Lendutan dan Pola Retak Pelat Jembatan Bentang 5 Meter Ditinjau dari Perbandingan Hasil Penelitian dan Pendekatan Numerik 47
LENDUTAN DAN POLA RETAK PELAT JEMBATAN BENTANG 5 METER DITINJAU DARI PERBANDINGAN HASIL PENELITIAN DAN PENDEKATAN NUMERIK Oleh: Hafiz Abdillah 4 Prodi Teknik Sipil Fakultas Teknik Universitas Islam Syekh Yusuf Tangerang
Abstrak Perlu adanya penelitian mengenai perbandingan metode analisa mengunakan pendekatan numerik pada perangkat lunak dengan hasil penelitian laboratorium. Tujuan dilakukannya percobaan ini adalah untuk mengetahui tingkat keakuratan hasil analisa pendekatan numerik terhadap hasil penelitian laboratorium. Dua benda uji pelat beton dibuat dengan tujuan mengetahui perilaku kekuatan struktur sehingga dapat dibandingkan dengan pendekatan numerik. Benda uji yang memiliki dimensi 1000mm x 1800mm x 100mm ditempatkan pada pada loading frame dengan tumpuan sederhana (sendi-rol) di kedua ujungnyaPembebanan dilakukan dengan menggunakan beban luasan ban kendaraan yang telah dimodelkan dan diletakan di tengah pelat. Pendekatan numerik menggunakan program analisanon-linear ATENA 3D sebagai pembanding terhadap hasil percobaan. Dari hasil analisis numerik didapatkan nilai lendutan maksimum sebesar 43.8mm, nilai tersebut mendekati hasil penelitian. Pola retak yang dihasilkan pada pendekatan numerik mendekati hasil penelitian. Tegangan tulangan utama yang terjadi pada pendekatan numrik memiliki pola yang sama dengan hasil penelitian.
Keywords: pelat beton jembatan, kapasitas lentur, beban statis, ATENA 3D
4
Hafiz Abdillah, ST, M.Eng adalah dosen tetap yayasan prodi Teknik Sipil Fakultas Teknik-UNIS Tangerang. Email :
[email protected]
48 PELITA Edisi XV Volume I Januari – Juni 2015
I.
PENDAHULUAN Di dalam bidang perencanaan konstruksi struktur sering kali kita menggunakan bantuan perangkat lunak (software) di dalam menganalisa suatu struktur tertentu. Dengan bantuan perangkat lunak tersebut dapat mempermudah pekerjaan dan mempersingkat waktu yang dibutuhkan. Ada beberapa hal yang perlu diperhatikan di dalam menggunakan bantuan perangkat lunak di dalam perencanaan atau pemodelan suatu struktur salah satunya adalah pemeriksaan mengenai tingkat kebenaran dan keakuratan formula yang digunakan di dalam perangkat lunak tersebut, dan hal ini dapat dibuktikan dengan cara membandingkan hasil pendekatan numerik pada perangkat lunak dengan hasil penelitian laboratorium. Bila proses pemeriksaan telah dilakukan dan didapatkan hasil dari pendekatan numerik pada perangkat lunak mendekati hasil penelitian laboratorium, maka dapat dikatakan bahwa perangkat lunak tersebut dapat digunakan sebagai alat bantu untuk perencanaan atau pemodelan suatu struktur dan juga tidak diperlukannya lagi pemodelan struktur dengan skala sesungguhnya bila sudah terwakili dengan pemodelan struktur di perangkat lunak. Melihat alasan di atas, maka dalam studi ini akan dicoba membandingkan hasil penelitian laboratorium dengan hasil pendekatan numerik non-linear Finite Element Analysis menggunakan program ATENA3D dan GID interface terhadap benda uji struktur pelat jembatan bentang 5 meter. Penelitian ini dititik-beratkan pada besarnya lendutan maksimum dan pola retak pelat.
Lendutan dan Pola Retak Pelat Jembatan Bentang 5 Meter Ditinjau dari Perbandingan Hasil Penelitian dan Pendekatan Numerik 49
II.
LANDASAN TEORI
2.1. Kekakuan Pelat Untuk menghitung nilai lendutan yang terjadi di tengah bentang pelat yang diberi beban titik dan tumpuan sendi – rol serta pelat tersebut belum terjadi sendi plastis adalah sebagai berikut:
δ=
P.L3 48.EI
(1)
Pembatasan terhadap lendutan yang terjadi pada struktur perlu diperhatikan agar struktur tersebut stabil, sehingga stuktur diharapkan mempunyai kekakuan yang cukup. Kekakuan menurut Timoshenko didefinisikan sebagai gaya yang dibutuhkan untuk menghasilkan suatu lendutan sebesar satu satuan, seperti pada persamaan berikut ini.
Pcr δ cr Dengan: k k=
(2) = Kekakuan lentur (N/mm)
Pcr
= Beban pelat pada saat retak pertama (N)
δcr
= Lendutan pada saat retak pertama (mm)
P
P1 P2
∆
δ
∆1 ∆2
δ1 δ2
a. Metode secant b. Metode tangent Gambar 1. Penentuan nilai kekakuan
Rumus pada Persamaan (2) juga dapat didefinisikan sebagai rumus kekakuan metode secant (Gambar 1 (a)) dengan metode ini dapat dihitung nilai kekakuan struktur baik pada kondisi retak awal maupun pada saat pembebanan leleh dan maksimum.
50 PELITA Edisi XV Volume I Januari – Juni 2015
Selain dengan metode secant, nilai kekakuan struktur juga dapat dihitung dengan metode tangent (Gambar 1 (b)) yang kegunaannya untuk mendeteksi perubahan kekakuan secara lebih teliti pada setiap penambahan beban. Penurunan kekakuan akibat adanya leleh dapat dengan jelas diamati dengan metode ini, persamaan untuk metode ini adalah sebagai berikut ini. k=
P1 − P2 δ1 − δ 2
(3)
2.2. Daktilitas Penampang Pelat direncanakan sebagai struktur underreinforced yaitu dengan penulangan yang kurang (Gambar 2), sehingga diharapkan struktur pelat beton bersifat daktail dan akan terjadi lendutan plastis yang cukup besar sebelum runtuh, sehingga akan lebih memberi nilai aman karena tidak akan terjadi keruntuhan secara tiba-tiba. ec = 0,003
g.n. penulangan kurang garis netral penulangan seimbang g.n penulangan lebih
es < ey ey es > ey
Gambar 2. Variasi letak garis netral pada keruntuhan lentur
Daktilitas menurut Park dan Paulay (1975), pada perancangan tahan gempa dan kuat batas didefinisikan sebagai kemampuan struktur untuk mengalami lendutan yang cukup besar pada saat beban maksimal tercapai sebelum mengalami keruntuhan. Besarnya daktilitas didefinisikan sebagai displacement ductility factor, µ, yaitu: µ=
δu δy
(4)
Lendutan dan Pola Retak Pelat Jembatan Bentang 5 Meter Ditinjau dari Perbandingan Hasil Penelitian dan Pendekatan Numerik 51
Dengan : μ = displacement ductility factor δu = besar lendutan setelah terjadi penurunan beban sebesar 15% setelah beban maksimum δy = besar lendutan pada saat terjadi leleh Hubungan antara beban dan lendutan pada beton bertulang sampai melampaui beban maksimum untuk balok daktail dan getas tampak pada Gambar 3. Beban Pu Beban turun 15% 0,85Pu
Displacement ductility factor,μ
δy
δu
=
δu δy
Lendutan
Gambar 3. Grafik beban-lendutan struktur beton bertulang (ASTM, dalam Foster dan Attard, 1997)
Analisis plastis dapat diterapkan pada struktur yang bersifat daktail, dengan gaya-gaya yang terjadi telah melebihi batas elastis dan defleksidefleksi yang terjadi dapat cukup besar. Syarat agar suatu struktur dapat dikatakan masih dalam kondisi daktail (underreinforced) adalah sebagai berikut:
ρ1 < 0,75.ρ b
(5)
dengan:
A s1 b×d A s1 = A s − A s 2 ρ1 =
0,85 × f ' c 0,003 ρb = × fy fy 0,003 + Es
(6) (7)
(8)
52 PELITA Edisi XV Volume I Januari – Juni 2015
III. METODE PENELITIAN 3.1. Benda Uji Pelat Benda uji pelat beton, dengan skala model 1:3, dibuat sebanyak 2 buah, spesifikasi dan detail petulangan dapat dilihat pada Tabel 1, dan penulangan benda uji secara keseluruhan dapat dilihat pada Gambar 4. D10-150
Ø6-100
D10-285 100
A
D10-75
A 1800 D10-150
D10-285
D10-75
Ø6-100 1000
Penampang memanjang dan melintang pelat kontrol Gambar 4. Detail penulangan benda uji Tabel 1. Spesifikasi benda uji Dimensi pelat (mm) No
jumlah tulangan (buah)
Jenis pelat Panjang
lebar
Tinggi
Utama
Susut
D10
D10
1
PK 1
1800
1000
100
20
14
2
PK 2
1800
1000
100
20
14
Keterangan : PK 1 dan 2 : Pelat kontrol
3.2. Material Benda Uji Benda uji yang dibuat menggunakan jenis beton ready mix yang diproduksi oleh PT Jaya Mix. Dari hasil pengujian 3 slilinder beton didapatkan mutu beton rata-rata benda uji sebesar 46,83MPa. Baja tulangan yang digunakan pada penelitian ini ada 2 macam yaitu tulangan D10 untuk tulangan pokok dan susut pada pelat dan D13 sebagai tulangan perkuatan. Tegangan leleh (fy) rerata baja tulangan D10 adalah 302,70MPa. 3.3. Pemodelan Numerik Pemodelan numerik menggunakan non-linear analysis software ATENA3D 2.1.9 dan program pre-prosesor untuk memberikan input program
Lendutan dan Pola Retak Pelat Jembatan Bentang 5 Meter Ditinjau dari Perbandingan Hasil Penelitian dan Pendekatan Numerik 53 ARENA3D menggunakan GID7.4.4b. Pemodelan numerik (Gambar 5) dilakukan untuk memberikan perbandingan terhadap hasil penelitian.
Keterangan: : pemodelan tumpuan sendi : pemodelan tumpuan rol : pemodelan beban titik : titik tinjauan lendutan arah vertikal Gambar 5. Pemodelan numerik
3.4. Pengujian Benda Uji Pengujian benda uji pelat dilakukan 1 minggu setelah pemasangan perkuatan baja tulangan. Benda uji pelat ditempatkan pada loading frame dengan tumpuan sederhana (sendi-rol) di kedua ujungnya. Pembebanan dilakukan dengan menggunakan beban luasan ban kendaraan yang telah dimodelkan dan diletakan di tengah pelat. Pembebanan dilakukan secara bertahap dengan interval kenaikan sebesar 2kN. Lendutan vertikal diukur dengan menggunakan LVDT yang dipasang 2 buah yaitu di tengah dan seperempat bentang. Penempatan alat dan pembebanan pada benda uji dapat dilihat pada Gambar 6.
1
2 3 4 6
5 8
7 9
54 PELITA Edisi XV Volume I Januari – Juni 2015 Gambar 6. Set up alat dan benda uji Keterangan : 1. Loading frame 2. Load cell 3. Hydraulic jack 4. Pembebanan roda 5. Benda uji pelat jembatan
6. Tumpuan sendi 7. Tumpuan rol 8. LVDT 9. Data logger
IV. HASIL PENELITIAN DAN PEMBAHASAN 4.1. Pengujian Benda Uji Pelat 1. Pengujian Lentur Pelat Retak awalpada pelat kontrol terjadi di daerah lentur tengah bentang pada beban 20kN untuk PK1 dan 16kN untuk PK2. Lendutan maksimum yang dialami PK1 dan PK2 adalah sebesar 29,54mm dan 27,55mm. Hasil pengujian lentur serta hubungan grafik beban-lendutan untuk seluruh benda uji dapat dilihat pada Tabel 2 dan Gambar 7. Tabel 2 Hasil pengujian lentur pelat Lendutan (δ) pada saat No.
Benda Uji
Retak I
Leleh
Maksimum
(mm)
(mm)
(mm)
1
PK1
1,18
8,80
29,54
2
PK2
0,76
10,87
27,55
120 100
beban (kN)
80 60 40
PK1
20
Retak awal PK1
0
PK2 Retak awal PK2 0
5
10
15
20
25
30
35
40
lendutan (mm)
Gambar 7. Hubungan beban dan lendutan untuk seluruh benda uji
2. Daktilitas
Lendutan dan Pola Retak Pelat Jembatan Bentang 5 Meter Ditinjau dari Perbandingan Hasil Penelitian dan Pendekatan Numerik 55 Perhitungan nilai daktilitas penelitian ini mengacu pada definisi faktor daktilitas yang terdapat pada teori Park dan Paulay (1975), dengan daktilitas merupakan perbandingan antara lendutan pada saat beban ultimit dan beban pada saat leleh. Menurut Park dan Paulay lendutan ultimit adalah lendutan pada saat beban mengalami penurunan sebesar 0,85 dari beban maksimum. Presentase penurunan nilai daktilitas benda uji dapat dilihat pada Tabel 6. Tabel 6 Nilai daktilitas pelat δy (mm)
δu (mm)
Daktilitas U=δu/δy
PK1
10.00
35.010
3.501
PK2
11.00
36.485
3.317
Benda uji
Daktilitas rata-rata 3.409
3. Pola Retak Pengamatan lebar retak dilakukan menggunakan penggaris pembaca retak, yang nilainya mendekati ketelitian microcrack. Dari keempat benda uji, retak awal terjadi di bagian tarik beton di daerah lapangan. Pada pelat kontrol, retak awal terjadi pada saat beban 16kN untuk PK1 dan 20kN pada PK2 dengan lebar retak sebesar 0,05mm. Lebar retak yang terjadi pada kondisi maksimum mencapai 2mm. Benda uji mengalami retak lentur, hal tersebut dapat dilihat pada Gambar 8. Hubungan antara beban dan lebar retak pelat dapat dilihat pada Gambar 9. 76 62
94
52
50
18
22
53 36 26
fcr=16
56 44
56 26
74
28
69
47
39
26
fcr=20
74
25 74
65
fcr=16
36 40
80
57 77
52
43 48 88
49
43 43 66 76 70 45 82 97 93 88 95 88
32
48 20
16
48
48
88
78
(a) PK1
(b) PK2 Gambar 8. Pola retak benda uji
56 PELITA Edisi XV Volume I Januari – Juni 2015 120
Beban (kN)
90 60 30
PK1 PK2
0
0
0,5
1
1,5
2
2,5
Lebar retak (mm)
Gambar 9. Hubungan beban dengan lebar retak secara keseluruhan
4.2. Hasil Pengujian Numerik 1. Hubungan beban - lendutan Hubungan beban dan lendutan yang dihasilkan dari analisis numerik dibandingkan dengan hasil penelitian dan perhitungan teoritis yang sesuai dengan peraturan yang ada. Beban yang dapat dianalisis dengan mengunakan pendekatan numerik hanya sampai kondisi beban maksimum saja. Hasil pendekatan numerik terhadap benda uji PK menunjukkan bahwa hubungan beban dan lendutan yang dihasilkan memiliki perilaku mekanik yang hampir sama dengan hasil penelitian, hal tersebut dapat dilihat pada Gambar 10. Lendutan maksimum yang dihasilkan pada metode numerik mencapai 43,8mm, hasil ini tidak berbeda jauh dengan hasil penelitian yang telah dilakukan, yaitu sebesar 29.5mm untuk PK1 dan 27.6mm untuk PK2. 240
Penelitian PK1 Penelitian PK2 Numerik PK SNI Jembatan
beban (kN)
200 160 120 80 40 0
0
10
20
30
40
lendutan (mm)
Gambar 10. Hubungan beban dan lendutan hasil analisis numerik
Lendutan dan Pola Retak Pelat Jembatan Bentang 5 Meter Ditinjau dari Perbandingan Hasil Penelitian dan Pendekatan Numerik 57 2. Lebar dan pola retak Pengamatan terhadap perubahan lebar retak dilakukan dengan mencatat hasil lebar retak terbesar yang terjadi di setiap iterasi yang dilakukan. Data lebar retak pada setiap iterasi diambil dari program ATENA3D-post yang dapat memvisualisasikan seluruh data output dari ATENA3D. Lebar retak awal yang kasat mata dapat diprediksi menggunakan program ini (Sudibyo, 2004). Pada Gambar 11 terlihat pola retak benda uji PK yang terjadi hampir sama dengan hasil penelitian (Gambar 8 (a) dan 8 (b)). Lebar retak yang dihasilkan pada pendekatan numerik mendekati hasil penelitian, hal tersebut dapat dilihat pada Gambar 12. Lebar retak awal yang kasat mata terjadi sebesar 0,001046mm pada pembebanan 18kN. Retak awal yang terjadi pada hasil penelitian sebesar 0,05mm pada pembebanan 16kN dan 20kN, dengan lebar retak yang sama, beban pada pendekatan numerik sebesar 29kN. .
Gambar 11. Pola retak model numerik 200
Beban (kN)
150 100 50
Penelitian PK1 Penelitian PK2 Numerik PK
0
0
1
2
3
Lebar retak (mm)
Gambar 12. Hubungan beban dan lebar retak hasil numerik
58 PELITA Edisi XV Volume I Januari – Juni 2015
V.
KESIMPULAN DAN SARAN
5.1. Kesimpulan Dari hasil pengujian dan analisis yang dilakukan, maka dapat disimpulkan bahwa: 1. Hasil analisis numerik untuk nilai lendutan maksimum yang dihasilkan padabenda uji sebesar 43.8mm. Nilai lendutan maksimum untuk PK yang dihasilkan melalui analisis pendekatan numerik mendekati hasil penelitian. 2. Beban yang bekerja pada lebar retak awal yang terjadi pada hasil analisis pendekatan numerik terhadap PK mendekati hasil penelitian. 3. Pola lentur pelat PK mengalami pola kerutuhan lentur. 5.2. Saran 1. Perlu dilakukan penelitian lebih lanjut mengenai lentur pelat jembatan dengan pembebanan dinamis, sehingga diketahui perilaku kekuatan dan kerekatan baja tulangan dengan pelat beton terhadap beban dinamis. 2. Pada pelaksanaan penelitian perlu diperhatikan kondisi set up benda uji terutama ruang untuk mencermati retak yang terjadi di bagian bawah pelat. 3. Di dalam pemodelan secara numerik, perlu dilakukan pengujian bahan yang lebih mendetail terlebih dahulu terhadap kelekatan antara beton dan tulangan perkuatan, sehingga data output yang dihasilkan dengan menggunakan metode numerik sesuai atau mendekati dengan hasil kondisi sebenarnya. 4. Di dalam melakukan analisis dengan pendekatan numerik menggunakan ATENA3D disarankan memperbanyak jumlah mesh material, terutama pada material beton, sehingga nilai konfergensi model numerik dapat mendekati keadaan sebenarnya.
Lendutan dan Pola Retak Pelat Jembatan Bentang 5 Meter Ditinjau dari Perbandingan Hasil Penelitian dan Pendekatan Numerik 59
DAFTAR PUSTAKA Iswari, A.Y.D., 2004, Perkuatan Lentur Balok Tampang Persegi dengan Penambahan Tulangan Menggunakan Perekat Epoxy, Tesis, Program Studi Teknik Struktur, Pascasarjana, Universitas Gadjah Mada, Yogyakarta. Kim, Y.J., 2006, Chapter 5: Flexure of Two-way Slabs Strengthened with Prestressed CFRP Sheets, Tesis, Canada. Park, R. dan Paulay, T., 1975, Reinforced Concrete Structures, John Wiley & Sons, New York. Piyong, Y., Silva, P. F., dan Nanni, A., 2004, Flexural Strengthening of Concrete Slabs by a Three-stage Prestressing FRP System Enhanced with the Presence of GFRPAnchor Spikes, the National Science Foundation Industry/ University Research Center on Repair of Buildings and Bridges with Composites (RB2C), Universitas Missouri-Rolla, Rolla. Sudibyo, T., 2006, Pengaruh Pendetailan Tulangan Longitudinal pada Perilaku Redistribusi Momen Balok Beton dengan Perletakan Jepit, Tesis, Program Studi Teknik Struktur, Pascasarjana, Universitas Gadjah Mada, Yogyakarta.