JURNAL TEODOLITA VOL. 14 NO. 1, Juni 2013
ISSN 1411-1586
DAFTAR ISI Perpaduan Arsitektur Jawa dan Sunda Pada Permukiman Bonokeling Di Banyumas, Jawa Tengah …………………………………………………......1 - 15 Wita Widyandini, Atik Suprapti, R. Siti Rukayah Aplikasi Statistical Process Control (SPC) Dalam Pengendalian Variabilitas Kuat Tekan Beton ……………………………………………….......16 - 35 Iwan Rustendi Identifikasi Wajah Menggunakan Principal Component Analysis Dengan Penambahan Fitur-fitur Geografis..……………………………….......36 - 45 Kholistianingsih Tinjauan Pelaksanaan Pekerjaan pemadatan Tanah Pada Pekerjaan Jalan Rel ………………………………………..……………………………….......46 - 54 Dwi Sri Wiyanti, Taufik Dwi Laksono Keberhasilan Deteksi Berbasis Pencocokan Template dengan Perubahan Lokasi Benda….......……………..……………………………….......55 - 63 Kholistianingsih Pengaruh Pola Bayangan Terhadap Suhu Permukaan Ruang Luar Di Perumahan Taman Cipto Cirebon……....……….……………………..........64 - 75 Eka Widiyananto Perancangan dan Implementasi Mikrokontroler Sebagai Pengendali Dan Pendeteksi Banjir………………..……....……….……………………..........76 - 84 Priyono Yulianto
JURNAL TEODOLITA VOL. 14 NO. 1, Juni 2013
ISSN 1411-1586
HALAMAN REDAKSI Jurnal Teodolita adalah jurnal imiah fakultas teknik Universitas Wijayakusuma Purwokerto yang merupakan wadah informasi berupa hasil penelitian, studi literatur maupun karya ilmiah terkait. Jurnal Teodolita terbit 2 kali setahun pada bulan Juni dan Desember. Penanggungjawab Pemimpin Redaksi Sekretaris Bendahara Editor Tim Reviewer
Alamat Redaksi
Email
: Dekan Fakultas Teknik Universitas Wijayakusuma Purwokerto : Taufik Dwi Laksono, ST MT : Dwi Sri Wiyanti, ST MT : Basuki,ST MT : Drs. Susatyo Adhi Pramono, M.Si : Taufik Dwi Laksono, ST MT Iwan Rustendi, ST MT Yohana Nursruwening, ST MT Wita Widyandini, ST MT Priyono Yulianto, ST MT Kholistianingsih, ST MT : Sekretariat Jurnal Teodolita Fakultas Teknik Universitas Wijayakusuma Purwokerto Karangsalam-Beji Purwokerto Telp 0281 633629 :
[email protected]
Tim Redaksi berhak untuk memutuskan menyangkut kelayakan tulisan ilmiah yang dikirim oleh penulis. Naskah yang di muat merupakan tanggungjawab penulis sepenuhnya dan tidak berkaitan dengan Tim Redaksi.
KEBERHASILAN DETEKSI BERBASIS PENCOCOKAN TEMPLATE DENGAN PERUBAHAN LOKASI BENDA Kholistianingsih Teknik Elektro Universitas Wijayakusuma Purwokerto Abstrak Penerapan teknologi pengolahan citra digital masih merupakan tantangan tersendiri bagi penekun dan peneliti pada bidang ini. Pencocokan template merupakan salah satu cara untuk melakukan pengenalan obyek, identifikasi, dan deteksi. Penelitian ini menggunakan algoritma pencocokan template untuk mendeteksi benda. Input yang digunakan adalah citra dengan variasi lokasi dari benda yang diuji. Parameter yang diukur sebagai dasar pengujian adalah nilai korelasi tertinggi. Pengujian yang dilakukan adalah kepekaan algoritma terhadap perubahan lokasi benda. Hasil pengujian menunjukkan bahwa tingkat keberhasilan deteksi objek memiliki nilai yang signifikan yaitu 100%. Hal ini menunjukkan bahwa perubahan lokasi benda tidak mengurangi tingkat keberhasilan deteksi. Kata kunci : pencocokan template, deteksi, korelasi
PENDAHULUAN Manusia memiliki indra mata yang berfungsi menangkap keindahan dan keunikan gambar atau citra. Oleh karena itu, citra memegang peranan yang sangat penting dalam perspektif manusia. Akan tetapi mata manusia memiliki keterbatasan dalam menangkap sinyal elektromagnetik. Komputer atau mesisn pencitraan dapat menangkap hampir keseluruhan sinyal elektromagnetikmulai dari gamma hingga gelombang radio. Mesin pencitraan dapat bekerja dengan citra dari sumber yang tidak sesuai, tidak cocok, atau tidak dapat ditangkap dengan penglihatan manusia. Hal inilah yang menyebabkan pengolahan citra digital memiliki kegunaan dan spektrum aplikasi yang sangat luas. Teknologi pengolahan citra dapat masuk ke berbagai bidang seperti kedokteran, industri, pertanian, geologi, kelautan, dan sebagainya. Kehadiran teknologi pengolahan citra memberikan kemajuan yang luar biasa pada bidang-bidang tersebut. Ke depan penerapan teknologi pengolahan citra digital ini akan terus meluas. Hal ini merupakan tantangan tersendiri bagi penekun dan peneliti pada bidang ini.
Keberhasilan Deteksi Berbasis Penocokan Template dengan Perubahan Lokasi Benda
55
Pengolahan citra meliputi bermacam-macam operasi. Operasi-operasi yang paling sederhana antara lain pra pengolahan citra untuk mengurangi derau, pengaturan kontras, dan pengaturan ketajaman citra. Selanjutnya juga
ada operasi segmentasi dan
klasifikasi.
Pengolahan citra kategori tinggi melibatkan proses pengenalan dan deskripsi citra. [1-5] Template matching merupakan salah satu cara untuk melakukan: pengenalan obyek, identifikasi, dan deteksi. Salah satu metode template matching yang sering digunakan adalah korelasi, dengan memanfaatkan lokasi dari nilai korelasi silang tertinggi citra template dan citra frame yang berisi obyek yang ingin dideteksi. Teknik ini sebenarnya tahan terhadap derau dan pengaruh cahaya pada citra, tapi mengandung jumlah komputasi yang sangat besar. Point correlation dapat digunakan untuk mengurangi komputasi menjadi sekumpulan titik-titik dalam jumlah yang kecil [2-3]. Penelitian ini menggunakan algoritma template matching untuk mendeteksi benda. Inputnya adalah citra dengan variasi lokasi dari benda yang diuji. Pengujian yang dilakukan adalah kepekaan algoritma terhadap perubahan lokasi benda. LANDASAN TEORI Citra digital didefinisikan sebagai fungsi dua dimensi, f(x,y), dimana x dan y adalah koordinat spasial, dan amplitudo f pada setiap koordinat adalah intensitas derajat keabuan dari citra pada titik tersebut [3-4]. Template matching adalah proses mencari suatu obyek (template) di dalam suatu citra digital. Template dibandingkan dengan keseluruhan objek tersebut dan bila template cocok (cukup dekat) dengan suatu objek yang belum diketahui pada citra tersebut maka objek tersebut ditandai sebagai template [1]. Perbandingan antara template dengan keseluruhan objek pada citra dapat dilakukan dengan menghitung selisih jaraknya, seperti ditunjukkan pada persamaan 1. (1)
56
Teodolita Vol.14, No.1., Juni 2013:55-63
Dengan f(j,k) menyatakan citra tempat objek yang akan dibandingkan dengan template T(j,k), sedangkan D(m,n) menyatakan jarak antara template dengan objek pada citra. Pada umumnya template lebih kecil dari ukuran citra. Secara ideal, template dikatakan cocok dengan objek pada citra bila D(m,n) = 0, namun kondisi tersebut akan sulit dipenuhi apalagi jika template merupakan citra grayscale. Oleh karena itu, kondisi yang dicari adalah jika D(m,n) minimum. Hal ini akan terpenuhi jika nilai korelasi maksimum pada semua lokasi (m,n). Rumus korelasi ditunjukkan pada persamaan 2. (2) METODOLOGI PENELITIAN Penentuan nilai korelasi tertinggi merupakan langkah untuk mengidentifikasi nilai terukur sebagai pemisah dua daerah klasifikasi yang berbeda satu sama lain [6]. Nilai korelasi yang berbeda merupakan dasar dalam proses klasifikasi. Titik koordinat dimana terukur nilai korelas tertinggi adalah daerah terdeteksi dan selainnya adalah bukan daerah terdeteksi. Algoritma deteksi benda adalah : 1.Pra pengolahan citra yang meliputi pengubahan ukuran citra dan pengubahan menjadi citra grayscale. 2.Membaca input citra uji dan citra template. 3.Menghitung nilai korelasi. 4.Menentukan nilai korelasi tertinggi menjadi pemenang. 5.Menyimpan titik koordinat pemenang. 6.Menandai lokasi pemenang dengan garis kotak putih. DATA PENGAMATAN Data yang digunakan pada penelitian ini adalah sebuah data template sebagai data referensi dengan ukuran 39x46 piksel dan 100 buah citra uji yang berukuran 128x171 piksel. Data citra telah diubah dalam bentuk grayscale melalui proses pra pengolahan citra.
Keberhasilan Deteksi Berbasis Penocokan Template dengan Perubahan Lokasi Benda
57
Citra Template ditunjukkan pada Gambar 1, yang merupakan citra dari obyek deteksi yang berupa Labu Siam. Gambar 2 menunjukkan Citra Uji, yang merupakan kumpulan beberapa jenis sayur yang diletakan pada lokasi yang bervariasi. Input citra uji menempatkan objek deteksi pada titik koordinat yang bervariasi. Akan tetapi setiap benda/objek pada citra uji, diletakan dengan arah posisi yang sama.
Gambar 1. Citra Template
Gambar 2. Citra Uji
58
Teodolita Vol.14, No.1., Juni 2013:55-63
HASIL DAN PEMBAHASAN Pengujian dilakukan terhadap 100 buah citra uji yang merupakan variasi lokasi dari objek deteksi. Pada penelitian ini, pemenang hanya ditentukan pada lokasi dengan nilai korelasi tertinggi. Hasil pengamatan diperoleh ditunjukkan dalam bentuk grafik. Gambar 3 menunjukkan proses deteksi benda. Gambar 3.a menunjukkan citra template, Gambar 3.b menunjukkan salah satu citra uji. Gambar 3.c menunjukkan hasil proses template matching. Keberhasilan deteksi ditunjukkan dengan tanda kotak dengan garis berwarna putih pada lokasi yang ditentukan sebagai pemenang. Keberhasilan deteksi diwakili dengan nilai persentase 0 % sampai dengan 100%. Tingkat keberhasilan ini diukur berdasarkan ketepatan lokasi kotak deteksi. Hal ini juga diperkuat dengan tampilan titik koordinat lokasi hasil deteksi yang ditunjukkan pada Tabel 1.
Gambar 3. (a) Citra Template, (b) Citra Uji, (c) Hasil Operasi Deteksi Tabel 1 menunjukkan variasi titik koordinat objek yang dideteksi. Lokasi citra labu siam bervariasi dengan tingkat pergeseran kecil. Berdasarkan Tabel 1 ini, dapat diukur ketepatan lokasi hasil deteksi dengan membandingkan dengan titik koordinat lokasi labu siam berdasarkan pengamatan pada keadaan yang sebenarnya pada citra uji.
Keberhasilan Deteksi Berbasis Penocokan Template dengan Perubahan Lokasi Benda
59
Tabel 1. Titik Koordinat Hasil Deteksi
60
CITRA
TITIK KOORDINAT
CITRA
TITIK KOORDINAT
CITRA
TITIK KOORDINAT
UJI
DETEKSI
UJI
DETEKSI
UJI
DETEKSI
1
57,83
35
12,56
69
34,44
2
57,84
36
59,23
70
32,40
3
55,85
37
61,21
71
29,41
4
56,87
38
59,22
72
13,78
5
55,87
39
59,21
73
33,49
6
24,21
40
59,24
74
11,75
7
22,118
41
57,23
75
14,74
8
24,117
42
65,97
76
12,79
9
22,116
43
57,95
77
31,51
10
23,116
44
61,96
78
37,103
11
54,20
45
59,94
79
35,102
12
55,16
46
59,98
80
39,83
13
53,13
47
61,100
81
37,77
14
55,13
48
60,99
82
36,79
15
57,15
49
61,99
83
34,81
16
60,26
50
59,100
84
35,78
17
60,26
51
59,100
85
40,86
18
61,26
52
22,101
86
41,83
19
60,28
53
27,99
87
41,81
20
59,24
54
22,101
88
38,82
21
63,27
55
25,97
89
38,82
22
60,20
56
25,100
90
39,81
23
61,22
57
28,106
91
38,82
24
60,21
58
27,106
92
29,69
25
57,22
59
26,107
93
34,44
26
10,50
60
23,97
94
30,42
27
7,50
61
19,95
95
30,41
28
8,48
62
23,96
96
29,37
29
9,50
63
22,97
97
27,38
30
10,50
64
20,97
98
30,42
31
14,60
65
20,100
99
25,43
32
15,56
66
21,103
100
37,44
33
11,56
67
21,103
34
11,55
68
22,105
Teodolita Vol.14, No.1., Juni 2013:55-63
Gambar 4 merupakan grafik nilai korelasi dari 100 citra uji. Pada grafik ini, sumbu x menunjukkan data ke-x, dan sumbu y menunjukkan nilai korelasi tertinggi dan nilai korelasi terendah. Nilai korelasi tertinggi adalah nilai korelasi pemenang pada algoritma deteksi objek dengan metode pencocokan template ini. Pada grafik terlihat bahwa nilai korelasi tertinggi mengelompok pada bagian atas dari grafik. Hal ini menunjukkan bahwa nilai korelasi tertinggi relatif stabil, dengan nilai rata-rata 223755,61. Pada grafik juga ditunjukkan nilai korelasi terendah yang memiliki kecenderungan yang sama dengan kenaikan dan penurunan pada nilai korelasi tertinggi. Jadi rentang nilai korelasi relatif tetap yaitu dengan rata-rata 218847,65. Dengan nilai rentang yang relatif tetap ini, seharusnya nilai korelasi dapat dinormalisasi dengan membandingkan dengan nilai rentang rata-rata tersebut. Dengan demikian nilai korelasi dapat menjadi acuan untuk citra input bebas.
2.5
x 10
Nilai Korelasi
2
5
GRAFIK NILAI KORELASI CITRA UJI
Gambar 3. Grafik Nilai Korelasi dari Citra Uji
1.5
Tertinggi Terendah
1
0.5
0
0
10
20
30
40
50 60 Citra Uji ke-
70
80
90
100
Gambar 4. Nilai korelasi setiap citra uji
Keberhasilan Deteksi Berbasis Penocokan Template dengan Perubahan Lokasi Benda
61
Tabel 2. Tingkat Keberhasilan Deteksi CITRA
TINGKAT KEBERHASILAN
CITRA
TINGKAT KEBERHASILAN
CITRA
TINGKAT KEBERHASILAN
UJI
DETEKSI (%)
UJI
DETEKSI (%)
UJI
DETEKSI (%)
1
100
35
100
69
100
2
100
36
100
70
100
3
100
37
100
71
100
4
100
38
100
72
100
5
100
39
100
73
100
6
100
40
100
74
100
7
100
41
100
75
100
8
100
42
100
76
100
9
100
43
100
77
100
10
100
44
100
78
100
11
100
45
100
79
100
12
100
46
100
80
100
13
100
47
100
81
100
14
100
48
100
82
100
15
100
49
100
83
100
16
100
50
100
84
100
17
100
51
100
85
100
18
100
52
100
86
100
19
100
53
100
87
100
20
100
54
100
88
100
21
100
55
100
89
100
22
100
56
100
90
100
23
100
57
100
91
100
24
100
58
100
92
100
25
100
59
100
93
100
26
100
60
100
94
100
27
100
61
100
95
100
28
100
62
100
96
100
29
100
63
100
97
100
30
100
64
100
98
100
31
100
65
100
99
100
32
100
66
100
100
100
33
100
67
100
34
100
68
100
62
Teodolita Vol.14, No.1., Juni 2013:55-63
Tabel 2 menunjukkan tingkat keberhasilan deteksi. Tingkat keberhasilan ditentukan dengan ketepatan lokasi kotak bergaris putih pada target objek labu siam dan ketepatan titik koordinat hasil deteksi. Tingkat keberhasilan deteksi rata-rata pada penelitian ini adalah 100%. Berdasarkan analisis di atas, pencocokan template sangat baik dalam keberhasilannya mendeteksi benda/objek dengan variabel lokasi titik koordinat benda. Hal ini ditunjukkan dengan perolehan tingkat keberhasilan yang cukup signifikan yaitu 100%. Akan tetapi pada penelitian ini, input masih dibatasi dengan arah posisi yang tetap dan kualitas citra yang sama. KESIMPULAN Penelitian ini menunjukkan bahwa algoritma pencocokan template sangat baik dalam keberhasilannya mendeteksi benda/objek dengan variabel lokasi titik koordinat benda. Tingkat keberhasilan yang diperoleh adalah 100%. Nilai korelasi tertinggi rata-rata yang diperoleh adalah 223755,61. Penelitian ini masih sangat sederhana. Penelitian ini masih dapat dikembangkan lagi dengan menguji algoritma pencocokan template terhadap variabel input yang berbeda, antara lain dengan menguji pengaruh kekaburan citra terhadap keberhasilan deteksi atau menguji terhadap perubahan arah posisi objek. Nilai korelasi juga perlu untuk dinormalisasi agar data dapat dijadikan acuan atau standar yang tetap. DAFTAR PUSTAKA [1]
Putra, Darma, Pengolahan Citra Digital, Andi Offset, Yogyakarta, 2010.
[2]
Ahmad, Usman, Pengolahan Citra Digital & Teknik Pemrogramannya, Graha Ilmu, Yogyakarta, 2005
[3]
Gonzales,R.C., Woods, R.E., Digital Image Processing, Prentice Hall, Third Edition. New Jersey, 2008
[4]
Sonka, M,, Hlavac, V., and Boyle, R..,Image Processing, Analysis, and Machine Vision, Third Edition, Thomson Corporation, Canada, 2008.
[5]
Wijaya, M. Ch., Priyono, A., Pengolahan Citra Digital Menggunakan Matlab, Informatika, Bandung, 2007.
[6] Theodoridis, S., Koutroumbas, K., Pattern Recognition, Academic Press, Burlington, USA, 2009
Keberhasilan Deteksi Berbasis Penocokan Template dengan Perubahan Lokasi Benda
63