TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008 Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce obsahuje charakteristiku konstrukčních ocelí a jejich tepelného zpracování. Experimentální část je zaměřena na hodnocení tepelného zpracování vybraných tří typů cementačních ocelí. Získané výsledky by měly sloužit jako ukázky změny vlastností vlivem tepelného zpracování ve výuce materiálových předmětů. Jako hlavní zkušební metody byly použity: čelní zkouška prokalitelnosti, měření tvrdosti a metalografický rozbor zpracovaných vzorků. KLÍČOVÁ SLOVA Konstrukční oceli, cementační oceli, tepelné zpracování, čelní zkouška prokalitelnosti, tvrdost, mikrostruktura ÚVOD Oceli jsou díky velké rozmanitosti vlastností a širokým možnostem použití, jakož i objemem výroby nejvýznamnější skupinou konstrukčních materiálů. Mnohoznačné působení uhlíku i přísad v oceli v kombinaci s tepelným a mechanickým, event. chemicko-tepelným a tepelně mechanickým zpracováním často umožňují dosahovat téměř stejných výsledných vlastností ocelí různými cestami. V technické praxi se používá velký počet značení ocelí. Oceli lze dělit podle různých hledisek, jakými jsou např.: • výrobní pochod (ocel martinská, konvertorová, elektrostruskově přetavovaná atd.), • stupeň desoxidace (ocel uklidněná, neuklidněná, polouklidněná), • způsob použití (konstrukční, nástrojové, na odlitky), • stupeň legování (uhlíkové, legované), • vhodnost k dalšímu zpracování (ocel k zušlechťování, k cementování atd.), • typický druh výrobku nebo průmyslový obor uplatnění (pružinová ocel, oceli pro jaderná energetická zařízení atd.). [5] První dvě hlediska jsou významná především z pohledu výrobce oceli a ovlivňují i ekonomii hutní výroby. Stupeň legování je významný pro výrobce i pro spotřebitele oceli. Ostatní hlediska jsou důležitá především pro spotřebitele oceli, i když některá nelze oddělit od metalurgických hledisek. Stanovit všeobecná pravidla pro volbu ocelí není možné. Můžeme se řídit jen určitými hledisky, zejména konstrukčními, provozními, výrobními a ekonomickými. Relativní důležitost hledisek je podmíněna značnou složitostí skutečných provozních podmínek za nichž má navrhovaná součást pracovat. TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ Konstrukční oceli Ocel se definuje jako slitina železa s uhlíkem a dalšími prvky, kde obsah uhlíku nepřesáhne 2,14 %, tj. jeho maximální rozpustnost v austenitu při eutektické teplotě. Uvedená hranice však platí jen u nelegovaných ocelí, protože legující prvky rozšiřují nebo zužují oblast gama. Podle obsahu uhlíku se oceli dělí na nízkouhlíkové (maximálně 0,25 %C), středně uhlíkové (0,25 až 0,60 %C) , vysokouhlíkové (nad 0,60 %C). Podle obsahu legujících prvků se oceli dělí na nízkolegované (maximálně 5 % legujících prvků), středně legované (5 až 10 % legujících prvků), vysokolegované (více než 10 % legujících prvků). Dle ČSN se konstrukční tvářené oceli rozdělují do osmi tříd jakosti: 1
Konstrukční oceli: • obvyklých jakostí (tř. 10, 11) • ušlechtilé o uhlíkové (tř. 12) o slitinové (tř. 13 – 16) o slitinové s vysokým obsahem legujících prvků (tř. 17). Mezi konstrukční oceli patří i cementační oceli. Při cementování se tvoří na povrchu součástek vrstva se slabě nadeutektoidním obsahem uhlíku, která je po zakalení tvrdá, takže součástky mají vysokou odolnost proti opotřebení a vyšší mez únavy. Základní materiál (tj. jádro) musí mít přitom vysokou houževnatost a dostatečně vysokou pevnost, aby se relativně slabá povrchově vrstva neprolamovala. Nelegované oceli se používají pouze na málo namáhané součástky s menší tloušťkou stěny, protože jejich prokalitelnost je malá a pevnost jádra po zakalení relativně nízká. Obsah uhlíku musí být nízký, připouští se maximálně 0,24 %.[4] Na cementování jsou vhodné oceli třídy 12. Na součástky s větší tloušťkou stěny, resp. velmi namáhané se používají nízkolegované oceli. Legující prvky ovlivňují obsah uhlíku, který se rozpustí při cementování v povrchové vrstvě, prokalitelnost a tím také deformace při kalení, pevnost jádra, tloušťku cementační vrstvy a její tvrdost. V praxi se používají nejvíce oceli značky 14 220, 16 220, 16 231, 16 520. Na cementování se používá často ocel značky 14 220. Tato ocel dobře snáší atmosféry o vysokém sytícím potenciálu. Kinetika sycení je pak závislá na teplotě, při které dochází k sycení a na vhodnosti poměrů sytící a difúzní periody. Její nevýhodou je vysoký rozptyl pevnosti po tepelném zpracování (800 až 1450 MPa), protože má široké pásmo prokalitelnosti [4]. Pokud se žádají vysoké plastické vlastnosti, používají se oceli s přísadou niklu (třída 16), obvykle v kombinaci s chromem. Protože nikl zvyšuje aktivitu uhlíku, snižuje jeho obsah v povrchové vrstvě, ale zvyšuje difúzní rychlost. Vysokou pevnost a dobrou houževnatost je možno získat vhodnou kombinací chromu a niklu. Chromniklové oceli používané u nás je možno rozdělit do dvou skupin. Oceli prvé skupiny obsahují asi 1,5 % niklu a 1 % chromu. U ocelí druhé skupiny byl zvýšen obsah niklu na 3 až 5 %, obsah chromu zůstal stejný. Oceli se zvýšeným obsahem niklu mají vysokou pevnost jádra, takže jsou vhodné na ozubená kola se slabšími zuby, na kterých nesmí být silná cementovaná vrstva. Je však nutno počítat s poněkud menší tvrdostí povrchu, protože v matrici zůstává relativně vyšší obsah zbytkového austenitu. Do prvé skupiny patří ocel 16 220 a 16 420.[4] Na součástky s větší tloušťkou stěny se používají chrom-nikl-molybdenové oceli, které mají vysokou prokalitelnost, takže je možno kalit na vzduchu i dílce s větší tloušťkou stěny. Aby bylo možno cementovat za vyšších teplot a po cementaci kalit z cementačních teplot, byly vyvinuty oceli s přísadou titanu (14 223, 14 231). Titan tvoří s uhlíkem stabilní karbid, který se rozpouští v austenitu až při vysokých teplotách, takže brání růstu zrna. Oceli s titanem mají vyšší obsah uhlíku, protože se jeho část váže na karbid.[4] Tepelné zpracování Tepelným zpracováním rozumíme záměrné využívání fázových a strukturních přeměn v tuhém stavu ke změně struktury a tím k získání požadovaných mechanických nebo strukturních vlastností výrobku nebo polotovaru. [1] Tedy jeho základem je znalost kinetiky a mechanismu fázových a strukturních přeměn v tuhém stavu, ale dané oceli o určitém složení a struktuře je třeba přiřadit představu konkrétního zpracovávaného předmětu o určitém tvaru a rozměrech. Důležitým se stává faktor vnitřních pnutí a jejich změn při tepelném zpracování a s ním související otázka tvarové a rozměrové stability. [3] Na rozdíl od ostatních strojařských technologií (obrábění, tváření) nedochází při tepelném zpracování ke změně tvaru součásti (resp. je tato změna nežádoucí), ale pouze k požadovaným změnám vlastností použitého výrobku. Tepelné zpracování spočívá v principu ohřevu na požadovanou teplotu, výdrži na této teplotě a ochlazování určitou rychlostí, tzn. požadované změny struktury a vlastností se dosáhne řízenými změnami teploty. Základními druhy tepelného zpracování je žíhání a kalení: Žíháním nazýváme postup tepelného zpracování, při kterém se výrobky ohřívají na určitou teplotu a po výdrži následuje (zpravidla pomalé) ochlazování. Cílem je pak dosáhnout struktury tvořené stabilními fázemi a pokud se v některých způsobech žíhání ocelí objevují také fáze nerovnovážné, není jejich tvorba záměrná a většinou je dokonce nežádoucí. Účelem žíhání bývá nejčastěji: vyrovnání rozdílů v chemickém složení, odstranění nerovnosti struktury, 2
zjemnění struktury, snížení zbytkových pnutí, zotavení deformovaných zrn, dosažení nízké tvrdosti. Žíhání obvykle rozdělujeme na: • žíhání bez překrystalizace ○ žíhání ke snížení zbytkových pnutí ○ žíhání rekrystalizační ○ žíhání na měkko • žíhání s překrystalizací ○ normalizační žíhání ○ žíhání základní ○ izotermické žíhání ○ homogenizační (difúzní) žíhání. Účelem kalení je zvýšení tvrdosti oceli vytvořením částečně nebo zcela nerovnovážné struktury. Kalením nazýváme postup tepelného zpracování, při kterém se součást ohřeje na austenitizační teplotu (zpravidla u podeutektoidních ocelí 30 až 50 °C nad Ac3, u nadeutektoidních ocelí nad Ac1, u ocelí s vysoce stabilními karbidy na teplotu podstatně vyšší), po výdrži na této teplotě následuje ochlazení větší rychlostí než kritickou. Základní strukturou kalených ocelí je tedy struktura martenzitická nebo bainitická.[1] Schopnost oceli dosáhnout kalením zvýšené tvrdosti se nazývá kalitelnost. Vlastnost oceli dosáhnout při ochlazování větší rychlosti, než je rychlost kritická, určité (maximální) tvrdosti, se nazývá zakalitelnost (tento název není normován) a závisí téměř jen na obsahu uhlíku rozpuštěného v austenitu. Prokalitelnost oceli je schopnost oceli dosáhnout při kalení určité tvrdosti do určité hloubky. Ochlazovací rychlost na povrch kaleného kusu je vždy podstatně větší než v jeho středu. Úplné prokalení v celém průřezu nastane tehdy, když i uvnitř kusu se dosáhne nebo překročí kritická rychlost ochlazování. Pokud je kritické rychlosti ochlazování dosaženo jen do určité hloubky pod povrchem, je na martenzit zakalena jen povrchová vrstva a jádro je tvořeno perlitem nebo bainitem. Účelem kalení zejména u konstrukčních ocelí, není zpravidla dosažení zvýšené tvrdosti jen na povrchu předmětu, ale v celém jeho průřezu. Proto se pro určitý průřez kaleného kusu a použitý ochlazovací prostředek musí volit ocel s vhodnou kritickou rychlostí ochlazování.[2] V praxi tepelného zpracování se setkáváme s různými postupy kalení. Volba vhodného způsobu závisí zejména na požadovaných vlastnostech kaleného výrobku, jeho velikosti i tvaru a druhu použité oceli.[1] Jedná se zejména o: • kalení základní (nepřetržité) • kalení lomené (přetržité) • kalení termální • izotermické kalení. Popouštění je ohřev kaleného předmětu na teplotu vyšší, než je obvyklá teplota místnosti, nejvýše však na teplotu těsně pod bodem Ac1, výdrž na této teplotě k vytvoření struktur blížících se rovnoměrnému stavu u oceli s martenzitickou nebo bainitickou strukturou a další ochlazení na teplotu okolí způsobem vhodným pro danou ocel. Účelem popuštění u konstrukčních ocelí je snížení tvrdosti (pevnosti) za současného zvýšení plastických vlastností.[2] Fázové přeměny, ke kterým dochází, se týkají nejen základních fází (martenzitu a zbytkového austenitu), ale i minoritních fází (karbidů, karbidonitridů aj.), které buď již existují v zakaleném stavu nebo vznikají během popouštění. Podle výše popouštěcí teploty a účelu se popouštění rozděluje na dvě skupiny: • popouštění při nízkých teplotách (do 350 °C) – účelem tohoto popouštění je snížení vnitřních pnutí po kalení, zmenšení podílu zbytkového austenitu, zlepšení houževnatosti, popř. stabilizace rozměrů. • popouštění při vysokých teplotách – účelem tohoto popouštění je získání struktur s příznivějšími mechanickými vlastnostmi, zejména s vysokou houževnatostí při vysoké mezi kluzu a mezi únavy. Patří sem i popouštění ocelí na sekundární tvrdost. Pro celkové zpracování, tj. martenzitické event. bainitické kalení po němž následuje popouštění při vysokých teplotách, se používá názvu zušlechťování. Podstatou všech způsobů chemicko-tepelného zpracování je úmyslně vyvolaná změna chemického složení oceli v povrchových vrstvách, která se projeví zvýšenou tvrdostí povrchu a jeho odolnosti proti opotřebení. Jádro součásti má tvrdost mnohem nižší a je houževnatější. [2] Chemicko tepelným zpracováním rozumíme procesy, při kterých dosahujeme požadované změny struktury a vlastností tepelným zpracováním provázaným změnami chemického složení zpracovávaného výrobku. Difúzním sycením povrchu výrobku různými prvky (kovy i nekovy) je možno dosáhnout rozdílných mechanických nebo 3
fyzikálně-chemických vlastností povrchu a jádra. Těchto vlastností je možno v zásadě dosáhnout dvěma způsoby: • Úpravou chemického složení povrchu výrobku a následujícím tepelným zpracováním (např. cementace) • Pouze samotnou úpravou chemického složení (např. nitridace). Základními způsoby chemicko-tepelného zpracování je cementování a nitridování. Cementování je sycení povrchu ocelového předmětu uhlíkem obsaženým v tuhém, kapalném nebo plynném prostředí, při teplotě nad Ac3. Ve správně nauhličeném povrchu má být obsah uhlíku 0,85 %. Hloubka cementované vrstvy je nejčastěji do jednoho milimetru, jen zcela výjimečně více než dva milimetry. Obsah uhlíku v cementované vrstvě vyšší než 1 % se projeví vyloučením nadeutektoidních karbidů, které jsou nebezpečné tehdy, jsou-li vyloučeny na hranicích zrn, neboť velmi snižují houževnatost cementované vrstvy. Obsah a rozložení uhlíku v ní závisí na použitém cementačním prostředí, na výši cementační teploty, době výdrže na cementační teplotě a na chemickém složení cementované oceli, především na obsahu uhlíku a karbidotvorných prvků.[2] Oceli po cementaci musí být dále tepelně zpracovány, především kaleny a popouštěny, aby se využilo zvýšeného obsahu uhlíku pro dosažení větší tvrdosti povrchu.[2]. Způsoby tepelného zpracování po nauhličení jsou ukázány na obr. 1.
Obr. 1: Schéma způsobů kalení po nauhličení (A – přímé z cementační teploty, B – přímé s přichlazením, C – s podchlazením, D – na jádro, E – na vrstvu, F – dvojité kalení [1] Nitridování je sycení povrchu ocelového předmětu dusíkem v plynném nebo kapalném prostředí při teplotě pod Ac1 (především v rozmezí tepot 470 až 580 °C). Předmět je před nitridováním opracován a tepelně zpracován. Nitridováním se získá tenká, velmi tvrdá povrchová vrstva odolná proti otěru, která zvyšuje i odolnost součástí proti únavě a korozi. Nitridované součásti se již dále tepelně nezpracovávají. Při nitridování vytváří dusík vniklý do oceli v povrchové vrstvě nitridy a zvyšuje její tvrdost. Zvýšení tvrdosti je malé u uhlíkových ocelí, výrazně se projevuje u ocelí obsahujících chrom a hliník. Optimální výchozí struktura před nitridováním je sorbit. Experimentální část Problematika tepelného zpracování konstrukčních ocelí je velmi široká, jak z hlediska různých typů ocelí, tak i z hlediska různých druhů tepelného zpracování. Jako cíl této práce bylo vybráno tepelné zpracování cementačních ocelí. Nemělo by se jednat o vlastní nasycování povrchu uhlíkem (cementování), ale o zpracování po cementaci tj. zejména chování jádra cementovaného výrobku při tepelném zpracování (kalení po vlastní cementaci). Jedná se tedy především o vliv austenitizační (kalící) teploty a druhu ochlazovacího prostředí na mikrostrukturu a mechanické vlastnosti (tvrdost) součásti. Jako experimentální oceli byly zvoleny tři základní představitelé uhlíkových, chrommaganových a niklových cementačních ocelí, tj. oceli 12 020, 14 220 a 16 420. Jejich chemické složení je zobrazeno v tabulce 1.
4
chemické složení (hmotnostní %) C
Mn
Si
P
S
Cr
Ni
Cu
Mo
V
Ti
W
Al
Co 0,006
12 020
0,146
0,674
0,238
0,014
0,031
0,065
0,055
0,105
0,011
0,001
0,003
0,003
0,017
14 220
0,207
1,223
0,301
0,018
0,043
1,080
0,033
0,045
0,016
0,004
0,002
0,005
0,017 0,004
16 420
0,159
0,582
0,228
0,013
0,031
0,748
3,228
0,213
0,050
0,006
0,002
0,013
0,033
0,043
Tab. 1: Chemické složení zkušebních materiálů Použití zkušebních ocelí: 12020 – méně namáhané strojní součásti silničních motorových vozidel určené k cementování se střední pevností v jádře po kalení, např. méně namáhaná ozubená kola, vačkové hřídele, vložky, větší řetězová kola, pouzdra, vodítka. Ve stavu žíhaném na háky jeřábů, výtahů apod. součásti k cementování lisované z plechu. [6] 14 220 – vhodná pro strojní součásti pro zušlechťování do průměru 35 mm, k cementování s velkou pevností v jádře, např. hřídele, ozubená kola, vačkové hřídele, zdviháky ventilů, pístní čepy, zubové spojky.[7] 16 420 – na namáhané strojní součásti, určené k cementování s vyšší pevností a vysokou houževnatostí v jádře, jako hřídele, drážkové hřídele, ozubená kola [8] V této práci bylo zvoleno pět teplot ohřevu (750, 820, 900, 1050 a 1200 °C). Výdrž na teplotě ohřevu byla ve všech tepelných zpracování stejná, a to 20 minut. Pro ochlazování byly zvoleny čtyři ochlazovací prostředí (voda, olej, vzduch, pec). Vlastní postup tepelného zpracování byl u všech tří ocelí stejný a můžeme ho vidět v tabulce 2 i s označením vzorků. teplota [°C]
čas [min]
ochlazovací prostředí voda
olej
vzduch
pec
750
20
1
2
3
4
820
20
5
6
7
8
900
20
10
11
12
13
1050
20
14
-
15
16
1200
20
17
-
18
19
Tab. 2: Postup tepelného zpracování a označení vzorků Jominyho zkouška čelní prokalitelnosti Zkouška je vhodná zejména pro středně prokalující oceli, jedná se o jednoduchou zkoušku, dobře reprodukovatelnou, která nespotřebuje mnoho materiálu. Jominyho zkouška prokalitelnosti spočívá v ochlazování přímo z kalící teploty. Ohřátý vzorek je uchycen v přípravku, tak aby na čelo vzorku mohla ze spodní části stále proudit voda o tlaku asi 65±10 mm vodního sloupce. Nežli je vzorek na svém místě v přípravku, proudu vody brání clona, která se poté odstraní. Tím dochází k prudkému ochlazení čela a postupnému chladnutí vzorku od čela až k hlavě, za kterou je vzorek uchycen. Rychlost ochlazování je tedy největší na kaleném čele a se vzrůstající vzdáleností od něj se plynule zmenšuje. Po zakalení se vybrousí na válcovém povrchu dvě plošky ležící proti sobě, do hloubky 0,5 mm, na kterých se zjišťuje tvrdost HRC nebo HV v postupně se zvětšující vzdálenosti od kaleného čela. Zjištěné hodnoty tvrdosti v jednotlivých bodech se vynášejí do diagramu a jejich spojením vzniká křivka která charakterizuje prokalitelnost 5
zkoušené oceli. Dále se u Jominyho zkoušky prokalitelnosti určuje ideální nebo kritický průměr prokalitelnosti. Tyto průměry lze stanovit z diagramu určením vzdálenosti od kaleného čela tělesa, ve které tvrdost má hodnotu odpovídající 50 % martenzitu. Vzhledem k hodnocení materiálů s malou prokalitelností byla tvrdost měřena v následujících vzdálenostech od čelní kalené plochy: 1 – 2 – 3 – 4 – 5 – 7 – 9 - 11 – 13 – 15 – 20 – 30 – 40 – 50 – 60 – 70 – 80 - 90 mm. Měření bylo prováděno podle Vickerse a zatížení bylo zvoleno 30 kp po dobu 15 s. Naměřené hodnoty jsou uvedeny na obr. 2.
500 450 400
tvrdost HV30
350 300
12020 14220 16420
250 200 150 100 50 0 0
20
40
60
80
100
vzdálenost od čela zkoušky /mm/ Obr. 2: Graf závislosti kritického průměru válce na vzdálenosti od kaleného čela Výsledky: Pro ocel 12 020 byla zjištěna tvrdost struktury s 50 % martenzitu (0,146 %C - 295HV) ve vzdálenosti 1,9 m od čela, z čehož vyplývá hodnota ideálního prokalitelného průměru DI = 16 mm. Pro ocel 14 220 byla zjištěna tvrdost struktury s 50 % martenzitu (0,207 %C – 318HV) ve vzdálenosti 7,2 mm od čela, z čehož vyplývá hodnota ideálního prokalitelného průměru DI = 51 mm. Pro ocel 16 420 byla zjištěna tvrdost struktury s 50 % martenzitu(0,159 %C – 300HV) ve vzdálenosti 13,2 mm od čela, z čehož vyplývá hodnota ideálního prokalitelného průměru DI = 76 mm. Tvrdost Pro zjištění hodnot tvrdosti tepelně zpracovaných vzorků byl použit tvrdoměr HPO 250. Vtisky byly provedeny na metalografických výbrusech při zatížení 30 kp po dobu 15 s. Naměřené hodnoty tvrdosti jsou přehledně uvedeny na obr. 3.
6
500 450
Tvrdost HV30
400 350 300 250
voda
200
olej vzduch
150
pec
100 50 0 750°C
820°C 12020
900
750°C
820°C
900
14220
750°C
820°C
900
16420
Obr. 3: Závislost tvrdosti na austenitizační teplotě a způsobu ochlazování Výsledky: • 12 020 – nejvyšší hodnota tvrdosti byla zjištěna na vzorku ochlazeném do vody z teploty 820°C (270 HV), což odpovídá zvýšení 2,47 x vůči ochlazení v peci (110 HV). Již při ochlazování z teploty 750°C dochází ke zpevnění na 236 HV. Vliv ostatních ochlazovacích médií na hodnoty tvrdosti je malý. • 14 220 – teplota 750°C neovlivňuje význačně hodnotu tvrdosti. Nejvyšší tvrdost byla naměřena na vzorku ochlazeném do vody z teploty 900°C (453 HV), což odpovídá zvýšení 3,12 x vůči ochlazení v peci (145 HV). Tvrdost vzorků ochlazených do oleje se přibližuje vzorkům ochlazeným do vody. • 16 420 – již při austenitizační teplotě 750°C dochází k výraznému zpevnění a vliv změny této teploty je nízký. Nejvyšší tvrdost byla zjištěna na vzorku ochlazeném do vody z teploty 820°C (422 HV), což odpovídá zpevnění 2,22 x vůči ochlazování v peci (190 HV). Tvrdost vzorků ochlazovaných do oleje je jen o málo nižší než ochlazovaných do vody. I při ochlazení na vzduchu dochází ke zvýšení tvrdosti na cca 260 HV. Metalografické pozorování V této práci pro metalografické hodnocení mikrostruktur byl použit světelný mikroskop Nikon Optiphot 100S a software pro obrazovou analýzu Lucia [9]. Příprava metalografických vzorků se skládala z broušení, leštění a vyvolání mikrostruktury. Vyvolání mikrostruktury se uskutečnilo leptáním 3% Nitalem. Na obr. 4 jsou ukázky mikrostruktur tepelně zpracovaných vzorků, kde je zřejmé, že režim tepelného zpracování má vliv na mechanické vlastnosti (tvrdost) oceli. Z obr. 4 A, B je vidět vliv ochlazovacího prostředí. Při ochlazování do vody se výsledná struktura skládá z martenzitu a feritu, ale při ochlazování na vzduchu je výsledná struktura feriticko-perlitická. Na obr. 4 C a D si můžeme všimnout vlivu austenitizační teploty, kdy při teplotě 750°C nedošlo zcela k překrystalizaci. Vliv ochlazovacího prostředí u oceli 14 420 je zobrazen na obr. 4 E, F.
7
A) 12 020 – 900°C / voda
B) 12 020 – 900°C / vzduch
C) 14 220 – 750°C / voda
D) 14 220 – 900°C / voda
E) 16 420 – 900°C / voda
F) 16 420 – 900°C / vzduch
Obr. 4: Ukázky mikrostruktur tepelně zpracovaných vzorků
8
ZÁVĚR A DOPORUČENÍ Tepelné zpracování cementačních ocelí po nauhličování je složité vzhledem k různé austenitizační (kalící) teplotě cementační oceli a nauhličené povrchové vrstvy (obr. 1). Dalším ovlivňujícím faktorem je v některých případech nutnost dodatečného třískového obrábění, tedy požadavek na obrobitelnost jádra. Úkolem této práce by mělo být vytvoření podkladů pro cvičení z předmětu „Tepelné zpracování a slinování“, event. dalších vyučující tuto problematiku, které by především obsahovaly: • porovnání vlastností vybraných cementačních ocelí • ověření, že oceli s obsahem C < 0,2 % jsou kalitelné • potvrdit, že mechanické vlastnosti závisí (jsou ovlivnitelné) na podmínkách tepelného zpracování po cementaci. Ocel 12 020 – nejnižší prokalitelnost určuje nutnost použití vody jako ochlazovacího média. Vzhledem k absenci substitučního zpevnění (legujícími prvky) a nejnižšímu obsahu uhlíku (0,146 %) vykazuje pouze nízké hodnoty tvrdosti po zakalení (max. 270 HV, což odpovídá cca Brinellově pevnosti 970 MPa). Ocel 14 220 – vlivem legujících prvků dochází nejen k zvýšení prokalitelnosti a tvrdosti, ale i k posunu transformačních teplot k vyšším hodnotám (austenitizační teplota 750°C v podstatě není dostatečná pro překrystalizaci). Nejvyšší hodnota tvrdosti po zakalení do vody z teploty 900°C (455 HV, což odpovídá Brinellově pevnosti cca 1640 MPa) je ovlivněna zejména obsahem uhlíku (0,207 %). Ocel 16 420 – u této oceli naopak dochází k obrácenému posunu transformačních teplot. Vysoká hodnota prokalitelnosti zaručuje nejen minimální rozdíl v tvrdosti mezi ochlazování ve vodě a v oleji, ale i zvýšení mechanických vlastností při nižších rychlostech ochlazování (vzduch). Výsledky měření tvrdosti tepelně zpracovaných vzorků i metalografického rozboru potvrdily, že ochlazováním nadkritickou rychlostí z oblasti rovnovážného austenitu vzniká mikrostruktura jehlicovitého (dislokačního) martenzitu a tato změna je doprovázena změnou mechanických vlastností (tvrdosti). Volbou tepelného zpracování (zejména stupněm austenitizace tj. kalící teplotou) můžeme ovlivnit vznikající mikrostrukturu a tím mechanické vlastnosti po cementaci. LITERATURA [1] KRAUS, V. Tepelné zpracování a slinování. Plzeň: ZČU, 2000. [2] JECH, J. Tepelné zpracování oceli. Praha: SNTL, 1983. [3] PÍŠEK, F., JENÍČEK, L., RYŠ, P. Nauka o materiálu I. Praha: Academia, 1975. [4] FREMUNT, P., PODRÁBSKÝ, T. Konstrukční oceli. Brno: CERM, 1996. [5] PLUHAŘ, J. A KOL. Nauka o materiálech. Praha: SNTL – Alfa, 1989 [6] Materiálový list oceli 12 020 [7] Materiálový list oceli 14 220 [8] Materiálový list oceli 16 420 [9] JANDOŠ, F., GEMPERLE, A., ŘÍMAN, R. Využití moderních laboratorních metod v metalografii. 1.vyd., Praha: SNTL, 1985
9