dapat diartikan sebagai penggunaan faktor pada taraf tinggi dan tanda negatif diartikan sebagai penggunaan faktor pada taraf rendah. Huruf kecil pada kolom kombinasi perlakuan merujuk bahwa pada perlakuan yang dibentuk dari kombinasi faktor, faktor dengan huruf kecil berada pada taraf tinggi dan ketiadaan huruf pada perlakuan menyatakan faktor tersebut berada pada taraf rendah. Kombinasi perlakuan yang dihasilkan oleh rancangan ini
adalah perlakuan (1), ad, bd, ab, cd, ac, bc, abcd. Analisis ragam rancangan faktorial pecahan 24-1 yang menggunakan defining relation I = ABCD dapat dilihat pada Tabel 5. Dari analisis ragam dihasilkan kuadrat tengah galat sebesar 3.46 dengan R2-adj rancangan sebesar 97.14 % artinya keragaman data sebesar 97.14 % dapat diterangkan oleh rancangan jenis ini. Asumsi galat menyebar normal dan bersifat bebas dapat dilihat pada plot gambar pada Lampiran 7 dan 8. Tabel 5 Analisis ragam rancangan faktorial pecahan 24-1 dengan defining relation I = ABCD Sumber db JK KT A 1 107.60 107.60 B 1 16.42 16.42 C 1 200.20 200.20 D 1 515.53 515.53 B*C 1 0.01 0.01 Galat 2 6.92 3.46 Total 7 846.68 Ket : db = derajat bebas, JK = Jumlah Kuadrat, KT = Kuadrat Tengah Kombinasi perlakuan rancangan faktorial pecahan 24-1 yang menggunakan defining relation I = -ABCD ditunjukkan oleh Tabel 6. Kombinasi perlakuan yang dihasilkan oleh rancangan ini adalah perlakuan a, b, c, d, abd, acd, bcd, dan abc. Tabel 6 Kombinasi perlakuan rancangan faktorial pecahan 24-1 menggunakan defining relation I = -ABCD Run A B C D = - ABC K.Perl 1 + d 2 + a 3 + b 4 + + + abd 5 + c 6 + + + acd 7 + + + bcd 8 + + + abc Ket : K.Perl = kombinasi perlakuan Analisis ragam rancangan faktorial pecahan 24-1 yang menggunakan defining relation I = -ABCD dapat dilihat pada Tabel 7. Dari analisis ragam dihasilkan kuadrat tengah galat sebesar 1.09 dengan R2-adj rancangan sebesar 99.04 %. Asumsi galat
7
menyebar normal dan bersifat bebas dapat dilihat pada plot gambar pada Lampiran 10 dan 11. Tabel 7 Analisis ragam rancangan faktorial pecahan 24-1 dengan defining relation I = -ABCD Sumber db JK KT A 1 63.00 63.00 B 1 18.21 18.21 C 1 133.42 133.42 D 1 572.40 572.40 B*C 1 7.98 7.98 2 2.18 Galat 1.09 Total 7 797.19 Ket : db = derajat bebas, JK = Jumlah Kuadrat, KT = Kuadrat Tengah Perbandingan p-value faktor serta interaksi faktor dari rancangan faktorial 24 dan rancangan faktorial pecahan 24-1 dapat dilihat di Tabel 8. Pada rancangan faktorial 24, hanya pengaruh interaksi faktor cara ekstraksi dan jenis bahan pengendap (faktor B*faktor C) yang tidak berpengaruh nyata terhadap kadar protein pada taraf nyata lima persen. Namun jika digunakan rancangan faktorial pecahan 24-1 dengan defining relation I = ABCD dan I = -ABCD, maka pengaruh utama faktor cara ekstraksi (B) dan pengaruh interaksi faktor cara ekstraksi dan jenis bahan pengendap (B*C) tidak berpengaruh nyata terhadap kadar protein pada taraf nyata lima persen. Jika digunakan taraf nyata sepuluh persen maka pada rancangan faktorial pecahan 24-1 dengan defining relation I = - ABCD hanya pengaruh interaksi faktor cara ekstraksi dan jenis bahan pengendap (B*C) yang tidak berpengaruh nyata terhadap kadar protein. Tabel 8 Perbandingan p-value faktor serta interaksi faktor dari rancangan faktorial 24 dan rancangan faktorial pecahan 24-1 I= I=Pengaruh 24 ABCD ABCD A 0.031* 0.017* 0.000* B 0.161 0.055 0.003* C 0.017* 0.008* 0.000* D 0.007* 0.002* 0.000* B*C 0.960 0.114 0.222 Ket : * artinya berpengaruh nyata pada taraf nyata lima persen
Tabel 9 memberikan informasi dugaan pengaruh menggunakan data rancangan faktorial pecahan. Dapat dilihat bahwa dugaan pengaruh dari rancangan faktorial pecahan dan rancangan faktorial 24 memiliki arah yang sama. Tabel 9 Perbandingan dugaan pengaruh faktor rancangan faktorial pecahan 24-1 I= I=Pengaruh 24 ABCD ABCD A 6.47 7.34 5.61 B - 2.94 -2.87 -3.02 C 9.09 10.01 8.17 D - 16.49 -16.06 -16.92 B*C - 1.16 -0.32 -2.00 Besaran efisiensi relatif rancangan faktorial pecahan 24-1 dengan defining relation I = ABCD terhadap rancangan faktorial 24 sebesar 2.24 artinya untuk mencapai sensitifitas yang sama dengan rancangan faktorial 24 maka besarnya ulangan yang diperlukan rancangan faktorial pecahan 24-1 dengan defining relation I = ABCD adalah tiga kali lipat. Sedangkan besaran efisiensi relatif rancangan faktorial pecahan 24-1 dengan defining relation I = -ABCD terhadap rancangan faktorial 24 sebesar 0.71 artinya rancangan faktorial pecahan 24-1 dengan defining relation I = -ABCD memiliki sensitifitas yang sama seperti rancangan faktorial 24.
KESIMPULAN Rancangan faktorial pecahan 24-1 dengan defining relation I = ABCD dan defining relation I = -ABCD adalah salah satu bentuk rancangan faktorial pecahan yang mungkin dibentuk dari rancangan faktorial 24 memiliki perbandingan nilai kuadrat tengah galat yang tidak berbeda jauh dengan nilai kuadrat tengah galat rancangan faktorial 24. juga Rancangan faktorial pecahan 24-1 memiliki dugaan pengaruh faktor dan interaksi dengan arah yang sama serta P-value faktor dan interaksi yang tidak berbeda jauh dibandingkan dengan rancangan faktorial 24. Biaya pengadaan satuan percobaan pada rancangan faktorial pecahan 24-1 lebih sedikit dibandingkan dengan rancangan 2k sehingga rancangan faktorial pecahan 24-1 dapat dijadikan sebagai salah satu alternatif efisiensi biaya penelitian.
8
DAFTAR PUSTAKA Box GEP, Hunter WG dan Hunter JS.1978. Edisi ke-1. Statistics for Experimenters. New York: Wiley Interscience Kustaman E. 1976. Skripsi. Mempelajari Pengaruh Jenis Larutan Perendam, Cara Ekstraksi, Jenis Bahan Pengendap, dan Jumlah Penambahan Tepung “ SKIM MILK” terhadap beberapa sifat “SOFT CURD” dari Kacang Kedelai (Glycine max L). Fakultas Mekanisasi dan Teknologi Hasil Pertanian. IPB. Bogor Mattjik AA, Sumertajaya IM.2002. Edisi ke-2. Perancangan Percobaan dengan Aplikasi SAS dan Minitab. Bogor: IPB PRESS Montgomery DC.2001. Edisi ke-5. Design and Analysis of Experiments. Singapore: John Wiley & Sons Inc
LAMPIRAN
9
Lampiran 1. Data pengaruh jenis larutan perendam, cara ekstraksi, jenis bahan pengendap, dan jumlah penambahan tepung terhadap kadar protein kacang kedelai Kadar Protein (Y1) 58.86 65.60 59.94 61.92 70.53 77.42 65.96 72.10 44.42 50.10 41.16 48.04 51.40 59.82 48.22 57.28 Keterangan: A B C D
Jenis Larutan (A) Air Saluran pH 7.5 (0) Larutan pH 10 (1) Air Saluran pH 7.5 (0) Larutan pH 10 (1) Air Saluran pH 7.5 (0) Larutan pH 10 (1) Air Saluran pH 7.5 (0) Larutan pH 10 (1) Air Saluran pH 7.5 (0) Larutan pH 10 (1) Air Saluran pH 7.5 (0) Larutan pH 10 (1) Air Saluran pH 7.5 (0) Larutan pH 10 (1) Air Saluran pH 7.5 (0) Larutan pH 10 (1)
= Jenis Larutan Perendam = Cara Ekstraksi = Jenis Bahan Pengendap = Jumlah Penambahan Tepung
0 = taraf tinggi 1 = taraf rendah
Cara Ekstraksi (B)
Jenis Bahan Pengendap (C)
Jumlah Penambahan Tepung (D)
Ekstraksi Dingin (28-45)0C (0) CaSO4 0.3 persen (0) Ekstraksi Panas (80-95)0 C (1) Tepung “Skim Milk” 0 persen (0) Ekstraksi Dingin (28-45)0C (0) Asam Laktat (1) Ekstraksi Panas (80-95)0 C (1) Ekstraksi Dingin (28-45)0C (0) CaSO4 0.3 persen (0) 0
Ekstraksi Panas (80-95) C (1) Tepung “Skim Milk” 25 persen (1) 0
Ekstraksi Dingin (28-45) C (0) Asam Laktat (1) Ekstraksi Panas (80-95)0 C (1)
10
Lampiran 2. Plot kenormalan nilai dugaan pengaruh faktor dan pengaruh interaksi faktor Plot Normal Nilai Dugaan Faktor Normal - 95% CI 99
Mean StDev N AD P-Value
95 90
-0.162 5.419 15 1.678 <0.005
Percent
80 70 60 50 40 30 20 10 5
1
-20
-10
0 Nilai Dugaan Faktor
10
20
Lampiran 3. Analisis ragam rancangan faktorial 24 General Linear Model: Kadar Protei versus Jns_Lar(A), Cr_Extr(B), ... Factor Jns_Lar(A) Cr_Extr(B) Bhn_Pengendap(C) Tepung(D)
Type fixed fixed fixed fixed
Levels 2 2 2 2
Values 0, 1 0, 1 0, 1 0, 1
Analysis of Variance for Kadar Protein (Y1), using Adjusted SS for Tests Source Jns_Lar(A) Cr_Extr(B) Bhn_Pengendap(C) Tepung(D) Cr_Extr(B)*Bhn_Pengendap(C) Error Total
S = 1.47669
R-Sq = 98.67%
DF 1 1 1 1 1 10 15
Seq SS 167.64 34.60 330.24 1087.19 3.70 21.81 1645.17
Adj SS 167.64 34.60 330.24 1087.19 3.70 21.81
Adj MS 167.64 34.60 330.24 1087.19 3.70 2.18
F 76.88 15.87 151.44 498.57 1.69
R-Sq(adj) = 98.01%
Lampiran 4. Plot nilai dugaan galat dan nilai dugaan kadar protein rancangan faktorial 24
Lampiran 5. Plot kenormalan faktorial 24
galat
Normal
(response is Kadar Protein) 99
Mean StDev N KS P-Value
2 95 90 80
Percent
Galat
1
0
70 60 50 40 30 20
-1
10 5
-2
1
50
60 Nilai Dugaan
70
rancangan
Plot Kenormalan Galat
Plot Nilai Dugaan Galat dan Nilai Dugaan Kadar Protein
40
P 0.000 0.003 0.000 0.000 0.222
80
-3
-2
-1
0 Galat
1
2
3
-1.77636E-15 1.206 16 0.099 >0.150
11
Lampiran 6. Analisis ragam rancangan faktorial pecahan 24-1 dengan I =ABCD General Linear Model: Kadar Protei versus Jns_Lar(A), Cr_Extr(B), ... Factor Jns_Lar(A) Cr_Extr(B) Bhn_Pengendap(C) Tepung(D)
Type fixed fixed fixed fixed
Levels 2 2 2 2
Values 0, 1 0, 1 0, 1 0, 1
Analysis of Variance for Kadar Protein (Y1), using Adjusted SS for Tests Source Jns_Lar(A) Cr_Extr(B) Bhn_Pengendap(C) Tepung(D) Cr_Extr(B)*Bhn_Pengendap(C) Error Total S = 1.85991
DF 1 1 1 1 1 2 7
R-Sq = 99.18%
Seq SS 107.60 16.42 200.20 515.53 0.01 6.92 846.68
Adj SS 107.60 16.42 200.20 515.53 0.01 6.92
Adj MS 107.60 16.42 200.20 515.53 0.01 3.46
F 31.11 4.75 57.87 149.03 0.00
R-Sq(adj) = 97.14%
Lampiran 7. Plot nilai dugaan galat dan nilai dugaan kadar protein rancangan faktorial pecahan 24-1 dengan I =ABCD
Lampiran 8. Plot kenormalan galat rancangan faktorial pecahan 24-1 dengan I =ABCD
Plot Kenormalan Galat Rancangan Faktorial Pecahan dengan I = ABCD
Plot Nilai Dugaan Galat dan Dugaan Kadar Protein
Normal
(response is Kadar Protein) 1.5
99
Mean StDev N KS P-Value
95
1.0
90
3.552714E-15 0.9942 8 0.242 >0.150
80
Percent
0.5 Galat
P 0.031 0.161 0.017 0.007 0.960
0.0 -0.5
70 60 50 40 30 20 10
-1.0
5
1
40
50
60 Nilai Dugaan
70
80
-3
-2
-1
0 Galat
1
2
3
Lampiran 9. Analisis ragam rancangan faktorial pecahan 24-1 dengan I =-ABCD General Linear Model: Kadar Protei versus Jns_Lar(A), Cr_Extr(B), ... Factor Jns_Lar(A) Cr_Extr(B) Bhn_Pengendap(C) Tepung(D)
Type fixed fixed fixed fixed
Levels 2 2 2 2
Values 0, 1 0, 1 0, 1 0, 1
Analysis of Variance for Kadar Protein (Y1)_1, using Adjusted SS for Tests Source Jns_Lar(A) Cr_Extr(B) Bhn_Pengendap(C) Tepung(D) Cr_Extr(B)_1*Bhn_Pengendap(C) Error Total S = 1.04320
R-Sq = 99.73%
DF 1 1 1 1 1 2 7
Seq SS 63.00 18.21 133.42 572.40 7.98 2.18 797.19
Adj SS 63.00 18.21 133.42 572.40 7.98 2.18
R-Sq(adj) = 99.04%
Adj MS 63.00 18.21 133.42 572.40 7.98 1.09
F 57.89 16.73 122.60 525.98 7.33
P 0.017 0.055 0.008 0.002 0.114
12
Lampiran 10. Plot nilai dugaan galat dan nilai dugaan kadar protein rancangan faktorial pecahan 24-1 dengan I = -ABCD
Lampiran 11. Plot kenormalan galat rancangan faktorial pecahan 24-1 dengan I = -ABCD Plot Kenormalan Galat Rancangan Faktorial Pecahan dengan I = - ABCD Normal
Plot Nilai Dugaan Galat dan Dugaan Kadar Protein
99
(response is Kadar Protein) 0.8
90
0.6
80
Percent
0.4 0.2 Galat
Mean StDev N KS P-Value
95
0.0
70 60 50 40 30 20
-0.2
10
-0.4
5
-0.6
1
-0.8 40
45
50
55 60 Nilai Dugaan
65
70
75
-1.5
-1.0
-0.5
0.0 Galat
0.5
1.0
-3.55271E-15 0.5576 8 0.203 >0.150