1. oldal, összesen: 6
Tesztkérdések az ALGORITMUSELMÉLET tárgyból, 2001/2002 2. félév NÉV:................................................................ 1. Legyenek ,Q,M páronként diszjunkt halmazok; /= Ř,|Q|> 2,|M| = 3. Egyszalagos, determinisztikus Turing gépnek nevezzük a (1, ,Q,M, ) objektumot, ha a. :Q× - Q× . b. : Q × - Q × × M. c. : Q × × M- Q × × M. 2. A T = (1,Q, ,M, ) Turing gép egy konfigurációjának nevezzük a a. (q, ,z)-t, ahol q a T aktuális belső állapota, az író/olvasó fej alatti jel és z a kiindulási cellától való távolság. b. (q,w,z)-t, ahol q a T aktuális belső állapota, w a szalagon található szó és z a kiindulási cellától való távolság. c. (q,w,m)-t, ahol q a T aktuális belső állapota, w a szalagon található szó és m a T aktuális mozgása. 3. A T = (1,Q, ,M, ) Turing gép egy konfigurációjának nevezzük a a. (q,w,z)-t, ahol q a T aktuális belső állapota, w a szalagon található szó és z a kiindulási cellától való távolság. b. (q, ,m)-t, ahol q a T aktuális belső állapota, az író/olvasó fej alatti jel és m a T aktuális mozgása. c. (q, ,z)-t, ahol q a T aktuális belső állapota, az író/olvasó fej alatti jel és z a kiindulási cellától való távolság. 4. Legyen T = (1,Q, ,M, ) egy Turing gép. Mikor nevezzük a (q',w',z') konfigurációt a (q,w,z) rákövetkező konfigurációjának? a. Ha q' = (q,w[z]), w'[j] = w[j], ha j /= z és w'[z] = (q,w[z]) valamint z' = z + (q,w[z]). b. Ha q' = (q,w[z])[1], w'[z] = (q,w[z])[2] valamint z' = z + (q,w[z])[3]. c. Ha q' = (q,w[z])[1], w'[j] = w[j], ha j /= z és w'[z] = (q,w[z])[2] valamint z' = z + (q,w [z])[3]. 5. Mikor nevezzük az L nyelvet a T determinisztikus Turing gép által felismert nyelvnek? Ha L * azon w szavakból áll, amelyekre a. T megáll. b. T véges sok lépés után elfogadó állapotban áll meg. c. T véges sok lépés után elutasító állapotban áll meg. 6. Mikor nevezzük az L nyelvet a T nemdeterminisztikus Turing gép által elfogadott nyelvnek? * Ha L azon w szavakból áll, amelyekre a. T megáll. b. T-nek van olyan számítása, amelyik elfogadó állapotban fejeződik be. c. T elfogadó állapotban megáll. * nyelvet rekurzívan felsorolhatónak? 7. Mikor nevezzük az L a. Ha van olyan Turing gép, amelyik pontosan az L elemein áll meg elfogadó állapotban. * b. Ha van olyan minden x -on megálló Turing gép, amelyik pontosan az L elemein áll meg elfogadó állapotban. c. Ha van olyan Turing gép, amelyik minden x L-en elfogadó állapotban megáll. * 8. Mikor nevezzük az L nyelvet rekurzívnak? a. Ha van olyan Turing gép, amelyik pontosan az L elemein áll meg elfogadó állapotban. * b. Ha van olyan minden x -on megálló Turing gép, amelyik pontosan az L elemein áll meg elfogadó állapotban. c. Ha van olyan Turing gép, amelyik minden x L-en elfogadó állapotban megáll. 9. Melyik állítás igaz az alábbiak közül? a. Ha egy függvény k-szalagos (k > 2) Turing-géppel kiszámítható, akkor nem számítható ki egyszalagossal. b. Csak azok a függvények számíthatók ki k-szalagos Turing-géppel, melyek
file://D:\TeX4HT\testae04.html
2006.05.18.
2. oldal, összesen: 6
10.
11.
12.
13.
egyszalagossal is kiszámíthatóak. c. Van olyan k > 2 szalagos Turing-géppel kiszámítható függvény, mely egyetlen egyszalagos Turing-géppel sem számítható ki. Melyik állítás igaz az alábbiak közül? a. Van olyan Turing géppel felismerhető nyelv, amelyik nem rekurzívan felsorolható. b. Ha egy nyelv nem rekurzív, akkor nem rekurzívan felsorolható. c. A rekurzív nyelvek halmaza valódi részhalmaza a rekurzívan felsorolható nyelvekének. A kétszalagos U = (2, ,Q,M, ) Turing gépet univerzálisnak nevezzük a abc felett definiált egyszalagos Turing gépek T(1) halmazára nézve, ha * , hogy x-et az U első, az üres szót ( ) pedig a a. bármely T T(1)-hez van olyan x második szalagjára írva U(x, ) = T(x). * , hogy x-et az U első, a p-t pedig a második b. bármely T T(1)-hez van olyan x,p szalagjára írva U(x,p) = T(x). * * , hogy bármely x c. bármely T T(1)-hez van olyan p -ot az U első, a p-t pedig a második szalagjára írva U(x,p) = T(x). Mely állítás igaz az alábbiak közül? a. Tetszőleges abc feletti egyszalagos Turing géphez van kétszalagos univerzális Turing gép. b. Tetszőleges abc felett definiált, egyszalagos Turing gépek halmazához konstruálható kétszalagos univerzális Turing gép. c. Az univerzális Turing gépek kétszalagosak. Jelölje Tp a p-programú determinisztikus Turing gépet. Melyik nyelvet nevezzük univerzális nyelvnek? a. A Turing gépek által felismert nyelvet. * b. {p : p LT } p
14.
15.
16.
17.
18.
19.
c. Az univerzális Turing gép által felismert nyelvet. Az U univerzális Turing-gépre mely állítások igazak? a. Minden rekurzívan felsorolható nyelvet felismer. b. Egy adott gép egy nyelvet ismer fel. c. Minden rekurzívan felsorolható nyelvnek létezik egy olyan izomorf képe, melyet az U felismer. Mit állít a Church tézis? a. Bármely Turing géppel kiszámítható függvény algoritmussal is kiszámítható. b. Az algoritmussal kiszámítható függvények általában kiszámíthatóak Turing géppel is. c. Bármely algoritmussal kiszámítható függvény kiszámítható Turing géppel is. Tegyük fel, hogy P és Q rendre O(n2) ill. O(n3) időbonyolultsággal eldönthető részhalmazai a természetes számoknak. Mely állítások következnek ebből? a. P Q eldönthető négyzetes időbonyolultsággal. b. P Q eldönthető O(n3) időbonyolultsággal. c. P \ Q rekurzívan felsorolható. Mely állítások teljesülnek minden P,Q {0,1}*-ra? a. Ha P és Q rekurzívan felsorolható, akkor P \ Q is rekurzívan felsorolható. b. Ha P rekurzívan felsorolható és Q rekurzív, akkor P \Q is rekurzívan felsorolható. c. Ha Q rekurzívan felsorolható és P rekurzív, akkor P \Q is rekurzívan felsorolható. Tegyük fel, hogy f,g : rekurzív függvények és mindkettő kiszámítható polinomiális futási idejű Turing-géppel. Mely állítások következnek ebből? a. A h1(n) := f(g(n))-nel definiált h1 is kiszámítható polinomiális futási idejű Turing-géppel. b. A h2(n) := logf(n)g(n)-nel definiált h2 is kiszámítható polinomiális futási idejű Turinggéppel. c. A h3(n) := f(n)g(n)-nel definiált h3 is kiszámítható Turing-géppel. Mely állítások teljesülnek?
file://D:\TeX4HT\testae04.html
2006.05.18.
3. oldal, összesen: 6
20.
21.
22.
23.
a. Bármely univerzális nyelv része valamely rekurzív nyelvnek. b. Valamelyik univerzális nyelv része tetszőleges rekurzív nyelvnek. c. Minden rekurzívan felsorolható nyelv része valamely rekurzív nyelvnek. Az alábbiak közül mely függvényekről tudjuk bizonyítani, hogy polinomiális időben kiszámíthatóak? a. Két természetes szám összege. b. an, ahol a és n természetes számok. c. Gráf összefüggő-e? d. Egy gráfban van-e Hamilton kör? Melyik állítás igaz az alábbiak közül? Ha az L nyelv benne van a P osztályban, akkor a. L felismerhető exponenciális tárbonyolultságú determinisztikus Turing géppel. b. L felismerhető polinomiális tárbonyolultságú determinisztikus Turing géppel. c. L felismerhető lineáris tárbonyolultságú determinisztikus Turing géppel. * Legyen w . Akkor a. C(w) = CT(w), ahol T egy abc feletti Turing gép. b. C(w) = CU(w), ahol U egy abc feletti univerzális Turing gép. c. C(w) a w szó összenyomhatóságának a mértéke egy Turing gépre vonatkoztatva. Mit állít az invariancia tétel? * a. Legyenek T1,T2 Turing gépek. Akkor van olyan k konstans, hogy minden w -ra CT
1
(w) < CT (w) + k. 1
24.
25.
26.
27.
b. Legyen T Turing gép és U univerzális Turing gép. Akkor van olyan k konstans és w * , hogy CU(w) < CT(w) + k. c. Legyen T Turing gép és U univerzális Turing gép. Akkor van olyan k konstans, hogy * minden w -ra CU(w) < CT(w) + k. Legyen L a abc feletti nyelvekből álló halmaz. Mi lesz akkor coL? a. coL az L komplementere. b. coL megegyezik L-el. c. coL az L-hez tartozó nyelvek komplementereiből áll. Ha egy L nyelv O(N) időben felismerhető determinisztikus Turing géppel, akkor van olyan RAM gép, amelyik L-et a. O(log(N)) időben felismeri, b. O(N) időben felismeri és közben legfeljebb O(log(N)) hosszúságú számokon végez műveleteket, c. O(log(N)) időben felismeri és közben legfeljebb O(N) hosszúságú számokon végez műveleteket. Mely állítások igazak az alábbiak közül? a. coR coRE b. R = coRE RE c. RE coRE Jelölje Tp a p-programú determinisztikus Turing gépet. Melyik nyelvet nevezzük diagonális nyelvnek? * a. {p#s : p,s és p#s LT } p
b. {p
*
c. {p
*
: Tp létezik és p LT } p
: Tp létezik és p
LT } p
28. Melyik állítás igaz az alábbiak közül? a. Van olyan mindenütt megálló Turing-gép, mely a diagonális nyelvet felismeri. b. Van olyan univerzális Turing-gép, mely a diagonális nyelvet felismeri.
file://D:\TeX4HT\testae04.html
2006.05.18.
4. oldal, összesen: 6
c. Van olyan Turing-gép, mely a diagonális nyelv komplementerét ismeri fel. 29. Mely nyelvek nem rekurzívak? * a. Lh = {w : Tw létezik} b. Lh = {w
*
: Tw létezik és az üres szón megáll}
c. Lh = {w
*
: Tw létezik és az üres szón legfeljebb l(w) lépésben megáll}
* 30. Mikor mondjuk az L nyelvre, hogy a P osztályba tartozik? a. Ha van olyan L-et felismerő T Turing gép és k természetes szám, hogy T bármely n hosszúságú bemeneten legfeljebb O(nk) lépés után megáll. b. Ha van olyan L-et elfogadó, nem determinisztikus T Turing gép és k természetes szám, hogy ha a T egy n hosszúságú bemeneten megáll, akkor ezt legfeljebb O(nk) lépés után teszi. c. Ha van olyan L-et felismerő T Turing gép és k természetes szám, hogy a T bármely n hosszúságú bemeneten legfeljebb O(nk) cellát használ fel a számítása során. 31. Az alábbiak közül mely függvények számíthatók ki polinomiális időben? a. A tükörszavakat felismerő függvény. b. Két bináris szám összeadása. c. Bináris szám unárissá alakítása. d. Az (n,m) nm függvény, ahol n,m természetes számok. 32. Ha L SPACE(n), akkor a. van olyan c konstans, hogy L TIME(cn), b. L TIME(n), c. van olyan c konstans, hogy L TIME(nc)? 33. Melyik állítás igaz az alábbiak közül? * a. Minden L nyelv felismerhető RAM géppel. * b. Van olyan L nyelv, amelyik rekurzív, de nem ismerhető fel RAM géppel. * c. Minden rekurzív L nyelv felismerhető RAM géppel. 34. Legyenek ,Q,M páronként diszjunkt halmazok; /= Ř,|Q|> 2,|M| = 3. Egyszalagos, nem determinisztikus Turing gépnek nevezzük a (1, ,Q,M, ) objektumot, ha Q × × M és ezen felül adva van egy a. Bármely q Q és -ra (q, ) Bq, valószínűségeloszlás, ami meghatározza, hogy az egyes értékeket milyen valószínűséggel veszik fel ezek a függvények. b. Bármely q Q és -ra (q, ) Q × × M Q × × M. c. Bármely q Q és -ra (q, ) Bq, 35. Mikor mondjuk, hogy a T egyszalagos nem determinisztikus Turing gép f(n) időben elfogadja * az L nyelvet? * -ra van T-nek olyan, legfeljebb O(f(n)) időtartamú a. Ha bármely n hosszúságú x számítása, amely pontosan akkor fejeződik be elfogadó állapotban, ha x L. b. Ha T bármely n hosszúságú x L-re legfeljebb O(f(n)) idő után megáll. c. Ha bármely n hosszúságú x L-re van T-nek olyan, legfeljebb, O(f(n)) időtartamú számítása, amely elfogadó állapotban fejeződik be. 36. Melyik állítás igaz az alábbiak közül? a. A nem determinisztikus Turing gépek által elfogadott nyelvek a rekurzív nyelvek. b. A nem determinisztikus Turing gépek által elfogadott nyelvek a rekurzívan felsorolható nyelvek. c. A nem determinisztikus Turing gépek által elfogadott nyelvek az NP osztályba tartoznak. 37. Melyik állítás igaz az alábbiak közül? a. L NP pontosan akkor ha L nem dönthető el polinomiális idejű determinisztikus Turing géppel. b. L NP pontosan akkor ha L nem sorolható fel polinomiális idej determinisztikus
file://D:\TeX4HT\testae04.html
2006.05.18.
5. oldal, összesen: 6
38.
39.
40.
41.
Turing géppel. c. L NP pontosan akkor ha L-nek van polinomiális idej és hosszúságú tanúja. Az alábbi állítások közül melyek igazak? a. P NP b. P PSPACE c. R P d. P = coP Mikor mondjuk, hogy az L nyelv NP-teljes? a. Ha L NP \ P. b. Ha L-re polinomiális időben redukálható minden NP-beli nyelv. c. Ha L NP és ha L-re polinomiális időben redukálható minden NP-beli nyelv. Az alábbi nyelvek közül melyek NP-teljesek? a. A SAT nyelv. b. A 2-SAT nyelv. c. A primszámok nyelve. d. A részhalmaz probléma. * * Mikor mondjuk azt, hogy az L1 nyelv Karp-redukálható az L2 nyelvre? a. Ha van olyan rekurzív f :
*
-
*
függvény, hogy w L1 akkor és csakis akkor, ha w L2
b. Ha van olyan parciálisan rekurzív f : akkor, ha w L2
42.
43.
44.
45.
46.
*
-
*
függvény, hogy w
L1 akkor és csakis
* c. Ha van olyan polinom időben kiszámítható f : *függvény, hogy w L1 akkor és csakis akkor, ha w L2 Mely tulajdonságokkal rendelkezik a Karp-redukció? a. Asszociatív. b. Tranzitív. c. Minden NP-beli nyelv Karp-redukálható valamely P-hez tartozó nyelvre. d. Reflexív. Melyik állítás igaz az alábbiak közül? a. Ha L1 Karp-redukálható L2-re és L1 P, akkor L2 P. b. Ha L1 Karp-redukálható L2-re és L2 P, akkor L1 P. c. Ha L1 Karp-redukálható L2-re, akkor L1 P és L2 P. Az alábbi nyelvek közül melyekről tudjuk bizonyítani, hogy NP-teljesek? a. 3-SZÍN, b. A páros számok nyelve, c. 3-SAT d. A diagonális nyelv. Melyik állítást tudjuk bizonyítani? a. Az NP osztály megegyezik a P osztállyal. b. Ha P /= NP, akkor van olyan NP-hez tartozó nyelv, amelyik nincs P-ben és nem is NPteljes. c. Ha P /= NP, akkor minden NP-hez tartozó nyelv vagy P-ben van vagy NP-teljes. Mely állításokat tudunk igazolni? a. Ha a 3-SAT nyelv P-beli, akkor a SAT-nyelv is P-beli. b. Ha a prímszámok nyelve P-beli, akkor a SAT nyelv is P-beli. c. Ha a prímszámok nyelve NP-beli, akkor a SAT nyelv is NP-beli.
Kidolgozandó tételek A-G:
RAM-gép fogalma és számításai. (A RAM gépek és Turing gépekre vonatkozó külcsönös
file://D:\TeX4HT\testae04.html
2006.05.18.
6. oldal, összesen: 6
szimulációs tételek.) Nem determinisztikus Turing gépek definíciója és ezek számításai. H-M:
Kolmogorov bonyolultság. (Alapfogalmak, inercia tétel, összenyomhatatlan szavak, algoritmikus kiszámíthatatlanságra vonatkozó tétel.) A P és NP nyelvosztályok definíciója, kapcsolatuk.
N-S:
A rekurzív és a rekurzívan felsorolható nyelvosztályok kapcsolata. (Az R és RE osztályok definíciója, tartalmazási relációk, R jellemzése, a diagonális és az univerzális nyelv) Az NP osztály és a tanú fogalma.
Sz-Z:
Determinisztikus Turing gépek szimulációja. (A szimuláció fogalma, ’emlékezés’ a legutóbb beolvasott karakterekre, szimulációs tétel) NP-teljes nyelvek. (Karp redukció fogalma, NP-teljes nyelvek definíciója, Cook-Levin tétel.)
file://D:\TeX4HT\testae04.html
2006.05.18.