PENGUJIAN MODEL TURBULENSI U-RANS DUA-PERSAMAAN YANG DIMODIFIKASI UNTUK MEMPREDIKSI TERJADINYA DYNAMIC STALL Nama mahasiswa : Galih Senja Titah Aji Bangga NRP : 2111.202.901 Dosen pembimbing : Prof. Dr.-Ing. Herman Sasongko ABSTRAK Kebutuhan analisa pada sudu helikopter, kompresor, kincir angin dan struktur streamline lainya pada angle of attack yang tinggi yang melibatkan efek instasioner yang disebut dynamic stall menjadi semakin penting. Fenomena ini ditandai dengan naiknya dynamic lift melebihi static lift maksimum pada critical static stall angle, vortex terbentuk pada leading edge yang mengakibatkan naiknya suction contribution yang kemudian terseparasi dan terkonveksi sepanjang permukaan hingga mencapai trailling edge dan diikuti terbentuknya trailling edge vortex yang menunjukkan terjadinya lift stall. Prediksi numerik yang dilakukan pada fenomena ini sering menunjukkan ketidak-akuratan utamanya pada lift coefficient yang sering menunjukkan overprediction dengan penggunaan model turbulensi U-RANS duapersamaan baik basis k-ω maupun k-ε, hal ini dikarenakan free stream turbulence pada model tersebut terlalu tinggi. Metode numerik digunakan untuk memahami secara detail fenomena dynamic stall menggunakan CFD solver Ansys Fluent 13.0 untuk 2D geometrical configuration secara unsteady dan incompressible pada profil NACA 0012 dengan Reynolds number sebesar 1.35x105. Model turbulensi standard k-ε dimodifikasi untuk mereduksi tingkat turbulensi dengan menambahkan damping factor sebagai fungsi y+ pada daerah buffer zone serta menambahkan koefisien redaman yang mengakomodasi efek rotasi airfoil. Model osilasi dan modifikasi model turbulensi disusun dengan bahasa pemrograman C dalam user defined function (UDF) subroutine. Validasi dilakukan dengan hasil eksperimen serta model turbulensi original seperti standard k-ε, realizable k-ε, standard k-ω, serta SST k-ω. Perubahan nilai parameter damping yang digunakan sangatlah mempengaruhi hasil simulasi. Hasil modifikasi memberikan peningkatan akurasi prediksi lift coefficient pada kasus dynamic stall. Reduksi overprediction ditunjukkan dengan menggunakan model ini dibandingkan dengan empat model turbulensi original URANS dua-persamaan meskipun pada angle of attack terendah nilai lift coefficient lebih mampu diprediksikan secara baik oleh model turbulensi standard k-ε dan SST k-ω. Studi yang dilakukan pada daerah wake menunjukkan efek leading edge vortex (LEV) dan trailling edge vortex (TEV) semakin berkurang dengan bertambahnya jarak titik analisa dengan airfoil. Perkembangan aliran fluida pada kondisi dynamic stall yang dikarakterisasi oleh terbentuknya LEV dan TEV mampu diprediksikan secara baik pada simulasi yang dilakukan.
Kata kunci: External flow, Aeroelasticity, Dynamic stall, Turbulence model i
Halaman ini sengaja dikosongkan
ii
ASSESSMENT OF MODIFIED TWO-EQUATIONS U-RANS TURBULENCE MODEL TO PREDICT THE ONSET OF DYNAMIC STALL Student Name NRP Supervisor
: Galih Senja Titah Aji Bangga : 2111.202.901 : Prof. Dr.-Ing. Herman Sasongko ABSTRACT
The necessity in the analysis of helicopter blade, compressor, wind turbine and other streamlined structure operating at high angle of incidence that included instationary effect the so called dynamic stall becomes increasingly important. This phenomenon is indicated by lift coefficient that continuously increase passed static lift on the critical static stall angle, vortex formed on the leading edge that increased suction contribution then it is separated and convected along airfoil surface to trailling edge and it is followed by trailling edge vortex formation that shows the beginning of lift stall. Numerical prediction on this phenomenon often shows inaccurate results primarily in the lift coefficient that usually shows overprediction using two-equations U-RANS turbulence model whether it is k-ω based or k-ε based, this is due to free stream turbulence on this models are too high. Numerical methods is used to understand in detail about dynamic stall phenomenon using Ansys Fluent 13.0 as CFD solver for 2D geometrical configuration in frame of unsteady and incompressible analysis using NACA 0012 profile by Reynolds number of 1.35x105. Standard k -ε turbulence model is modified to reduce turbulence intensity by the addition of damping factor as the function of y+ in the buffer z one and damping coefficient that accommodate the effects of airfoil rotation. Oscillation model and turbulence model modification is compiled in C programming language in frame of user defined function (UDF) subroutine. Experiment result and original turbulence model such as standard k -ε, realizable k-ε, standard k-ω, and also SST k-ω are used as validation methods. The changed in damping parameter value could highly affected simulation results. This modification increase the accuration of lift coefficient prediction in case of dynamic stall. This model could give reduction in overprediction value compared with four U-RANS original turbulence model even though the value of lift coefficient at lowest angle of attack is better predicted by standard k-ε and SST k-ω turbulence model. The effects of leading e dge v ortex (LEV) and trailling e dge vortex (TEV) are decreased by the increased in distance of analysis point from airfoil. Flow development of the fluid flow in dynamic stall case that is characterized by LEV and TEV formation is well predicted in this simulation.
Keywords: External flow, Aeroelasticity, Dynamic stall, Turbulence model
iii
Halaman ini sengaja dikosongkan
iv
DAFTAR PUSTAKA
[1] Meyer, M. and Matthies, H.G., 2003, State-space representation of instationary two-dimentional airfoil aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics 92, 263-274. [2]
Johansen, J., 1999, Unsteady airfoil flows with application to aero elastic stability. Risø National Laboratory.
[3]
Galvanetto, U., Piero, J., Chantharasenawong, C., 2008, An assessment of some effects of the nonsmoothness of leishman-beddoes dynamic stall model on the nonlinear dynamics of a typical aerofoil section. Journal of Fluid and Structures 24, 151-163.
[4]
Witteveen, J.A.S., Sarkar, S., Bijl, H., 2007, Modeling physical uncertainties in dynamic stall induced fluid–structure interaction of turbine blades using arbitrary polynomial chaos. Computers and Structures 85, 866–878.
[5]
Carr, L.W. and Chandrasekhara, M.S., 1996, Compressibility effects on dynamic stall. Prog. Aerospace Sci., 32, 523.573
[6]
Hansen, M.H., Gaunaa, M., Madsen, H.A., 2004, A beddoes-leishman type dynamic stall model in state space and indical formulations. Risø National Laboratory.
[7]
Theodorsen, T., 1935, General theory of aerodynamic instability and the mechanism of flutter. Naca Report 496, 413-433.
[8]
Friedmann, P.P., 1983, Formulation and solution of rotary-wing aeroelastic stability and response problems. Vertica 7 (2), 101-141.
[9]
McCroskey, W., Carr, L., McAlister, K., 1976, Dynamic stall experiments on oscillating airfoils. AIAA J. 14 (1), 57–63.
[10] Visbal, M.R., 1988, Effect of compressibility on dynamic stall. AIAA J. 88, 0132. [11] Barakos, G.N. and Drikakis D., 2000, Unsteady separated flows over maneuvering lifting surfaces. Phil. Trans. R. Soc. Lond. A, 358, 3279-3291. [12] Ekaterinaris, J. A., 1995, Numerical investigation of dynamic stall of an oscillating wing, AIAA Journal 33, 1803-1808.
49
[13] Ekaterinaris, J. A., 1995, Present capabilities of predicting two-dimensional dynamic stall, AGARD Conference CP-552. [14] Barakos, G.N., and Drikakis D., Computational study of unsteady turbulent flows around oscillating and ramping aerofoils, Int. J. Numer. Math. Fluids, 42, 163-186. [15] Bangga, G.S.T.A. and Sasongko, H., 2012, Numerical Investigation of Dynamic Stall for non-stationary Two-Dimensional Blade Airfoils. Annual National Conference in Mechanical Engineering 11, Indonesia, 106-112. [16] Mulvany, N.J., Chen, L., Tu, J.Y., Anderson, B., 2004, Steady-state evaluation of ‘two equation’ RANS turbulence models for high-reynolds number hydrodynamic flow simulations, DSTO TR-1564. [17] Arabshahi, A., Beddhu, M., Briley, W., Chen, J., Gaither, A., Janus, J., Jiang, M., Marcum, D., McGinley, J., Pankajakshan, R., Remotigue, M., Sheng, C., Sreenivas, K., Taylor, L., Whitfield, D., 2000, A perspective on naval hydrodynamic flow simulations, 22nd Symposium on Naval Hydrodynamics, 920-932. [18] Leishman, J.G., 2000. Principles of helicopter aerodynamics. Cambridge University Press, Cambridge. [19] VISCWIND, 1999. Viscous effects on wind turbine blades, final report on the JOR3-CT95-0007, Joule III project, Technical Report ET-AFM-9902, Technical University of Denmark. [20] Jumper, E.J. and Hugo, R.J., 1991, Simple theories of dynamic stall that are helpful
in
interpreting
computational
results.
Computer
Physics
Communications 65, 158-163. [21] Wang, S., Ingham, D. B., Ma, L., Pourkashanian, M., Tao, Z., 2010, Numerical investigations on dynamic stall of low Reynolds number flow around oscillating airfoils. Computers & Fluids 39, 1529–1541. [22] Larsen, J.W., Nielsen, S.R.K., Krenk, S., 2007, Dynamic stall model for wind turbine airfoil. Journal of Fluid and Structures 23, 959-982. [23] Ansys Inc, 2010, Fluent theory guide. Software release 13. [24] Launder, B.E. and Spalding, D.B., 1972, Lectures in mathematical models of turbulence, Academic Press, London, England.
50
[25] Wilcox, D.C., 1998, Turbulence modeling for CFD, DCW Industries Inc., La Canada, California. [26] Menter, F.R, 1994, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal 32 (8), 1598-1605. [27] Chitsomboon, T., Thamthae, C., 2011, Adjustment of SST k-ω turbulence model for an improved prediction of stalls on wind turbine blades, World Renewable Energy Congress, Sweden, 4114-4120. [28] Choudhuri, P. Ghosh and Knight, D., 1995, Effects of compressibility, pitch rate, and Reynolds number on unsteady incipient boundary layer separation over a pitching airfoil, AIAA Paper 95-0782. [29] Lee, T. and Gerontakos, P., 2004, Investigation of flow over an oscillating airfoil. J Fluid Mech 512, 313–41. [30] Raffel, M., Favier, D., Berton, E., Rondot, C., Nsimba, M., Geissler, W., 2006, Micro-PIV and ELDV wind tunnel investigations above a helicopter blade tip, Measur. Sci. Technol 17, 1652–1658. [31] Bangga, G.S.T.A., 2013, Numerical study on low Reynolds number dynamic stall of the flow over wind turbine airfoil, Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, to be published. [32] Chen, S.H. and Ho, C.M., 1986, Near wake of an unsteady symmetric airfoil. Journal of Fluid and Structures 1, 151-164. [33] Bangga, G.S.T.A., 2012, Simulasi numerik dynamic stall pada airfoil yang berosilasi, Tugas Akhir S1 Teknik Mesin, Institut Teknologi Sepuluh Nopember. [34] Spentzos, A., G. Barakos, G., Badcock, K.,
Richards, B., Wernert, P.,
Schreck, S., Raffel, M., 2005, CFD investigation of 2D and 3D dynamic stall, AIAA Journal 34 (5), 1023-1033.
51
Halaman ini sengaja dikosongkan
52