LABORATÓRIUMI GYAKORLAT Alfa-, béta-, gamma-sugárzások mérése (Bódizs Dénes BME Nukleáris Technikai Intézet – 2006) 1. BEVEZETÉS Környezetünkben számos radioaktív izotóp fordul elő. Ezek egy része természetes, más része mesterséges eredetű. Valamely radioaktív izotóp bomlása során, az atommagból származó sugárzásnak, három fő típusba lehet: - α-sugárzás: kétszeres pozitív töltéssel rendelkező He ionok (He atommagok). Bár energiájuk viszonylag nagy ( 3-8 MeV), hatótávolságuk – nagy tömegük és töltésük miatt – kicsi, akár egy papír lap, vagy néhány cm levegő réteg is elnyeli őket ; - β-sugárzás: elektronok, melyek szintén az atommagból lépnek ki. Hatótávolságuk nagyobb, pl. levegőben energiájuktól függően 1 – 2 m és a - γ-sugárzás: mely nagy energiájú elektromágneses sugárzás (fotonok). Intenzitásuk gyengítésére nagy rendszámú és sűrűségű anyagokat (Pb, beton) használnak. A radioaktív sugárzások detektálása az emittált sugárzás és az anyag (detektor) közötti kölcsönhatáson alapszik. A kölcsönhatás formája a sugárzás fajtájától, energiájától ill. az anyag tulajdonságaitól (rendszám, sűrűség) függ. A detektorok nagy része az ionizációt és gerjesztést „hasznosítja” és elektromos impulzusokat szolgáltat (elektromos detektorok). 2. ELMÉLETI ÖSSZEFOGLALÁS A jelen mérés célja, alapvető ismereteket szerezni a radioaktív sugárzások méréstechnikája területén és megismerkedni a széles körben alkalmazott egyik gáztöltésű – Geiger-Müller (GM) cső – sugárzásmérő detektorral. A GM cső gyakran alkalmazott detektor, pl. a sugárvédelemben, az ipar különböző területein, a környezetvédelemben, stb. Működési elvéből következően a gázerősítést hasznosítja, aminek következtében érzékeny, egyszerű felépítésű elektronikus jelfeldolgozó egységeket igényel, ezért viszonylag olcsó berendezés készíthető vele. Egy ilyen mérőműszerrel a különböző radioaktív sugárzások fajtája (α, β, γ ), intenzitása, általa okozott dózis illetve valamely radioizotóp aktivitása, felezési ideje, stb. határozható meg. A GM cső a gáztöltésű (vagy működési elvük alapján: gázionizációs) detektorok „családjába” tartozik. Már a 20. század első felétől alkalmazzák, mint az első ún. elektromos detektorok egyikét. A GM cső felépítését szemlélteti az 1. ábra. -1-
1.ábra. A GM cső felépítése A GM csöveknek igen sok típusa használatos. Leggyakoribb formájuk a hengeres kialakítás, amit az 1.ábra is szemléltet. Az egyik elektród – a katód - egy fém henger, ami általában földelt (0V). Ennek tengelyében húzódik egy vékony drót szál az – anód - ami pozitív feszültségű. A henger hermetikusan lezárt és belsejében valamilyen, rendszerint 1 bar alatti nyomású, gázkeverék (pl. Ar + halogén) van. A katódhenger egyik végén – a kis hatótávolságú β-, α-részecskék miatt - egy vékony (kb. 0,1 mg/cm2) belépőablakot alakítanak ki, pl. csillámból, vagy műanyag fóliából. A katód henger és az anód szál közé több száz V feszültséget (U0) kapcsolnak. Ennek hatására az anódtól r távolságban a csőben kialakuló térerősség: E=
U0 r ln(rk / ra )
(1)
ahol rk = a katódhenger és ra = az anódszál sugara. A detektor működése röviden a következő: a cső gázterébe belépő ionizáló részecske a gázban ionpárokat (pozitív ionok + elektronok) és gerjesztett atomokat (molekulákat) hoz létre. A térerősség hatására az elektronok az anódszál felé, a pozitív ionok a katód henger felé, gyorsulva mozognak. (Az elektronok kb. ezerszer gyorsabban, mint a pozitív ionok.) Mozgásuk során (elsősorban az elektronok) újabb ionizációt és gerjesztést okoznak. A gerjesztett atomok legerjesztődés közben fotonokat keltenek, mely fotonok a katódból fotoeffektussal újabb elektronokat váltanak ki. Ezek ismét gyorsulva haladnak az anód felé, stb. Így elektromos lavina alakul ki. Ezt a folyamatot nevezik gázerősítésnek, vagy gázsokszorozásnak. A detektor kimenetén egy elektromos impulzus jelenik meg. Erre az jellemző, hogy nagysága független a detektorba belépő részecske fajtájától és energiájától. Ebből következik, hogy GM csővel nem lehet részecske energiát mérni, csupán intenzitást, azaz a detektorba időegység alatt belépő részecskék számát. Valamilyen módon gondoskodni kell a kisülés kioltásáról, hogy a detektor újabb részecske beérkezését jelezni tuja. Ezt végzik el a töltőgázhoz néhány százalékban kevert halogén molekulák. Ezek ugyanis a keletkező fotonokat disszociáció közben elnyelik, majd újra regenerálódnak, így a kisülés megszűnik, a detektor újabb részecskét képes észlelni. A fenti folyamatokhoz időre van szükség. Azt az időintervallumot, amely egy ionizáló részecske detektorba érkezésétől addig telik el, amíg a detektor újabb részecskét képes jelezni, a detektor holtidejének (vagy feloldási idejének) nevezik. GM csövek esetében ez ms nagyságrendű. Ezért nagy intenzitások (kb. 1000 cps = imp/s számlálási sebességek felett) a GM csővel nem mérhetők, illetve holtidő korrekciót kell alkalmazni. -2-
Meg kell még jegyezni, hogy a GM csövek hatásfoka γ-sugárzásra kb. huszad része a töltöttrészecskékre vonatkozó hatásfokának. Ennek magyarázata, hogy a γ-sugarak a (fém) katódhengerben abszorbeálódva váltanak ki elektronokat és mivel a katód általában vékony, kicsi a kölcsönhatás valószínűsége (kevés elektron keletkezik). Egy GM csővel működő mérőműszer a detektorhoz kapcsolt jelformálóból, vezérlő órával (mely a mérési idő beállítására szolgál) ellátott számlálóból, a detektor üzemi feszültségét biztosító tápegységből és adatmegjelenítőből (display) áll. A jelformáló tartalmazhat egy erősítőt, valamint a zajok levágására szolgáló áramkört (pl. integrál diszkriminátort). Az erősítő gyakran el is hagyható, mert a GM cső általában V nagyságrendű impulzusokat szolgáltat. 3. MÉRÉSI FELADATOK 3.1. GM cső karakterisztikájának felvétele A GM csöves műszerrel történő méréshez először a detektor munkaponti (üzemi) feszültségét kell meghatározni. Ez a GM cső karakterisztikájának felvételével történik. Ebből kiszámíthatók az adott cső fontos, annak jóságát jellemző paraméterei a plató és a meredekség is. A karakterisztika a GM csőre kapcsolt feszültség és a számlálási sebesség közötti függvény (2.ábra).
[cps]
UK = Geiger küszöb UM = üzemi feszültség M = munkapont
totális kisülés
n2 n1
M
UK
U1
UM
U2
U
2.ábra. GM cső karakterisztika A GM cső karakterisztikájának kimérése: helyezzünk egy radioaktív sugárforrást (pl.90Sr-90Y) valamilyen rögzített pozícióba a cső belépő ablaka elé. Állítsunk be 1 perc mérési időt a számláló óráján és kb. 200 V detektor feszültséget (HV). Kapcsoljuk be a mérőberendezést, töröljük a számláló memóriáját, majd indítsunk el egy mérést. Növeljük a detektor feszültséget, amíg a számláló elkezd számolni. Ez a feszültség érték az indulási feszültség (Uk) Nullázzuk a számlálót és végezzünk mérési sorozatot úgy, hogy a detektor feszültséget 25 - 50 V-os lépésekkel emeljük. Jegyezzük fel az egyes feszültség értékekhez tartozó impulzusszámot. Az impulzussszám hirtelen növekedése jelzi, hogy elértük az U2 értékét, azaz a plató (U1 – U2 közötti tartomány) felső végét. Azonnal csökkentsük vissza a feszültséget U2 érték alá, mert a cső a folyamatos gázkisülés miatt tönkremegy. -3-
A kapott impulzusszámokat ábrázoljuk a feszültség függvényében (hasonlóan, mint az 1.ábrán látható). Állítsuk be a munkapontot a plató közepére és a továbbiakban mindig ezt a detektor feszültséget alkalmazzuk, mert a feszültség esetleges ingadozása itt okozza a legkisebb impulzusszám változást. (FIGYELEM: a mérés ideje alatt a sugárforrás helyzetén nem szabad változtatni!) Számítsuk ki a plató meredekségét a következő egyszerűsített összefüggés alapján: meredekség = m =
n 2 − n1 * 100 (%) U 2 − U1
(2).
Tájékoztatásul, egy GM cső jónak mondható, ha a meredekség értéke nem több mint 5 %. 3.2. Sugárforrások sugárzási fajtájának meghatározása A gyakorlatvezetőtől kapott három sugárforrásról (A, B, C) állapítsuk meg, hogy melyik milyen fajta sugárzást (α, β, γ) emittál. Miután beállítottuk a detektor karakterisztikájának méréséből megállapított üzemi (munkaponti) feszültséget, helyezzük az egyes sugárforrásokat külön külön a GM cső belépő ablaka elé úgy, hogy az ablak és a forrás közé a rendelkezésre álló különböző vastagságú (polietilén és ólom) abszorbenseket lehessen helyezni. Állítsunk be a számláló óráján 1 perc mérési időt és végezzünk méréseket az egyes sugárforrások és abszorbensek alkalmazásával. A mért impulzusszámok alapján állapítsuk meg, hogy az egyes sugárforrások milyen fajta sugárzásokat bocsátanak ki. 3.3.
137
Cs sugárforrás aktivitásának meghatározása
A GM csővel lehetséges valamely izotóp aktivitását megmérni. Ez leggyakrabban az ún. relatív módszerrel történik. Ehhez először a mérőberendezés hatásfokát kell meghatározni. Mivel a hatásfok függ a sugárzás fajtájától, ezen belül energiájától és a mérési geometriától (forrás-detektor távolság, forrás alakja), ezért alapvető fontosságú, a hatásfok kimérése hasonló típusú etalon sugárforrással és ugyanolyan mérési elrendezésben, mint a meghatározandó aktivitás mérése. A mérési feladat: egy 137Cs-es sugárforrás aktivitásának meghatározása. Először meg kell mérni a háttérsugárzást nagyságát (h cps). Ezt követően helyezzünk a GM cső belépő ablaka elé egy ismert aktivitású 137Cs etalon forrást. Állítsunk be a számláló óráján olyan mérési időt, hogy a begyűjtött impulzusszám (I) statisztikus szórása σ = (I)1/2 2 % alatt legyen. (I – t legalább három mérés átlagából számítsuk ki.) A forrás aktivitásának ismeretében határozzuk meg az η hatásfokot a következő összefüggés szerint:
η=
i−h A0 D
(3)
ahol i = az etalonnal mért átlag számlálási sebesség (cps), h = a háttár számlálási sebesség (cps), A0 = az etalon aktivitása (Bq) adott t0 időpontban és D = a vonatkoztatási t0 időpont és a -4-
mérés időpontja között eltelt idő (∆t) okozta bomlási faktor: D = exp(-λ∆t), λ = a bomlási állandója (ln2/t1/2). A 137Cs t1/2 felezési ideje: 11020 nap.
137
Cs
Helyezzük az ismeretlen aktivitású 137Cs – es sugárforrást a GM cső elé (mérési geometria!), és mérjünk ismét ezzel is annyi ideig, hogy a számlálási sebesség (iminta) standard deviációja 2 % körüli legyen. A hatásfok felhasználásával számítsuk ki a forrás aktivitását:
A=
imin ta − h
η
(4).
4. A MÉRÉSHEZ SZÜKSÉGES ESZKÖZÖK ÉS ANYAGOK -
számláló berendezés GM detektorral; radioaktív sugárforrások; abszorbens anyagok; sugárforrás tartó, csipesz.
IRODALOM Nagy L. Gy.: Radiokémia és izotóptechnika, Tankönyvkiadó, Bp. 1983 Deme S.: Gázionizációs detektorok, Akadémia kiadó, Bp. 1985 Bódizs D.: Atommagsugárzások méréstechnikája, Typotex kiadó, Bp. 2006.
-5-