2
mahoni terhadap aktivitas enzim antioksidan endogen dalam tubuh, khususnya terhadap aktivitas superoksida dismutase. TINJAUAN PUSTAKA Radikal Bebas dalam Tubuh Radikal bebas adalah sebuah atom, gugus atom, atau molekul yang memiliki satu atau lebih elektron yang tidak berpasangan pada kulit terluarnya. Radikal bebas secara kimiawi dapat dengan mudah terbentuk saat terjadi putusnya ikatan kovalen yang menghasilkan dua atom atau dua molekul baru yang mempunyai satu elektron bebas hasil pemutusan ikatan. Keberadaan elektron yang tidak berpasangan ini mendorong molekul tersebut untuk mengambil elektron dari molekul atau senyawa lain agar molekul tersebut menjadi lebih stabil, sesuai dengan kaidah oktet. Perilaku radikal bebas ini dapat memicu terjadinya pembentukan radikal bebas yang lain sehingga dapat membuat suatu reaksi berantai. Radikal bebas dapat ditemukan dalam tubuh manusia, sebagian besar tergolong ke dalam kelompok spesies oksigen reaktif (reactive oxygen species). Beberapa spesies oksigen reaktif yang terdapat di dalam tubuh adalah O2●-, H2O2, dan ●OH (Shaban et al. 2003). Spesies oksigen reaktif ini dihasilkan oleh tubuh secara normal dalam proses metabolisme aerobik pada mitokondria dan mikrosom. Di dalam tubuh, selain sebagai hasil samping dari proses metabolisme aerobik, spesies oksigen reaktif memiliki beberapa peranan, diantaranya dalam proses komunikasi antar sel (biosinyal), aktivasi sel Kupffer, dan apoptosis atau peristiwa matinya sel secara terprogram (Wu et al. 2004). Beberapa fungsi dari spesies oksigen reaktif tersebut menunjukkan bahwa molekul tersebut diperlukan didalam tubuh. Namun keberadaan molekul radikal bebas dalam tubuh yang melebihi kebutuhan normal sel dapat mengganggu integritas sel dan bereaksi dengan komponen sel. Komponen sel yang dapat bereaksi dengan radikal bebas antara lain komponen struktural yaitu berbagai molekul penyusun membran sel dan komponen sel fungsional yaitu protein dan DNA, yang akhirnya menimbulkan kerusakan sel. Reddy et al. (1998) melaporkan bahwa tingkat oksidasi lipid di dalam tubuh pekerja yang terpapar emisi karbon selama bekerja lebih tinggi dibandingkan dengan pekerja yang tidak terpapar emisi karbon. Selain itu, radikal bebas juga dapat memicu kanker,
penyakit jantung, dan penyakit pembuluh darah otak (Kumar & Kumar 2009). Tubuh telah memiliki sistem pertahanan antioksidan yang kompleks untuk melindungi sel dan sistem organ tubuh dari spesies oksigen reaktif yang berlebihan. Sistem ini saling berinteraksi dan berintegrasi dalam menetralisasi radikal bebas. Hiperkolesterolemia dan Radikal Bebas Hiperkolesterolemia adalah kondisi saat konsentrasi kolesterol di dalam darah melebihi batas normal. Kolesterol adalah lipid ampifatik yang termasuk dalam golongan sterol dan di dalam tubuh dapat ditemukan dalam bentuk bebas dan ester dengan asam lemak. Kolesterol merupakan senyawa penyusun membran dari sel hewan. Sterol ini telah terbukti memiliki peranan penting dalam berbagai fungsi sel, termasuk dalam penentuan fungsi enzim dan permeabilitas membran. Tidak ada senyawa lain dari kelompok sterol yang dapat menggantikan seluruh peran dari kolesterol pada membran sel mamalia. Umumnya sel mamalia tidak dapat hidup saat tidak terdapat kolesterol (Albert & Battaglia 2005). Organisme dapat memperoleh kolesterol melalui dua cara yaitu mensintesisnya dan melalui diet. Sintesis kolesterol berlangsung hampir pada seluruh jaringan hewan, tetapi pada hewan mamalia aktivitas biosintesis kolesterol yang tertinggi terjadi pada organ hati, kelenjar adrenal, ovarium, dan testis (Valenzuela et al. 2003). Prekursor yang digunakan oleh hati untuk mensintesis kolesterol adalah asetil KoenzimA (asetil KoA) yang merupakan hasil metabolisme karbohidrat, protein, atau lemak. Biosintesis kolesterol terbagi menjadi empat tahap. Tahapan pertama melibatkan perubahan asetil koA menjadi 3-hidroksi-3-metilglutarilKoA (HMG-KoA) yang dikatalisis oleh enzim HMG-KoA sintase, dilanjutkan sintesis HMGKoA menjadi mevalonat yang dikatalisis oleh enzim HMG-KoA reduktase (Gambar 1a). Tahapan selanjutnya adalah pembentukan unit-unit isoprenoid dari mevalonat (Gambar 1b). Tahapan ketiga adalah proses polimerisasi enam molekul isoprenoid untuk membentuk molekul skualena (Gambar 1c). Tahap paling akhir ialah proses terbentuknya inti sterol dari skualena, yang kemudian akan diubah menjadi kolesterol (Gambar 1d). Laju sintesis kolesterol oleh tubuh ditentukan oleh laju pembentukan mevalonat oleh HMG-KoA reduktase. Kerja enzim ini dapat dihambat oleh kolesterol dari hasil sintesis tubuh dan hasil degradasi LDL. Selain itu kerja HMG-
3
KoA reduktase juga dapat dihambat oleh beberapa obat penurun kolesterol golongan statin. Proses sintesis kolesterol ini dapat memenuhi sekitar 50% dari total kolesterol
yang dibutuhkan oleh tubuh dan sisanya diperoleh dari diet (Murray et al. 2005).
Mevalonat
Asetil-KoA tiolase
Asetoasetil-KoA 5-fosfomevalonat HMG-KoA sintase
5-pirofosfomevalonat
HMG-KoA
3-Fosfo-5pirofosfomevalonat
HMG-KoA reduktase
pyrofosfomevalonat Δ3-Isopentenil pirofosfat
Mevalonat
Dimetilalil pirofosfat
(a)
(b)
Skualena Dimetilalil pirofosfat
Δ3-Isopentenil pirofosfat
Geranil pirofosfat Skualena 2,3-epoksida
Farnesil pirofosfat
Lanosterol
Skualena
(c) (d) Gambar 1 Tahapan biosintesis kolesterol (Lehninger 2004)
Kolesterol
4
Diet yang kaya akan kolesterol dan lemak jenuh dapat menekan pembentukan reseptor Low Density Lipoprotein (LDL), sehingga meningkatkan jumlah kolesterol yang beredar di dalam darah, keadaan ini dapat memicu terjadinya kondisi hiperkolesterolemia. Selain itu, hiperkolesterolemia juga dapat terjadi karena beberapa faktor, seperti bobot badan, usia, kurang olahraga, stres emosional, gangguan metabolisme, dan kelainan genetik (Grundy 1991). Kondisi hiperolesterolemia, dalam eksperimen menggunakan hewan percobaan, dapat dibuat dengan melakukan induksi hiperkolesterolemia terhadap hewan percobaan secara eksogen dan endogen. Cara eksogen yaitu dengan pemberian pakan yang mengandung kolesterol dengan kadar yang tinggi. Induksi dengan cara endogen dapat dilakukan dengan melakukan injeksi PTU, injeksi ini dilakukan untuk merusak kelenjar tiroid yang akan menimbulkan kondisi hipotiroid yang dihubungkan dengan peningkatan konsentrasi LDL plasma akibat penurunan katabolisme LDL. Tubuh akan berusaha untuk mengeluarkan kelebihan kolesterol di dalam tubuh. Jalur utama pengeluaran kolesterol dari dalam tubuh adalah melalui jalur sintesis asam empedu yang berlangsung di hati. Kolesterol akan diubah menjadi asam empedu, yaitu asam kolat dan asam kenodeoksikolat. Jalur sintesis asam empedu ini diawali reaksi hidroksilasi kolesterol pada karbon 7α oleh sitokrom P450 kolesterol 7α-hidroksilase (CYP7A1) menjadi 7α-hidroksikolesterol,
suatu kelompok senyawa oksisterol (Gambar 2) (Murray et al. 2005; Zhao & Wright 2010). Kelompok senyawa oksisterol merupakan aktivator bagi Liver X Receptors (LXR), yang merupakan sensor bagi kolesterol. Saat jumlah oksisterol meningkat, maka LXR akan menjaga sel dari kelebihan kolesterol dengan cara meningkatkan ekskresi kolesterol melalui jalur sintesis asam empedu melalui peningkatan ekspresi dari CYP7A1. Meningkatnya ekspresi CYP7A1 akan meningkatkan aktivitas dari CYP7A1 (Zhao & Wright 2010). Meningkatnya aktivitas CYP7A1 akan meningkatkan konsumsi oksigen dan NADPH, yang kemudian akan meningkatkan radikal superoksida (O2-) yang dihasilkan (Kuthan et al. 1978). Radikal superoksida yang dihasilkan dalam ekskresi kolesterol akan meningkatkan jumlah radikal bebas di dalam tubuh sehingga tingkat oksidasi di dalam tubuh dapat meningkat. Meningkatnya oksidasi di dalam tubuh juga dipengaruhi oleh menurunnya aktivitas enzim antioksidan di dalam tubuh yang disebabkan oleh diet kaya kolesterol (Fki et al. 2005). Keterkaitan antara kondisi hiperkolesterolemia dengan tingkat oksidasi biomolekul dalam tubuh yang menandakan meningkatnya jumlah radikal bebas pun didukung oleh beberapa penelitian diantaranya Alviani (2007) yang menyatakan pemberian pakan kolesterol 1.25% dapat meningkatkan konsentrasi lipid peroksida tikus hingga lima kali dari konsentrasi lipid peroksida tikus normal.
7-Hidroksilase Kolesterol
7-Hidroksikolesterol 12-Hidrok silase
2 KoA-SH Propionil-Koa
2 KoA-SH Propionil-Koa
Kenodeoksikolil-KoA
Kolil-KoA
Gambar 2 Biosintesis asam empedu primer (Lehninger 2004)
5
Antioksidan Endogen dan Eksogen Antioksidan adalah suatu molekul atau senyawa yang dapat menangkap radikal bebas. Antioksidan dalam makanan dapat mencegah atau memperlambat proses makanan menjadi tengik ataupun rusak dan mengalami perubahan warna. Molekulmolekul antioksidan di dalam tubuh bertugas untuk melindungi sel-sel tubuh dan komponen tubuh lainnya dari radikal bebas, baik yang berasal dari metabolisme tubuh ataupun yang berasal dari lingkungan. Antioksidan juga diduga dapat mencegah terjadinya kanker karena kemampuannya dalam menangkal radikal bebas yang merupakan salah satu penyebab kanker (Kumar & Kumar 2009). Berdasarkan reaksinya dengan radikal bebas atau oksidan dalam sistem pertahanan tubuh, antioksidan dikelompokkan menjadi antioksidan primer, antioksidan sekunder, dan antioksidan tersier. Antioksidan primer bekerja dengan memutus rantai reaksi menjadi senyawa nonradikal atau radikal yang lebih stabil. Antioksidan jenis ini dapat menetralisasi radikal bebas dengan menyumbangkan salah satu elektronnya. Antioksidan yang termasuk dalam kelompok ini adalah tokoferol dan asam askorbat (Christyaningsih et al. 2003). Antioksidan sekunder bekerja dengan cara mencegah tahapan inisiasi dalam reaksi berantai radikal bebas. Antioksidan yang tergolong dalam kelompok ini adalah superoksida dismutase dan glutation peroksidase. Antioksidan tersier merupakan antioksidan yang bertugas untuk memperbaiki molekul-molekul yang telah mengalami kerusakan akibat radikal bebas. Antioksidan tersier juga berperan dalam membuang berbagai molekul yang telah rusak akibat teroksidasi sebelum molekul-molekul tersebut terakumulasi dalam tubuh dan mengganggu berbagai proses di dalam sel tubuh (Tandon et al. 2005). Berdasarkan sumbernya, antioksidan dalam tubuh manusia dapat dikelompokkan menjadi dua, yaitu antioksidan endogen dan antioksidan eksogen. Antioksidan endogen merupakan antioksidan yang dihasilkan oleh tubuh, berupa enzim yang dapat mengubah radikal bebas menjadi radikal bebas lain atau senyawa lainnya yang lebih tidak berbahaya bagi tubuh. Beberapa contoh enzim antioksidan endogen adalah superoksida dismutase, katalase, dan glutation peroksidase (Ming et al. 2009). Antioksidan eksogen adalah senyawa-senyawa yang memiliki daya antioksidan yang berasal dari luar tubuh,
contohnya adalah vitamin A, asam askorbat, tokoferol, dan beberapa polifenol (Ming et al. 2009). Senyawa-senyawa ini dapat diperoleh dari tanaman atau hewan yang kita konsumsi. Superoksida Dismutase Superoksida dismutase merupakan salah satu enzim antioksidan yang dihasilkan oleh tubuh. Superoksida dismutase merupakan enzim antioksidan terbanyak di dalam tubuh, yang sebagian besar dari enzim ini terletak di organ hati. Enzim ini termasuk dalam golongan metaloenzim. Berdasarkan kofaktor dan distribusinya didalam tubuh, enzim superoksida dismutase dibagi menjadi copper, zinc superoxide dismutase (Cu, Zn-SOD) yang terdapat dalam sitoplasma eukariot, manganese superoxide dismutase (Mn-SOD) yang terdapat pada mitokondria organisme aerobik, iron superoxide dismutase (Fe-SOD) yang terdapat pada prokariot dan ekstra selular superoksida dismutase (ec-SOD) yang banyak ditemukan pada cairan ekstraselular mamalia (Choi 1999). SOD tergolong enzim yang sangat stabil karena tiap subunitnya dihubungkan oleh ikatan non-kovalen dan terangkai olah rantai disulfida. Senyawa sianida dan dietilditiokarbamat dapat menghambat aktivitas dari Cu, Zn-SOD tetapi tidak Mn-SOD dan Fe-SOD. Inaktivasi dari enzim SOD inipun dapat terjadi saat adanya molekul H2O2 dan EDTA (Choi et al. 1999). Aktivitas dari superoksida dismutase dapat diukur dengan menggunakan beberapa cara, diantaranya dengan mengukur daya hambat yang ditimbulkan SOD terhadap reaksi yang bergantung pada radikal superoksida ataupun dengan menggunakan metode pulse radiolytic. Tetapi cara yang paling umum digunakan adalah dengan pengukuran daya hambat suatu reaksi yang bergantung pada radikal superoksida, diantaranya adalah metode yang berdasar reduksi sitokrom c oleh xantin oksidase (McCord 1969) dan metode yang berdasar rekasi autooksidasi dari pirogalol (Marklund & Marklund 1974). Berdasarkan penelitian yang dilakukan oleh Marklund dan Marklund (1974) metode pengukuran aktivitas SOD dengan memanfaatkan proses autooksidasi dari pirogalol memiliki sensitifitas yang sama dengan metode yang dilakukan oleh McCord (1969). Pirogalol atau benzene-1,2,3-triol atau benzenatriol merupakan senyawa reduktor kuat, senyawa ini diperoleh dari hasil pemanasan terhadap asam galat dan juga dari hasil pemanasan campuran asam paraklorofenoldisulfonat dengan kalium
6
hidroksida. Dalam larutan basa senyawa pirogalol akan bereaksi dengan oksigen yang terdapat di udara membentuk senyawa purpurogalin dan mengalami perubahan warna dari tidak berwarna menjadi berwarna kuning. Prinsip dari metode ini adalah SOD akan menghambat proses autooksidasi senyawa pirogalol menjadi senyawa purpurogalin dengan menangkap oksigen. Aktivitas SOD ditentukan dengan menghitung persentase hambatan autooksidasi pirogalol dengan membandingkan konsentrasi purpurogalin yang terbentuk pada larutan yang berisi pirogalol dan enzim SOD dengan larutan yang hanya berisi pirogalol saja. Satu unit SOD didefinisikan sebagai banyaknya enzim yang diperlukan untuk menghambat reaksi autooksidasi sebanyak 50% (Marklund & Marklund 1974). Swietenia macrophylla Tanaman Swietenia macrophylla King atau yang dikenal dengan nama tanaman mahoni berdaun lebar merupakan tanaman asli dari daerah Amerika yang memiliki habitat tumbuh tersebar di Amerika Tengah, Amerika Selatan, Asia bagian selatan dan pasifik, serta Afrika Barat. Secara taksonomi tanaman ini tergolong ke dalam famili Meliaceae. Tanaman ini juga memiliki nama lain diantaranya Swietenia candolei Pittier, Swietenia krukovii Gleason, Swietenia belizensis Lundel, Swietenia macrophylla King var. Marabaensis Ledoux et Lobato, dan Swietenia tessmanii Harms. Mahoni berdaun lebar ini dapat tumbuh hingga mencapai tinggi 40-60 meter dan lingkar batang 3-4 meter (Maiti et al. 2007). Tanaman ini memiliki kulit berwarna abu-abu dan halus ketika masih muda kemudian berubah menjadi berwarna coklat tua dengan kulit yang menggembung dan mengelupas (Gambar 3). Daun bertandan dan menyirip dengan panjang berkisar 35-50 cm, tersusun bergantian, 4-6 pasang tiap daun, lebarnya berkisar 9-18 cm. Bunganya kecil berwarna putih, panjangnya 10-20 cm serta malainya bercabang (Joker & Schmidt 2000). Pohon mahoni di daerah asalnya banyak dipergunakan dalam industri kayu (Verissimo et al. 1995). Industri kayu di Kabupaten Bogor pun telah mempergunakan mahoni sebagai bahan bakunya. Lahan seluas 1937.78 ha di Kabupaten Bogor khusus dipergunakan sebagai hutan industri mahoni dengan produksi 8252.06 m3 kayu mahoni per tahun. Dalam proses industri ini, kulit kayu mahoni
merupakan salah satu limbahnya (Supriadi 2006). Selain sebagai bahan baku pada industri kayu, mahoni pun telah banyak digunakan sebagai bahan untuk ramuan jamu-jamuan untuk menyembuhkan berbagai penyakit. Sebagai contoh, masyarakat di daerah India telah mempergunakan biji mahoni sebagai antidiare. Biji dari mahoni pun diketahui memiliki aktifitas antiinflamasi, antimutagen, dan antitumor (Maiti et al. 2007). Beberapa senyawa yang terkandung dalam biji mahoni adalah swietenin swietenolida, swietemahonin kayasin, andirobin, augustineolida, 7-deaseto7-oksogenudin, 6-deoksi swietenin proseranolida, 6-hidroksi swietenina, dan 6-Oasetil swietenolida (Maiti et al. 2007). Bagian lain dari mahoni yang telah diketahui memiliki khasiat untuk menyembuhkan berbagai penyakit adalah bagian kulit kayunya. Kulit kayu mahoni diketahui memiliki potensi sebagai antioksidan. Lavenia (2010) menyatakan ekstrak air kulit kayu mahoni dapat menurunkan konsentrasi lipid peroksida sebesar 26.86% hingga tingkat normal pada tikus. Kulit kayu mahoni memiliki kandungan triterpenoid, limonoid, flavonoid, tanin, saponin, katekin, epikatekin, dan swietemakrofilanin (Mootoo et al. 1999, Falah et al. 2008). Senyawa-senyawa tersebut diketahui mempunyai aktivitas antioksidan secara in vitro (Kumar & Kumar 2009). Secara in vivo senyawa flavonoid dan tanin pun memiliki kemampuan untuk meningkatkan aktivitas antioksidan endogen (Lewis 2008; Park et al. 2002).
Gambar 3 Mahoni berdaun lebar (Swietenia macrophylla King) Peran Hati sebagai Biotransformator Hati merupakan organ terbesar di dalam tubuh manusia dengan bobot antara 12001600 gram, sekitar 2-3 % dari bobot tubuh,
7
dengan konsumsi oksigen sekitar 20-30%. Organ ini disusun oleh sel hepatosit, yang menyusun hingga 90% dari bobot total hati. Sel hepatosit kaya akan retikulum endoplasma, sesuai dengan tingginya sintesis protein dan lipid (Koolman 2005). Organ hati merupakan pusat dari metabolisme antara (intermediary metabolism) dari tubuh. Beberapa fungsi utama dari hati adalah fungsi metabolisme, penyerapan nutrien dari saluran pencernaan ke dalam pembuluh darah, memasok metabolit dan nutrien ke bagian tubuh yang membutuhkan, detoksifikasi, dan ekskresi metabolit-metabolit yang tidak diperlukan oleh tubuh melalui kelenjar empedu. Fungsi metabolisme yang dilakukan oleh hati mencakup metabolisme karbohidrat, metabolisme lipid, metabolisme asam amino dan protein, penyimpanan, serta proses biotransformasi (Koolman 2005). Fungsi biotransformasi yang dilakukan oleh hati adalah salah satu fungsi yang berkaitan dengan radikal bebas dan antioksidan endogen di dalam tubuh. Biotransformasi ialah proses konversi suatu senyawa menjadi senyawa lain. Fungsi ini tidak hanya terbatas dalam mengubah suatu senyawa yang berbahaya menjadi tidak berbahaya tetapi juga mencakup konversi suatu senyawa menjadi senyawa lain agar dapat dipergunakan oleh tubuh atau diproses untuk diekskresikan. Fungsi biotransformasi menjadi penting karena tubuh menerima atau mendapat berbagai senyawa asing, atau xenobiotics, dari makanan atau melalui kontak dengan lingkungan, melalui kulit dan paruparu. Salah satu contoh proses biotransformasi adalah pengubahan senyawa-senyawa radikal bebas yang berbahaya di dalam tubuh menjadi air dan oksigen, proses ini dikatalisis oleh beberapa enzim antioksidan yang diproduksi oleh hati yaitu superoksida dismutase, katalase, dan glutation peroksidase (Koolman 2005). BAHAN DAN METODE Bahan dan Alat Dalam percobaan ini sampel yang digunakan berupa hati tikus yang berasal dari penelitian Mustika (2010) yang didanai oleh penelitian Program Unggulan IPB (PUI) atas nama Dr. Syamsul Falah S.Hut., M.Si. dkk pada tahun 2009. Dalam penelitian tersebut tikus yang digunakan adalah tikus putih jantan galur Sprague Dawley, tikus diperoleh dari Badan POM saat berumur 2 bulan dengan
bobot badan 100-150 g. Kulit batang mahoni (S. macrophylla King) yang digunakan berasal dari pohon mahoni berumur 15 tahun yang ditanam di Arboretrum Universitas Winaya Mukti, Sumedang. Bahan-bahan yang digunakan dalam pengukuran aktivitas superoksida dismutase adalah larutan KCl, larutan EDTA (pH 7.4), bufer fosfat 50 mM (pH 8.2), dan pirogalol 10 mM. Alat-alat yang digunakan adalah oven mikropipet, neraca analitik, pengaduk magnetik, alat-alat gelas, hot plate, peralatan ekstraksi, pipet volumetrik, vorteks, homogenizer manual, sentrifus Beckman J221, rotor sentrifus JA 10 (r = 10,4cm), spektrofotometer UV-Vis. Metode Penelitian Rancangan Percobaan Dalam penelitian Mustika (2010) dipergunakan 35 ekor tikus. Hewan coba tersebut dibagi ke dalam lima kelompok masing-masing terdiri atas tujuh ekor. Kelompok I adalah kontrol normal yang hanya diberi pakan standar (komposisi protein 18%, lemak 4-6%, dan abu 7-9%). Kelompok II hingga V adalah kelompok hiperkolesterolemia yang diberi pakan kolesterol 1.5% (pakan standar 53%, kuning telur 36%, minyak curah 6%, dan lemak kambing 5%) dan dicekok PTU 0.5 mg/KgBB. Kelompok III adalah kelompok hiperkolesterolemia yang diberi tambahan cekok lovastatin 0.2875 mg/KgBB (kelompok lovastatin). Kelompok IV adalah kelompok hiperkolesterolemia yang diberi tambahan cekok ekstrak kulit batang mahoni dosis 1 sebesar 4.2 mg/KgBB (kelompok ekstrak 1), sedangkan kelompok V diberi ekstrak dosis 2 sebesar 21 mg/KgBB (kelompok ekstrak 2). Ekstrak kulit batang mahoni ini diberikan dari awal hingga akhir perlakuan. Tikus yang dipergunakan diadaptasikan selama sepuluh minggu untuk diseragamkan cara hidup dan makanannya. Makanan hewan percobaan diberikan sebanyak 25 g/ekor/hari dan air minum diberikan secara ad libitum. Pemberian pakan dan pencekokan ekstrak dilakukan selama percobaan (dari minggu ke0 sampai minggu ke-8). Selama percobaan darah diambil sebanyak 5 kali. Tiga hari setelah pengambilan darah terakhir dilakukan nekropsi. Nekropsi dilakukan dengan terlebih dahulu membius tikus menggunakan eter hingga tikus mati. Tikus kemudian dibedah dan diambil organ hatinya. Hati tikus dibilas menggunakan larutan NaCl 0.9%, ditimbang, dan disimpan di dalam freezer (20oC).