Jurnal Teknologi Pengelolaan Limbah (Journal of Waste Management Technology), ISSN 1410-9565 Volume 14 Nomor 1 Juli 2011 (Volume 14, Number 1, July, 2011) Pusat Teknologi Limbah Radioaktif (Radioactive Waste Technology Center)
PARAMETER-PARAMETER PENTING PADA INTERAKSI RADIOCESIUM DENGAN BENTONIT Budi Setiawan Pusat Teknologi Limbah Radioaktif – BATAN, Kawasan PUSPIPTEK, Serpong-Tangerang 15310
ABSTRAK PARAMETER-PARAMETER PENTING PADA INTERAKSI RADIOCESIUM DENGAN BENTONIT. Untuk menanggulangi adanya migrasi radionuklida dari suatu fasilitas disposal ke lingkungan maka bahan penyangga seperti bentonit diletakkan disekeliling fasilitas tersebut. Bahan penyangga yang digunakan biasanya mempunyai konduktivitas hidrolik yang rendah dan bersifat sebagai penyerap ion logam/radionuklida yang baik. Sedangkan radiocesium digunakan karena sebagai radionuklida acuan untuk limbah radioaktif aras rendah-sedang. Tujuan dari makalah ini adalah mengkaji beberapa parameter yang biasanya digunakan pada penelitian interaksi antara radionuklida/ion logam dengan sampel bentonit. Untuk maksud tersebut biasanya metode catu diadopsi dalam kegiatan ini, dan penelitian dilakukan dengan parameter percobaan yang bervariasi seperti berat massa bentonit, konsentrasi ion logam, kekuatan ion larutan, pH yang berbeda serta pengamatan terhadap isoterm sorpsi yang terjadi. Hasilnya menunjukkan bahwa meningkatnya waktu kontak, massa bentonit dan pH larutan akan menaikkan banyaknya cesium yang terserap di contoh bentonit sampai dicapai nilai yang konstan, sedangkan meningkatnya konsentrasi ion logam, kekuatan ion larutan dapat menurunkan koefisien distribusi dari cesium ke contoh bentonit. Isoterm sorpsi yang mengikuti hukum Freundlich dapat memberikan indikasi tentang heterogenitas permukaan dari bentonit. Kata kunci: cesium, bentonit, interaksi, parameter-parameter
ABSTRACT IMPORTANT PARAMETERS ON INTERACTION OF RADIOCESIUM WITH BENTONIT. To overcome the radionuclides migration from a disposal facility to environment, buffer material such as bentonite material is placed in surrounding of facility. Buffer material usually has low hydraulic conductivity and as a good absorbent of metal ions/radionuclides. Radiocesium is applied due to as reference radionuclide for low intermediate-level radwaste. Objective of the paper was to review some using parameters usually applied on the interaction of radionuclides/metal ions with bentonite samples. For that purpose batch method was adopted in the experiment, and the experiments were done under various conditions such as different of mass weight of bentonit, metal ion concentrations, ionic strength of solution, pH and also observation to sorption isotherm. The results showed that increasing in contact time, mass of bentonite and pH will increase the amount of cesium sorbed onto bentonit samples until its reached constant value, however increasing in metal ion concentrations, ionic strength could decrease distribution coefficient of cesium into bentonite sample. Sorption isotherm of cesium followed Freundlich law gave indicator of the dergree of heterogeneity of the mineral surface of bentonit. Keywords: cesium, bentonite, interaction, parameters
PENDAHULUAN Kemungkinan terjadinya radionuklida hasil belah seperti Cs-137 release ke lingkungan membuat setiap peneliti keselamatan fasilitas disposal limbah radioaktif selalu berpikir tentang opsi jenis disposal yang akan diadopsi untuk merancang disain bangunan fasilitas disposal. Untuk meningkatkan sifat isolatif dari suatu fasilitas disposal maka fasilitas tersebut dapat dikelilingi oleh bahan inorganik alami sebagai bahan penyangga. Bahan penyangga alami seperti bentonit umumnya digunakan yang diletakkan disekeliling fasilitas tersebut [1]. Bahan penyangga/bentonit yang digunakan mempunyai sifat konduktivitas hidrolik yang rendah akan berperan penting sebagai pengontrol laju air tanah, selain itu bentonit juga mempunyai kemampuan untuk menggelembung (swelling) ketika melakukan kontak 42
Budi Setiawan: Parameter-Parameter Penting pada Interaksi Radiocesium dengan Bentonit
dengan air tanah dan bersifat plastis sehingga diharapkan dapat menyumbat serta mengisi pori atau retakan disekitar fasilitas [2]. Sifat lain yang menonjol adalah mempunyai kemampuan serap ion logam/radionuklida di air tanah yang baik sehingga diharapkan akan memberikan keuntungan sebagai bahan penghambat migrasi radionuklida dari fasilitas penyimpanan akhir limbah radioaktif (PA-LRA) ke lingkungan [3]. Kemungkinan terjadinya radionuklida lepas dari fasilitas disposal limbah radioaktif ke lingkungan melalui jalur tanah, air (migrasi) maupun udara merupakan kejadian yang sangat tidak diinginkan oleh siapapun sehingga subjek mengenai kemampuan tanah dan batuan sebagai host dari diposal maupun sebagai bahan penyangga di sistem penyimpanan limbah untuk menghambat migrasi radionuklida menjadi penting untuk dipelajari. Bahan alam seperti bentonit digunakan karena murah, mudah diperoleh dan secara kuantitatis cukup berlimpah tersedia di Indonesia khususnya P. Jawa [4]. Sedangkan radiocesium digunakan karena sebagai radionuklida acuan untuk limbah radioaktif aras rendah-sedang dengan umur paro yang relatif panjang (+ 30 tahun) sehingga diperkirakan dapat memberikan masalah radioekologis pada lingkungan [5]. Selain itu sifatnya yang mirip dengan ion K sehingga diperkirakan mudah berasimilasi dengan sistem yang ada di lingkungan seperti tumbuhan dan organisme lainnya di permukaan dan akuatik [6]. ISecara umum, banyaknya radiocesium terserap di tanah, batuan atau sedimen tergantung dari besarnya kapasitas serap dari fase padatan [7]. Mineral lempung seperti bentonit diharapkan mampu menyerap radiocesium tersbut sehingga dapat menghambat mobilitasnya ke lingkungan. Hal inilah sebagai salah satu sebab dari penggunaan lempung/bentonit sebagai penghalang/ penyangga di fasilitas disposal limbah radioaktif. Metode catu umumnya diadopsi dalam penelitian tentang interaksi radiocesium dengan bahan penyangga/bentonit, dan parameter percobaan yang digunakan dengan variasi konsentrasi yang beragam seperti berat massa bentonit, konsentrasi ion logam/CsCl, kekuatan ion larutan/NaCl, pH yang berbeda serta pengamatan terhadap isotherm sorpsi yang terjadi [8-17]. Pengkajian ini perlu dilakukan untuk mengetahui secara jelas parameter-parameter penting yang biasa digunakan untuk meneliti kemampuan bentonit menyerap/menghambat kemungkinan adanya migrasi radionuklida dari suatu fasilitas disposal limbah radioaktif melalui jalur tanah atau air tanah ke lingkungan. Sehingga potensi kemungkinan pemanfaatan bentonit alam lokal Indonesia untuk digunakan sebagai bahan penyangga pada fasilitas penyimpanan limbah radioaktif dapat dipelajari lebih rinci dimasa yang akan datang karena sampai saat ini data potensi sorpsi radionuklida oleh bentonit asli Indonesia masih sangat minim. Kegiatan ini termasuk dalam kegiatan penelitian pengelolaan limbah radioaktif dimana salah satunya adalah kegiatan penelitian tentang kemungkinan pemanfaatan mineral alam lokal untuk bahan penyangga pada sistem penyimpanan limbah radioaktif yang merupakan salah satu Tugas Pokok dan Fungsi (TUPOKSI) yang penting dilaksanakan di Satuan Kerja Pusat Teknologi Limbah Radioaktif - Badan Tenaga Nuklir Nasional (PTLR-BATAN), berdasarkan Peraturan Ka.BATAN No.123/KA/VIII/2007 tentang Organisasi Tata Laksana [18]. TATA KERJA Pengkajian dilakukan dengan cara studi pustaka melalui penelusuran makalah-makalah hasil penelitian terdahulu atau laporan hasil penelitian dan kemudian dilakukan analisis data sekunder yang diperoleh dari hasil penelusuran. Data yang diperoleh kemudian dikelompokkan, dianalisis dan dievaluasi berdasarkan parameter-parameter yang diperoleh dengan memperhatikan besaran koefisien distribusi atau banyaknya serapan radiocesium oleh contoh bentonit yang terjadi. Koefisien distribusi (Kd) diperoleh dari perbandingan banyaknya ion logam/radiocesium yang terserap di fase padatan dibandingkan dengan yang tersisa di larutan [19],
Kd
banyaknya ion logam terserap di fase padat banyaknya ion logam tersisa di fase larutan
[Cs ] [Cl ]
A0 A
1 x
V W
dimana Cs adalah konsentrasi radionuklida pada fasa padat (mol/g), Cl adalah konsentrasi radionuklida pada fasa cair (mol/ml), A0 adalah aktivitas awal radionuklida ( Ci/ml), At adalah aktivitas akhir radionuklida ( Ci/ml), V adalah volume larutan (ml), W adalah berat padatan (g). Kegiatan pengkajian ini dilakukan di Pusat Teknologi Limbah Radioaktif pada tahun 2011 sebagai kegiatan pendukung dari Program Insentif Peningkatan Kemampuan Peneliti dan Perekayasa Tahun 2011.
43
Jurnal Teknologi Pengelolaan Limbah (Journal of Waste Management Technology), ISSN 1410-9565 Volume 14 Nomor 1 Juli 2011 (Volume 14, Number 1, July, 2011) Pusat Teknologi Limbah Radioaktif (Radioactive Waste Technology Center)
HASIL DAN PEMBAHASAN Ketergantungan banyaknya radiocesium dapat terserap oleh contoh bentonit dilakukan dengan -3 mengontakkan massa bentonit yang divariasikan dari 5 sampai 50 g/dm dengan larutan CsCl dengan 3 konsentrasi yang berbeda seperti ditunjukkan pada Gambar 1. Hasilnya menunjukkan bahwa nilai Kd meningkat dengan meningkatnya konsentrasi bentonit yang berfungsi sebagai penyerap sampai dicapai suatu kondisi koefisien distribusi yang konstan, sedangkan meningkatnya konsentrasi CsCl di larutan dapat memberikan nilai Kd yang lebih rendah dibandingkan dengan konsentrasi CsCl yang lebih rendah. Hal ini disebabkan dengan meningkatnya konsentrasi penyerap akan meningkatkan pula site pertukaran di bentonit untuk melakukan penyerapan ion logam/radiocesium, sedangkan meningkatnya konsentrasi ion logam di larutan akan membuat kapasitas site pertukaran pada bentonit segera jenuh dan akan menyisakan ion logam yang lebih banyak dilarutan [8-10].
Gambar 1. Nilai Kd sebagai fungsi perubahan konsentrasi bahan penyerap/ bentonit Sorpsi radionuklida kedalam suatu sampel tanah/batuan selalu membutuhkan waktu yang cukup untuk dapat mencapai kondisi yang setimbang, untuk itu biasanya dilakukan percobaan penentuan kinetika sorpsi atau waktu kontak antara suatu radionuklida dengan contoh tanah/batuan seperti yang ditunjukkan pada Gambar 2. Nilai Kd pada awal pengontakkan beranjak meningkat sampai mencapai waktu kontak tertentu nilai Kd menjadi mendatar yang menunjukkan telah tercapainya kondisi kesetimbangan antara radionuklida yang “masuk” dan “keluar” bentonit. Cepat lambatnya kondisi kesetimbangan tercapai akan tergantung dari kapasitas serap tanah/batuan serta besar-kecilnya konsentrasi radionuklida/cesium di larutan. Hasil dari waktu kontak yang diperoleh akan digunakan sebagai waktu acuan untuk pengontakkan pada parameter selanjutnya [8,11-14].
44
Budi Setiawan: Parameter-Parameter Penting pada Interaksi Radiocesium dengan Bentonit
Gambar 2. Pengaruh waktu kontak pada nilai Kd bentonit Penelitian pengaruh konsentrasi ion logam/CsCl terhadap sorpsi CsCl ke contoh bentonit biasanya dilakukan dengan cara memvariasi konsentrasi awal CsCl di larutan yang kemudian -9 -3 dikontakkan ke bentonit, dimana rentang konsentrasi awal yang diberikan antara 10 sampai 10 M CsCl. Pengontakan antara larutan yang mengandung CsCl dengan sampel bentonit dilakukan dengan waktu yang tertentu sesuai dengan hasil analisis waktu kontak yang optimum. Hasil dari pengaruh konsentrasi CsCl terhadap sorpsi CsCl oleh bentonit dapat ditunjukkan pada Gambar 3. Terlihat bahwa secara umum nilai Kd akan menurun/berkurang seiring dengan bertambahnya konsentrasi CsCl di larutan. Nilai Kd akan menurun tajam bersamaan dengan meningkatnya konsentrasi CsCl menuju nilai kejenuhan yang lebih rendah, hal ini menunjukkan bahwa factor kejenuhan dari kapasitas serap/tukar ion dari site akan berpengaruh sehingga sebagian dari CsCl yang diberikan sebagai konsentrasi awal CsCl akan tersisa di larutan dan ini dapat menurunkan nilai Kd CsCl oleh bentonit. [11,13,15,16].
45
Jurnal Teknologi Pengelolaan Limbah (Journal of Waste Management Technology), ISSN 1410-9565 Volume 14 Nomor 1 Juli 2011 (Volume 14, Number 1, July, 2011) Pusat Teknologi Limbah Radioaktif (Radioactive Waste Technology Center)
Gambar 3. Pengaruh konsentrasi cesium terhadap nilai Kd bentonit Pengaruh kekuatan ionic larutan dapat diketahui dengan cara pengontakkan antara radiocesium dengan contoh bentonit dalam kondisi larutan mempunyai konsentrasi NaCl yang bervariasi yang berperan sebagai garam latar. Nilai serap dari radiocesium oleh contoh bentonit terlihat menurun seperti yang ditunjukkan pada Gambar 4, hal ini disebabkan telah terjadinya netralisasi site pertukaran dari bentonit oleh ion-ion sodium yang ada disekitar contoh bentonit sehingga adanya ion-ion logam lain seperti ion Cs yang akan berinteraksi dengan bentonit akan berkompetisi dengan sodium yang ada disekitar contoh bentonit. Gangguan adanya ion sodium di larutan telah mampu menurunkan banyaknya ion cesium yang dapat berinteraksi dengan bentonit [12,15,17].
Gambar 4. Pengaruh kekuatan ionic larutan terhadap nilai Kd bentonit Kondisi keasaman dari larutan/air tanah ternyata dapat pula mempengaruhi banyaknya ion -4 -3 logam yang dapat terserap oleh bentonit. Hasil sorpsi CsCl dengan konsentrasi 7,5 x 10 , 1,5 x 10 -3 dan 3 x 10 M CsCl dalam larutan dengan pH larutan yang divariasi dari 6 sampai 10 ditunjukkan pada Gambar 5. Pada pH larutan yang rendah (asam) nilai sorpsi yang diperoleh kecil, sedangkan dengan semakin meningkatnya pH larutan maka nilai sorpsi dari CsCl ke bentonit juga meningkat hal ini disebabkan karena terjadinya kompetisi antara ion logam dengan ion-ion hydrogen yang berperan 46
Budi Setiawan: Parameter-Parameter Penting pada Interaksi Radiocesium dengan Bentonit
sebagai site pertukaran atau karena meningkatnya deprotonasi gugus aluminol pada bentonit telah menyebabkan site pertukaran di bentonit semakin terbuka untuk berinteraksi dengan ion-ion logam yang ada di larutan [8,9,12].
Gambar 5. Pengaruh pH larutan terhadap nilai Kd bentonit Variasi konsentrasi awal CsCl yang dikontakkan dengan bentonit telah memberikan nilai Kd yang menurun dan membentuk pola yang tidak lurus seperti pada Gambar 3, sedangkan isoterm sorpsinya akan ditunjukkan dengan mem-plotkan data antara banyaknya ion Cs yang terserap di padatan per-unit massa padatan, xCs (mol/g bentonit) terhadap banyaknya konsentrasi ion Cs di larutan (mol/ml) dalam bentuk skala logaritma. Walaupun nilai Kd berkurang bersamaan dengan meningkatnya konsentrasi awal Cs di larutan, tetapi banyaknya ion Cs yang terserap di padatan/bentonit telah meningkat sebagaimana dapat dilihat pada Gambar 6. Hasil regresi yang linier terlihat pada grafik log vs log untuk seluruh data Cs yang terserap di bentonit dan Cs yang tersisa di larutan, hal ini mengindikasikan bahwa isotherm sorpsi yang terjadi telah mengikuti isotherm Freundlich di sepanjang rentang consentrasi awal yang diberikan [11,15,17].
Gambar 10. Isoterm sorpsi dari ion Cs yang ada di larutan [Cs] dan yang ada di bentonit, xCs
47
Jurnal Teknologi Pengelolaan Limbah (Journal of Waste Management Technology), ISSN 1410-9565 Volume 14 Nomor 1 Juli 2011 (Volume 14, Number 1, July, 2011) Pusat Teknologi Limbah Radioaktif (Radioactive Waste Technology Center)
KESIMPULAN Dari kajian interaksi antara radiocesium dengan bentonit terlihat bahwa parameter-parameter penting yang perlu didapatkan datanya adalah selain perbandingan massa padatan dan cairan juga parameter tentang waktu kontak yang akan dipakai sebagai waktu kontak pada pencarian data parameter selanjutnya. Selain itu interaksi Cs dengan kondisi konsentrasi Cs yang divariasi perlu diperoleh untuk mendapatkan kecenderungan pola sorpsi dari bentonit pada waktu bahan bentonit tersebut menyerap ion logam/ CsCl dari larutan. Nilai Kd dari bentonit akan menurun dengan meningkatnya kekuatan ionic di larutan akibat terjadinya kompetisi antara garam latar dengan ion logam/CsCl. Keasaman larutan dapat meningkatkan nilai Kd karena terjadinya kompetisai antara ion logam dengan ion-ion hydrogen di site pertukaran bentonit dan adanya protonisasi pada kerangka bentonit. Slope log-log plot dari banyaknya ion logam yang terserap di bentonit dan yang tersisa di larutan yang mengikuti pola Freundlich dapat memberikan indikasi tentang derajat heterogenitas permukaan mineral dari bentonit. DAFTAR PUSTAKA [1]. Cornell, RM., Adsorption of cesium on minerals: A review. J Radioanal Nucl Chem 171, p.483-500 (1993). [2]. IAEA, Use of Local Mineral in The Treatment of Radioactive Waste, TRS No. 136, IAEA-Vienna (1972). [3]. Rousseau JP., et.al., Review of the Transport of Selected Radionuclides in the Interim Risk Assessment for the Radioactive Waste Management Complex, Idaho National Engineering and Environmental Laboratory, Idaho, Volume II, USGS Scientific Investigations Report 2005-5026, 2005 [4]. Dir. SDM, Peta Sebaran Mineral Industri dan Batuan Indonesia, skala 1: 5000.000, (1990). [5]. Suryanto, Radionuklida Acuan Pada Analisis Keselamatan Penyimpanan Limbah Radioaktif, Prosid. Pertemuan dan Presentasi Ilmiah I, PTPLR-BATAN, Serpong, p.138-142 (1997). [6]. Coughtrey, PJ., Thorne, MC., Radionuclide Distribution and Transport in Terrestrial and Aquatic Ecosistems, vol 1. Rotterdam: A. A. Balkema Publ. (1983). [7]. Livens, FR., Loveland, PJ., The Influence of Soil Properties on The Environmental Mobility of Cesium in Cumbria, Soil Use Manage 4, p.69-75 (1988). [8]. Bangash, MA., Adsorption of Fission Products and Other Radionuclides on Inorganic Exchangers, Ph.D Thesis, University of The Punjab, Lahore (1991). [9]. Khan, SA., Ion Exchange and Adsorption Behavior of Natural Clays and Hydrated Metal Oxides, Ph.D Thesis, University of The Punjab, Lahore (1992). [10]. Ishikawa NK., et.al., Radiocesium Sorption Behavior on Illite, Kaolinite and Their Mixtures, Radioprotection Vol. 44 No. 5, p.141-145 (2009) [11]. Cornell, RM., Adsorption Behavior of Cesium on MARL, Clay Minerals 27, p.363-371 (1992) [12]. Wendling LA., et.el., Cesium Sorption to Illite as Affected by Oxalate, Clays and Clay Minerals Vol. 52 Vol. 3, p.375-381 (2004) [13]. Akiba K. et.el., Distribution Coefficient of Cesium and Cation Exchange Capacity on Minerals and Rocks, J.Nucl. Sci and Technology 26 [12], p.1130-1135 (1989) [14]. Schlegel ML., et.al., Sorption of Metal Ions on Clay Minerals, J.Colloid and Interface Sci., 215, p.140-158 (1999) 137 [15]. Staunton, S., and Roubaud, M., Adsorption of Cs on Montmorillonite and Illite: Effect of Charge Compensating Cation, I, Concentration of Cs, K and Fulvic Acid, Clay and Clay Minerals Vol. 45 No. 2, p.251-260 (1997). [16]. McKnight ME., and Norgon RWE.,, A Study of The Exchange Characteristics of Montmorillonite Clay for FP Cations for Use in The Generation of Insoluble Aerrosols, AEC, Lovelace Foundation, New Mexico (1967). [17]. Apak R., et.al., Sorptive Removal of Cs-137 and Sr-90 From Water by Unconventional Sorbents: II. Usage of Coal Fly Ash, J. Nucl.Sci and Technology Vol. 33 No. 5, p.396-402 (1996). [18]. BATAN, Per.Ka. BATAN No.123/KA/VIII/2007, BATAN-Jakarta (2007). [19]. Erten, HN., et.al., Sorption of Cesium and Stontium on Montmnorillonite and Kaolinite, Radiochim. Acta 44/45, p.147 (1988).
48