HANDOFF, CO-CHANNEL INTERFERENCE and LINK BUDGET PARAMETERS
[email protected]
Contoh Soal 1 Sebuah sistem seluler TDD mempunyai bandwidth sebesar 10 MHz, besar tiap channelnya adalah 20 kHz, apabila control channel yang dialokasikan untuk sistem tersebut adalah sebesar 1 MHz, hitung alokasi masing-masing voice channel dan control channel untuk tiap selnya untuk ukuran clusternya 3, 4 dan 7 !
Jawaban Soal 1 10 ππ»π§ 107 ππ’πππβ πβπππππ = = = 500 πβππππππ 3 20 ππ»π§ 20 Γ 10 1 ππ»π§ 106 ππππππ π ππππ‘πππ πβπππππ = = = 50 πβππππππ 3 20 ππ»π§ 20 Γ 10 Jadi jumlah voice channel = 500 β 50 = 450 πβππππππ
Alokasi channels a.
450
untuk tiap sel apabila :
πΎ = 3 , 3 = 150 π£ππππ πβππππππ untuk tiap sel dan 50 β 17 control channels untuk 2 sel kemudian 1 sel 3 yang lain hanya punya 16 control channels.
Jawaban Soal 1 (cont) b. πΎ = 4 ,
450 4
β 113 π£ππππ πβππππππ untuk 2 sel dan 112 voice channels untuk 2 sel lainnya dan 50 β 13 control channel untuk 2 sel kemudian 4 2 sel yang lain hanya punya 12 control channels. c. πΎ = 7 ?
Bagaimana kalau sistem yang digunakan adalah TDD ?
Basic Channels
Channel Assignment : Static Pemberian Channel untuk service demand yang datang terbatas hanya pada channel βchannel yang sudah disediakan saja. Bila Channel yang tersedia habis ? Blocking/drop packet Solusi ?
Donor Cell for Sector X Cell 3
1 2
X
Y Z
Cell Splitting
Channel Borrowing οΆ Meminjam channel yang tidak terpakai oleh adjacent cell, asalkan tidak mengganggu performansi adjacent cell tersebut β’ A service initiated in the sector X of cell 3 can borrow a channel from adjacent cells 1 or 2.
FREE SPACE PATHLOSS or ππ = ππ‘ = πΊπ =
π= π=
Received Signal Power Transmit Signal Power The product of the transmit and receive antenna ο¬eld radiation patterns in the LOS direction Wavelength of frequency (π = π/π, where π = 3 Γ 108 π/π distance between transmitter and receiver
πΊπ (ANTENNA DIRECTIVITY)
Example Problem Consider an indoor wireless LAN with ππ = 2400 MHz, cells of radius 10 m , and nondirectional antennas. Under the free-space path loss model, what transmit power is required at the access point such that all terminals within the cell receive a minimum power of 10 Β΅W. How does this change if the system frequency is 5 GHz?
CIR πΆ πΌ
=
ππππππππ
π π π=1 πππ‘βπ
Dimana : ππππππππ = Daya Sinyal yang diterima user dari cell serving π = jumlah cell peng-interferensi ππππ‘βπ = Daya yang dirasakan oleh user di cakupan cell serving dari cell penginterferensi ke π
CINR VS SINR VS Eb/No ο± C/N Ratio (CNR) stands for Carrier to Noise Ratio. It is measured after modulation. ο± S/N Ratio (SNR) stands for Signal to Noise Ratio. It is measured before modulation. ο± π¬π /π΅π = πππ
Γ
π΅π π
π
SOAL Bila suatu transmitter RF seluler 1800 MHz dengan N ( Jumlah Cell Peng-Interferensi ) adalah 6, K = 3, πππ = 48 ππ΅π, anggap πΊπ = 1 , jarijari sel = 1 km, maka hitunglah a) D ! b) CIR apabila user berada di R dari π΅ππ πππ£πππ !
REASONS FOR A HANDOFF TO BE CONDUCTED 1. To avoid call termination when the phone is moving away from the area covered by one cell and entering the area covered by another cell. 2. When the capacity for connecting new calls of a given cell is used up. 3. When there is interference in the channels due to the different phones using the same channel in different cells. 4. When the user behaviors change 5. Etc
HANDOFF PRIORITIZATION ο± Guard Channels: Guard channels improve the probability of successful handoffs by reserving a fixed or dynamically adjustable number of channels exclusively for handoffs. An adaptive number of guard channels can help reduce this problem. ο± Queuing of Handoff: Queuing is a way of delaying handoff. The MSC queues the handoff requests instead of denying access if the candidate BS is busy. The probability of a successful handoff can be improved by queuing handoff requests at the cost of increased new call blocking probability and a decrease in the ratio of carried-to-admitted traffic since new calls are not assigned a channel until all the handoff requests in the queue are served.
HANDOFFS PROTOCOL ο± Network-controlled handoff (NCHO) is a centralized handoff protocol, in which the network makes handoff decision based on measurements of the signal quality of mobile station (MS) at a number of based stations (BS). Sometimes the network sets up a bridge connection between the old and new BSs and thus minimizes the duration of handoff. This type of handoff is not suitable for a rapidly changing environment and a high density of users due to the associated delay. ο± Mobile-assisted handoff (MAHO) A MAHO protocol distributes the handoff decision process. The MS makes measurements, and the BSC makes decisions.
HANDOFFS PROTOCOL ο± Soft handoff (SHO) is a βmake before breakβ connection. SHO is often used in conjunction with MAHO. Rather than immediately terminating the connection between a MS and a BS, the connection to the old BS is not broken until a connection to the new BS is made. ο± Mobile-controlled handoff (MCHO) The MS is completely in control of the handoff process. This type of hand off has a short reaction time and is suitable for microcellular systems. A MS keeps on measuring signal strength from all the surround base stations. If the MS find that there is a new BS who has a stronger signal than that of an old BS, it may consider to handoff from the old BS to the new BS given a certain signal threshold is reached.
Handoff/Handover ο± Peristiwa perpindahan kanal dari UE tanpa : οΆ Terjadinya pemutusan hubungan οΆ Melalui campur tangan oleh user (bukan UE) ο± Handoff = istilah Amerika Handover = istilah Eropa
Handoff Default : Handoff request > Service Initiation Request
Syarat handoff : - Harus selalu berhasil - Harus tidak sering Handoff threshold (β): terlalu besar ο terlalu sering handoff terlalu kecil ο beban pemrosesan dan daya di BS maupun di user β= ππβπππππππ β ππβππππππ’π
HANDOFF PARAMETERS β= ππ πππππππ β ππ ππππππ’π π’π ππππ if β is too big then ? too much handoff occured, could conduct ping-pong effect if β is too small then? Prone to handover failure
(MORE) HANDOFF PARAMETERS ο± Relative signal strength Handover chooses the strongest received base station at all times. The decision is based on an averaged measurement of the received signal.
(MORE) HANDOFF PARAMETERS ο± Relative signal strength with threshold allows a user to hand over only if the current signal is sufficiently weak (less than a threshold) and the other is the stronger of the two. The effect of the threshold depends on its value
(MORE) HANDOFF PARAMETERS ο± Relative signal strength with hysteresis allows a user to hand over only if the new base station is sufficiently stronger (by a hysteresis margin) than the current one. In this case the handover will occur at point C. This technique prevents the socalled ping-pong effect
(MORE) HANDOFF PARAMETERS
ο± Relative signal strength with hysteresis and threshold hands a user over to a new base only if the current signal level drops below a threshold and the target base station is stronger than the current one by a given hysteresis margin. In Figure, the handover will occur at point C if the threshold is either TI or T2, and will occur at point D if the threshold is T3
HANDOVER EVENTS LTE measurement report triggering A1 A2 A3 A4 A5 A6 C1 C2 B1 B2
Serving becomes better than threshold Serving becomes worse than threshold Neighbour becomes offset better than PCell Neighbour becomes better than threshold PCell becomes worse than threshold1 and neighbour becomes better than threshold2 Neighbour becomes offset better than SCell CSI-RS resource becomes better than threshold CSI-RS resource becomes offset better than reference CSIRS resource Inter RAT neighbour becomes better than threshold PCell becomes worse than threshold1 and inter RAT neighbour becomes better than threshold2
HANDOVER EVENTS EXAMPLE : A1
HANDOVER EVENTS EXAMPLE : A2
HANDOVER EVENTS EXAMPLE : A3
HANDOVER EVENTS EXAMPLE : A4
HANDOVER EVENTS EXAMPLE : A5
CO-CHANNEL INTERFERENCE
Konsep Umum Model Area
Grafik Warna Hijau : Menunjukkan tren kekuatan sinyal terima (Received Signal Strength Indicator/RSSI) berbanding dengan jarak pada saat drive test Grafik Warna Merah : Menunjukkan hasil prediksi Okumura-Hatta untuk jarak yang sama
Input-input yang biasa digunakan : β’ Frekuensi β’ Jarak antara Tx dan Rx β’ Jarak efektif antara MS dan BS β’ Rata-rata ketinggian kontour bumi β’ Marjin loss morfologi (urban, suburban, rural )
Teknik Statistik Konsep Statistik Distribusi
β’ Nilai median suatu RSSI dianggap sebagai nilai RSSI yang paling sering muncul pada tiap suatu jarak dari cell, nilai RSSI yang sebenarnya bisa lebih tinggi atau lebih rendah. β’ π = nilai median dari keseluruhan data RSSI yang telah terobservasi β’ π = nilai deviasi standar dari keseluruhan data RSSI yang telah terobservasi β’ π dan π diaplikasikan untuk menemukan probabilitas untuk menerima sembarang level sinyal pada suatu jarak tertentu
LINK BUDGET
NOISE FIGURE
Example Problem : ππΌππ
= 43 + 18 β 0 β 0.5 + 0 β 3
β 10 πππ Γ log 1.38 Γ 10 Γ 27 + 273 πΎ Γ 5 Γ 106 πΎ β 7 β 12 β 5 β 10 β 120 = 10.34 ππ΅ β20
Example Problem 2 Sebuah operator X ingin mendirikan satu tower Base Station di suatu kota kecil, dari parameter-parameter link budget yang telah dianalisa didapat data seperti dalam tabel berikut ini : Parameter Link Budget
Nilai
Satuan
Daya Transmit BS
501
mWatt
Gain BS
18
dB
Loss kabel feeder
3
dB
loss instalasi TMA
0.5
dB
Gain Antenna UE
3
dB
Loss tubuh user
3
dB
-179
dB
UE Noise Figure
3
dB
SINR
-5
dB
System Bandwidth
37
dB
Penetration Loss
9
dB
Fading Margin
4
dB
Interference Margin
10
dB
Noise thermal
apabila frekuensi yang digunakan oleh teknologi seluler BS tersebut adalah 755 MHz, rata-rata tinggi efektif user adalah 1.6 meter dan jarak maksimal pancaran BS yang diinginkan adalah 1500 meter maka berapa meter-kah tinggi tower pemancar yang harus dibangun ? (gunakan Model Okumura-Hatta)
Cell Edge (Tepi Sel) Area Availability and Probability of Service β’ Tentu saja Probability of Service yang paling baik adalah yang paling dekat dengan BS, dan akan semakin berkurang seiring dengan bertambahnya jarak antara MS dan BS β’ Untuk probabilitas lokasi ada di dalam sel sebesar 90%, maka probabilitas akan menjadi 75% pada tepi sel. β’ Model ini mendekati kebenaran apabila variasi path loss terdistribusi secara lognormal pada nilai median prediksi, seperti di environment mobile comm β’ 90%/75% biasa digunakan sebagai sasaran coverage pada wireless
Contoh soal : Desainlah suatu sel yang bisa mengirimkan setidaknya -95 dBm ke 75% lokasi yang ada di sekitar tepi sel (ini akan menghadirkan cakupan 90% dari keseluruhan lokasi di dalam sel tersebut), diasumsikan deviasi standar π sebesar 10 dB Jawab : Dari gambar Distribusi Normal di samping Atau dengan menggunakan tabel distribusi normal kita dapatkan untuk 0.75 ο 0.675π Sehingga : β95 ππ΅π + 0.675 Γ 10 ππ΅ = β88 ππ΅π Jadi sistem harus bisa menghasilkan sinyal median sebesar -88 dBm
CONTOH SOAL
GRAFIK DAN TABEL DISTRIBUSI NORMAL
KARAKTERISASI STATISTIK BUILDING PENETRATION Teknik statistik sangat berguna untuk kasus yang sulit untuk dikarakteristikkan - Banyak parameter, variabel dan kompleks Untuk building kita menggunakan perhitungan indoor dan outdoor pathloss, maka diperlukan : β’ Nilai median yang telah disampling/diestimasikan β’ penentuan distribusi statistik β’ Perkiraan dan pengukuran deviasi standar β’ Tambahan margin di link budget untuk memberikan offset terhadap loss
Modul 3 Large Scale Fading
45