11/22/2009
PEMANFAATAN TEKNOLOGI PANAS BUMI DI INDONESIA
Disampaikan oleh: I MADE RO SAKYA – Deputi Direktur Teknologi ‐ PT PLN (Persero) Pada Seminar : Geotermal dan Biofuel sebagai sumber Energi Masa Depan Terbarukan dan Ramah Lingkungan Universitas Gunadarma – 23 Nopember 2009
Posisi 158
217171160158155151 112410191 74 67 45 44 36 27 23 19 9 9 6 5 2 1
KWH PER CAPITA DI BERBAGAI NEGARA Islandia Norw egia Qatar Kuw ait USA Si Singapura Brunei Prancis Saudi Arabia Inggris Hongkong Malaysia Suriname China Thailand Mesir Vi Vietnam Philipina Indonesia India Bangladesh Chad
31,147.29 24,011.23 15,938.44 15,210.95 12,924.22 8 176 26 8,176.26 7,671.30 7,328.28 6,621.44 5,773.62 5,748.14 3,724.98 Weighted average : 3,240.3 kWh/capita 3,226.55 2,175.03 1,914.27 1,275.91 602 26 602.26 556.10 496.32 466.03 148.05 8.85
Sumber: www.nationmaster.com, data 2006
1
11/22/2009
Electrification Ratio vs. GDP
Eropa
Thailand
100
China
Jepang Amerika Serikat
Malaysia
Electrification Ratio [ % ]
Brasil
Philipina Rusia
80
Asia Bolivia 60
Afrika Selatan
INDONESIA India G Ghana Nigeria
40 100
1.000
10.000
100.000
GDP per Kapita [ US$ ]
Source : IEA, World Energy Outlook 2006
Installed Capacity vs. Population 10.000
Amerika Serikat
In nstalled Capacity [GW]
1.000
China Jepang Rusia 100
Korsel Argentina Malaysia 10
Perancis Inggris Thailand
India Brasil INDONESIA Pakistan
Philipine Vietnam Nigeria
Kenya Myanmar 1 10
100
1.000
10.000
Population [Million] Source: IAEA, US DOE
2
11/22/2009
CO2 Emission per Capita 18.00
16.00
North America r1
CO2 emissionper capita [tCO2/capita]
14.00
12.00
10.00
Japan JA
8.00
Europe r3 Malaysia MY
6.00 China CH
4.00
2.00
Indonesia ID India IN
0.00
Generation And Transmission THAILAND
LAOS
Manila
Bangkok CAMBODIA
TOTAL • Install Cap : 29.987 MW • Trans Lines : ‐ 500 KV : 4.983 kms ‐ 150 KV : 23.106 kms ‐ 70 KV : 5.052 kms
Philipines
Ban Mabtapud
South
Phnom Penh
VIETNAM
China
Ho Chi Minh City
Sea Erawan
Khanon Songkhla
Bangkot Lawit
Jerneh Guntong
Banda Aceh
Penang
Lhokseumawe
West Natuna
WEST Kerteh Duyong Mogpu MALAYSI A Port Klang Medan
Port Dickson Dumai Duri
Kota Kinibalu
BRUNEI
Bandara Seri Begawan
Kuala Lumpur
Bintul
EASTu MALAYSIA Kuchin Kalimantan : g • Gen : 1.000 MW • 150 kV: 1.264 kms KALIMANTAN • 70 kV: 123 kms 70 kV: 123 kms
Pacific Ocean Manado
SINGAPORE Batam Bintan
Padang
Sumatera : • Gen : 4.634 MW • 150 kV: 8.521 kms • 70 kV: 310 kms
Alpha Natuna
Ternate Bontang
Samarinda Balikpapan
Sorong
Attaka Tunu Bekapai
Jambi
SULAWESI
Grissik
Banjarmasin
Palembang
HALMAHERA
Sulawesi : • Gen : 1.130 MW • 150 kV: 1.769 kms • Ujung 70 kV: 962 kms
Maluku : Maluku : • Gen : 197 MW
Papua : • Gen : 170 MW
Jayapur y p a
IRIAN JAYA BURU
SERAM
Pandang
Jakarta
Semarang
JAVA
I NPagerungan D O N E S I A Bangkalan
MADURA
Surabaya Jamali : • Gen : 22.302 MW • 500 kV: 4.983 kms Indian Ocean • 150 kV: 11.552 kms • 70 kV: 3.657 kms
Merauke
BALI
SUMBAWA FLORES Nusa Tenggara: LOMBOK • Gen : 273 MW TIMOR
SUMBA AUSTRALIA
3
11/22/2009
KAPASITAS TERPASANG PEMBANGKIT PLN Gas Turbine 5%
Diesel 12%
Hydro 15%
CCPP Nat Gas 20%
Geothermal 2%
Jawa, Madura & Bali (JAMALI) Region (18.371 MW)
SPP Coal 23%
CCPP Fuel Oil 13% SPP Fuel Oil 5%
SPP Nat Gas 4%
Indonesia (25,340 MW) OUTSIDE OF JAMALI (6,969 MW)
Sourcee: PLN (2008)
7
7
ELECTRICITY DEMAND PROJECTION MW
TWh
70,000
400
INDONESIA
OUTER JAWA BALI
MW
TWh 100
19,000 90 17,000 80
65,000
15,000 70
350 60,000
13,000 60 11,000
55,000 300
50
9,000
40
7,000
50,000
30
5,000
20 2008
45,000
2010
2012
2014
2016
2018
2020
250
JAWA BALI
MW
55,000
40,000 200 35,000
TWh
350
50,000 300
45,000
Peak Load Beban puncak
30,000
40,000 250
150
Energy Demand Penjualan Energi
25,000
35,000 30,000 200 25,000
20,000
100 2008
2010
2012
2014
2016
2018
2020
20,000
150
15,000 10,000
100 2008
2010
2012
2014
2016
2018
2020
Notes : Asumption : Annual Economic Growth 6.2%/thn, elasticity = 1.56 Projection : Electricity demand grow at 9.69% annually. Demand in 2008 was 128.9 TWh, and demand projection in 2018 is expected 325.2 TWh, and 381.3 TWh in 2020 Electrification Ratio 95.5%in 2018 , and 100% in 2020 8
4
11/22/2009
Additional Capacity 2009 - 2018
Diesel PP
6 173
Micro HEPP
122 70 905
HEPP
3,835 3,991
Geothermal
1,015
CCPP
220
GTPP
438
IPP
8,494
PLN 3,934 16,487 17,753
Coal STPP
22,168
Total
35,274
‐
5,000
10,000
15,000
20,000
25,000
30,000
35,000
40,000
MW
Apakah Geothermal atau Panas Bumi ? • Geo‐thermal ‐ Geothermal power (from the Greek roots geo meaning earth and Greek roots geo, meaning earth, and thermos, meaning heat) is power extracted from heat stored in the earth. ‐ Wikipedia • … of or relating to the heat in the interior of the earth ‐ wordnetweb.princeton.edu • Energy from reservoirs in the Earth’s E f i i th E th’ surface, such as geysers or ground water that is ‘heat energy’ ‐ www.greenenergy360.org
5
11/22/2009
GEOTHERMAL SYSTEM MODEL
A‐B = normal temperature gradient (fluid inflow and water pressure increase) B‐C = very high temperature gradient and permeable (reservoir) C‐D = ascending of hot fluid at relatively constant temperature D = location where hot water begins to boil, as water pressure decrease
Sumber : Mary H. Dickson and Mario Fanelli, What is Geothermal Energy?
11
DISTRIBUTION OF GEOTHERMAL IN INDONESIA
Maluku Sulawesi Kalimantan Irian Jaya
Jawa
Bali
Flores
Alor
Timor
Total Location : 256 Schemes Total Potential : 27 GWe
Non Volcanic Location : 53 Schemes Potential :1. 15 GWe
6
11/22/2009
BENTUK SUMBER GEOTHERMAL DI PERMUKAAN BUMI
Fumarol
Air/Uap panas
Lumpur Panas
Geyser
GEOTHERMAL DI INDONESIA SEULAWAH AGAM 160 MW
SIBAYAK 12 MW
Ready for Exploitation
SARULA 330 MW
Production Stage Under Tender
LAHENDONG I, II,III 60 MW JAILOLO 75 MW
LUMUTBALAI LUMUT BALAI (UNOCAL) 110 MW DIENG 60 MW
KARAHA 400 MW
ULUBELU 110 MW
KAMOJANG 150 MW
TAMPOMAS 50 MW
UNGARAN 50 MW
CISOLOK 45 MW
ULUMBU 10 MW
NGEBEL 120 MW
Tangkuban Parahu 55 MW SALAK 375 MW
BEDUGUL 175 MW
PATUHA 400 MW
WAY. WINDU II 2 x 110 MW
WAY. WINDU I 110 MW
DARAJAT 255 MW
MATALOKO 2.5 MW
Total Installed Capacity January 2009 : 1182 MW 14
7
11/22/2009
INDONESIAN FUEL MIX Fuel mix will be changed as the followings: • • • •
Coal 46% in year 2008 to become 63% in year 2018. Fuel oil 25% in year 2008 to become 1% in year 2018 Geothermal 5% in year 2008 to become 12% in year 2018 y y Gas and LNG 17% in year 2008 to become 17% in year 2018 2018
2008
HYDRO 6%
HYDRO 7%
Coal BATUBARA 46%
PUMPED STORAGE 1%
PUMPED STORAGE 0% GEOTHERMAL 5% NUCLEAR 0%
GEOTHERMAL 12%
Coal
BATUBARA 63%
NUCLEAR 0% HSD 1%
LNG 0%
HSD 16% GAS 17%
MFO 0% LNG 2%
MFO 9%
**)Sources: Long‐term Development Plan of PLN
GAS 15%
15
PENGEMBANGAN
8
11/22/2009
TEKNOLOGI GEOTHERMAL
Temperatur : 1. At 30‐69ºC : thermoculture ((Hot Spa, Pemandian p , Air Panas, Memasak dll) 2. At 70‐140ºC : Pemanas air & ruangan, Pengering 3. At 140‐220ºC: Pengering, Process Heat, binary PP 4. At 220+ºC: Steam turbine, binary PP or process steam
17
TEKNOLOGI GEOTHERMAL a) b) c)
Flashed Plant Binary Plant Combined Cycle PP
18
9
11/22/2009
Proses Pemanfaatan Panasbumi
Geothermal Power Plant Cycle CYCLONE SEPARATOR
ELECTRICAL GENERATOR
CYCLONE SCRUBBER UP TO 4 KM
COOLING TOWER
CONDENSER TURBINE STEAM EXHAUST v V
v
v
v
V
V
V
PSI
v
V
ST E AM
STEAM TURBINE
v V
STEAM
Resource development Steam gathering system t (SAGS) Power generation Facilities
PUMP
COLD CONDENSATE CONDENSATE
FLASHING TO STEAM-BRINE MIXTURE IN BOREHOLE
PUMP
CONDENSATE INJECTION WELL
RESERVOIR BRINE
BRINE INJECTION WELL
GEOTHERMAL POWER PLANT
www.eas.asu.edu
Example : 1. Kawerau Geothermal PP – New Zealand 2. Ngawha Geothermal PP – New Zealand 3. Raser’s Geothermal PP – Utah ‐ USA
20
10
11/22/2009
ARSEPE 2009
Combine Cycle Ormat
Example : 21 Leyte – Philippine
KEUNTUNGAN & MANFAAT Teknologi 1. Proven Technology 2. Tidak tegantung dengan musim 3. Berperan sebagai base load ( CF > 90% ). 4. Dapat dikembangkan secara bertahap ( 250 kW – 110 MW )
22
11
11/22/2009
KEUNTUNGAN & MANFAAT Ekonomi 1. Biaya O & M rendah. 2. Biaya bahan bakar tidak ada 3. Meningkatkan tingkat sekuriti energi nasional 4. Menggunakan energi setempat 5. Menggerakkan perekonomian setempat
23
KEUNTUNGAN & MANFAAT Lingkungan 1. Emisi sangat rendah dibandingkan dengan pembengkit berbahan bakar fosil. fosil 2. Menggunakan tanah yang tidak luas dibandingkan dengan pembangkit lain.
24
12
11/22/2009
KEBUTUHAN LAHAN ≥
Thoussands
Land Usage 14 12 10 8 6 4 2 0
(from Geothermal Power Plant, Ronald DiPippo, Second edition)
Geotherm Geotherm Geotherm Solar Nuclear Hydroelect Solar PV al Flash al Binary al Flash Coal Plant Thermal Wind Farm Plant ric Plant Plant Plant Plant Plant Plant Land Usage (m2/GWh)
160
170
290
5,700
Land Usage (m2/MW)
1,260
1,415
2,290
400,003
250,000
3,200
7,500
1,305
10,000 1,200,000
1,200
28,000
66,000
3,140
25
LINGKUNGAN (from Geothermal Power Plant, Ronald DiPippo, Second edition)
CO2 (kg/MWh)
Geothermal PP emits CO2 at < 10 % to that of CO2 emitted by other PP Types
1000 900 800 700 600 500 400 300 200 100 0
CO2 (kg/MWh)
Coal‐ Fired Steam Plant
Oil‐Fired Steam Plant
Gas Turbine
Flash‐ steam Geo PP
994
758
550
27.2
The Geysers dry‐ steam Geo PP 40.3
Closed loop binary Geo PP
EPA average, all US Plants
0
631.6
26
13
11/22/2009
Resiko dan Tahapan Pengembangan Panasbumi Pre‐feasibility (Geology, surface geochemistry, engineering & environ. Impact pipeline routes,, weather & hydrology, preparation of exploration budget
Commissioning & production
Feasibility
Exploration Exploration drilling (resource identification) Development drilling (resource delineation & quantification)
Discharge testing Studies & tests Reserves Confirmation Environmental impact assessment Feasibility study of power plant, etc
Resiko tertinggi
berada di hulu Catatan hasil
Pemboran Indonesia: rata-rata < 10 Mwe per sumur (SKM, 2007) Lama
Construction
Design
Construction & plan installation Contract management supervis management, ion of construction, inspecti on Field management & long term testing
Environmental impact report Preliminary design Bid document d preparation Contract award (plant & civil) Pipeline routing & design Production & injection wells Final design
Pengembangan sampai operasi 5-7 tahun
Fase dengan resiko tertinggi
Investasi Panasbumi (greenfield dev.) 1. Lead time yang panjang; • Pre Feasibility Study • Exploration • Development / Construction Total lead time :
: 1 tahun : 2 – 3 tahun : 2 – 3 tahun 5 – 7 tahun
2. Risks • • • •
Resources (Exploration & Exploitation) Risks Construction Risk Perceived Buyer (PLN) Risk Country Risk.
3. IRR = Riskless Rate
+
Risk Premium
(government bond)
14
11/22/2009
Estimasi Investasi Panasbumi Total Biaya (dalam juta USD/MW)
Jenis Biaya G&G Studies, Exploration & Development Drilling
Resource characteristics Site specifics Market parameters
1 1 – 1,2 1,1 12
Pipelines – Steam Above Ground System (SAGS)
0.4
Power Plant , inc. Engineering & Project Management
1,3 – 1,4
Total Biaya Pengembangan
2 8 – 3,0 2,8 30
Diperlukan investasi lebih dari USD 13 Milyar untuk membangun 4,733 MW PLTP
Geothermal Project Concession acquisition and initial exploration
Resource Development Construction Starts • Roads • Land Purchase • Drill Wells
Resource Feasibility Study Approved
Submit Notice of Intention To Develop
EPC Bids EPC Bids Financing Plans
Project Construction
Finalizing Costs • Confirm Resource • Financing Plans
Complete Construction • Close Financing On Final Phase ‐‐ PGF On Final Phase
At least 3 Yrs
Coal/Gas Power Project
Commercial Operations
~ 2 Yrs Close Close Financing
Sign Sign PPA EPC Bids Financing Plans
Project Construction
Conditions Precedent
Construction Starts
Commercial Commercial Operations
30
15
11/22/2009
RISK DISTRIBUTION of GEOTHERMAL PROJECT GOVERNMENT
PROJECT
DEVELOPER
LENDER
OFF TAKER (PLN) 31
MAJOR RISK COMPONENTS INVESTOR
OFF TAKER
GOVERNMENT
LENDER
‐ Reservoir Capacity
‐ Pricing Energy
‐ Regulation
‐ Pricing Energy
‐ Drilling Success Ratio
‐ AF Power Plant
‐ Pricing Energy
‐ Capital Cost
‐ Well Capacity
‐ CF Power Plant
‐ Investment Security
‐ Energy Production
‐ Well Decline
‐ System Capacity
‐ Force majeure
‐ off taker Capability
‐ Steam Quality
‐ Financing
‐ COD
‐ Gov. Guarantee
‐ AF Power Plant
‐ Quality Supply
‐ Environmental
‐ CF Power Plant
‐ Force Majeure
‐ Equipment Quality
‐ Capital Capital Cost Cost
‐ Fluctuation Fluctuation USD US Exchange Rate
‐ Force Force Majeure Majeure
‐ Financing
‐ COD
‐ COD
‐ Pricing Energy ‐ Force Majeure ‐ COD 32
16
11/22/2009
KESIMPULAN • Potensi Geothermal di Indonesia sangat besar • Teknologi geothermal sudah geothermal sudah proven dan proven dan ramah lingkungan • Diperlukan lead times yang panjang serta initial cost yang tinngi dalam pengembangan geothermal • Pemanfaatan Geothermal di Indonesia memerlukan l k kerjasama k j yang eratt antara t pengembang, pemakai, Pemerintah dan Lender.
17