ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE
FAKULTA LESNICKÁ A ENVIRONMENTÁLNÍ Výzkumný projekt MSM 414100007 Využití vzácných lesních dřevin v polyfunkčním lesním hospodářství a komplexu lesy – dřevo ČR
Závěrečná zpráva
Prof. Ing. Jaroslav Kobliha, CSc. odpovědný řešitel
Praha Únor 2005
1
Závěrečná zpráva o řešení výzkumného záměru Identifikační kód MSM 414100007 Název výzkumného záměru Využití vzácných lesních dřevin v polyfunkčním lesním hospodářství a komplexu lesy – dřevo ČR Příjemce Česká zemědělská univerzita v Praze Vykonavatel Fakulta lesnická a environmentální Řešitel Prof. Ing. Jaroslav Kobliha, CSc. Doba řešení 1.1.1999 – 31.12.2004
1. Předpokládané cíle řešení výzkumného záměru 1.1.
Cíle řešení výzkumného záměru v letech 1999-2003, strategie jejich dosažení a předpokládané výsledky
V oblasti šlechtění je obecným cílem výzkumného záměru vyšlechtění vzácných dřevin na vysokou produkci, jakost dřeva a odolnost. Tento cíl bude naplňován šlechtitelskými programy, jejichž součástí bude základna reprodukčních výsadeb a ověřovacích testů. Naplňování tohoto cíle je však velmi dlouhodobé a bude vyžadovat celou dobu řešení výzkumného záměru, resp. bude nezbytné jeho pokračování i po roce 2003, aby tato práce měla vůbec smysl. V průběhu let 1999-2003 půjde spíše o selekci stromů, sběry reprodukčního a šlechtitelského materiálu a přípravu zakládání uvedených výsadeb. V návaznosti na selekci stromů budou založeny explantátové kultury in vitro a bude stanoveno složení živných medií (1999-2001). Budou založeny experimenty s množením selektovaných genotypů pomocí řízků (1999-2001), budou rozpracovány metody aklimatizace rostlin vypěstovaných in vitro a pomocí řízků (2000-2002), budou porovnány v růstu rostliny vypěstované in vitro a pomocí řízků s rostlinami vypěstovanými ze semen (2001-2003). Cíly a etapami v oblasti zakládání a pěstování porostů se zastoupením vzácných dřevin je vyhledání zdrojů reprodukčního materiálu těchto dřevin a jeho získání (1999-2000), ověření způsobu skladování a stratifikace semen vzácných dřevin (1999-2001), rozpracování způsobů zakládání porostů s příměsí vzácných dřevin (2000-2002), analýza stavu a vývoje porostů s příměsí vzácných dřevin (2000-2002) a doporučení pro pěstování porostů s příměsí vzácných dřevin (2000-2003). Cílem záměru v oblasti ochrany vzácných dřevin je inventarizace potenciálních škodlivých činitelů, negativně ovlivňujících jejich růst a kvalitu produkce, zejména dřeva; výzkum bionomie, následné stanovení preventivních a obecných opatření proti jednotlivým škodlivým činitelům. Pozornost bude věnována i gradologii. Přirozeným nepřátelům a možnostem jejich potenciálního využití. 1. etapa - zhruba 2 roky - inventarizace současného stavu škodlivých činitelů na vymezeném území. 2. etapa - doba trvání zhruba 2 roky pokračování prací specifikovaných v 1. etapě. V závislosti na stupni rozvoje, množství a poškozování sadebního materiálu bude hlavní pozornost věnována škůdcům a patogenům nejmladších vývojových stadií ve školkařském provozu, včetně navržení vhodných metod prevence a ochrany. Vedle toho bude pozornost soustředěna i na druhy poškozující kvalitu produkce, zejména na houbové organismy poškozující dřevo. Protože jde o velmi rozptýlené jednotlivé stromy v rámci ucelených porostů, je nutno najít vhodnou technologii těžby těchto stromů a zejména soustřeďovací technologii, včetně návrhu vhodných mechanizačních prostředků. Tyto technologie musí snížit nebo zcela omezit
2
možnosti poškozování okolo stojících stromů a musí být ekonomické, aby těžba těchto specifických dřevin byla pro vlastníka lesa přínosem a pro celý lesnicko-dřevařský komplex byla ekonomická. Dalším cílem VZ je vypracování zkušební metodiky s přesným určením, které vlastnosti dřeva zjišťovat a podle jakých kriterií (do 31. 12. 1999); zajištění vzorkového materiálu s týmem, který vyhledává v porostech dané dřeviny (do 31. 12. 2001); manipulace vzorníků na zkušební tělesa (do 31. 12. 2002); shrnutí výsledků a vypracování tabulek, ve kterých budou známy technické parametry dřeva a jejich ekonomické zhodnocení pro potřeby trhu (do 31. 12. 2003). Potřebná zařízení (kladiva na přerážecí práci, tvrdoměr) budou využívána i při cvičeních z předmětů "Nauka o dřevě" a "Zpracování dřeva", stejně jako pro diplomové a doktorandské práce. V ekonomické oblasti bude v 1. etapě, ve spolupráci s kolektivem z oblasti těžby a zpracování dřeva, uskutečněna analýza možností zpeněžení dřeva určitých dřevin a v druhé etapě bude provedeno ekonomické vyhodnocení celkového využití vzácných dřevin. Ekologické vyhodnocení využití vzácných dřevin povede ke zpracování jednoduchého modelu dopadu použití vzácných dřevin na stabilitu a diversitu lesních ekosystémů na základě kvantitativního výzkumu ptačích společenstev, v porostech s výskytem sledovaných dřevin v jarním (hnízdním) i zimním aspektu (ptáci jsou z důvodů snadné sledovatelnosti použiti jako modelová skupina a pro své vrcholové postavení v potravních řetězcích i jako indikátor diversity celých živočišných společenstev). V dílčím úkolu šlechtění budou výstupem soubory výběrových a šlechtitelských stromů vzácných lesních dřevin, šlechtitelský reprodukční materiál, posléze dle připravenosti šlechtitelské výsadby. Dále budou výstupem poznatky o šlechtitelském potenciálu vzácných lesních dřevin, metodách reprodukce vzácných lesních dřevin, zakládání a využívání šlechtitelských výsadeb těchto dřevin ve formě závěrečné zprávy, vědeckých a odborných publikací. V dílčím úkolu věnovanému vegetativnímu množení vzácných dřevin bude výstupem vypracování vhodných metod množení explantátovými kulturami in vitro a řízkováním, které budou uvedeny v závěrečné zprávě a vědeckých publikacích. V dílčím úkolu zakládání a pěstování lesů budou výstupem metodiky skladování a stratifikace semen vzácných dřevin (2002), způsoby vhodného zakládání porostů s příměsí vzácných dřevin (2003), návrh směrnic pro pěstování porostů s příměsí vzácných dřevin (2003). V dílčím úkolu ochrany lesa budou výstupem prvá verze klíče k určování hmyzích škůdců zkoumaných dřevin (po 2 letech); v dalších letech pak prvá verze klíčového zpracování hub a hmyzích škůdců poškozujících dřevo zkoumaných dřevin; doplněná verze klíče k určování hmyzích škůdců s podrobnějšími údaji o jejich bionomii a návrhem možných obraných opatření; další publikace o jednotlivých druzích či komplexech druhů. V dílčím úkolu lesní těžby bude výstupem navržená technologie těžby a soustřeďování zkoumaných dřevin, včetně doporučené mechanizace; tyto výsledky budou uvedeny v závěrečné zprávě VZ a postupně publikovány v odborných časopisech. V dílčím úkolu na úseku technických vlastností dřeva bude předpokládaným výsledkem charakteristika kvality dřeva vzácných dřevin, formou zprávy a tabulek, které budou využívány ve výuce, výzkumu i obchodu. Výstupy budou formou knižní publikace a článků v odborných časopisech. Výsledkem v dílčím úkolu ekonomiky LH bude přehled možností zpeněžení dřeva vzácných dřevin a ekonomické vyhodnocení využití vzácných lesních dřevin; výsledky vyjdou formou závěrečné zprávy a vědeckých a odborných publikací. Předpokládanými výsledky dílčího úkolu ekologie bude vedle literární rešerše ornitologická studie a model dopadu použití vzácných lesních dřevin na stabilitu a diversitu
3
lesních ekosystémů. Konkrétními výstupy budou publikace těchto výsledků ve vědeckých a odborných časopisech. 1.2.
Cíle řešení výzkumného záměru v roce 2004 a předpokládané výsledky
Cíle výzkumného záměru v roce 2004 navazují na dosud formulované cíle pro roky 1999 – 2003. V oblasti šlechtění lesních dřevin bylo předesláno, že bude potřeba v práci na tomto poli pokračovat i po roce 2003 vzhledem k dlouhodobosti šlechtitelských aktivit na úseku šlechtění lesních dřevin s ohledem na jejich dlouhověkost. Budou prováděna rozsáhlá měření a šetření nejen na výsadbách zakládaných v rámci výzkumného záměru, ale dále i ve spolupráci s Lesy ČR na jejich výsadbách. Budou založeny další experimenty s explantátovými kulturami in vitro pro zpřesnění metodik u tohoto typu množení různých druhů lesních dřevin. Budou založeny pokusy nejen s orgánovými kulturami, ale také s kulturami embryogenními. Pozornost bude věnována sledování výsadeb výpěstků z explantátových kultur. Budou uskutečněna měření a šetření v experimentálních výsadbách, kde bude posouzeno odrůstání těchto lesních kultur a jejich lesnická zajištěnost. Zvláště bude hodnocen vliv vyvětvování na růst a vývoj třešní v čisté kultuře. Tyto poznatky opět vyžadují déledobější sledování. Pro ochranu vzácných lesních dřevin bude zpracován přehled škůdců a chorob vzácných lesních dřevin včetně fotodokumentace. Budou posouzeny další technickoekonomické parametry lesní těžby individuálně rozptýlených stromů vzácných lesních dřevin. Pozornost bude věnována sortimentaci jeřábu břeku a dalších dřevin na jiných lokalitách než dosud. Dále budou zjištěny technické vlastnosti dalších druhů vzácných lesních dřevin, konkrétně střemchy a lípy. Budou realizovány doplňkové ekonomické analýzy pro účely zpeněžení dřeva dalších dřevin a ekonomické hodnocení využitelnosti těchto dřevin. Budou uskutečněna doplňková ornitologická šetření pro charakteristiku biodiverzity dalších lesních ekosystémů.
4
2. Dosažené cíle a uplatněné výsledky 2.1.
Splnění cílů řešení
Předpokládané cíle řešení výzkumného záměru podle bodu 1 byly splněny. 2.2.
Stručná souhrnná charakteristika dosažených cílů řešení, přínos řešení výzkumného záměru
V nosné oblasti šlechtění lesních dřevin byla vytvořena soustava šlechtitelských, konkrétně reprodukčních a testovacích výsadeb. Jedná se o semenné sady, klonové archivy, testy potomstev a klonové testy lesních dřevin, konkrétně především třešně ptačí, hrušně obecné, lípy malolisté a jeřábu ptačího. Tyto výsadby se nacházejí na ŠLP Kostelec n. Č. l. (semenný sad, 2 klonové archivy, 1 test potomstev, 1 klonový test třešně ptačí, klonový test lípy malolisté, klonový test jeřábu ptačího, test potomstev hrušně obecné), v Lesích města Prostějova (semenný sad třešně ptačí), na VLS Velichov (semenný sad třešně ptačí), na LS LČR Lužná (semenný sad třešně ptačí). Zvláště významným přínosem je, že v případě semenných sadů na ŠLP Kostelec n. Č. l. a v Lesích města Prostějova byly založeny ve spolupráci se SRN, konkrétně Dolnosaským lesnickým výzkumným ústavem, semenné sady 2. generace. V těchto výsadbách proběhla měření a šetření, která byla publikována. Kromě měření a šetření v šlechtitelských výsadbách založených naším pracovištěm probíhala měření a šetření v řadě dalších výsadeb založených LČR a jinými lesnickými subjekty. Především byla provedena rozsáhlá šetření v semenných sadech ušlechtilých listnatých dřevin v rámci jejich inventarizace (Funda 2003, 2004 a,b). Bylo tak provedeno šetření ve všech semenných sadech daných lesních dřevin, které byly v ČR založeny. To znamená v semenném sadu jasanu ztepilého na LS LČR Jablunkov, 6 sadech jilmu horského (LS LČR Nové Hrady, Litvínov, Karlovice ve Slezsku, Frýdek – Místek, Svitavy), 2 sadech jilmu vazu (LS LČR Šternberk), 1 sadu jilmu habrolistého (LS LČR Mělník), 4 sadech javoru klenu (LS LČR Karlovice ve Slezsku, Frýdek – Místek, Svitavy, Vyšší Brod), 3 sadech lípy malolisté (LS LČR Milevsko, Mělník, Stříbro), v 1 sadu lípy velkolisté (LS LČR Třebíč), v 1 sadu olše lepkavé (LS LČR Křivoklát), ve 2 sadech jeřábu břeku (LS LČR Křivoklát, Buchlovice), v 1 sadu jeřábu oskeruše (LZ LČR Židlochovice) a 8 semenných sadech třešně ptačí (LS LČR Třebíč, Ostravice, Prostějov, Třeboň, Lužná, VLS Velichov, Lesy města Prostějova, ŠLP Kostelec n. Č. l.). Vedle toho bylo provedeno velmi podrobné testování klonů v semenném sadu jilmu horského na LS LČR Nové Hrady (Konopa 2000) a v semenném sadu lípy malolisté na LS LČR Milevsko (Řezbová 2003). Kromě zmíněných prací zaměřených na hodnocení semenných sadů ušlechtilých listnáčů (Noble Hardwoods) na LS LČR byla provedena měření a šetření v klonových testech testech třešně ptačí na LS LČR Pelhřimov (2 výsadby), LS LČR Český Krumlov (3 výsadby), LS LČR Kaplice (1 výsadba). Kromě těchto prací byla zpracována kvantitativní studie pro šlechtění břízy (Lstibůrek 2000, 20001). Práce na poli geneticko-šlechtitelském přinesly konkrétní výstupy ve formě šlechtitelských výsadeb (semenné sady, klonové archivy, matečnice, testy potomstev, klonové testy), které již slouží účelům šlechtitelského výzkumu, ale i praxe. Dále je to série poznatků o dědičnosti a proměnlivosti hospodářsky důležitých znaků, o kvetení a plodnosti semenných sadů, o růstu potomstev a klonů sledovaných druhů lesních dřevin, o vlivu škůdců, chorob a zdravotním stavu sledovaných stromů, o řadě kvalitativních znaků i o formě růstu stromů s ohledem na způsob jejich rozmnožení (generativní, vegetativní - řízkováním i orgánovými kulturami in vitro). Tyto poznatky byly získány ve výsadbách založených naším pracovištěm i v porostech a výsadbách založených péčí jiných subjektů, především LČR a jejich správ. Kromě poznatků 5
obecnějších i speciálních byla vytvořena komplexní studie o stavu všech semenných sadů ušlechtilých listnáčů v ČR jako podklad pro management a využívání těchto reprodukčních výsadeb. Kromě toho byly tyto poznatky a informace publikovány (viz. bod 3.1. – autoři: Funda, Hajnala, Kobliha, Konopa, Lstibůrek, Pospíšil, Řezbová, Vlček). Geneticko-šlechtitelská problematika řešená na katedře dendrologie a šlechtění lesních dřevin je v rámci tohoto výzkumného záměru základní a nosná a další odborné oblasti z ní do značné míry vycházejí. Šlechtění lesních dřevin se bezprostředně prolíná s problematikou vegetativního množení včetně explantátových kultur in vitro řešenou rovněž na katedře dendrologie a šlechtění lesních dřevin. Byly uskutečněny experimenty s řízkováním i kultivací ušlechtilých listnáčů in vitro. Byly zpracovány metodiky řízkování, především třešně ptačí, ale i technologie kultur in vitro pro lípu malolistou, jeřáb břek, jeřáb ptačí, jilm horský, jilm vaz, habr obecný, jasan ztepilý, javor klen, olši lepkavou, břízu bradavičnatou, třešeň ptačí. K této problematice je třeba uvést publikace z bodu 3.1. autorů: Chalupa, Mauleová, Ševčík, Vítámvás. Souhrnně se vyjádřil k této problematice Kobliha (2000). Dále se bezprostředně prolíná se šlechtitelskou problematikou zakládání a pěstování porostů se zastoupením vzácných lesních dřevin. V tomto směru bylo založeno několik výsadeb na ŠLP v Kostelci n Č. l., ale i jiných lesnických subjektů. Byla rozpracována také studie ke konstrukčnímu řešení stroje pro výsadbu daných dřevin (Burda 2001). Řada prací byla zaměřena na problematiku vývoje kultur třešně ptačí, na jejich přihnojování. Pozornost byla věnována také pěstování semenáčků olše lepkavé a hodnocení ohrožených břehových porostů. Růstu a vývoji třešně ptačí v dospívajících listnatých porostech se intenzivně věnoval kolektiv katedry pěstování lesů. Zvláštní pozornost přitom byla věnována půdotvorné a porostotvorné funkci třešně ptačí, ale i dalších listnatých dřevin. V bodě 3.1. jsou uvedeny publikace k této problematice autory Kupka, Möllerová, Podrázský, Remeš. Problematiku pěstování tzv. Noble Hardwoods shrnul Podrázský (2003). Na pěstování těchto dřevin bezprostředně navazuje problematika ochrany vzácných lesních dřevin proti škůdcům a chorobám. Těsně souvisí tato ochrana také se šlechtěním lesních dřevin. V řadě dříve zmíněných prací se šlechtitelskou problematikou je řešena např. citlivost třešně ptačí na poškození mšicemi (Hajnala 2003, Kobliha 2002), ale i citlivost jilmu horského na grafiózu (Konopa 2000, Funda 2004). Vlastní problematice se věnovala katedra ochrany lesů. Poznatky o škůdcích vzácných lesních dřevin a chorobách shromáždil Šrůtka (2002). Byly zde vytvořeny klíče pro určování hmyzu a hub. Specifická je lesní těžba vtroušených vzácných lesních dřevin. Technologie těžby a soustřeďování dříví ušlechtilých listnáčů rozvinula katedra lesní těžby (Gross 2001, 2002). S těžbou a produkcí dřevní hmoty souvisí bezprostředně problematika zpracování dřeva a to na základě zkoumání technických vlastností dřeva. Tato problematika byla řešena katedrou zpracování dřeva. Přehledné výsledky vlastností dřeva ušlechtilých listnáčů včetně tabelárního zpracování byly postupně dosaženy pro vybrané dřeviny: jeřáb břek (Zeidler 2001, 2003), třešeň ptačí (Zeidler 2002, 2004), střemchu hroznovitou a střemchu pozdní (Zeidler in print), lípu malolistou (Zeidler 2004). S těžebními a dřevařskými otázkami pochopitelně bezprostředně souvisí ekonomické parametry. Na ty se zaměřila katedra ekonomiky a řízení lesního hospodářství. Přehled možností zhodnocení a zpeněžení netradičních listnatých dřevin vytvořil především Bluďovský (2001). K této problematice přispěl u třešně ptačí také Podrázský (2002). Celkové zhodnocení ekonomických přínosů mimoprodukčních funkcí těchto lesních dřevin uskutečnil Šišák (1999a, b). Zvláštním doplňkem lesnických aspektů použití vzácných lesních dřevin je ekologické zhodnocení jejich významu na katedře ekologie a životního prostředí prostřednictvím zpracování ornitologických studií (Zasadil 2001a, b, 2002, 2003). Zasadil (2004) ocenil také celkový význam přimíšených dřevin pro diverzitu lesního ekosystému.
6
Není reálné vytvořit podrobnější přehled výsledků studií a experimentů ze všech sledovaných oblastí vědeckého výzkumu. Tyto výsledky jsou uvedeny v jednotlivých publikacích, jejichž pouhý přehled tvoří 12 stran. Celkové průběžné přehledy o pokračování výzkumu v rámci daného výzkumného záměru publikoval Kobliha (2001, 2002) na mezinárodních konferencích ve Vídni a Freiburgu. Z celkového počtu 65 publikací vzniklých v souvislosti s řešením tohoto výzkumného záměru bylo zveřejněno v zahraničí 10 publikací. V rámci řešení výzkumného záměru byly uspořádány pro jeho potřeby 3 vědecké konference a vydány 3 samostatné sborníky: Kobliha, J., Podrázský, V., Pulkrab, K. (ed.) 2001. Sborník z celostátní konference „Krajina, les a lesní hospodářství“. Kostelec nad Černými lesy, 22.-23.1.2000. ČZU v Praze v nakladatelství Lesnická práce, s.r.o. 241 p. Janeček, V., Kobliha, J. (ed.) 2002. Krajina, les a lesní hospodářství. Sborník z fakultní konference k 50. výročí ČZU. Kostelec nad Černými lesy, 25.9.2002. ČZU v Praze. 77p. Neuhöferová, P. (ed.) 2004. Krajina, les a lesní hospodářství. Výzkumné záměry FLE ČZU v Praze. ČZU v Praze v nakladatelství Lesnická práce, s.r.o.
7
3. Nejvýznamnější výsledky řešení výzkumného záměru 3.1.
Výsledky dosažené výhradně řešením výzkumného záměru
3.1.1. Publikace BLUĎOVSKÝ, Z. 2001. Předpokládané možnosti zhodnocení netradičních listnatých hospodářských dřevin (Assumed possibilities of non-traditional broadleaved commercial tree evaluation), Sborník z celostátní konference „Krajina, les a lesní hospodářství“, 1. díl, Kostelec n. Č. l., 22 – 23. 1. 2001, ISBN 80-213-0703-X, p. 96 – 101. BURDA, P. 2001. Nové konstrukční řešení stroje pro pěstování velkého sadebního materiálu a práci na nelesních půdách. Promotion stem of new forest machine for big planting stock breeding and for works on the agriculture lands. Sborník 2. ročníku Konference mladých vědeckých pracovníků , LF ČZU Praha, 23.5. 2001, ISBN 80-213-0777-3, p. 14 – 18. Abstract: This item is promotion of new forest machine. This planting machine is for large-sized plant and sapling replantig of forest trees. This is for establishmet of christmas trees plantation and for forestation of agricultural land. Key words: transplanter, tree planter, planting machine, sapling, large- sized plant, planting stock.. FUNDA, T. 2003. Inventarizace semenných sadů ušlechtilých listnatých dřevin v České republice. Inventory of Noble Hardwood Seed Orchards in the Czech republic. [Diplomová práce.] [Master thesis.] ČZU v Praze. 121 s. Abstract: This thesis aimed to cover all the seed orchards of Noble Hardwoods that had been established within the Czech Republic up to 2002. Inventory of these plantations including evaluation of flowering, damages caused by game, and health status of ramets was carried out in 2001 and 2002. Seed orchards with 11 Noble Hardwood tree species (European ash, European field elm, Europeanwhite elm, wych elm, sycamore, black alder, small-leaved linden, large-leaved linden, mountain ash, service tree, and wild cherry tree) were included in theinventory. Key words: Noble Hardwoods, seed orchards. FUNDA, T. 2004. Semenné sady rodu Ulmus v České republice. Seed Orchards of European Elms in the Czech Republic. In: Sborník ze IV. ročníku konference mladých vědeckých pracovníků „COYOUS 2003“ konané ve dnech 4. - 5.12.2003 v Praze. Fakulta lesnická a environmentální ČZU. 32-37. Abstract: There are three Elm species with different biological and ecological features occurring naturally in the Czech Republic – European field elm (Ulmus minor Mill.), European white elm (Ulmus laevis Pall.), and Wych elm (Ulmus glabra Huds.), which make up a valuable component of forest stands. They tolerate dusty urban environments as well as exhaust fumes. In many cases high resistance to salination and drought was observed among them. All the three species are subject to gene conservation and gene resources reproduction since their composition in forest stands has been steadily decreasing during last decades. The decrease is due to the Dutch elm disease (DED), which ends in the gradual death of elm trees. Seed orchards belong to the most important and effective tools for gene conservation of European elms. So far 8 seed orchards of elms have been established in the Czech Republic. 8
Key words: seed orchards, European elms, gene conservation, Dutch elm disease. FUNDA, T. 2004. Semenné sady rodu lípa (Tilia spp.) v České republice. Seed orchards of lime species (Tilia spp.) in the Czech Republic. In: Sborník z konference „Krajina, les a lesní hospodářství“ konané dne 29.11.2004 v Kostelci nad Černými lesy. ČZU v Praze v nakladatelství Lesnická práce, s.r.o. 9-14. Abstract: Three seed orchards of small-leaved linden and one of large-leaved linden have been established in the Czech Republic till 2002. Small-leaved linden is represented by 154 clones originating in natural forest regions Jihočeské pánve, Západočeská pahorkatina, Křivoklátsko and Český kras, Český les, and Polabí. In June 2002 inventory of clones including evaluation of mortality and flowering of ramets was carried out in seed orchards Vranice and Olbramov. 15 ramets flowered in the seed orchard Vranice while 55 ramets flowered in Olbramov. Large-leaved linden had been represented in one seed orchard by clones coming from the region of North Moravia. However, due to high incompatibility of grafts and rootstocks and subsequent high mortality of ramets, the seed orchard was removed from the list of reproductive material resources. All the seed orchards had been established as plantations of vegetatively propagated plus trees. Key words: seed orchard, small-leaved linden, large-leaved linden, flowering GROSS, J. 2001. Těžba a doprava vzácných lesních dřevin (Cutting and transport of noble forest tree species), Sborník z celostátní konference „Krajina, les a lesní hospodářství“, 1. díl, Kostelec n. Č. l., 22 – 23. 1. 2001, ISBN 80-213-0703-X, p. 87 – 89. GROSS, J. 2002. Sortimentace vzácných dřevin – břek, třešeň. Sorting of rare tree species – wild service tree, wild cherry. Sborník z fakultní konference k 50. výročí ČZU „Krajina, les a lesní hospodářství“, Kostelec n. Č. l., 25.9.2002. 6-11. HAJNALA, M. 2002. Testování potomstev a klonů třešně ptačí, lípy malolisté, hrušně obecné a jeřábu ptačího v pokusných výsadbách na ŠLP Kostelec n. Č.l. Testing of progenies and clones of wild cherry, lime tree, wild pear and European mountain ash in experimental plantations at School Forest Enterprise Kostelec n. Č. l. Diplomová práce, LF ČZU v Praze, 61 s., 37 p. Abstract: Results obtained in 2001 and 2002 from evaluations of damage of wild cherry (Prunus avium L.) by aphids (Myzus cerasi), flowering and fructification, growth parameters (hight and diameter) and fenology of leaf-falling are shown in this paper. Clones of lime tree were tested on growth form and growth, clones of European mountain ash were tested on growth and progeny of wild pear was tested on total growth too. Evaluations were received from plantations at School Forest Enterprise Kostelec nad Černými lesy. There were evaluated 8 plantations together. Obtained data were divided into groups and compared. Individual clones and plants were also controled for the mortality. Key words: Wild cherry, mountain ash, lime, pear tree, phenology, flowering. HAJNALA, M. 2003. Hodnocení poškození šlechtitelského materiálu třešně ptačí mšicemi (Myzus cerasi). Evaluation of damage of Wild Cherry breeding material by aphids (Myzus cerasi). In: Sborník z konference COYOUS 2003 – IV. ročník konference mladých vědeckých pracovníků, ČZU Praha, 4.-5.12. 2003, 14 – 19. Abstract:
9
Results obtained in 2003 from evaluations of damage of Wild Cherry from evaluations of damage of wild cherry (Prunus avium L.) by aphids (Myzus cerasi) are shown in this paper. Evaluations were received from plantations at School Forest Enterprise Kostelec nad Černými lesy and Forest Districts of Forests of Czech Republic Pelhřimov, Český Krumlov and Kaplice. There were evaluated 11 plantations together. Obtained data were divided into two groups and compared. Individual clones and plants were also controled for the mortality. Key words: clonal test, clonal archive, seed orchard, progeny teyt, aphids, Prunus avium (L.) CHALUPA, V. 1999. Somatic embryogenesis in linden /Tilia spp./. In: Jain, S.M., Gupta, P.K., Newton, J.R. /eds./ - Somatic embryogenesis in woody plants, Vol. 5. Kluwer Acad. Publ., Dordrecht, Boston, London, ISBN 0-7923-5553-9, s. 31 – 43. CHALUPA, V. 2000. In vitro rozmnožování dubu letního (Quercus robur L.) a jeřábu břeku (Sorbus torminalis /L./ Cr.). In vitro propagation of pedunculate oak and wild service tree. Sborník konference ČZU „Zachování a reprodukce genových zdrojů lesních stromů“, 1, ISSN/ISBN 80-213-0718-8, p. 18 – 20. Abstract: In vitro propagation of Quercus robur has been achieved by axillary bud culture and via somatic embryogenesis. Secondary somatic embryogenesis was efficient method for production of large number of adventive somatic embryos. Key words: in vitro propagation, pedunculate oak, crane. CHALUPA, V. BŘEZINOVÁ, A. 2001. Indukce somatických embryí u lípy malolisté (Tilia cordata Mill.) a jejich konverze v rostliny. Induction of Tilia cordata somatic embryos and their conversion in plants. In: Sborník konference ČZU "Reprodukce genových zdrojů lesních dřevin metodami in vitro", Česká zemědělská univerzita v Praze, 1, s. 2-3. Abstract: Induction of somatic embryos of small- leaved lime (Tilia cordata Mill.) and their conversion in plants. Induction of embryogenic tissue of Tilia cordata was induced in excised immature and mature zygotic embryos and in leaf segments cultured on modified MS medium supplemented with 2,4 D. Conversion of somatic embryos in platlets was stimulated on MS medium containing low concentrations of IBA. The plantlets with growing shoots and roots were transferred to potting mixture where plants developed. Key words: somatic embryos, induction, Tilia cordata. CHALUPA, V. 2001. In vitro reprodukce jilmu horského (Ulmus glabra Huds.) a jilmu vazu (Ulmus leavis Pall.). In vitro reproduction of elms (Ulmus glabra Huds.) and Ulmus levis. In: Sborník z konference ČZU "Reprodukce genových zdrojů lesních dřevin metodami in vitro". Praha, ISSN/ISBN80-213-0864-8, Česká zemědělská univerzita, s. 6-7. Abstract: In vitro propagation of elms (Ulmus glabra, Ulmus levis) was achieved using axillary and terminal buds, nodal and leaf segments as initial explants. Axillary or terminal buds cultured on modified MS medium formed new shoots and high multiplication rate was achieved. Microshoots excised from cultures were rooted in vitro or ex vitro. Key words: Ulmus glabra, Ulmus levis, in vitro reproduction. CHALUPA, V. 2001. In vitro rozmnožování jeřábu ptačího (Sorbus aucuparia L.) a jeřábu břeku (Sorbus torminalis /L./ Cr.). In vitro propagation of european mountain ash and wild service tree. Sborník z celostátní konference „Krajina, les a lesní hospodářství“, 1. díl, Kostelec n. Č. l., 22 – 23. 1. 2001, ISBN 80-213-0703-X, p. 67 – 70.
10
Abstract: In vitro propagation of Sorbus aucuparia and Sorbus torminalis. Rapid in vitro propagation of Sorbus was achieved by shoot tip and axillary bud culture. The high multiplication rates were obtained on MS medium, supplemented with cytokinin ( BAP 0,2 - 0,6mg/l) and auxin IBA (0,1 - 0,2 mg/l). Low concentration of thidiazuron also promoted formation of new shoots. The rooting of microshoots was carried out on WPM containing auxin. Key words: Sorbus aucuparia, Sorbus torminalis, in vitro propagation. CHALUPA, V. 2001. Zachování genových zdrojů ušlechtilých listnáčů a jejich rozmnožování metodami in vitro (Conservation of gene resources of noble hardwoods and their propagation by methods in vitro), Lesnická práce, ISSN 0322-9254, 80, p. 555 – 557. Abstract: Fast micropropagation of noble hardwoods was achieved using axillary bud cultures. Rapid shoot proliferation was achieved .The rooting of microshoots was carried out on agar media or ex vitro in a potting mixture. Produced micropropagated trees were planted in the field and their performance was observed. Key words: noble hardwoods, in vitro propagation, gene sources. CHALUPA, V., 2002: In vitro propagation of mature trees of Sorbus aucuparia and field performance of micropropagated trees. Journal of Forest Science, Praha, 48, 12, s. 529-535. Abst.orig: The influence of tree age , explant source and genotype on micropropagation of mature trees of Sorbus aucuparia has been investigated. Experiments demonstrated the feasibility to use juvenile parts of mature trees for in vitro propagation of selected genotypes of Sorbus aucuparia. Key words: in vitro propagation, Sorbus aucuparia L., mature tree micropropagation, juvenile parts of trees, field growth of micropropagated trees. CHALUPA, V. 2002. Rozmnožování vzácných lesních dřevin metodami in vitro. In vitro clonal propagation of noble hardwoods. In: Sborník - Krajina, les a lesní hospodářství II. - Využití vzácných dřevin v polyfunkčním lesním hospodářství a komplexu lesy - dřevo ČR, Česká zemědělská univerzita v Praze, 1., s. 12-15. Abstract: In vitro clonal propagation of noble hardwoods was achieved. Species of the genus Tilia, Carpinus, Fraxinus, Acer, Alnus, Betula, Ulmus, Juglans, Sorbus, Prunus were micropropagated using the method of axillary bud proliferation. Somatic embryogenesis has been induced in species of the genus Tilia, Prunus, Juglans, Betula, Ulmus. The initiation, development and conversion of somatic embryos to plants was studied. Produced micropropagated tree were planted in the field. Key words: in vitro propagation, axillary bud proliferation, somatic embryogenesis, field growth of in vitro propagated trees. CHALUPA, V., 2003: In vitro propagation of Tilia platyphyllos by axillary shoot proliferation and somatic embryogenesis, Journal of Forest Science, Praha, 49, 12, s. 537-543. Abstract: In vitro propagation of Tilia platyphyllos Scop. has been achieved by axillary shoot proliferation and somatic embryogenesis. The influence of tree age, explant source, genotype, and phytohormones on micropropagation of juvenile and mature trees of Tilia platyphyllos has been investigated. Nodal segments and shoot tips were used as initial explants for axillary shoot proliferation. Low concentration of cytokinin (BA, BPA, TDZ) plus auxin (IBA) stimulated fast shoot multiplication. Microshoots excised from proliferating cultures were
11
rooted on low salt medium and produced trees were planted in the field. Embryogenic tissues were initiated from zygotic embryos cultured on MS medium suplemented with 2,4-D. After transfer of embryogenic tissues with developing embryoids on media lacking 2,4-D and supplemented with low concetration of IBA, the development of somatic embryos was enhanced. Secondary somatic embryogenesis led to the formation of new adventive somatic embryos. Trees produced from somatic embryos were planted in the field and exhibited normal growth and morphology., Abstr.angl: In vitro propagation of Tilia platyphyllos Scop. has been achieved by axillary shoot proliferation and somatic embryogenesis. The influence of tree age, explant source, genotype, and phytohormones on micropropagation of juvenile and mature trees of Tilia platyphyllos has been investigated. Nodal segments and shoot tips were used as initial explants for axillary shoot proliferation. Low concentration of cytokinin (BA, BPA, TDZ) plus auxin (IBA) stimulated fast shoot multiplication. Microshoots excised from proliferating cultures were rooted on low salt medium and produced trees were planted in the field. Embryogenic tissues were initiated from zygotic embryos cultured on MS medium suplemented with 2,4-D. After transfer of embryogenic tissues with developing embryoids on media lacking 2,4-D and supplemented with low concetration of IBA, the development of somatic embryos was enhanced. Secondary somatic embryogenesis led to the formation of new adventive somatic embryos. Trees produced from somatic embryos were planted in the field and exhibited normal growth and morphology. Key words: in vitro propagation; somatic embryogenesis; micropropagation; Tilia platyphyllos; field growth of micropropagated trees; organogenesis; somatic embryo;cytokinin;auxin;axillary shoot proliferation; embryogenic tissue; thidiazuron;phytohormone. KOBLIHA, J. 2000. Explantátové kultury – historický předěl pro rozvoj klonového hospodářství lesních dřevin. Explantat cultures - a historical turning-point for development of the clonal management of forest trees. Lesnická práce, 79, 6: 272 – 273. Abstract is not in English KOBLIHA, J. 2001. Použití osiva ze semenných sadů lesních dřevin. Utilization of seed from forest tree seed orchards. Lesu zdar, zvláštní vydání – Genetika 2001 – červen: 7 – 8. Abstract: Article solves necessities for establishment and utilization of forest tree seed orchards and preconditions of its seed utilization in forestry practice. Key words: seed orchards, forest tree species, utilization of seed. KOBLIHA, J., JANEČEK, V. 2001. Selekce stromů třešně ptačí. Selection of wild cherry trees. In: Sborník z konference „Krajina, les a lesní hospodářství“, I. díl. Kostelec nad Č. lesy, 22. – 23. 1. 2001: 58 – 66. Abstract: Plus trees of wild cherry were selected, certified and valuated in phenotype in morfological traits in Forest Districts of Forest of the Czech Republic Křivoklát and Nižbor and in Military Forests Velichov for purposes of seed orchards establishment. Key words: wild cherry, selection, plus trees. KOBLIHA, J., JANEČEK, V. 2001. Šlechtění třešně ptačí v ČR. Wild cherry breeding in the Czech Republic. Lesnická práce, 80, 9: 391 – 392. Abstract: Article informs about wild cherry breeding program realized for purposes of the Czech forestry. This program is based on establishment and utilization of reproductive and testing
12
plantation. Key words: wild cherry, tree breeding, tree breeding program, Czech Republic. KOBLIHA, J., JANEČEK, V. 2001. Šlechtění třešně ptačí v Evropě. Wild cherry breeding in Europe. Lesnická práce, 80, 6: 255 – 257. Abstract: Article is directed to give review of tree breeding activities and their results in many european countries, especially in countries of EU. Key words: wild cherry, tree breeding, Europe. KOBLIHA, J. 2001. Utilization of noble forest tree species in polyfunctional forestry and complex forests – wood of the Czech Republic. In: International Congress 2001: „ Sustain life – Secure survival, Challenges, analyses and solutions. Wien, 18. – 21. November 2001. 160. Abstract: Attention is done to breeding, propagation in vitro, siviculture, protection, cutting, technical wood quality, economy and ecology of noble tree species. Key words: noble forest tree species, breeding, propagation, silviculture, protection, cutting, technical wood quality, economy, ecology. KOBLIHA, J. 2002. Research project MSM 414100007: Utilization of noble forest tree species in polyfunctional forestry and complex forests-wood of the Czech Republic. In: Proceedings from IUFRO conference „Management of Valuable Broadleaved Forests in Europe“, 5.-9. May 2002, Freiburg: 31. Abstract: Basic aims of this project are increase of biodiversity in forest ecosystems and great production of valuable wood which is connected with effort for limit of wood import from tropical parts of the world. Individual activities of the project are directed to breeding, vegetative propagation by methods in vitro, silviculture, protection, cutting, technical wood quality, effectiveness of silviculture and ecological evaluation of noble tree species utilization. Key words: noble hardwoods, biodiversity increasing. KOBLIHA, J., JANEČEK, V., HAJNALA, M. 2002. Wild cherry breeding for utilization in forestry. In: Sborník z konference lesnické fakulty k 50. výročí založení ČZU v Praze, sekce: Využití vzácných lesních dřevin v polyfunkčním lesním hospodářství a komplexu lesy-dřevo ČR. Kostelec n. Č. l., 25. 9. 2002: 16 – 38. Abstract: In the first part of the article there are concentrated european experiences with breeding of wild cherry. The second part is based on breeding activities in the Czech Republic, which means selection of plus trees of wild cherry, establishment of plantations with Czech and foreign material of wild cherry and, of course, measurement and valuation of this material. Key words: Prunus avium L., breeding program. KOBLIHA, J. 2002. Wild cherry (Prunus avium L.) breeding program aimed at the use of this tree in the Czech forestry. Journal of Forest Science, 48, 5: 202-218. Abstract: The paper widely introduced european experiences in wild cherry breeding because it is the first one from prepared series of articles with direction to wild cherry breeding in Czechia. Beginning of wild cherry breeding program for the Czech forestry is described. Plus trees were certified, seed orchards, clone archives, progeny and clonal tests were established. Clones were tested on flowering of graftings in reproductive plantations. Progenies and
13
clones were tested on growth parameters in progeny and clonal tests. Progenies and clones in every breeding plantation were tested on damage by aphids Key words: seed orchard, clone archive, half-sib progeny test, clonal test, flowering, growth, damage by aphids, Prunus avium L. KOBLIHA, J., JANEČEK, V. 2002. Wild Cherry Breeding Program in the Czech Republic. In: Proceedings from IUFRO conference „Management of Valuable Broadleaved Forests in Europe“, 5.-9. May 2002, Freiburg: 15. Abstract: This article is focused to work with wild cherry in Czech Republic, especially in Czech University of Agriculture in Prague, Faculty of Forestry. Wild cherry trees were identificated and evaluated in forests and they are propagated to clone archives, progeny tests and seed orchards. Some characteristics of this material are measured and observed. Key words: Plus tree, seed orchard, half-sib progeny test, clonal test, wild cherry. KOBLIHA, J., JANEČEK, V., HAJNALA, M. 2003. Conservation and Utilization of Wild Cherry Gene Resources in the Czech Republic. In: Expert Colloquium „Two Decades of Research on Gene Resources in Rhineland – Palatinate (Germany): Realization of the Concept on the Conservation and Sustainable Utilization of Forest Gene Resources as Exemplified by the German Federal State of Rhineland – Palatinate“. The Hambach Castle near Neustadt, October 2003, 28 – 29. Abstract: Research of occurence of wild cherry was realized in the Czech Republic. Parental trees were selected in forest stands. These trees were used for establishment of seed orchards, progeny tests and clonal tests., Abstr.angl: Research of occurence of wild cherry was realized in the Czech Repablic. Parental trees were selected in forest stands. These trees were used for establishment of seed orchards, progeny tests and clonal tests. Key words: gene resources wild cherry; seed orchards; clonal tests. KOBLIHA, J., HAJNALA, M., JANEČEK, V. 2003. Testing of lime tree (Tilia cordata Miller) clones. Journal of Forest Science, 49, 12: 567-582. Abstract: In this paper previous experiences with breeding lime tree (Tilia cordata Miller) in the European countries are shown. In the Czech Republic the first results were obtained from evaluation of juvenile planting of lime tree (Tilia cordata Miller) founded in the School Forest Enterprise Kostelec nad Černými lesy. Lime tree clones, cultivated in vitro were evaluated in growth parameters and also according to growth form of the different single clones. Also the mortality of individual clones was controlled., Abstr.angl: In this paper previous experiences with breeding lime tree (Tilia cordata Miller) in the European countries are shown. In the Czech Republic the first results were obtained from evaluation of juvenile planting of lime tree (Tilia cordata Miller) founded in the School Forest Enterprise Kostelec nad Černými lesy. Lime tree clones, cultivated in vitro were evaluated in growth parameters and also according to growth form of the different single clones. Also the mortality of individual clones was controlled. Key words: clonal test, plant growth, growth form, Tilia cordata Miller. KOBLIHA, J., HAJNALA, M., JANEČEK, V. 2004. Vývoj klonů lípy malolisté (Tilia cordata Miller). In: Sborník z mezinárodního semináře univerzitních lesnických pracovišť „Bezkontaktní výuka v biologických předmětech“, konaného 25. – 28.9. 2003 v Kostelci n. Č. l.: 21 – 22.
14
Abstract: This work covers recent knowledge of small-leaved linden breeding in Europe. Key words: Clonal test, growth, growth form, Tilia cordata Miller. KOBLIHA, J., HAJNALA, M., ŠKODA, A., JANEČEK, V. 2004. Šlechtění a reprodukce cenných listnáčů na FLE. Breeding and reproduction of Noble Hardwoods in Fakulty of Forestry and Environment, Czech University of Agriculture in Prague. In: Sborník z konference „Krajina, les a lesní hospodářství“ konané dne 29.11.2004 v Kostelci nad Černými lesy. ČZU v Praze v nakladatelství Lesnická práce, s.r.o. 15-22. KOBLIHA, J., JANEČEK, J., HAJNALA, M. 2004. Breeding of Wild Cherry in the Czech Republic. In: IUFRO Joint Conference of Division 2 - Forest Genetics and Tree Breeding in The Age of Genomics: Progress and Future. November 1-5, 2004, Charleston, South Carolina, USA. KONOPA, I. 2000. Hodnocení semenného sadu jilmu horského na LS Nové Hrady. Evaluation of a wych elm seed orchard, forest district Nové Hrady. Diplomová práce. ČZU v Praze. 68p. Key words: seed orchard, wych elm, Dutch elm disease, fructification, flowering, health status KUPKA I. 2001. Influence of Different Treatment on Wild Cherry Seedling Performance, Journal of Forest Science, V47, N11, p.486-491, ISSN 1212-4834. Abstract: In the framework of research project the trial plantation of two years old seedlings of Wild Cherry (Prunus avium, L.) was established. Three different treatments with three replicates were randomly lay out. The treatments were: mycorrhiza inoculum added to seedling roots, hydrocolloid covering the seedling roots and combination of both previous. Key words: noble hardwood, artificial regeneration, plantation treatment, mycorrhiza, hydrocolloid, above-ground biomass, ground biomass. KUPKA, I. 2001. Vývoj výsadeb třešně ptačí na ŠLP Kostelec n.Č.l. Development of Wild Cherry plantations at area of Kostelec n.Č.l. faculty forest. In: Krajina, les a lesní hospodářství – výzkumné záměry LF ČZU v Praze, sborník konference 205 s., p. 75-81, ISBN 80-213-0703-X. Abstract: The article gives preliminary results of wild chery plantations in mixture with others species in the area of Faculty forests in Kostelec n.Č.l. A total number of research plots are twelve. The seedlings were treated before plantation by mycorrhiza inoculation, hydrocolloid, combination of both and not treated (control plots). Key words: wild cherry, Prunus avium (L.), establishment of forest plantations, seedling quality, weed pressure, mycorrhiza, hydrocolloid. KUPKA, I. 2002. Preliminary results of Wild Cherry plantation under weed competition. In Proceedings „Management of Valuable Broadleeved Forests in Europe“, May 2002 in Freiburg, pp 13-14. Abstract: Preliminary results after three years of observation of Wild Cherry plantation with three different treatment were described. Ground biomass (root system) was significantly stronger for treated seedlings than for control Key words: artificial regeneration, hydrocolloid, mycorrhiza, noble hardwood, silviculture.
15
KUPKA, I. 2002. Vliv možných klimatických změn na zastoupení dřevin v našich lesích. Influence of possible climat changes on species composition of our forests. Lesnická práce, V81, N1, p.18-19, ISSN 0322-9254. Abstract: The increasing volume of CO2 does not necessserilly mean climatic changes. The interference between climate and species composition is described. Key words: climatic changes, species composition, temperate zone forests, Tit.čes: Vliv možných klimatických změn na zastoupení dřevin v našich lesích KUPKA, I. 2002. Vývoj koruny juvenilní třešně ptačí. In: Krajina, les a lesní hospodářství, sborník konference k 50. výročí ČZU, ISBN 80-213-0943-1, pp. 38-46 Abstract: Prunus avium is a valuable broadleaves and it is very often pruned. However there are not many studies on crown development of that as a basis for right timing of pruning. This study investigates the crown development of young Wild Cherry trees. Key words: Wild Cherry, tree crown, prunning, crown. KUPKA, I. 2003. Reakce poloodrostků třešně ptačí (Prunus avium (L.)) na hnojivo Silvamix při výsadbě. Reaction of Wild Cherry Trees to Fertilizer Silvamix after planting. In:Využití chemické meliorace v LH ČR, sborník ČZU LF v Praze ke konferenci 18.2.2003 v Kostelci n.Č.l., ISBN 80-213-1008-1, vyd. Lesnická práce s.r.o.,101pp.,53-59. Abstract: Wild Cherry (Prunus avium L.) is a species which increases biodiversity in our forests. The purpose of the contribution is to asses the plant reaction on fertilization added to plant root in the time of planting. The trials plots were measured for 5 years period, which should be enough time spans to judge plant reaction on height increment. Fertilizer Silvamic proved to be a good fertilizer to start good height increment which could be a crucial point for survival of plants in the field. On the other hand fertilizer did not significantly diminished mortality and it had no influence on trunk form. Key words: silviculture; Wild Cherry; fertilization. KUPKA, I. 2003. Reintroduction of Noble Hardwood in Central European Forests, Poster in XII World Forestry Congress, Quebec, Canada. KUPKA, I. 2004. Růstová reakce juvenilní třešně ptačí (Prunus avium L.) na vyvětvení. Juvenilie wild cherry growth reaction to pruning. In: Sborník z konference „Krajina, les a lesní hospodářství“ konané dne 29.11.2004 v Kostelci nad Černými lesy. ČZU v Praze v nakladatelství Lesnická práce, s.r.o. 23-28 LSTIBŮREK, M. 2000. Theoretical analyses of the possible benefit of vegetative propagation for quality birch. Exam thesis for MSc. Swedish University of Agricultural Science, Umea. Abstract: Much effort goes into the development of vegetative propagation using micropropagation and other methods. This work analyses the profitability of vegetative propagation in forest tree breeding exemplified by birch. Such analysis was done by comparisons built on published formulas, compiled in an excel worksheet. The worksheet enables calculations in major breeding alternatives. Inputs are genetic variance components, cost components as well as number of parents, number and size of families, size of clones, number of selected families and genotypes within a family. Outputs are gain, status number and total cost. Clonal test (for backward selection of the founders) is better compared to half-sib progeny test in a wide
16
range of conditions provided an efficient propagation technique is available. Micropropagation is mentioned as a possibility to establish birch clonal tests. Key words: vegetative propagation, clonal testing, gain prediction, Betula pendula. LSTIBŮREK, M. 2001. Teoretické analýzy možného užitku vegetativního množení jakostní břízy. Theoretical analyses of the possible benefit of vegetative propagation for quality birch. Sborník 2. ročníku Konference mladých vědeckých pracovníků , LF ČZU Praha, 23.5. 2001, ISBN 80-213-0777-3, p. 104 – 110. Abstract: Much effort goes into the development of vegetative propagation using micropropagation and other methods. This work analyses the profitability of vegetative propagation in forest tree breeding exemplified by birch. Such analysis was done by comparisons built on published formulas, compiled in an excel worksheet. The worksheet enables calculations in major breeding alternatives. Inputs are genetic variance components, cost components as well as number of parents, number and size of families, size of clones, number of selected families and genotypes within a family. Outputs are gain, status number and total cost. Clonal test (for backward selection of the founders) is better compared to half-sib progeny test in a wide range of conditions provided an efficient propagation technique is available. Micropropagation is mentioned as a possibility to establish birch clonal tests. Key words: vegetative propagation, clonal testing, gain prediction, Betula pendula. MAULEOVÁ, M. 2004. Reprodukce jeřábu ptačího (Sorbus aucuparia.L.) metodami in vitro. In vitro propagation of European mountain ash (Sorbus aucuparia.L.). Sborník z konference COYOUS 2003. IV. Ročník konference mladých vědeckých oracovníků 4-5.12.2003. Editor: Aleš Vorel, Petr Zasadil. ČZU, FLE. ISBN 80-213-1124-X. Str: 28-31. Abstract: In vitro propagation of Sorbus aucuparia has been achieved by using organogenesis. The winter buds were used as initial explants. Modified MS medium supplemented with cytokinin (BAP) and auxin (IBA), hormons stimulating shoot multiplication rate, was tested as nutrient medium. For rooting was used a different photoperiod, pulse stimulation and low mineral medium (WPM) supplemented with low concentration of auxin (IBA and NAA). Key words: in vitro propagation, Sorbus aucuparia, phytohormons, auxin, cytokinin, multiplication rate, rooting. MAULEOVÁ, M., VÍTÁMVÁS, J. 2004. Techniky eliminace patogenních činitelů v orgánových kulturách jeřábu ptačího (Sorbus aucuparia L.). Techniques of eliminacion of pathogenic factors in organ cultures of European mountain ash (Sorbus aucuparia L.). In: Mezinárodní seminář univerzitních lesnických pracovišť- „Bezkontaktní výuka v biologických předmětech“. Editor: Jan Douda. ČZU, KDŠLD. ISBN 80-213-1168-1. Str: 29-30. Abstract: In vitro propagation of Sorbus aucuparia has been achieved by using organogenesis. Furthermore we were engaged in bacteriosis elimination from impure in vitro culture.In cultures contaminated by bacillary bacterium we designated a number of techniques to eliminate bacteriosis with Savo, HgCl2 and PPM (Plant Preservative Mixture™). The evaluation of results was assigned via multi-factorial analysis. Key words: Sorbus aucuparia, bacteriosis, SAVO, ethanol, PPM, HgCl2 MÖLLEROVÁ, J., ULBRICHOVÁ, I. 2002. Růst sazenic olše v různých podmínkách. The growth of Alnus – seedlings in the different conditions. – In. Karas J., Podrázský V. (eds.): Současné trendy v pěstování lesů. Sborník příspěvků mezinárodní konference konané ve dnech 16. –
17
17.9.2002 v Kostelci n. Č.L., ČZU v Praze, str. 90 – 93. ISBN 80-213-0938-5, v rámci grantu MSM 414100009 Restoration of functioning forest ecosystems of the Krušné hory (Ore Mts.) Abstract: Alders were pot planted in the nursery in the three different types of soil: sand, nursery substrate, soil from bulldozer degraded plots in th Ore Mts. The height growth was best in the nursery soil, but worse in th Ore mts. soil than in the sand. Key words: Alnus, Frankia, height growth. MÖLLEROVÁ, J. 2004. Olše v břehových porostech. Alders in the riverside. In: Sborník z konference „Krajina, les a lesní hospodářství“ konané dne 29.11.2004 v Kostelci nad Černými lesy. ČZU v Praze v nakladatelství Lesnická práce, s.r.o. 29-32. MÖLLEROVÁ, J. 2004. Poznámky k růstu semenáčků olše. Notes to the growth of the saplings of Alnus. In: Sborník z konference „Krajina, les a lesní hospodářství“ konané dne 29.11.2004 v Kostelci nad Černými lesy. ČZU v Praze v nakladatelství Lesnická práce, s.r.o. 33-36. PODRÁZSKÝ, V., LIAO, C.Y. 2001. Půdotvorná funkce třešně ptačí (Prunus avium). Soil forming potential of cherry (Prunus avium). In. Krajina, les a lesní hospodářství. I. /Sborník z konference 22. a 23.1.2001/. Praha, Česká zemědělská univerzita v Praze 2001. s.82 – 86. Abstract: Results confirmed ameliorative effect of cherry on the soil state, even better then that of the basswood. In the part dominated by cherry (and generally by broadleaves) was registered lower accumulation of surface humus, its more rapid mineralisation, higher content of bases and more favorable state of the soil chemistry. Key words: Cherry, soil forming potential, humus form, amelioration, site improvement, nutrient cycles. PODRÁZSKÝ, V. 2002. Economical and soil forming potential of the wild cherry. /Paper abstract/. In. Management of valuable broadleaved forests in Europe. Freiburg, IUFRO 2002. s. 5. PODRÁZSKÝ, V., REMEŠ, J., KARNET, P. 2002. Hodnotová produkce a půdotvorná funkce třešně ptačí. Production and soil forming potential of the wild cherry (Prunus avium). Lesnická práce, 81, 2002, č. 6, s. 255 – 257. Abstract: Wild cherry used as a production wood in the forestry and its influence to the soils of the stands. Key words: Punus avium, wild cherry, forestry production PODRÁZSKÝ, V., KOBLIHA, J., REMEŠ, J., KUPKA, I., RŮŽOVÁ, R., KARNET, P. 2002. Porostotvorná funkce třešně ptačí. Stand forming function of the wild cherry (Prunus avium). Lesnická práce, 81, 5: 213 – 215. Abstract: Wild cherry influence to the stand structure and possibility to use this tree for the forest production. Key words: Prunus avium, wild cherry. PODRÁZSKÝ, V., REMEŠ, J. 2002. Stand forming potential of the wild cherry. /Poster/. In. Management of valuable broadleaved forests in Europe. Freiburg, IUFRO 2002. s. 33.
18
PODRÁZSKÝ, V. 2003. Pěstování cenných listnatých dřevin. Silviculture of hardwood broadleaves. Lesnická práce, 82, 2003, č. 1, s. 18 – 19. Abstract: Silviculture and use of noble broadleaves (or hardwood broadleaves) in czech silviculture. Key words: hardwood broadleaves. POSPÍŠIL, T. 2000. Růst juvenilních potomstev vybraných stromů třešně ptačí. Growth of juvenile progenies of selected wild cherry trees. Diplomová práce. ČZU v Praze. 64p. REMEŠ, J., PODRÁZSKÝ, V. 2002. Vyhodnocení experimentálních výsadeb třešně ptačí (Prunus avium L.) na školním lesním podniku v Kostelci nad Černými lesy. Evaluation of the experimental wild cherry (Prunus avium L.) plantations on the School forest enterprise in Kostelec nad Černými lesy. In: Krajina, les a lesní hospodářství. Sekce II. Využití vzácných lesních dřevin v polyfunkčním lesním hospodářství a komplexu lesy - dřevo ČR. Praha, ČZU v Praze 2002. s. 47 - 52. Abstract: The paper presents the preliminary results of the wild cherry growth process and impact of the different fertiliser aplication. The fastes growth in first tree years was. Key words: wild cherry, plantations, height growth, fertilisation. ŘEZBOVÁ, L. 2003. Hodnocení semenného sadu lípy malolisté na LS Milevsko u LČR. Evaluation of a small-leaved linden seed orchard, Forest district Milevsko. Diplomová práce. ČZU v Praze. 77p. Key words: seed orchard, small-leaved linden, fructification, flowering, health status. ŠEVČÍK, J. 2001. Vegetativní rozmnožování některých významných druhů lesních dřevin pomocí řízků. Vegetative propagation of some important tree species by cuttings. Sborník z celostátní konference „Krajina, les a lesní hospodářství“, 1. díl, Kostelec n. Č. l., 22 – 23. 1. 2001, ISBN 80-213-0703-X, p. 71 – 74. Abstract: The article deals with vegetative propagation of wild cherry (Prunus avium L.) by means of cuttings. The observing of mortality during the first winter period from the point of wiew of clonal pertinence is another topic of the paper. Key words: cutiing, substrate, perlite, stimulators, clon, Prunus avium (L.). ŠIŠÁK, L. 1999. Ekonomické hodnocení mimoprodukčních funkcí lesa jako veřejného zájmu (Economic valuation of non-wood-producing roles of the forest like public interest). Sborník referátů z celostátního semináře „Zajištění cílů veřejného zájmu rozvojem mimoprodukčních funkcí lesů“ Česká akademie zemědělských věd, Lesy ČR, s. p., Národní lesnický komitét, Česká lesnická společnost. Hradec Králové, p. 56 – 61. Abstract: Monetary valuation of forest services' importance by different socio-economic nature of the services is presented. Non-market forest services are of twofold socio-economic importance for the society - tangible and intangible, which means that they should be valued accordingly in the appropriate ways. Non-market forest services of tangible essence for the society should be valued on the basis of economic effectiveness they bring. The non-market forest services of intangible nature (recreational, nature protective) can be valued in various ways of which the so called expert comparing method is more promising than methods stemming from the willingness-to-pay approach under present conditions in the Czech Republic. Keywords: forest services, market services, non-market services, valuation, Czech Republic.
19
ŠIŠÁK, L. 1999. Theoretical and practical problems with valuation of non-market forest functions in the Czech Republic. International Symposium „From theory to practice – gaps and solutions in managerial economics and accounting in forestry“, p. 146 – 160. Provisional Proceedings, Prague – Czech Republic, p. 189. Abstract: The aim of the paper is to show problems in valuing non-market forest functions in the Czech Republic (CR). Theoretical and practical problems in use of so called willingness-to-pay approach cause mistrust of state authorities and make them employ other methods (so called "expert methods") for valuing non-market forest functions. Theoretical and practical analysis of present system of non-market forest functions valuation, applied in present legislative norms, is incorporated. Different blocks of non-market forest functions should not be valued by one uniform method but in different ways accordingly to their socio-economic nature. Keywords: Non-market forest functions, Valuation, Czech Republic ŠRŮTKA, P. 2002. Poznámka ke škůdcům a chorobám lípy, břeku a hrušně. Short remark to pests and diseases of the baswood tree, pear tree and wild service tree. Sborník z fakultní konference k 50. výročí ČZU „Krajina, les a lesní hospodářství“, Kostelec n. Č. l., 25.9.2002. 61-64. Abstract: Author describes a few pests and diseases, which were observed in the 2002 season. Leaves of baswood tree were frquently infested my mites (Eriophyes tiliae), as well as leaves of wild service tree by Eriophyes pyri. Young baswood trees were defoliated by catterpilars of Eriogaster lanestris. Main trouble of pear tree in recent time is a rust Gymnosporangium sabinae. Keywords: baswood tree, pear tree, wild service tree, pests, diseases VÍTÁMVÁS, J., MAULEOVÁ, M., CHALUPA, V. 2004. In vitro rozmnožování lesních dřevin. In vitro propagation of forest trees. Sborník- Perspektivy lesnické dendrologie a šlechtění lesních dřevin. Editor: Ing. Jaroslav Karas, Doc. Ing. Jaroslav Kobliha, CSc. ČZU, FLE. ISBN 80-213-1164-9. Str: 31-32. Abstract: Using in vitro propagation we accomplished fast production of forest trees, more productive and resistant genotype of forest trees, forest trees with superior genotypes and preservation of genetic resources etc. In our experiments, fast in vitro propagation of many forest tree species was achieved using organogenesis and somatic embryogenesis. We studied the main stages of axillary bud proliferation (organogenesis) - culture establishment, shoot multiplication, rooting of microshoots and transfer of rooted plantlets into soil. Factors studied included the effects of phytohormones, multiplication rate, different nutrient medium, photo-and termoperiodism etc. The method of organogenesis is applicable to most European deciduous forest tree species. Embryogenic cultures were usually initiated from young tissue, most frequently from embryonic tissue (zygotic embryos). We studied the basic stages of somatic embryogenesis initiation, development and conversion of somatic embryo to plants, rooting and transfer of plantlets into soil. Factors studied included the effects of phytohormones, osmotica, duration of embryo drying and photo-and termoperiodism. Produced micropropagated trees were planted in the field and their field performance was observed. The height and diameter dimensions of micropropagated trees were comparable to those of trees produced from seeds. Obtained results indicate that in vitro regenerated trees were genetically uniform in comparison with the original genotypes.
20
In our experiments we succeeded in micropropagation trough organogenesis of many tree deciduous species: Quercus robur and Q. petraea, Fagus sylvatica, Carpinus betulus, Fraxinus excelsior, Acer pseudoplatanus, Alnus glutinosa, Betula pendula, Ulmus minor and U. glabra, Prunus avium, Sorbus aucuparia and S. torminalis, Tilia cordata and T. platyphyllos, Populus tremula. Somatic embryogenesis has been induced in Quercus robur and Q. petraea, Tilia cordata and T. platyphyllos , and also in conifers, Picea abies, Abies alba and Larix decidua. Key words: in vitro propagation, organogenesis, somatic embryogenesis, deciduous forest tree, conifers. VÍTÁMVÁS, J., MAULEOVÁ, M., TUŠEK, Z. 2004. Rozmnožování významných druhů listnatých stromů technikami in vitro. In vitro propagation of important deciduous forest tree species. In: Sborník z konference „Krajina, les a lesní hospodářství“ konané dne 29.11.2004 v Kostelci nad Černými lesy. ČZU v Praze v nakladatelství Lesnická práce, s.r.o. 37-40. VLČEK, K. 2000. Fenotypová charakteristika, fruktifikace a jakost semen selektovaných stromů třešně ptačí na VLS Velichov. Phenotype, fructification, and quality of selected wild cherry trees in VLS Velichov. Diplomová práce. ČZU Praha. 32p. Key words: fructification, seed quality, selected trees, wild cherry ZASADIL, P. 2001. Analýza ptačího společenstva olšového porostu v CHKO Třeboňsko. The Analysis of Bird Community on Common Alder Stand in Protected Landscape area Třeboňsko. In: Krajina, les a lesní hospodářství - sborník referátů z celostátní konference – díl I. LF ČZU v Praze: 102 – 106 Abstract: For the analysis of bird community structure and diversity was counted birds in old Common Alder stand along New River Dam in Protected Landscape area Třeboňsko (South Bohemia). The tract of counted area is about 12.8 ha. Birds was counted by standard belt method during nesting season 2000. On the whole transect together was founded 470 individuals of 24 species. As the most abundant species was evaluated Chaffinch, followed by Blackcap, Starling, Chiffchaff, Great Tit, Collared Flycatcher, Short-toed Treecreeper and Blue Tit. Key words: Bird communities, line counting method, biological diversity, Třeboň area, South Bohemia ZASADIL, P. 2001. Využití ptáků jako bioindikátorů ekologické kvality lesních ekosystémů v připravované CHKO Novohradské hory. Bird Communities as Bioindicators of Forest Ecosystems ecological quality in Prepared Landscape Area Novohradské hory mts. In: Krajina, les a lesní hospodářství, sborník referátů z celostátní konference - díl I. LF ČZU v Praze, Praha, x, s. 30-35, ISSN/ISBN80-213-0703. Abstract: For characterization of ecological quality of forest ecosystems in Novohradské hory Mts. (South Bohemia) was counted birds by standard point transects method in the years 1997 2000. On the 612 counted points (24 transects) was founded together 60 bird species (15 706 ex.). The most abundand was Chaffinch, followed by Robin, Chiffchaff, Coal tit, Wren, Blackcap and Gold crest. Community Topic structure includes hole nesting species as well as tree-top species (a dominant group), shrub species and species nesting in the herb layer on the clearings. Key words: Bird communities, point counting method, forest ecosystems, biological diversity, Novohradské hory mts. South Bohemia.
21
ZASADIL, P. 2002. Srovnání ptačích společenstev dvou typů porostů olše lepkavé (Alnus glutinosa). The Comparison of the Bird Communities of Common Alder Stands Two different Types. In: Janeček V. & Kobliha J. (eds.): Krajina, les a lesní hospodářství, Sborník fakultní konference k 50. výročí ČZU. Část II. Využití vzácných lesních dřevin v polyfunkčním lesním hospodářství a komplexu lesy – dřevo ČR: 65-71. Abstract: There were compared results of nesting bird community counting of two different Common Alder stands in the paper. On both localities together were found 31 bird species, the richer one (localita Nová řeka, South Bohemia) has 29 species and the poorer (localita Peklo, North Bohemia) one only 19 species. The density and diversity of bird community dependes first of all on trees age, age diversity, coverage of shrub layer and partially on character of neighbouring habitats, wich interacting narrow belts of common alder stands. Key words: Bird communities, Common Alder, line counting method, forest ecosystems, species diversity, Northern Bohemia, Southern Bohemia, Třeboň region. ZASADIL, P., KLOUBEC, B. 2003. Změny ve složení hnízdního společenstva ptáků Žofínského pralesa. The changes of breeding bird community of Žofín primaeval forest. In: Bryja J. & Zukal J. (Eds.): Zoologické dny Brno 2003. Sborník abstraktů z konference 13. – 14. února 2003: 163 – 164. Abstract: There was realised the estimation of bird community of Žofín primaeval forest (Novohradské hory Mts., South Bohemia). The data was comparised with ones obtained in the years 1989 AND 1990. Key words: Bird community, forest ecosystem, Hovohradské hory Mts, Žofín primaeval forest. ZASADIL, P. 2004. Význam přimíšených dřevin pro diverzitu lesního ekosystému. The importace of admixed trees for diversity of forest ecosystems. In: Sborník z konference „Krajina, les a lesní hospodářství“ konané dne 29.11.2004 v Kostelci nad Černými lesy. ČZU v Praze v nakladatelství Lesnická práce, s.r.o. 41-46. ZEIDLER, A. 2001. Technické vlastnosti dřeva vzácných lesních dřevin – jeřáb břek (Sorbus torminalis /L./ Crantz.). Technical Wood Quality of Noble Tree Species – Wild Service Tree (Sorbus torminalis (L.) Crantz.). Sborník z celostátní konference „Krajina, les a lesní hospodářství“, 1. díl, Kostelec n. Č. l., 22 – 23. 1. 2001, ISBN 80-213-0703-X, p. 90 – 95. Abstract: The rare broadleaved tree species often yield valuable wood. The knowledge of wood properties is the basic prerequisite for an adequate processing. The article deals with the technical wood properties of Wild service tree (Sorbus torminalis (L.) Crantz.) from the territory of the Czech Republic. From mechanical properties the compressive strength, the bending strength, the impact strength, the shear strength along grains and the hardness (Brinell) were tested. From physical properties the density, the absorptive capacity, the hygroscopicity, the shrinkage and the swelling were tested. The article also compares the results with data in literature. Comparing Wild service tree (Sorbus torminalis (L.) Crantz.) with the wood properties of other broadleaved tree species facilitates to get idea about quality of its wood. Key words: Wild Service Tree (Sorbus torminalis (L.) Crantz.), wood, properties.
22
ZEIDLER, A. 2002. Vybrané vlastnosti dřeva našich domácích dřevin – třešeň ptačí (Cerasus avium (L.) Moench.). Selected Wood Properties of our Indigenous Tree Species – Wild Cherry (Cerasus avium (L.) Moench.). Zprávy lesnického výzkumu, 2002, č. 4, s. 204-207. Abstract: Wild cherry (Cerasus avium (L.) Moench.) ranks among our indigenous tree species, which yield valuable wood. Its wood is very decorative and widely used for furniture making. The knowledge of basic wood properties is a prime prerequisite for a proper wood processing. This article focuses on the selected mechanical and physical properties of the cherry wood from the Czech Republic sites. Five sample trees of Wild cherry from two different growing districts were tested in the following properties. From the mechanical properties the compressive strength, the bending strength, the impact strength, the shear strength parallel to the grain and the hardness (Brinell) were tested. From the physical properties the density, the absorptive capacity, the hygroscopicity, the shrinkage and the swelling were tested. Comparing the results with data in literature provides the information on the quality of the cherry wood from our sites. The article also presents a comparison of the cherry wood properties with the properties of our important native tree species. Key words: Wild Cherry (Cerasus avium (L.) Moench.), wood, physical and mechanical properties. ZEIDLER, A. 2003. Zhodnocení vlastností dřeva břeku z našeho území. Wood Properties of Wild Service Tree from the Czech Republic Territory. COYOUS 2003. Praha: FLE ČZU, 2003, s. 241 – 246. Abstract: The article focuses on basic mechanical and physical properties of the Wild Service Tree wood from the Czech Republic sites. Namely the compression strength, shear strength, hardness, bending strength, toughness and tensile strength were tested. From the physical properties the density, absorptive capacity, hygroscopicity, swelling and shrinkage were tested. The results are also compared with the wood properties of our common native tree species. Key words: Wild Service Tree (Sorbus Torminalis (L.) Crantz.), wood, mechanical and physical properties. ZEIDLER, A. 2004. Do We Really Know Wood of our Indigenous Tree Species – Bird Cherry? In Sustain Life – Secure Survival II. ČZU Praha, 2004. s. 203. Abstract: Utilisation of wood of less known tree species is one of the possibilities how to enhance profit from forest estates and how to broaden an offer of the wood processing industry on the market. Bird cherry (Padus racemosa (L.) Gillib.) belongs among common native species in the Czech Republic. Knowledge of bird cherry wood is insufficient and that is the reason the wood is used for second-rate purposes. Information about wood properties is a crucial factor for better wood utilisation of such tree species. Mechanical and physical properties of bird cherry wood are surprisingly missing in the available literature. The article presents data about the basic properties of bird cherry wood. The tensile strength, the compressive strength, the shear strength, the bending strength, the impact strength and the hardness were tested from the mechanical properties. The density, the shrinkage and the swelling were tested from the physical properties. The discussion about quality of investigated bird cherry wood is based on a comparison with related tree species and common commercial species. Key words: bird cherry (Padus racemosa (L.) Gillib.), wood, properties.
23
ZEIDLER, A. In print. Srovnání vlastností dřeva střemchy hroznovité a střemchy pozdní. Comparison of Wood Properties of Bird Cherry and Black Cherry. COYOUS 2004. Praha: FLE ČZU. Abstract: This article discusses differences between wood properties of two species of Padus genus. The wood of native Bird Cherry (Padus racemosa (L.) Gillib.) and the wood of introduced American species – Black Cherry (Padus serotina (Ehrh.) Borkh.) were compared. The comparison is based on standard mechanical and physical properties. The results are also compared with our common commercial species. Key words: Bird Cherry, Black Cherry, wood, mechanical and physical properties ZEIDLER, A. 2004. Zhodnocení vlastností dřeva lípy. Wood properties of lime-tree. In: Sborník z konference „Krajina, les a lesní hospodářství“ konané dne 29.11.2004 v Kostelci nad Černými lesy. ČZU v Praze v nakladatelství Lesnická práce, s.r.o. 47-52.
24
3.1.2. Aplikované výstupy Semenný sad třešně ptačí 2. generace na ŠLP v Kostelci n. Č. l. V roce 1995 byly získány rouby ze SRN z Dolnosaského lesnického výzkumného ústavu, z oddělení v Escherode. Jedná se o 30 klonů (EIN 254-1 až 16 a ESCH 2-1 až 14), které pocházejí z elitních, tj. testy potomstev ověřených stromů. Rouby tohoto původu byly naroubovány na Šlechtitelské stanici Truba v Kostelci n. Č. l. na podnože višně mahalebky (Prunus mahaleb) v kontejnerech v únoru 1995 klasickým plátováním. Na jaře 1997 byly roubovance (139 ks) přesazeny do velkokapacitních kontejnerů. Na tomto materiálu bylo již v květnu 1997 zaznamenáno první kvetení. Na jaře 1998 byl z výše uvedeného materiálu založen semenný sad 2. generace na ŠLP v Kostelci n. Č. l. na lokalitě „U trubské hájenky“ v porostu 20 A 7. Vysázeno zde bylo 134 roubovanců ve sponu 6 x 6 m. Vytyčeno zde však bylo 155 míst pro roubovance a zmíněných 134 roubovanců bylo vysázeno takovým způsobem, aby zde bylo střídavě 5x vysázeno všech 30 klonů. Tento semenný sad byl oplocen. Ke každému roubovanci byl umístěn kůl a individuální ochrana formou umělohmotného válce kvůli eventuálnímu vniknutí zajíců. V roce 1999 na jaře bylo doplněno 21 roubovanců. Došlo zde ještě k vylepšení po několika uhynulých roubovancích. Rovněž byly tvarovány korunky roubovanců. Stejně tak v roce 2000. V roce 2001 zde byly provedeny opravy oplocení, kůlů a úvazků a vyžínání buřeně. V sadu je každý rok pravidelně likvidována buřeň.
Semenný sad třešně ptačí 2. generace v Lesích města Prostějova V únoru 1997 byly dříve uvedené klony původem ze SRN přeroubovány na šlechtitelské stanici pomocí sekundárních roubů tentokrát na podnože třešně ptačí v kontejnerech. Bylo tak získáno 318 roubovanců těchto 30 klonů. Na jaře 1999 byl založen druhý semenný sad 2. generace z uvedeného materiálu ze 30 geneticky ověřených (elitních) klonů v Lesích města Prostějova. Sad byl založen v porostu 14 A 13 na ploše 0,86 ha. Vysázeno zde bylo 228 roubovanců ve sponu 6 x 6 m.
25
Semenné sady na Křivoklátsku a v Doupovských horách V únoru 1999 byl zajištěn sběr roubů ze 63 výběrových stromů na LS LČR Křivoklát a Nižbor. Roubování se ihned nato uskutečnilo na Šlechtitelské stanici Truba ve studeném skleníku plátováním na podnože třešně ptačí v kontejnerech. Naroubováno bylo 397 roubů, ovšem vzhledem k extrémnímu množství květních pupenů na roubech došlo k výraznému úhynu během roku. Dle podzimní inventury 1999 se ujalo pouze 120 roubů 43 klonů. Z tohoto důvodu bylo přistoupeno k opakovanému sběru roubů z těchto výběrových stromů, tentokrát již v prosinci 1999. Rouby byly v podstatně lepším stavu. Byly skladovány v písku v klimatizovaném skladu na šlechtitelské stanici. Roubování proběhlo počátkem února 2000 na podnože třešně ptačí v kontejnerech na šlechtitelské stanici ve studeném skleníku plátováním. Při inventuře na podzim 2000 bylo k dispozici 101 roubovanců z února 1999 a 249 roubovanců z února 2000, celkem tedy 350 roubovanců. Na přelomu prosince 1999 a ledna 2000 byl proveden sběr roubů ze 30 výběrových stromů z VLS Velichov. S tímto materiálem bylo naloženo stejně jako v předcházejícím případě. Dle inventury provedené rovněž na podzim 2000 bylo k dispozici 253 roubovanců. V roce 2001 byl materiál pro založení obou semenných sadů dále pěstován na šlechtitelské stanici. Na jaře 2001 byly roubovance přesazeny do velkokapacitních kontejnerů. Při podzimní inventuře byl zjištěn prakticky stejný počet přežívajících roubovanců jako na podzim r. 2000. Na Křivoklátsku byla vybrána plocha na LS LČR Lužná ve zrušené lesní školce. V Doupovských horách byla vybrána plocha na VLS Velichov, LS Klášterec n. Ohří v návaznosti na lesní školku. Na jaře 2002 byly oba dva semenné sady založeny. Semenný sad třešně ptačí na LS LČR Jindřichův Hradec Semenný sad Vlčí Luka na LS LČR Jindřichův Hradec byl založen v roce 2000 na výměře 1.23 ha. Semenný sad se nachází v nadmořské výšce asi 450 m n. m. Bylo zde vysazeno celkově 210 roubovanců naroubovaných na podnože třešně ptačí, původem z jižních Čech. Celkový počet klonů je 37. Výsadba roubovanců byla provedena postupně v několika etapách – v dubnu 2000, dubnu 2001a březnu 2002. Výsadbu založil oblastní genetik p. Červenský pro LČR. Roubovanci byli vysazeni ve sponu 6 x 8 m. Je zde prováděno vyžínání buřeně.
26
Rezervní klonový archiv třešně ptačí V únoru 1998 byly roubováním rozmnoženy klony získané ze SRN pomocí sekundárních roubů z roubovanců získaných v roce 1995. Roubování bylo provedeno klasickým plátováním na podnože třešně ptačí ve studeném skleníku na šlechtitelské stanici. Roubovance byly ošetřeny parafínem a na jaře 1998 zaškolkovány ve školce šlechtitelské stanice. Dle podzimní inventury v roce 1998 zde bylo 203 roubovanců. Tento materiál byl určen pro vylepšování semenných sadů na ŠLP v Kostelci n. Č. l. a v lesích města Prostějova. K tomuto účelu byl materiál sice využit, ale vzhledem k nepatrnému úhynu v uvedených sadech, většina tohoto materiálu zůstala. Z důvodu jeho odrůstání byl použit na založení rezervního klonového archivu na jaře 2000 v porostu 20 A 9. Vysázeno bylo 141 roubovanců (26 klonů, bez klonů ESCH 2-4, 10, 12, 14) ve sponu 3 x 3 m. Výsadba byla oplocena. Vzhledem k vyspělosti roubovanců jim byly tvarovány korunky a nebyly k nim již umístěny kůly, jsou chráněni umělohmotnými válci. V roce 2001 zde byly provedeny opravy oplocení, kůlů a úvazků a vyžínání buřeně. Každý rok je zde pravidelně likvidována buřeň.
Klonový archiv třešně ptačí moravského původu V únoru 1998 byl na šlechtitelské stanici naroubován materiál moravského původu. Tento materiál pochází z výběrových stromů původem z LS LČR Luhačovice, Strážnice, Brumov a obecních lesů Suchá Loz a byl získán ve formě sekundárních roubů z lesní školky v Budišově. Roubovance byly ošetřeny parafínem a byly na jaře zaškolkovány na záhonech školky šlechtitelské stanice. Dle podzimní inventury 1998 bylo ve školce 146 roubovanců (55 klonů). Na jaře 1999 byl z tohoto materiálu založen klonový archiv pro výzkumné účely (např. pro kontrolované opylování) v porostu 20 A 9. Vysázeno zde bylo 118 roubovanců (55 klonů)ve sponu 3 x 3 m. Tato výsadby byla oplocena, ke každému roubovanci byl umístěn kůl a individuální ochrana formou umělohmotného válce. na podzim 1999 zde byli nahrazeni 3 uhynulí roubovanci. Pravidelně je zde likvidována buřeň.
27
Test polosesterských potomstev stromů třešně ptačí V letním období 1997 byly posbírány plody ze 14 stromů třešně ptačí na ŠLP v Kostelci n. Č. l. Z těchto plodů byla získána semena (5,76 kg). Tato semena byla odděleně dle mateřských stromů stratifikována v písku v kontejnerech v klimatizovaném skladu na šlechtitelské stanici. Výsev semen byl uskutečněn 28. 4. 1998 odděleně dle mateřských stromů na záhony ve školce šlechtitelské stanice. Ovšem semena v roce 1998 nevzešla, přestože při rozbití náhodně vybraných pecek před výsevem i vybraných po výsevu byla vždy semena nejen plná, ale i na řezu svěží. V důsledku extrémního sucha na jaře 1998, kdy na dané lokalitě nepršelo od 11.4. do 18.5., došlo přes prováděnou zálivku k přeležení semen. Vzešla na jaře 1999. Na podzim 2000 byla tato potomstva vysázena do řadové srovnávací výsadby v porostu 20 A 9 ve sponu 1,5 x 1,5 m. 25 sazenic bylo vysázeno od potomstev č. 1, 2, 3, 5, 6, 7, 8, 9, 10; 24 sazenic od potomstva č. 4 a 11; 23 sazenic od potomstva č. 12; 21 sazenic od potomstva č. 13; 18 sazenic od potomstva č. 14. Celkově bylo vysazeno 335 sazenic od 14 potomstev. Ke všem sazenicím byly umístěny kolíky kvůli orientaci při ožínání buřeně. V roce 2001 zde byly provedeny opravy oplocení, kůlů a vyžínání buřeně. Na podzim 2002 byla provedena selekce málo nadějných potomstev na celkový počet 199 sazenic 8 potomstev. Výsadba je oplocena. Pravidelně je zde likvidována buřeň. Klonový test třešně ptačí - ŠLP v Kostelci n. Č. l. V září 1998 bylo získáno z Laboratoře biotechnologií v Olešné 140 obalovaných sazenic (v PE sáčcích) vypěstovaných in vitro. Jednalo se o materiál 28 klonů, od každého klonu po 5 sazenicích. Pochází původem z 28 dospělých stromů třešně ptačí, výběrových či šlechtitelských. Stromy č. 1 – 10 jsou šlechtitelské stromy z LS LČR Křivoklát, ostatní jsou výběrové stromy z LS LČR Nové Hrady a LZ Prachatice. Na jaře roku 1999 byl tento materiál vysázen do velkokapacitních kontejnerů a na jaře 2000 byl pak materiál vysázen formou řadové výsadby na ŠLP v Kostelci n. Č. l. v porostu 20 A 9 ve sponu 3 x 3 m. Výsadba byla oplocena. Ke všem sazenicím byly umístěny kolíky kvůli orientaci při ožínání
28
buřeně. V roce 2001 zde byly provedeny opravy oplocení, kůlů a vyžínání buřeně. Každý rok je zde pravidelně likvidována buřeň.
Klonový test lípy malolisté - ŠLP v Kostelci n. Č. l. Na podzim 1999 byly získány z Laboratoří biotechnologií v Olešné obalované sazenice (v PE sáčcích) lípy malolisté vypěstované in vitro. Již na jaře 1999 byl tento materiál vystaven venkovnímu prostředí v Olešné. Jednalo se o 95 klonů lípy (zastoupených 4 nebo 5 jedinci, o celkovém počtu 451 sazenic). Primární explantáty byly získány z výběrových a šlechtitelských stromů, z několika přírodních lesních oblastí (Jihočeské pánve, Křivoklátsko, Český kras a Polabí). Klony byly jeden rok pěstovány jako obalované sazenice a na podzim 2000 pak vysazeny formou řadové výsadby v porostu 20 A 9 ve sponu 1.5 x 1.5 m. Výsadba je oplocena. Ke všem sazenicím byly umístěny kolíky kvůli orientaci při ožínání buřeně. V roce 2001 zde byly provedeny opravy oplocení, kůlů a vyžínání buřeně. Každý rok je zde pravidelně likvidována buřeň.
29
Klonový test jeřábu ptačího - ŠLP v Kostelci n. Č. l. Na podzim 2000 byly získány na šlechtitelskou stanici z Laboratoří biotechnologií v Olešné obalované sazenice jeřábuptačího. Materiál pochází ze šlechtitelských stromů z NP Šumava. Každý z 48 klonů z explantátových kultur byl zastoupen 6 jedinci. Po provedení selekce ve výsadbě polosesterských potomstev třešně ptačí na podzim 2002, byl materiál přesazen z plastových kontejnerů do porostu 20 A 9 ve sponu 1,5 x 1,5 m. 34 klonů jeřábu bylo vysazeno na místa vyselektovaných potomstev třešně (celkem 194 jedinců), 8 klonů bylo k této výsadbě dosazeno na volou plochu (celkem 48 jedinců) a 6 klonů bylo vysazeno ve vedlejší výsadbě potomstev jedle, mezi 4.a 5. řadou (celkem 36 jedinců). 10 jedinců z původního počtu do doby přesazení na plochu uhynulo. Celá výsadba je oplocena. Každý rok je zde pravidelně likvidována buřeň.
30
Test potomstva šlechtitelského stromu hrušně obecné Potomstvo jediného šlechtitelského stromu z Průhonic. Jedinci byli vypěstováni na šlechtitelské stanici klasicky ze semene. Semenáčky byly umístěny v kontejnerech a jako 2leté sazenice byly v roce 2000 (podzim) vysázeny na ŠLP v Kostelci n.Č.l. v porostu 20 A 9. Vysázeno bylo 43 jedinců do jedné řady doplňující řadovou výsadbu lípy, ve sponu 1.5 x 1.5 m. Výsadba je oplocena. Ke všem sazenicím byly umístěny kolíky kvůli orientaci při ožínání buřeně. V roce 2001 zde byly provedeny opravy oplocení, kůlů a vyžínání buřeně. Každý rok je zde buřeň pravidelně likvidována.
31
4. Náklady na řešení výzkumného záměru
Rok 1999 2000 2001 2002 2003 2004
Inst. podpora ze státního rozpočtu (tis. Kč)
Jiné zdroje (tis. Kč)
Typ jiného zdroje (veřejné jiné než inst. podpora, tuzemské neveřejné, zahraniční)
627 899 890 1052 1133 1065
5. Čerpání finančních prostředků v roce 2004 Investiční náklady …… 150 000,- dendrometrická souprava, počítačové vybavení Mzdy ………………… 200 000,- odměny členům řešitelského týmu ………………….. 50 000.- dohody Sociální a zdravotní pojištění ……. 88 500,Služby ……………………………. 93 500,- péče o experimentální výsadby a jejich ochranu, zpracování dat, zhotovení fotodokumentace aj. Materiál a drobný a dlouhodobý hmotný majetek … 136 500,- nákup pomůcek pro výzkum Údržba a opravy …………………. 20 500,- opravy přístrojů a zařízení Cestovné ………………………. 219 500,- tuzemské a zahraniční cesty členů řešitelského týmu Režie …………………………... 106 500,- režie
32
6.
Přílohy
6. 1. WILD CHERRY (PRUNUS AVIUM L.) BREEDING PROGRAM WITH DIRECTION TO UTILIZATION OF THIS TREE IN THE CZECH FORESTRY ŠLECHTITELSKÝ PROGRAM TŘEŠNĚ PTAČÍ (PRUNUS AVIUM L.) SE ZAMĚŘENÍM NA VYUŽITÍ TÉTO DŘEVINY V ČESKÉM LESNÍM HOSPODÁŘSTVÍ J. Kobliha Czech University of Agriculture in Prague, Faculty of Forestry, 165 21 Praha – Suchdol ABSTRACT: The paper widely introduced european experiences in wild cherry breeding because it is the first one from prepared series of articles with direction to wild cherry breeding in Czechia. Beginning of wild cherry breeding program for the Czech forestry is described. Plus trees were certified, seed orchards, clone archives, progeny and clonal tests were established. Clones were tested on flowering of graftings in reproductive plantations. Progenies and clones were tested on growth parameters in progeny and clonal tests. Progenies and clones in every breeding plantation were tested on damage by aphids. Seed orchard, clone archive, half-sib progeny test, clonal test, flowering, growth, damage by aphids, Prunus avium L. ABSTRAKT: Práce široce uvádí evropské zkušenosti ve šlechtění třešně ptačí, protože je první ze série připravovaných článků se zaměřením na šlechtění třešně ptačí v České republice. Je zde popsáno zahájení šlechtitelského programu třešně ptačí pro české lesní hospodářství. Byly uznány výběrové stromy, založeny semenné sady, klonové archivy, testy potomstev a klonů. Klony v reprodukčních výsadbách byly testovány na kvetení roubovanců. Potomstva a klony v testu potomstev i klonovém testu byly hodnoceny v růstových parametrech. Potomstva a klony ve všech šlechtitelských výsadbách byly testovány na poškození mšicemi. Semenný sad, klonový archiv, test polosesterských potomstev, klonový test, kvetení, růst, poškození mšicemi, Prunus avium L. INTRODUCTION AND EUROPEAN EXPERIENCES Wild cherry (Prunus avium L.) is one of noble hardvoods. Great attention is done to these tree species in Europe recently (Turok et al., 1996; Turok et al., 1998; Turok et al., 1999). This attention is caused by importance of increasing of forest ecosystem biodiversity and also of obtaining of valuable wood which is also connected with effort to limit wood import from tropical regions of the world and with effort of maitenance of gene resources of these forest trees. Attention to wild cherry and other noble hardwoods is done in Europe mainly within program EUFORGEN. The greatest wild cherry programs are realized in France and Germany. France Demesure (ex Turok et al , 1996) introduced that gene resources of wild cherry in France are very endangered mainly by seed transfer without control. This species was planted on a large scale in France during 15 years but reproductive material originated from small number of mother trees. Research institutions of France (INRA and CEMAGREF) try to recognize diversity of this species. Aims are better recognition of gene resources by genetic markers, conservation of gene resources in situ (natural stands in North-East, artificially established stand in other regions of France), conservation of gene resources ex situ including seed orchards. Héois et al. (ex Turok et al., 1996) informed about this situation. Domestication of wild cherry caused genetic modifications within species. Much later diversity and genetic variability of its resources in France changed by forestry. Trend directed to establishment of homogenous forest stands made wild
33
cherry much more rare. Cazet (ex Turok et al., 1996) introduced that 1,3 million individuals were planted to 1993. Problem is often unknown origin and rather narrow basis of utilized plant material. Conservation strategy of wild cherry gene resources in France is based on: 1. Regionalized conservation of gene resources in situ – large and variet natural stands in NorthEast of France (10 localities), artificially established stands – stands were established in 3 regions by material suitable for done region and originated from localities of wild cherry occurence. 2. Establishment of national program of forest tree breeding and establishment of seed orchards ex situ. Increasing cost of wild cherry wood caused cutting of many valuable individuals in 60th years. During 15 years this situation contributed to extinction of wild cherry in stands. Cherry plantations were established on agricultural soils with utilization of planting machines. It caused great increasing of artificial plantations of this type. In the beginning quality of used material was very low. Sometimes plantations were established by distilling sorts. 102 stands for seed collection were selected in NorthEast of France and only 10 stands in other regions to 1996. During 20 years INRA selected about 400 plus trees. These trees were tested by clonal tests on many sites. 20 clones were selected and they were grafted on slowly growing rootstocks in 1995 sense of what was to reach early flowering of graftings. In spite of this information recent providing with wild cherry reproductive material is unsatisfactory. Only 21 – 35 stands are used for seed collection. Recently 66 % of seed originate from 5 or 6 stands. Fernandez et al. (ex Turok et al., 1996) introduced that level of selected stands is low and their genetic basis is probably narrow (Frascaria et al. ex Turok et al., 1996). One cause can be vegetative sprouting of mother tree. This process can lead to very small number of genotypes inside stands. There is known that such „clonal svarm“ can occupy area 20 – 5000 m2. Mariette et al. (1997) investigated genetic variability in wild cherry populations in France by isoenzymes. Genetic diversity and differentiation between 6 populations. Santi and Lemoine (1990) realized this study on 286 trees from France (186 trees), especially from Normandia (61 trees), from Ardenes (19 trees), from Germany (14 trees) and from Belgium (6 trees). They distinguished products of 41 loci, 13 from them were polymorfic. Genetics of 7 isoenzymatic loci for 8 full-sib progenies was investigated. Connection was found only between isoenzymatic loci „lap l“ and „got l“, „lap 1“ and „me l“. Muranty et al.(1998) measured height and diameter and observed sensitivity to Phloesporella padi in 3 plantations of 14 wild cherry hal-sib progenies periodically to 7 years. Height growth during 5 growing seasones, diameter growth during 2 seasones and sensitivity to Phloesporella padi showed high heritability. Radio of additive variance to general variance for these traits was higher than 0,60. Genotype x environment interaction was rather high for height growth but low or null for diameter growth and sensitivity. Height and diameter growth reached high genetic correlation like with sensitivity. Relative genetic gain is done on basis of this study from 8 % to 37 % in dependence on trait and site. Santi et al. (1998) valuated genetic parameters and potential gain from selection of wild cherry clones in 7 year clonal test with 33 clones in France for the first time. Observed traits were height increments from 0 to 2 years and from 2 to 7 years after planting, diameter, stem form, number, angle and diameter of branches, leaf parameters and glandule number, sensitivity to aphids (Myrus cerasi) and Bluemeriella jaapii. The second height increment, diameter, branching angle and sensitivity to Bluemeriella were traits with the highest heritability (0,56; 070; 0,57; 0,83). Branch number and diameter were also heritable but not on agricultural sites (0,66 and 0,22). The second height growth, diameter and branching angle reached reciprocal good genetic correlations and also reached correlation with sensitivity to Bluemeriella. Ecovalence analysis of „site x clone“ interaction showed high share of clones and sites were slightly interactive for each trait. Genetic gain 11 % was reached for the second height increment and 13 % for diameter with low selection intensity (1/4). Now 6 clones are in the certification list. They are the first clonal varietes of wild cherry which were oficially certified in EU.
34
Muranty et al. (1996) mentioned that many forest tree breeding programs are based on clonal tests for purposes of genotype selection for clonal forestry now. But working capacity, finances and space for tests are limited and in spite of that it is necessary to obtain the test selection results . Authors also solved optimum ramet number per clone in 2 clonal tests. They obtained data in test of 32 wild cherry clones in 3 repetitions in age of 7 years and in test of 96 hybrid larch clones without repetition in age of 8 years. Studied characteristics were height increments, diameter branching parameters and wood quality. They found that 6 ramets per clone is enough for clonal forestry purposes. Germany High attention is done to wild cherry in Germany (Kleinschmit et al. ex Turok et al. , 1996). Higher interest is only done to Acer pseudoplatanus and Fraxinus excelsior. Wild cherry occurence is connected with fertile, warm sites and stand edges. Only several stands and seed orchards are able to produce quality seed. Wild cherry is not mentioned in German „Law for forest seed and plant material“. No guarrantee exists for having suitable seed. Danger of crossing with cultural sorts is high but German colleagues made a lot of work in conservation of gene resources in situ. In 1996 34 selected stands were registred in general area of 19,6 ha and 1164 plus trees. They probably reached the greatest activities in case of measures ex situ in member countries of EUFORGEN program. They established 48 stands on area of 39 ha, 17 seed orchards with 700 clones on area of 25 ha and next orchards with 120 clones. Seed (200 kg) and also pollen are stored in Germany. In 1957 seed orchard was established in Baden – Württemberg primarily with utilization of 150 graftigs from 13 clones on area of 1,65 ha by Franke et al. (1988). To 1983 it was widened on 3,3 ha. Grafts were used on Prunus avium or Prunus mahaleb rootstocks. In 1988 275 graftings of 42 clones from the whole Germany were here. Seed orchard was established in space 6 x 6 m to 10 x 10 m. After the first years of orchard fructification clones were removed fruits of which showed great relationship with consume cherry fruits. In years 1974 - 1987 4 – 529 kg of seed per year were obtained here. 4000 seeds were aproximetely in 1 kg. Cherry fructification is endangered by late frosts and rainfall in flowering time here. Weiser (1996) reported about results obtained in test of half-sib progenies in age of 33 years. Progenies showed differences in mortality, height, diameter, branch diameter and branching character. 45 best clones were obtained for establishment of seed orchard by selection within progenies and by in vitro propagation. The best individual were selected in progeny test from seed orchard and propagated in vitro by Meier-Dinkel et al. (1997). On spring 1988 clonal test with 16 clones was established with utilization of 2 comparative clones and seedlings from seed orchard like control. 12 clones were evaluated on high quality on basis of results of investigation on stem form and growth for commercial utilization. Spain Wild cherry occurs on the whole area of Spain by Miranda (ex Turok et al., 1996) but only like individual trees. It occures mainly in the North where program of small mixed stand plantation on agricultural sites is realized. The main danger is great tree cutting for financial gain. To 1996 93 trees were selected within breeding program. Selection criterion was quality of wood production, mainly growth and stem straightness. Research of quality individuals in the whole area was not finished. Clonal material from 51 trees was collected and clone archive was established from it. Part of this material is growed in vitro. Italy Italian research intensively investigates wild cherry genetic variability by morphological and phenological traits and biochemical and molecular markers (isoenzymes, RFLP, RAPD) for obtaining of basis for selection (Ducci ex Turok et al., 1996). In 1996 Italian colleagues had 350 wild cherry clones form the whole Italy, 10 clones from France and 10 clones from Great Britain. They had also clones modified by radiation. 150 clones are tested in plantations. Ducci et al. (1990) rewiewed that
35
from 1980 225 plus trees were collected in 10 regions of Italy. Amprimo (1997) mentioned establishment of clonal wild cherry plantation originated from 8 trees valuable in phenotype propagated in vitro, 4 from Piedmont and 4 from other regiones of Italy. Clones in this plantation were tested on growth. Hungary, Austria, Slovakia, Switzerland Barna (ex Turok et al., 1996) introduces that to 1996 180 trees were selected a 1 seed orchard was established in Hungary. 3 seed orchards with 152 clones were established in Austria by Müller (ex Turok et al., 1996). Longauer and Hoffman (ex Turok et al., 1996) critize practice in business with cherry wood and its regeneration in Slovakia. In 1996 clonal seed orchard of wild cherry was established here. Low quantity of quality gene resources of wild cherry is in swiss forestry by Rotach (ex Turok et al., 1996). Rather great populations with satisfactory quality are extremely rare by this author. Bad result of this situation is import more than 50 % of seed. Breeding aim is obtaining of seed orchards producing seed not only with high genetic quality but also with higher genetic diversity. Belgium, Netherlands Cuyper and Jacques (ex Turok et al., 1996) introduce 2 wild cherry stands for seed collection and 121 plus trees in situ, 2 seed orchards, 1 clone archive, 16 clonal tests or progeny tests ex situ in Belgium. Risk of negative influence of wild cherry original gene resources exists by cultural (distilling and preserved fruit) sorts. Relatively high is import of seed from various countries often from different ecological conditions. Cherry wood is very valuated in Netherlands by Vriese (ex Turok et al., 1996). But cherry is very rare in this country. Greater occurence of cherry is in the national parks in the South and then in eastern part of country. Identificiation of stand origin is not easy. Seed orchard of this tree species was established here. Latvia, Sweden, Great Britain Wild cherry is mentioned like introduced tree in boreal countries. Baumanis et al. (ex Turok et al., 1996) introdukce that cherry came to Latvia like fruit tree and it occurs secondary in this country. Recently it occurs in mixed stands in the West of state. It is resistant to winter here. It is potential species for agroforestry for its relatively fast growth. Wild cherry occurs to 60 degrees latitude North by Eriksson (ex Turok et al., 1996). To 1996 10 subpopulations were distinguished within conservation of gene resources in situ. Lagerström and Eriksson (1997) mention problems of stands for seed collection and seed orchards of various forest tree species including of wild cherry. Nicoll (1993) and Hammatt, et al. (1996) solve wild cherry breeding on wood production for agricultural soil in Great Britain. Some breeding activities were realized with wild cherry in the Czech Republic but the most important work in this field is solved by Faculty of Forestry of Czech University of Agriculture in Prague. This wild cherry breeding program was started within research project of National Agency for Agricultural Research „Breeding and silviculture of wild cherry (Prunus avium L.) in the Czech Republic“ in years 1997 – 2000 (Kobliha, Podrázský, 2001). This research continued by research project of Ministry of Agriculture of the Czech Republic „Results of several years breeding and silviculture with direction to utilization of this tree in forestry of the Czech Republic“ in 2001 (Kobliha, 2002). General aim of there projects solving was wild cherry breeding on high production and quality of wood for purposes of forest regeneration and afforestation of soils out of forests. This aim is realized by establishment of breeding program based on reproductive plantations and evaluating tests. Next aims were obtaining of knowledge of wild cherry breeding, propagation, silviculture and ecological functions. MATERIAL AND METHODS Tree selection
36
Research in wild cherry occurence in forest stands with direction to tree selection was realized in several regions of the Czech republic. Dozens of forest stands with wild cherry occurence were investigated and hundreds of trees were preselected. Selection was finished by official certification of 63 plus trees in the Forest Districts of Forest of the Czech Republic (FD FCR) Křivoklát and Nižbor in the middle Bohemia and 30 plus trees in the Military Forests (MF) Velichov in the western Bohemia. Plus trees were certified on basis of criterions by Hynek et al. (1997). Plus trees were measured in height, diameter and crown length, they were classified into tree classes by Kraft. Trees were also valuated in phenotypic traits: crown width, form, regularity, density and condition, branching angle, stem taper, form and natural pruning, branching, branch diameter and rough bark character. These characteristics were already published by Kobliha and Janeček (2001). Seed orchard and clone archive establishment On February 1999 grafts were collected from 63 plus trees in FD FCR Křivoklát and Nižbor and used for grafting in Tree Breeding Sation Truba. Collection of grafts was repeated on December 1999 and grafting on February 2000. 350 graftings survived to control inventory in autumn 2001. This material is prepared for establishment of seed orchard in FD FCR Lužná on prepared plot in former forest nursery on spring 2002. During January 2000 grafts were collected from 30 plus trees in MF Velichov. On autumn 2001 250 graftings survived to control inventory. This material will be also used for establishment of seed orchard on prepared plot in MF Velichov on spring 2002. In 1995 grafts of 30 clones were obtained from Germany (Lower Saxon Forestry Research Institute, department in Escherode). These clones originate form elite trees – evaluated by progeny tests. Grafts of this origin were used on rootstocks of Prunus mahaleb in Tree Breeding Station Truba on February 1995. On spring 1998 this material was used for establishment of the second generation seed orchard in the School Forest Enterprise (SFE) in Kostelec nad Černými lesy. 155 graftings were planted in spacing 6 x 6 m here. On February 1997 the same clones originated from Germany were grafted by secondary grafts on wild cherry rootstocks in Tree Breeding Station Truba. On spring 1999 the 2nd seed orchard of the second generation was established by mentioned material from 30 elite clones in Forests of the Town Prostějov. Seed orchard was established on area of 0,86 ha. 228 graftings were planted in spacing 6 x 6 m here. On February 1998 elite clones from Germany were also propagated by secondary grafts on wild cherry rootstocks. This material was determined for improvement of seed orchards in SFE Kostelec nad Černými lesy and in Forests of the Town Prostějov. This matterial was used for this purpose but mortality was very low in these seed orchards. Then this material was used for establishment of reserve clone archive in SFE Kostelec nad Černými lesy on spring 2000. 141 graftings of 26 elite clones from Germany were planted in spacing 3 x 3 m there. On February 1998 material of Moravian origin was grafted in Tree Breeding Station Truba. This material originates from plus trees from FD FCR Luhačovice, Strážnice and Brumov and Commune Forests Suchá Loz. It was obtained in form of secondary grafts from Forest Nursery Budišov. On spring 1999 research clone archive was established by this material in SFE Kostelec nad Černými lesy. 118 graftings of 55 clones were planted in spacing 3 x 3 m. Half – sib progeny test and clonal test establishment On summer 1997 fruits were collected from 14 wild cherry trees in SFE Kostelec nad Černými lesy. Seeds (5,76 kg) were obtained from these fruits. Seed was stratified in tree breeding station. Seeding was realized in tree breeding station nursery on the end of April 1998. Seed did not germinate because of extremely dry spring 1998. It germinated on spring 1999. On autumn 2000 progenies were planted into comparative plantation in spacing 1,5 x 1,5 m in SFE Kostelec nad Černými lesy. About 25 seedlings per progeny were planted here.
37
On September 1998 140 wild cherry plants propagated in vitro were obtained from Laboratory of Biotechnologies Olešná. This 140 plants represent 28 clones (5 ramets per clone). Clones originate from plus trees, 10 clones from FD FCR Křivoklát (middle Bohemia) and 18 clones from FD FCR Nové Hrady and Prachatice (southern Bohemia). On spring 2000 this material was used for establishment of comparative plantation in spacing 3 x 3 m in SFE Kostelec nad Černými lesy. Clonal testing in seed orchard and 2 clone archives (SFE Kostelec nad Černými lesy) Control of flowering was realized in these 3 reproductive plantations on May 2001. Grafting flowering was valuated by classification: no flowering, poor flowering , strong flowering. Control of damage by aphids was realized on June 2001. Granting damage by aphids was classified: no damage, poor damage, strong damage. Progeny and clonal testing in comparative plantations (SFE Kostelec nad Černými lesy) Plants in half – sib progeny test and clonal test were measured on spring 2001 before bud flushing and then on autumn 2001 after growth end. Analysis of variance (level 95 %) was used for statistical significance evaluation of influence of progeny on plant height. Then Duncan’s test was used. Control of damage by aphids was also realized with the same classification like in graftings on June 2001. RESULTS Flowering of graftings in seed orchard and 2 clone archives 2 graftings (1,3 %) died to May 2001, 54 individuals did not flower (34,8 %), flowering of 58 individuals was poor (37,4 %), flowering of 41 individuals was strong (26,5 %) from 155 graftings in investigated seed orchard. No grafting flowered only in case of 3 clones (n. 27, 28, 30) from 30. Every grafting flowered in 5 clones (n. 10, 14, 15, 16, 25). Graftings of clone n. 16 flowered mostly. (See table n. 1). 5 individuals died (3,5 %) to May 2001, 38 individuals did not flower (27 %), flowering of 72 individuals was poor (51,1 %) and flowering of 26 individuals was strong (18,4 %) from 141 graftings in reserve clone archive with the same origin of clones like in seed orchard. No clone was without some flowering individual. Every grafting of 7 clones flowered (n. 11, 12, 14, 18, 19, 23, 29). Clone n. 14 had the same result in seed orchard. (See table n. 2). 3 individuals died (2,6 %) to May 2001, 95 individuals did not flower (81,2 %), flowering of 15 individuals was poor (12,8 %) and flowering of 4 individuals was strong (3,4 %) from 117 graftings in clone archive of Moravian origin. No grafting flowered in 31 clones. Some graftings of 16 clones flowered. Strong flowering occured in 4 clones. (See table n. 3). Grafting damage by aphids in seed orchard and 2 clone archives 2 individuals died (1,3 %) to June 2001, 96 individuals was not damaged (61,9 %), damage of 55 individuals was poor (35,5 %) and damage of 2 individuals was strong (1,3 %) from 155 graftings in seed orchard. No grafting was damaged in 2 clones (n. 22 and 27). (See table 4). 6 individuals died (4,3 %) to June 2001, 59 individuals was not damaged (41,8 %), damage of 66 individuals was poor (46,8 %) and damage of 10 individuals was strong (7,1 %) from 141 graftings in reserve clone archive. No grafting was damaged in clone n. 19. Clone n. 4 had the highest number of damaged individuals (83,3 %). Strong damage occured in 8 clones from 26. (See table n. 5). 3 individuals died (2,6 %) to June 2001, 63 individuals was not damaged (53,8 %), damage of 48 individuals was poor (41 %) and damage of 3 individuals was strong (2,6 %) from 117 graftings in
38
clone archive of Moravian origin. No grafting was damaged in 10 clones from 47. Every grafting was damaged in 12 clones. Plant growth and damage by aphids in progeny test Mean height of progenies was from 10,6 cm (progeny n. 12) to 66,4 cm (progeny n. 1) on spring 2001. On autumn mean height was from 12,4 cm (progeny n. 12) to 78,3 cm (progeny n. 1). (See table n. 7). Analysis of variance showed statistically very significant influence of progeny on plant height on spring and also on autumn 2001. Duncan’s test divided progenies by spring height and also by autumn height to 6 homogenous subgroups: Spring height 1. progenies n. 12, 11, 13, 14 (common mean: 12,4 cm) 2. progenies n. 13, 14, 10 (common mean: 18 cm) 3. progenies n. 10, 5, 6, 8, 4, 9 (common mean: 26,6 cm) 4. progenies n. 5, 6, 8, 4, 9, 3, 2 (common mean: 28,9 cm) 5. progeny n. 7 (mean: 57 cm) 6. progeny n. 1 (mean: 66,4 cm) Autumn height 1. progenies n. 12, 11, 13, 14 (common mean: 16,2 cm) 2. progenies n. 13, 14, 10, 5 (common mean: 23,9 cm) 3. progenies n. 10, 5, 6, 8, 4 (common mean: 30,7 cm) 4. progenies n. 6, 8, 4, 9, 3, 2 (common mean: 36,8 cm) 5. progeny n. 7 (mean: 69,3 cm) 6. progeny n. 1 (mean: 72,3 cm ) 2 individuals died (0,6 %) to June 2001, 330 individuals was not damaged by aphids (98,5 %), damage of 3 individuals was poor (0,9 %) and damage of no individual was strong from 335 plants in progeny test. (See table n. 8). Plant growth and damage by aphids in clonal test Mean height of clones was from 23,8 cm (clone n. 12) to 128 cm (clone n. 19) on spring 2001. On autumn mean height was from 51 cm (clone n. 12) to 153,8 cm (clone n. 19). (See table n. 9). Analysis of variance showed statistically very significant influence of clone on spring and also autumn plant height. Duncan’s test divided clones by spring height to 11 homogenous subgroups and by autumn height to 10 subgroups: Spring height 1. clone n. 12 (mean: 23,8 cm) 2. clones n. 16, 1, 41, 3, 2, 9, 4, 6, 7, 11, 5, 13, 150, 21 (common mean: 69,8 cm) 3. clones n. 1, 41, 3, 2, 9, 4, 6, 7, 11, 5, 13, 150, 21, 18, 10 (common mean: 73,1 cm) 4. clones n. 3, 2, 9, 4, 6, 7, 11, 5, 13, 150, 21, 18, 10, 14 (common mean: 76,4 cm) 5. clones n. 2, 9, 4, 6, 7, 11, 5, 13, 150, 21, 18, 10, 14, 8 (common mean: 78,6 cm) 6. clones n. 6, 7, 11, 5, 13, 150, 21, 18, 10, 14, 8, 28, 20, 29 (common mean: 85,8 cm) 7. clones n. 11, 5, 13, 150, 21, 18, 10, 14, 8, 28, 20, 29, 27 (common mean: 89,1 cm) 8. clones n. 150, 21, 18, 10, 14, 8, 28, 20, 29, 27, 23, 26 (common mean: 95,8 cm) 9. clones n. 21, 18, 10, 14, 8, 28, 20, 29, 27, 23, 26, 25 (common mean: 98,2 cm) 10. clones n. 14, 8, 28, 20, 29, 27, 23, 26, 25, 24 (common mean: 103,8 cm) 11. clones n. 28, 20, 29, 27, 23, 26, 25, 24, 19 (common mean: 109,3 cm) Autumn height 1. clones n. 12, 16 (common mean: 59,4 cm) 2. clones n. 16, 41, 13, 7, 150, 18 (common mean: 89,8 cm)
39
3. 4. 5. 6. 7. 8. 9. 10.
clones n. 41, 13, 7, 150, 18, 2, 27, 4, 21, 1, 28, 3, 9, 14, 8, 5 (common mean: 105,9 cm) clones n. 13,7,150,18,2,27,4,21,1,28,3,9,14,8,5,10,26,6 (common mean: 110,3 cm) clones n. 7,150,18,2,27,4,21,1,28,3,9,14,8,5,10,26,6,11 (common mean: 112,7 cm) clones n. 150,18,2,27,4,21,1,28,3,9,14,8,5,10,26,6,11,23,24 (common mean: 116,2 cm) clones n. 2,27,4,21,1,28,3,9,14,8,5,10,26,6,11,23,24,25 (common mean: 119,2 cm) clones n. 21, 1, 28, 3, 9, 14, 8, 5, 10, 26, 6, 11, 23, 24, 25, 29 (common mean: 123,2 cm) clones n. 14, 8, 5, 10, 26, 6, 11, 23, 24, 25, 29, 20 (common mean: 130,8 cm) clones n. 5, 10, 26, 6, 11, 23, 24, 25, 29, 20, 19 (common mean: 135,6 cm)
No individual died to June 2001, 118 individuals was not damaged by aphids (84,3%), damage of 22 individuals was poor (15,7 %) and damage of no individual was strong from 140 plants in clonal test. No plant of 11 clones (from 28) was damaged. (See table n. 10). DISCUSSION Flowering in reproductive plantations Higher number of graftings flowered in both reproductive plantations with German clones. Small part of graftings only flowered in clone archive of Moravian origin. Although graftings in seed orchard are 3 years older than graftings of Moravian clones but graftings of German clonal origin in reserve clone archive have the same age. Graftings are only 4 – 7 year old and plantations are established 2 – 3 years ago, so it is necessary to continue in investigation of their flowering and also fructification. Damage by aphids in breeding plantations Damage by aphids was observed in 5 breeding plantations. Comparison of this damage between individual plantations showed that older and higher plantations were damaged more. The lowest damage was observed in plants of progeny test where only 3 plants were damaged (0,9 %) and no strong damage was observed. Higher number of damaged plants was observed in clonal test where 22 individuals were damaged (15,7 %) but this damage was only poor. The highest number of damaged individuals was observed in 3 reproductive plantations of graftings which are also highest: seed orchard with German clones ... poor damage of 55 individuals (35,5 %) and strong damage of 2 individuals (1,3 %), reserve clone archive with the same clones ... poor damage of 66 individuals (46,8 %) and strong damage of 10 individuals (7,1 %), clone archive with Moravian clones ... poor damage of 48 individuals (41 %) and strong damage of 3 individuals (2,6 %). Influence of genetic differences is not possible to find in this phase yet but investigation of this problem has to continue because for example Santi el al. (1998) found high heritability in sensitivity on aphids in 7 year old wild cherry clonal test. Plant growth in progeny and clonal test Difference was 55,8 cm between mean height of the lowest and the highest progenies in age of 2 years, 65,9 cm after next seasone. This difference increased between the same progenies (n. 12 and 1). Kobliha (ex Kobliha and Podrázský, 2001) also mentioned that progeny n. 12 was the lowest (6,4 cm) and progeny n. 1 was the highest (35,1 cm) in nursery on autumn 1999. Increment was low ... 1,7 cm – 11,9 cm in 2001. On spring 2001 difference was 104,2 cm between mean height of the lowest and the highest clones, then 102,8 cm after next seasone (clones n. 12 and 19). Analyses of variance showed statistically significant influence of progeny and clone to plant height growth in this stadium. This fact is important because it shows great selection potential. Plants propagated by cultures in vitro grow more rapidly than seedlings. Mean height of 2 year old progenies was 10,6 – 66,4 cm and in the same age mean height of clones was 23,8 – 128 cm (one year later 51 – 153,8 cm).
40
References Amprimo, G., 1997: Primi rilevamenti in collezioni di fenotipi superiori di Prunus avium e Juglans regia (Preliminary surveys for the collection of superior phenotypes of Prunus avium and Juglans regia). Annali dell´ Instituto Sperimentale per la Silvicoltura, 1994 – 1995, 25 – 26: 71 – 79. Ducci, F. – Tocci, A. – Veracini, A., 1990: Sintesi del registro del materiale di base di Prunus avium L. in Italia centro settentrionale, Basilicita e Calabria (Summary list of basic plant material of Prunus avium collected in North and South Italy). Annali dell´ Instituto Sperimentale per la Silvicoltura, 1988, 19: 263 – 303. Franke, A. – Hauff, U. – Dagenbach, H., 1988: Samenplantage “Waldkirsche Liliental“ produziert Vermehrungsgut der Kirsche (The Liliental seed orchard for wild cherry produces propagation material). Allgemeine Forstzeitschrift, 20: 558 – 559. Hammatt, N. – Hipps, N. A. – Burgess, C. M., 1996: Genetic and physiological research to improve farm woodland management. Vegetation management in forestry, amenity and conservation areas: managing for multiple objectives, 19 and 20 March 1996, University of York, York, UK. Aspects of Applied Biology, 44: 101 – 107. Hynek, V. – Buriánek, V. – Benedíková, M. – Frýdl, J. – Kaňák, J., 1997: Výběrové stromy a porosty uznané pro sběr osiva – Základní kritéria. VÚLHM, Jíloviště – Strnady. Kobliha, J. – Janeček, V., 2001: Selekce stromů třešně ptačí. In: Sborník z celostátní konference „Krajina, les a lesní hospodářtví“. Kostelec n. Č. l., 22. – 23. 1. 2001: 58 – 66. Kobliha, J. – Podrázský, V., 2001: Šlechtění a pěstování třešně ptačí (Prunus avium L.) v ČR. Závěrečná zpráva výzkumného projektu NAZV EP 7138. ČZU v Praze: 150 s. Kobliha, J., 2002: Výsledky několikaletého šlechtění a pěstování třešně ptačí se zaměřením na rozšíření této dřeviny v lesním hospodářství ČR. Závěrečná zpráva výzkumného projektu MZe ČR. ČZU v Praze: 51 s. Lagerström, T. – Eriksson, G., 1997: Improvement of trees and shrubs by phenotypic selection for landscaping in urban and rural areas – a Swedish example. Forest and Landscape Research, 1, 4: 349 – 366. Mariette, S. – Lefranc, M. – Legrand, P. – Frascaria – Lacoste, N. – Machon, N., 1997: Genetic variability in wild cherry population in France. Effects of colonizing processes. Theoretical and Applied Genetics, 94, 6 – 7: 904 – 908. Meier – Dinkel, A. – Svolba, J. – Kleinschmit, J., 1997: Selektierte, mikrovermehrte Vogelkirschen – Klone (Selected micropropagated clones of Prunus avium). AFZ Der Wald, Allgemeine Forst Zeitschrift für Waldwirtschaft und Umweltvorsorge, 52, 18: 963 – 964. Muranty, H. – Santi, F. – Paques, L. C. – Dufour, J., 1996: Nombre optimal de ramets par clone dans deux tests clonaux (Optimal number of ramets per clone in two clonal tests). Annales des Sciences Forestieres, 53, 1: 123 – 138. Muranty, H. – Schermann, N. – Santi, F. – Dufour, J., 1998: Genetic parameters estimated from a wild cherry diallel: consequences for breeding. Silvae Genetica, 47, 5 – 6: 249 – 257. Nicoll, F. J., 1993: Genetic improvement of cherry for farm woodlands. Quarterly Journal of Forestry, 87, 3: 187 – 194. Santi, F. – Lemoine, M., 1990: Genetic markers for Prunus avium L.: inheritance and linkage of isoensyme loci. Annales des Sciences Forestieres, 47, 2: 131 – 139. Santi, F. - Muranty, H. –– Dufour, J. – Paques, L. C.., 1998: Genetic parameters and selection in a multisite wild cherry clonal test. Silvae Genetica, 47, 2 – 3: 61 – 67. Turok, J. – Eriksson, G. – Kleinschmit, J. – Canger, S. – compilers, 1996: Noble Hardwoods Network. Report of the first meeting, 24 – 27 March 1996, Escherode, Germany. International Plant Genetic Resources Institute, Rome, Italy: 172 p. Turok, J. – Collin, E. – Demesure, B. - Eriksson, G. – Kleinschmit, J. – Rusanen, M. – Stephan, R. – compilers, 1998: Noble Hardwoods Network. Report of the second meeting, 22 – 25 March 1997, Lourizán, Spain. IPGRI, Rome, Italy: 104 p.
41
Turok, J. – Jensen, J. – Palmberg – Lerche, Ch. – Rusanen, M. – Russell, K. – de Vries, L. – Lipman, E. – compilers, 1999: Noble Hardwoods Network. Report of the third meeting, 13 – 16 June 1998, Sagadi, Estonia. IPGRI, Rome, Italy: 116 p. Weiser, F., 1996: Ergebnisse einer 33 jahrigen Einzelbaum – Nachkommenschaftsprüfung nach freiem Abblühen von Vogelkirsche, Prunus avium L. var. avium (Results of a 33-year single tree progeny test with open pollination of bird cherry, Prunus avium L. var. avium). Silvae Genetica, 45, 5 – 6: 260 – 266.
ŠLECHTITELSKÝ PROGRAM TŘEŠNĚ PTAČÍ (PRUNUS AVIUM L.) SE ZAMĚŘENÍM NA VYUŽITÍ TÉTO DŘEVINY V ČESKÉM LESNÍM HOSPODÁŘSTVÍ J. Kobliha Česká zemědělská univerzita v Praze, Lesnická fakulta, 165 21 Praha – Suchdol Třešeň ptačí (Prunus avium L.) patří k tzv. ušlechtilým listnatým dřevinám (noble hardwoods), kterým je v současném období v Evropě věnována mimořádná pozornost především v rámci programu EUFORGEN. Tato pozornost je nyní věnována třešni ptačí i v ČR. Zde byl především zahájen šlechtitelský program lesnickou fakultou ČZU v Praze. Nejdříve byl proveden rozsáhlý průzkum třešně ptačí v různých regionech. V první fázi byly vyselektovány a posléze uznány výběrové stromy na LS LČR Křivoklát a LS LČR Nižbor a VLS Velichov. Z těchto stromů byly odebírány rouby v letech 1999 – 2000 a naroubovány následně na Šlechtitelské stanici Truba v Kostelci nad Černými lesy. Tento materiál je připraven pro založení semenných sadů na LS LČR Lužná a na VLS Velichov na jaře roku 2002. Již v roce 1995 byly získány rouby ze 30 elitních (testy potomstev ověřených) klonů ze SRN z Dolnosaského lesnického výzkumného ústavu, oddělení v Escherode. Roubovance byly použity na jaře roku 1998 pro založení výzkumného semenného sadu 2. generace na ŠLP v Kostelci nad Černými lesy. Kromě toho byly z tohoto materiálu odebrány sekundární rouby pro množení v roce 1997 a 1998. Z materiálu získaného v roce 1997 byl založen další semenný sad v Lesích města Prostějova (na jaře 1999) a z materiálu z roku 1998 byl založen rezervní klonový archiv na ŠLP v Kostelci nad Černými lesy na jaře roku 2000. Dále byl získán v roce 1998 vegetativní materiál původem z moravských výběrových stromů (LS LČR Luhačovice, LS LČR Strážnice, LS LČR Brumov a Obecní lesy Suchá Loz). Z tohoto materiálu byl založen výzkumný klonový archiv s 55 klony na ŠLP v Kostelci nad Černými lesy na jaře roku 1999. Na podzim roku 2000 byla na ŠLP v Kostelci nad Černými lesy vysázena polosesterská potomstva 14 stromů ze ŠLP. Byly použity dvouleté semenáčky. Již předtím byly vysázeny na jaře roku 2000 výpěstky rozmnožené kulturami in vitro do klonového testu na ŠLP v Kostelci nad Černými lesy. Jedná se o 28 klonů původem z LS LČR Křivoklát, LS LČR Nové Hrady a LZ Prachatice. V roce 2001 proběhla šetření na kvetení roubovanců v reprodukčních výsadbách, měření výšky sazenic na jaře a na podzim v testu polosesterských potomstev i klonovém testu a ve všech těchto výsadbách pak šetření na poškození stromků mšicemi. Bylo zjištěno, že daleko více kvetly klony německého původu v obou sledovaných výsadbách než klony moravského původu. Byly zjištěny značné diference v růstu mezi potomstvy i mezi klony. Analýza rozptylu ukázala statisticky vysoce výzmnamný vliv příslušnosti sazenic k potomstvu nebo výpěstků ke klonu na jejich výšku na jaře i na podzim roku 2001. Větší rozdíly jsou sledovány mezi klony než mezi generativními potomstvy. Klonový materiál rovněž předstihuje v růstu materiál generativního původu. Nejmenší poškození mšicemi bylo zjištěno v testu potomstev, o něco vyšší v klonovém testu a nejvyšší v reprodukčních výsadbách. Tato skutečnost ovšem souvisí nejvíce s velikostí stromků. Celkově však nebyly zjištěny na žádném materiálu vážnější důsledky tohoto poškození.
42
Table n. 1: Flowering in seed orchard Clone n.
Number of individuals
1
Mortality
%
Nonflowering individuals
%
Poor flowering individuals
%
Strong flowering individuals
%
5
0
1
20
2
40
2
40
2
5
0
2
40
2
40
1
20
3
7
0
3
42,9
3
42,9
1
14
4
4
0
3
75
0
0
1
25
5
5
0
3
60
1
20
1
20
6
5
0
1
20
2
40
2
40
7
5
0
2
40
3
60
0
0
8
6
0
1
16,7
1
16,7
4
67
9
5
0
3
60
1
20
1
20
10
5
0
0
0
4
80
1
20
11
5
0
1
20
2
40
2
40
12
5
0
2
40
2
40
1
20
13
5
0
2
40
3
60
0
0
14
7
0
0
0
5
71,4
2
29
15
6
0
0
0
3
50
3
50
16
6
0
0
0
2
33,3
4
67
17
7
0
1
14,3
3
42,9
3
43
18
5
0
2
40
3
60
0
0
19
4
0
2
50
2
50
0
0
20
5
20
3
60
0
0
1
20
21
5
0
2
40
2
40
1
20
22
5
0
1
20
2
40
2
40
23
5
0
2
40
2
40
1
20
24
5
0
1
20
2
40
2
40
25
5
20
0
0
2
40
2
40
26
5
0
2
40
1
20
2
40
27
5
0
5
100
0
0
0
0
28
3
0
3
100
0
0
0
0
29
5
0
1
20
3
60
1
20
30
5
0
5
100
0
0
0
0
Total
155
1,3
54
34,8
58
37,4
41
26,5
1
1
2
43
Table n. 2: Flowering in reserve clone archive Clone n.
Number of individuals
Mortality
%
Nonflowering individuals
%
Poor flowering individuals
%
Strong flowering individuals
%
1
5
0
0
1
20
2
40
2
40
2
3
1
33
1
33,3
1
33,3
0
0
3
5
0
0
1
20
4
80
0
0
4
6
0
0
1
16,7
5
83,3
0
0
5
10
0
0
3
30
2
20
5
50
6
4
0
0
1
25
1
25
2
50
7
7
0
0
2
28,6
2
28,6
3
43
8
5
0
0
2
40
1
20
2
40
9
7
0
0
6
85,7
1
14,3
0
0
10
6
0
0
4
66,7
2
33,3
0
0
11
9
0
0
0
0
6
66,7
3
33
12
5
0
0
0
0
3
60
2
40
13
6
0
0
1
16,7
4
66,7
1
17
14
4
0
0
0
0
4
100
0
0
15
4
0
0
2
50
2
50
0
0
16
7
0
0
1
14,3
5
71,4
1
14
17
4
0
0
2
50
2
50
0
0
18
9
0
0
0
0
8
88,9
1
11
19
2
0
0
0
0
1
50
1
50
21
5
0
0
1
20
3
60
1
20
22
4
0
0
1
25
3
75
0
0
23
2
1
50
0
0
1
50
0
0
24
6
3
50
2
33,3
1
16,7
0
0
25
6
0
0
2
33,3
3
50
1
17
27
7
0
0
4
57,1
2
28,6
1
14
29
3
0
0
0
0
3
100
0
0
Total
141
5
3,5
38
27
72
51,1
26
18,4
44
Table n. 3: Flowering in clone archive of Moravian origin Clone n. Number of Morta% Nonfloindividuals lity wering individuals 1 1 1 0 3 3 2 0 4 4 7 0 6 6 8 0 1 1 0 13 100 2 2 14 0 3 3 17 0 1 1 45 0 2 2 46 0 3 3 51 0 5 5 52 0 3 3 55 0 1 1 56 0 2 1 58 0 1 1 59 0 1 1 70 0 2 1 71 0 1 1 73 0 6 4 76 0 1 1 77 0 3 2 78 0 2 2 91 0 1 1 96 0 3 3 99 0 5 5 102 0 2 1 172 0 5 4 174 0 1 0 181 0 1 1 185 0 2 2 191 0 3 1 196 0 4 4 197 0 2 2 198 0 2 1 199 0 3 3 200 0 2 2 203 0 4 2 205 0 2 1 208 0 2 1 215 0 2 1 220 0 1 1 222 0 2 0 224 0 7 1 5 235 14 2 2 236 0 1 1 238 0 1 1 239 0 1 1 292 0 2 1 1 299 50 Total 117 3 2,6 95
45
%
100 100 100 100 0 100 100 100 100 100 100 100 100 50 100 100 50 100 67 100 67 100 100 100 100 50 80 0 100 100 33 100 100 50 100 100 50 50 50 50 100 0 71 100 100 100 100 50 81,2
Poor flowering individuals 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0 2 1 0 1 0 2 1 0 0 0 0 0 15
%
0 0 0 0 0 0 0 0 0 0 0 0 0 50 0 0 50 0 33 0 0 0 0 0 0 50 0 100 0 0 33 0 0 50 0 0 50 50 0 50 0 100 14 0 0 0 0 0 12,8
Strong % flowering individuals 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 33 0 0 0 0 0 0 0 0 0 0 1 20 0 0 0 0 0 0 1 33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3,4
Table n. 4: Damage by aphids in seed orchard Clone n.
Number of Mortality individuals
%
Undamaged individuals
%
Poor damaged individuals
%
Strong damaged individuals
%
1
5
0
4
80
1
20
0
0
2
5
0
3
60
2
40
0
0
3
7
0
4
57,1
3
42,9
0
0
4
4
0
2
50
2
50
0
0
5
5
0
4
80
1
20
0
0
6
5
0
2
40
3
60
0
0
7
5
0
3
60
2
40
0
0
8
6
0
3
50
3
50
0
0
9
5
0
4
80
1
20
0
0
10
5
0
3
60
1
20
1
20
11
5
0
4
80
1
20
0
0
12
5
0
3
60
2
40
0
0
13
5
0
2
40
3
60
0
0
14
7
0
5
71,4
2
28,6
0
0
15
6
0
3
50
3
50
0
0
16
6
0
4
66,7
2
33,3
0
0
17
7
0
4
57,1
3
42,9
0
0
18
5
0
3
60
2
40
0
0
19
4
0
2
50
2
50
0
0
20
5
20
4
80
0
0
0
0
21
5
0
2
40
3
60
0
0
22
5
0
5
100
0
0
0
0
23
5
0
4
80
1
20
0
0
24
5
0
2
40
2
40
1
20
25
5
20
2
40
2
40
0
0
26
5
0
3
60
2
40
0
0
27
5
0
5
100
0
0
0
0
28
3
0
1
33,3
2
66,7
0
0
29
5
0
3
60
2
40
0
0
30
5
0
3
60
2
40
0
0
Total
155
1,3
96
61,9
55
35,5
2
1,3
1
1
2
46
Table n. 5: Damage by aphids in reserve clone archive Clone n.
Number of Mortality individuals
%
Undamaged individuals
%
Poor damaged individuals
%
Strong damaged individuals
%
1
5
0
0
4
80
1
20
0
0
2
3
1
33
1
33,3
1
33,3
0
0
3
5
0
0
1
20
3
60
1
20
4
6
0
0
1
16,7
5
83,3
0
0
5
10
0
0
5
50
4
40
1
10
6
4
1
25
1
25
2
50
0
0
7
7
0
0
3
42,9
3
42,9
1
14,3
8
5
0
0
1
20
4
80
0
0
9
7
0
0
2
28,6
5
71,4
0
0
10
6
0
0
2
33,3
4
66,7
0
0
11
9
0
0
2
22,2
7
77,8
0
0
12
5
0
0
2
40
3
60
0
0
13
6
0
0
4
66,7
2
33,3
0
0
14
4
0
0
2
50
2
50
0
0
15
4
0
0
2
50
2
50
0
0
16
7
0
0
4
57,1
3
42,9
0
0
17
4
0
0
3
75
0
0
1
25
18
9
0
0
4
44,4
3
33,3
2
22,2
19
2
0
0
2
100
0
0
0
0
21
5
0
0
1
20
2
40
2
40
22
4
0
0
3
75
1
25
0
0
23
2
1
50
0
0
1
50
0
0
24
6
3
50
2
33,3
0
0
1
16,7
25
6
0
0
2
33,3
3
50
1
16,7
27
7
0
0
3
42,9
4
57,1
0
0
29
3
0
0
2
66,7
1
33,3
0
0
Total
141
6
4,3
59
41,8
66
46,8
10
7,1
47
Table n. 6: Damage by aphids in clone archive of Moravian origin Clone n.
1 2 7 8 13 14 17 45 46 51 52 55 56 58 59 70 71 73 76 77 78 91 96 99 102 172 174 181 185 191 196 197 198 199 200 203 205 208 215 220 222 224 235 236 238 239 292 299 Total
Number of Mortality individuals
1 3 4 6 1 2 3 1 2 3 5 3 1 2 1 1 2 1 6 1 3 2 1 3 5 2 5 1 1 2 3 4 2 2 3 2 4 2 2 2 1 2 7 2 1 1 1 2 117
1
1
1 3
%
Undamaged individuals
%
Poor damaged individuals
%
0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14,3 0 0 0 0 50 2,6
1 3 3 5 0 2 1 1 1 2 4 1 0 2 0 1 1 0 4 1 2 0 1 1 3 1 2 0 0 1 1 3 1 1 1 1 3 0 1 0 0 2 3 1 0 0 1 0 63
100 100 75 83,3 0 100 33,3 100 50 66,7 80 33,3 0 100 0 100 50 0 66,7 100 66,7 0 100 33,3 60 50 40 0 0 50 33,3 75 50 50 33,3 50 75 0 50 0 0 100 42,9 50 0 0 100 0 53,8
0 0 1 1 0 0 2 0 1 1 1 2 1 0 1 0 1 1 2 0 1 2 0 2 2 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1 0 3 1 1 1 0 0 48
0 0 25 16,7 0 0 66,7 0 50 33,3 20 66,7 100 0 100 0 50 100 33,3 0 33,3 100 0 66,7 40 50 40 100 100 50 66,7 25 50 50 66,7 50 25 50 50 100 100 0 42,9 50 100 100 0 0 41,0
48
Strong damaged i di id l
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 3
%
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 50 0 0 0 0 0 0 0 0 0 50 2,6
Table n. 7: Growth of half – sib progenies Progeny 1
Progeny 2
Height 1 Height 2 Difference
N. of individuals Mean
Standard deviation Variational coefficient
25 66,4 22,7 0,34
25 78,3 25,3 0,32
25 11,9 10,2 0,86
Height 1 Height 2 Difference
N. of individuals Mean Standard deviation Variational coefficient Progeny 4
Progeny 3 Height 1 Height 2 Difference N. of individuals Mean Standard deviation Variational coefficient Progeny 5
18 33,3 18,9 0,57
18 41,8 21,0 0,50
18 8,5 8,7 1,02
24 24,8 6,4 0,26
24 27,6 6,9 0,25
N. of individuals Mean Standard deviation Variational coefficient Progeny 6
24 2,8 4,1 1,50
24 57,1 17,5 0,30
24 69,3 17,9 0,26
N. of individuals Mean Standard deviation Variational coefficient Progeny 8
24 12,3 7,1 0,58
19 5,7 6,0 1,05
20 25,3 20,9 0,83
20 31,8 22,6 0,71
20 6,5 6,9 1,06
23 26,2 10,6 0,40
23 32,1 12,4 0,39
23 5,9 6,0 1,01
18 31,3 12,4 0,40
18 39,4 11,0 0,28
18 8,1 6,6 0,81
Height 1 Height 2 Difference N. of individuals Mean Standard deviation Variational coeficient
21 23,2 6,4 0,28
21 27,2 6,3 0,23
21 4,0 4,5 1,11
Progeny 12 21 10,9 2,0 0,18
21 15,9 10,9 0,69
21 4,9 10,5 2,12
Height 1 Height 2 Difference N. of individuals Mean Standard deviation Variational coefficient Progeny 14
Height 1 Height 2 Difference N. of individuals Mean Standard deviation
19 35,5 12,3 0,35
Progeny 10
Height 1 Height 2 Difference N. of individuals Mean Standard deviation Variational coefficient Progeny 13
19 29,8 9,7 0,33
Height 1 Height 2 Difference N. of individuals Mean Standard deviation Variational coeficient
Height 1 Height 2 Difference N. of individuals Mean Standard deviation Variational coefficient Progeny 11
19 8,6 10,0 1,17
Height 1 Height 2 Difference
Height 1 Height 2 Difference N. of individuals Mean Standard deviation Variational coefficient Progeny 9
19 41,9 16,4 0,39
Height 1 Height 2 Difference
Height 1 Height 2 Difference N. of individuals Mean Standard deviation Variational coefficient Progeny 7
19 33,4 13,6 0,41
17 14,2 9,1
16 18,2 13,7
16 3,8 5,1
17 12,4 5,4 0,44
17 1,7 2,4 1,42
Height 1 Height 2 Difference N. of individuals Mean Standard deviation
49
17 10,6 4,1 0,39
14 14,8 6,5
14 19,3 9,8
14 4,5 5,8
Variational 0,64 coefficient Height 1 ... height on spring 2001
0,76
1,35
Variational 0,44 coefficient Height 2 ... height on autumn 2001
0,51
1,29
Table n. 8: Damage by aphids in half – sib progeny test Progeny n.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 Total
Number of Mortality individuals
25 25 25 24 25 25 25 25 25 25 24 23 21 18 335
1
1
2
%
Undamaged individuals
%
Poor damaged individuals
%
Strong damaged individuals
%
4 0 0 0 0 0 0 0 0 0 0 4 0 0 0,6
24 25 25 24 24 25 24 25 25 24 24 22 21 18 330
96 100 100 100 96 100 96 100 100 96 100 95,7 100 100 98,5
0 0 0 0 1 0 1 0 0 1 0 0 0 0 3
0 0 0 0 4 0 4 0 0 4 0 0 0 0 0,9
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
50
Table n. 9: Plant growth in clonal test – 1st part Clone 1
Clone 2 Height 1 Height 2 Difference N. of individuals
5
5
5
Height 1 N. of individuals
Height 2 Difference
5
5
5
Mean
58,8
107,8
49,0
Mean
67,8
106,4
38,6
Standard deviation
15,4
26,3
26,4
Standard deviation
16,6
27,4
18,0
Variational coefficient
0,26
0,24
0,54
Variational coefficient
0,24
0,26
0,47
Clone 3
Clone 4
Height 1
Height 2 Difference
5
5
5
Mean
63,4
109,6
46,2
Standard deviation
19,9
28,5
Variational coefficient
0,31
0,26
N. of individuals
Height 1
Height 2 Difference
5
5
5
Mean
69,6
107,2
37,6
18,6
Standard deviation
14,4
18,2
15,2
0,40
Variational coefficient
0,21
0,17
0,40
Clone 5
N. of individuals
Clone 6
Height 1
Height 2 Difference
5
5
5
Mean
76,8
120,4
43,6
Standard deviation
19,4
8,5
Variational coefficient
0,25
0,07
N. of individuals
Height 1
Height 2 Difference
4
4
4
Mean
72,0
128,0
56,0
14,5
Standard deviation
17,9
35,0
20,6
0,33
Variational coefficient
0,25
0,27
0,37
Clone 7
N. of individuals
Clone 8 Height 1 Height 2 Difference 5
5
5
Mean
73,0
95,0
22,0
Standard deviation
15,8
14,6
8,0
Variational coefficient
0,21
0,15
0,37
N. of individuals
Clone 9
Height 1
Height 2 Difference
5
5
5
Mean
92,6
117,0
24,4
Standard deviation
6,8
12,1
8,7
Variational coefficient
0,07
0,10
0,36
N. of individuals
Clone 10 Height 1 Height 2 Difference 5
5
5
Mean
67,8
112,8
45,4
Standard deviation
24,2
22,1
Variational coefficient
0,36
0,20
N. of individuals
Height 1
Height 2 Difference
5
5
5
Mean
86,2
123,6
37,4
34,0
Standard deviation
19,0
24,7
25,4
0,75
Variational coefficient
0,22
0,20
0,68
Height 1
Height 2
Difference
5
5
5
Clone 11
N. of individuals
Clone 12 Height 1 Height 2 Difference 5
5
5
Mean
76,2
132,0
55,8
Mean
23,8
51,0
27,2
Standard deviation
30,1
32,6
11,2
Standard deviation
17,0
20,0
14,2
Variational coefficient
0,39
0,25
0,20
Variational coefficient
0,71
0,39
0,52
Height 1
Height 2
Difference
5
5
5
N. of individuals
Clone 13
N. of individuals
Clone 14 Height 1 Height 2 Difference 5
5
5
Mean
78,8
91,2
12,4
Mean
90,4
116,0
25,6
Standard deviation
26,1
16,8
14,6
Standard deviation
26,5
39,3
14,1
Variational coefficient
0,33
0,18
1,18
Variational coefficient
0,29
0,34
0,55
N. of individuals
N. of individuals
51
Table n. 9: Plant growth in clonal test – 2nd part Clone 16
Clone 18 Height 1 Height 2 Difference
N. of individuals
5
5
5
Height 1 N. of individuals
Height 2 Difference
5
5
5
Mean
53,8
67,8
14,0
Mean
84,0
102,0
18,0
Standard deviation
10,6
15,8
7,2
Standard deviation
18,7
17,5
12,5
Variational coefficient
0,20
0,23
0,51
Variational coefficient
0,22
0,17
0,70
Clone 19
Clone 20
Height Height 1 2
Difference
5
5
5
Mean
128,0
153,8
25,8
Standard deviation
19,8
37,6
Variational coefficient
0,16
0,24
N. of individuals
Height 1
Height 2 Difference
5
5
5
Mean
102,0
149,6
47,6
24,5
Standard deviation
19,3
26,1
24,8
0,95
Variational coefficient
0,19
0,17
0,52
Clone 21
N. of individuals
Clone 23 Height 1 Height 2 Difference
Height 1
Height 2 Difference
4
4
4
Mean
83,5
107,3
23,8
Standard deviation
18,1
26,1
10,1
Standard deviation
7,4
23,1
25,3
Variational coefficient
0,22
0,24
0,43
Variational coefficient
0,07
0,17
1,00
N. of individuals
Clone 24
5
5
5
108,6
134,0
25,4
N. of individuals Mean
Clone 25 Height 1 Height 2 Difference 5
5
5
Mean
115,4
136,6
21,2
Standard deviation
12,9
19,4
Variational coefficient
0,11
0,14
N. of individuals
Height 1
Height 2 Difference
5
5
5
Mean
112,2
140,0
27,8
12,8
Standard deviation
21,0
32,1
16,0
0,60
Variational coefficient
0,19
0,23
0,58
Clone 26
N. of individuals
Clone 27 Height 1 Height 2 Difference 5
5
5
Mean
109,8
127,8
18,0
Standard deviation
19,3
25,3
Variational coefficient
0,18
0,20
N. of individuals
Height 1
Height 2 Difference
5
5
5
Mean
103,2
106,6
3,4
16,3
Standard deviation
12,8
10,6
3,2
0,91
Variational coefficient
0,12
0,10
0,94
Clone 28
N. of individuals
Clone 29 Height 1 Height 2 Difference 4
4
4
Mean
101,0
109,5
8,5
Standard deviation
18,7
19,6
7,9
Variational coefficient
0,18
0,18
0,93
N. of individuals
Clone 41
Height 1
Height 2 Difference
5
5
5
Mean
102,2
144,2
42,0
Standard deviation
15,1
11,8
17,0
Variational coefficient
0,15
0,08
0,40
Height 1
Height 2
Differen ce
4
4
4
N. of individuals
Clone 150 Height 1 Height 2 Difference 5
5
5
Mean
60,0
86,4
26,4
Mean
81,5
98,0
16,5
Standard deviation
26,8
24,1
16,1
Standard deviation
23,7
25,6
10,6
Variational coefficient
0,45
0,28
0,61
Variational coefficient
0,29
0,26
0,64
N. of individuals
Height l ... height on spring 2001
N. of individuals
Height 2 ... height on autumn 2001
52
Table n. 10: Damage by aphids in clonal test Clone n.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 19 20 21 23 24 25 26 27 28 29 41 150 Total
Number of Mortality individuals
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 140
0
%
Undamaged individuals
%
Poor damaged individuals
%
Strong damaged individuals
%
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 3 3 5 4 5 4 5 4 3 4 5 4 5 5 4 3 5 4 5 4 5 5 4 4 5 4 4 118
60 60 60 100 80 100 80 100 80 60 80 100 80 100 100 80 60 100 80 100 80 100 100 80 80 100 80 80 84,3
2 2 2 0 1 0 1 0 1 2 1 0 1 0 0 1 2 0 1 0 1 0 0 1 1 0 1 1 22
40 40 40 0 20 0 20 0 20 40 20 0 20 0 0 20 40 0 20 0 20 0 0 20 20 0 20 20 15,7
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
53
VLS Velichov / Military Forests Velichov
54
LS LČR Křivoklát / Forest District Křivoklát
55
6.2. TESTING OF LIME TREE CLONES (Tilia cordata Miller) J. Kobliha, M. Hajnala, V. Janeček Czech University of Agriculture, Faculty of Forestry and Environment, Prague, Czech Republic ABSTRACT: Previous experiences with breeding lime tree (Tilia cordata Miller) in the European countries are shown in this paper. The first results were obtained from evaluation of juvenile planting of lime tree (Tilia cordata Miller) in the Czech Republic, founded in the School Forest Enterprise Kostelec nad Černými lesy. Lime tree clones (initially cultivated in vitro) were evaluated in growth parameters and also according to growth form of the different single clones. Individual clones were also controlled for the mortality. Key words:. clonal test, plant growth, growth form, Tilia cordata Miller. EUROPEAN EXPERIENCE The lime tree (Tilia cordata Miller) belongs among the so-called Noble Hardwoods. These are on international European scale the contents of the programme EUFORGEN, in which the Czech Republic also participates. This programme, founded in 1994, is coordinated by the International Plant Gene Resources Institute (IPGRI) in Rome. In the framework of this programme it was as one of the priorities to attract attention to Noble Hardwoods. That was the reason why an international workgroup dealing with the protection and sustainable management with gene resources of these Noble Hardwoods was founded in the framework of the European network in 1996. The greatest attention is given to these tree species especially in Germany, further in Austria and in France. Tilia cordata in Hungary grows preponderantly in montane and submontane stage (Barna, 1996). The protection of genetic diversity is orientated especially on protection in situ. There are 3 seed orchards of lime tree in Hungary and there are 100 different clones of plus trees in clone archives. The whole area of ex situ plantings is 4.2 ha. Further there are 33.2 ha of 23 approved stands for the collection of reproductive material. According to Kleinschmit et al. (1996) there are altogether 19 seed orchards with 39.3 ha in the Germany, in which there are 501 clones of the lime tree. There are not any registered plus trees. Further 2 clone archives are mentioned with 85 clones and seed of the lime tree is gained from 7 stands approved for seed collection. Annually 75 kg of seed is collected in these stands. The lime tree is in most places artificially reproduced in Switzerland because of insufficient natural regeneration. There are problems with insufficient quality of the growed individuals (a great percentage of fork individuals, unsuitable stem shape) as far as small plantation spacing is concerned according to Rotach (1996). Insufficient are also the usable sources of seed, concerning quantity, as well as quality (phenotype of desired traits, gene diversity). The occurrence of Tilia cordata in Switzerland is only regional and in small populations. Breeding activities will be orientated in the future preponderantly on finding suitable indigenous provenances and the evaluation of their desired phenotype traits. The most suitable populations will then be used as sources of reproductive material. A further step will be the foundation of productive seed orchards with managed selection orientated on unsuitable individuals. The main attention in Switzerland is put on protection in situ, production seed orchards will only be a source of selected individuals with exceptional genotype. The occurrence of Tilia cordata is dispersed in Denmark, preponderantly in the south of the country. The capacity of seed production for forest regeneration is very low, mostly thanks to the unsuccessful fruit research. Physiological and genetic background of this problem has not been made clear so far, but according to pollen analyses the most important factor are climatic conditions. The most of the planted stands are based on imported seeds. Interest in Tilia cordata has been significantly rising in
56
the last years. In Denmark there is one clone archive and 2 approved stands for collection of reproductive material (Canger, Kjaer, 1996). Prokazin et al. (1998 ex Jensen, Canger, 1998) shows that Tilia cordata is the most widespread species of the lime tree in Russia. This species occurs in the whole area of forest steppe, covering the European part of Russia. Here are 137 plus trees recorded and 108.5 ha of breeding plantations. Magherini and Nin (1994) published the results of experiments with germination of seeds and rooting of half-woody cuttings of 3 lime species (Tilia cordata, Tilia platyphyllos and Tilia tomentosa). Seeds were treated by removing the pericarp, wetting in the cold, sterilization and application of gibberell acid. Half-woody cuttings were without treatment or were treated by 600 and 10 000 p.p.m. IBA. The Tilia cordata species had very low germination, at maximum 17.4%. Cuttings from the shoot had a low potential of rooting, but IBA treatment increased the percentage of rooted cuttings from 43% to 61%. The application of IBA had only little influence on the number and length of the roots. Tilia cordata showed the best results of rooting of used lime species. Cuttings were taken for propagation of Tilia cordata of three lengths - 6 cm, 6-10 cm, and 10-18 cm from three year old seedlings. The cuttings were treated by 1% IBA and rooted in a mixture of peat, perlite, sand, etc. in the greenhouse with moistured air. Longer cuttings took roots in a greater percentage and better quality (Elsner, 1992). Maurer and Tabel (1995) published their methodological results containing studies of isoenzymes of the lime tree. They show how to select plant material, how to prepare the enzyme extract and how it can be stored for a long time. Electrophoresis was used on starch gel (production of starch gel by microwave method is described) for the separation of different enzyme forms. A practical application of this research is the possibility to define exactly the different clones of Tilia cordata in the seed orchard, by help of combination of foreograms of tested enzymatic forms. The clone character of lime trees growing as decorative greenery on streets and along the roads in the countryside can be determined similarly as well. Only minimal attention has been paid to the problems of the variability of the lime tree in the Czech Republic so far. In the first half of the 1990´s a partial information was gained about the phenotype variance of the chosen population, but until this time there was no one experimental plot founded. That is why there is being planned the foundation of provenance experiments added by research of chosen autochthonous stands, where information about genetically conditioned variability in the frame of the Czech Republic will be gained. In the framework of the project there will be preparation work to found a new series of experimental provenance plots with Tilia cordata and Tilia platyphyllos (Benedíková and Malá, 2001). MATERIAL AND METHODS In autumn 1990 there were gained container-grown plant seedlings (in PE bags) of Tilia cordata cultivated in vitro from the Laboratory of Biotechnologies in Olešná. As early as in spring 1999 this material was exposed to the outdoor environment in Olešná. There were 95 clones of the lime tree (represented by 4 or 5 individuals, with an overall number of 451 plants). Primary explants were gained from plus trees and breeding trees, from several natural forest areas (Jihočeské pánve, Křivoklátsko, Český kras (Bohemian Karst) and Polabí). Clones No. 1 – 4 are by origin from the natural forest area Jihočeské pánve, directly from plus trees, and clones No. 56 - 90 are from the seed orchard Milevsko. The clones No. 5 –19 from the natural forest area Křivoklátsko from breeding trees, the clones No. 20 – 25 from the natural forest area Český kras from breeding trees, the clones No. 26 – 55 and 91 – 95 from the natural forest area Polabí from breeding trees. The clones were grown for one year as containerised seedlings at Tree Breeding Station Truba and in autumn 2000 planted in the form of line planting in SFE Kostelec nad Černými Lesy, in the locality U Trubské hájenky, in stand 20 A 9
57
at a spacing 1.5 x 1.5 m. The planting is surrounded by a fence. Pegs were placed to all seedlings because of orientation when moving forest weed. Growth parameters with the Tilia cordata clones were examined and further there was followed the growth form. In spring 2001 the growth form was followed with individuals of lime tree. At the end of the vegetation period (autumn 2001) growth form control was carried out again (especially with less developed clones). The growth form was evaluated according to categories: shrub form, branched stem and a branchless stem. This evaluation was repeated again in autumn 2002. In 2001 there was measurement of the height of individuals, in spring 2001 before bud burst and later on in autumn after finishing growth. The basic statistical characteristics were counted according to the different clones. The statistical significance of the influence of the relevance of the individual to the clone and their height with help of the analysis of variance (level 95%) in spring and in autumn 2001 and the increment in 2001. Duncan´s test always followed. RESULTS Plant growth In spring 2001 the average height of clones was from about 5.4 cm (clone No. 9 from Křivoklátsko) up to 35.8 cm (clone No. 65 from the seed orchard Milevsko). In autumn the average height of clones was from 11.4 cm (clone No. 10 from Křivoklátsko) to 66.8 cm (clone No. 38 from Polabí). The average increment of clones in 2001 was from 0.3 cm (clone No. 64 from the seed orchard Milevsko) up to 35.8 cm (clone No. 38 from Polabí). See table No. 1. Clones from plus trees from the natural forest area Jihočeské pánve reached in spring 2001 on average the height of 20.3 cm and in autumn 2001 25.8 cm, their average increment was 5.5 cm. In spring 2001 the lowest was on average clone No. 2 (14 cm) and the highest clone No. 3 (24.3 cm). In autumn 2001 there was on average the lowest clone No. 2 (20.3 cm) again and the highest clone No. 3 (30.8 cm) again. The lowest plant growth in 2001 had in average clone No. 1 (3 cm) and the highest clone No. 3 (6.5 cm). Clones originating from Křivoklátsko reached in spring 2001 in the average height of 15.5 cm and in autumn 2001 23.9 cm, their average increment was in 2001 8.4 cm. In spring 2001 clone No. 9 (5.4 cm) reached the lowest average height and clone No. 17 (25 cm) the greatest height. In autumn 2001 clone No. 10 (11.4 cm) reached the lowest average height and clone No. 5 (36.4 cm) the greatest height. In 2001 clone No. 19 (1.7 cm) had on average the lowest increment and No. 12 (17.2 cm) the highest clone. Clones originating in the Český kras (Bohemian Karst) reached in spring 2001 on average the height of 24.2 cm and in autumn 2001 36.9 cm, their average increment was in 2001 12.6 cm. In spring 2001 clone No. 21 (16.2 cm) reached the lowest average height and clone No. 25 (33.8 cm) the greatest height. In autumn 2001 clone No. 20 (26.4 cm) was on average the lowest and No. 22 (59.8 cm) the highest clone. In 2001 clone No. 24 (4 cm) had on average the lowest increment and clone No. 22 (32 cm) the highest. Clones originating from Polabí reached in spring 2001 on average the height 22.6 cm and in autumn 2001 35.3 cm, their average increment was 12.7 cm in 2001. In spring 2001 clone No. 94 (9.5 cm) reached the lowest average height and clone No. 49 (32.8 cm) the greatest height. In autumn 2001 clone No. 94 (15 cm) was on average the lowest again and clone No. 38 (66.8 cm) on average the highest. In 2001 clone No. 92 (1 cm) reached on average the lowest increment and clone No. 44 (34 cm) the highest.
58
Clones originating from seed orchard Milevsko (plus trees from the natural forest area Jihočeské pánve) reached in spring 2001 an average height of 23.7 cm and in autumn 2001 an average height of 35.8 cm, their average increment in 2001 was 12.1 cm. In spring 2001 clones No. 78 and 86 (10 cm) reached the lowest average height and clone No. 65 (35.8 cm) the greatest height. In autumn 2001 clone No. 78 (12.8 cm) was on average the lowest again and clone No. 72 (58.6 cm) on average the highest. In 2001 clone No. 64 (0.3 cm) reached on average the lowest increment and clone No. 56 (32 cm) the highest. Comparison of genetically identical material just from plus trees and from the seed orchard: Clone No.
Height in spring 2001 (cm)
Height in autumn 2001 (cm)
Increment 2001 (cm)
1 - 64
19,5 - 29,0
22,5 - 29,3
0,3 – 3,0
2 - 85
14,0 - 22,8
20,8 - 35,8
6,3 - 13,0
4 - 62
23,4 - 24,5
29,4 - 41,0
6,0 - 16,5
All clones in spring 2001 reached on average the height 21.9 cm and in autumn 2001 reached 33.4 cm, and increment 11.5 cm in 2001. In spring 2001 clones originating from Český kras, from seed orchard Milevsko and from Polabí had on average height above the average height of whole comparative plantation; clones from plus trees from the natural forest area Jihočeské pánve and from Křivoklátsko under the average height of whole comparative plantation. In autumn 2001 the situation was similar, as well as in case of the average increment. Table No. 1: The average height of clones Clone No.
mortality
individuals
pieces
1
4
2
5
3
5
4
5
1-4
5 - 19
number of
19
mortality
spring 2001
%
autumn 2001
cm
cm
increment 2001 cm
0
19,5
22,5
3,0
3
60
14,0
20,3
6,3
1
20
24,3
30,8
6,5
0
23,4
29,4
6,0
21,1
20,3
25,8
5,5
4
5
5
0
22,6
36,4
13,8
6
5
0
15,0
28,0
13,0
7
5
0
15,0
25,2
10,2
8
5
0
14,2
24,2
10,0
9
5
0
5,4
15,4
10,0
10
5
0
9,6
11,4
1,8
11
5
0
16,4
25,4
9,0
12
5
0
15,0
32,2
17,2
13
5
0
11,4
14,6
3,2
14
5
0
14,2
19,0
4,8
15
5
0
17,4
25,6
8,2
16
5
0
11,8
15,8
4,0
17
5
0
25,0
35,0
10,0
18
5
0
18,8
27,8
9,0
19
5
0
20,3
22,0
1,7
0,0
15,5
23,9
8,4
75
0
59
20
5
0
19,2
26,4
7,2
21
5
0
16,2
31,4
15,2
22
5
0
27,8
59,8
32,0
23
4
0
23,6
35,8
12,2
24
5
0
24,8
28,8
4,0
25
5
0
33,8
39,0
5,2
0,0
24,2
36,9
12,6
20 - 25
26 - 55, 91- 95
29
0
26
4
0
24,8
39,4
14,6
27
5
0
16,2
26,4
10,2
28
5
0
21,6
31,4
9,8
29
5
0
29,6
41,6
12,0
30
5
0
20,4
44,2
23,8
31
5
0
18,4
24,2
5,8
32
5
0
17,4
36,4
19,0
33
5
0
27,2
38,4
11,2
34
5
0
22,6
33,0
10,4
35
5
0
22,4
47,2
24,8
36
5
20
29,8
50,3
20,5
37
5
0
22,3
37,8
15,5
38
5
0
31,0
66,8
35,8
39
4
0
23,8
28,8
5,0
40
5
0
17,8
28,2
10,4
41
4
0
23,8
48,4
24,6
42
5
0
21,0
34,2
13,2
43
5
0
24,4
34,4
10,0
44
5
0
23,4
57,4
34,0
45
4
0
26,6
44,0
17,4
46
5
0
24,8
37,2
12,4
47
5
0
24,8
36,6
11,8
48
5
0
27,4
29,4
2,0
49
5
0
32,8
36,8
4,0
50
5
0
30,8
54,0
23,2
51
5
0
23,8
33,4
9,6
52
5
0
19,8
29,8
10,0
53
5
0
30,4
35,6
5,2
54
5
0
20,0
25,0
5,0
55
4
0
21,8
27,5
5,7
91
5
0
10,6
16,0
5,4
92
1
0
18,0
19,0
1,0
93
4
0
16,3
30,3
14,0
94
5
0
9,5
15,0
5,5
95
3
0
15,7
17,3
1,6
0,6
22,6
35,3
12,7
163
1
1
60
56
5
0
18,2
50,2
32,0
57
5
0
31,8
43,2
11,4
58
5
20
21,5
41,8
20,3
59
4
0
32,5
37,5
5,0
60
5
0
27,4
43,8
16,4
61
5
0
27,4
34,0
6,6
62
5
0
24,5
41,0
16,5
63
5
0
29,3
30,8
1,5
64
5
0
29,0
29,3
0,3
65
5
0
35,8
41,2
5,4
66
5
0
27,0
36,4
9,4
67
5
0
32,3
47,3
15,0
68
5
0
26,0
35,0
9,0
69
5
0
32,8
43,4
10,6
70
5
1
20
28,0
52,0
24,0
71
5
1
20
32,3
58,3
26,0
72
4
0
34,4
58,6
24,2
73
5
0
32,0
53,2
21,2
74
5
0
22,2
36,2
14,0
75
5
0
28,4
37,0
8,6
76
4
0
13,0
17,2
4,2
77
5
40
15,7
19,3
3,6
78
5
0
10,0
12,8
2,8
79
5
0
21,6
26,0
4,4
80
4
0
13,2
16,6
3,4
81
4
0
24,3
26,5
2,2
82
4
0
17,0
21,8
4,8
83
5
0
20,0
27,6
7,6
84
4
0
13,0
40,3
27,3
85
5
0
22,8
35,8
13,0
86
4
0
10,0
21,0
11,0
87
5
0
20,0
39,0
19,0
88
5
0
17,8
37,6
19,8
89
4
0
24,0
39,0
15,0
90
4
0
15,0
23,0
8,0
1
2
56 - 90
165
5
3
23,7
35,8
12,1
Sum/Mean
451
10
2,1
21,9
33,4
11,5
Notice: clones No. 1 - 4 …
plus trees from the natural forest area Jihočeské pánve
clones No. 5 – 19 …
breeding trees from the natural forest area Křivoklátsko
clones No. 20 - 25 …
breeding trees from the natural forest area Český kras
clones No. 26 - 55 and 91 - 95 …
breeding trees from the natural forest area Polabí
61
Clones No. 56 - 90 …
clones from the seed orchard Milevsko – plus trees from the natural forest area Jihočeské pánve
The analysis of variance showed a statistically significant influence of relevance individuals to the clone according to the growth height in spring 2001, to the growth height in autumn 2001 and to their increment in 2001. Duncan´s test divided the clones into 29 homogenous subgroups according to the height in spring 2001 (see table No. 2.), into 26 homogenous subgroups according to the height in autumn 2001 (see table No. 3.) and into 16 homogenous subgroups according to the increment in 2001 (see table No. 4.).
Table No. 2: Duncan´s test for height in spring 2001, classified by clone Homogeneous Subsets: Group 1: 9 76 10 86 78 94 91 13 16 2 77 84 80 8 14 6 7 12 90 95 Pooled mean = 12,0860 95% Confidence Interval = 10,7687 13,4033 Group 2: 76 10 86 78 94 91 13 16 2 77 84 80 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 Pooled mean = 14,6209 95% Confidence Interval = 13,5939 15,6479 Group 3: 10 86 78 94 91 13 16 2 77 84 80 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 Pooled mean = 15,4798 95% Confidence Interval = 14,5139 16,4456 Group 4: 86 78 94 91 13 16 2 77 84 80 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 Pooled mean = 15,7919 95% Confidence Interval = 14,8261 16,7577 Group 5: 91 13 16 2 77 84 80 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 Pooled mean = 16,4451 95% Confidence Interval = 15,4532 17,4371 Group 6: 13 16 2 77 84 80 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 Pooled mean = 17,1899 95% Confidence Interval = 16,2404 18,1394 Group 7: 16 2 77 84 80 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 Pooled mean = 17,8814 95% Confidence Interval = 16,9694 18,7935 Group 8: 2 77 84 80 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 Pooled mean = 18,1649 95% Confidence Interval = 17,2529 19,0770 Group 9: 77 84 80 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 Pooled mean = 18,5400 95% Confidence Interval = 17,6417 19,4383 Group 10: 84 80 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 Pooled mean = Group 11:
19,1402 95% Confidence Interval = 18,2718 20,0086 80 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85
62
4 44 23 39 41 51 89 Pooled mean = Group 12:
Group 13:
Group 14:
Group 15:
Group 16:
Group 17:
Group 18:
Group 19:
Group 20:
Group 21:
Group 22:
Group 23:
19,3458 95% Confidence Interval = 18,4774 20,2142 8 14 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 Pooled mean = 20,2874 95% Confidence Interval = 19,4791 21,0957 6 7 12 90 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 Pooled mean = 20,8492 95% Confidence Interval = 20,0490 21,6494 95 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 Pooled mean = 21,5267 95% Confidence Interval = 20,7118 22,3417 21 27 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 Pooled mean = 21,7020 95% Confidence Interval = 20,8904 22,5136 11 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 Pooled mean = 22,0458 95% Confidence Interval = 21,2258 22,8658 82 93 15 32 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 Pooled mean = 22,6808 95% Confidence Interval = 21,8929 23,4686 40 88 92 56 31 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 Pooled mean = 23,3267 95% Confidence Interval = 22,5249 24,1285 18 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 64 29 Pooled mean = 24,0458 95% Confidence Interval = 23,2258 24,8658 20 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 64 29 36 63 Pooled mean = 24,3648 95% Confidence Interval = 23,5515 25,1780 1 52 58 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 64 29 36 63 53 Pooled mean = 24,5943 95% Confidence Interval = 23,7810 25,4075 54 83 30 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 64 29 36 63 53 50 Pooled mean = 25,0170 95% Confidence Interval = 24,1883 25,8457 42 74 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 64 29 36 63 53 50 57 Pooled mean = 25,4933
63
Group 24:
Group 25:
Group 26:
Group 27:
Group 28:
Group 29:
95% Confidence Interval = 24,6464 26,3402 28 79 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 64 29 36 63 53 50 57 69 Pooled mean = 25,8455 95% Confidence Interval = 24,9890 26,7019 87 19 35 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 64 29 36 63 53 50 57 69 59 38 49 73 Pooled mean = 26,5983 95% Confidence Interval = 25,7588 27,4377 5 34 85 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 64 29 36 63 53 50 57 69 59 38 49 73 72 Pooled mean = 27,0548 95% Confidence Interval = 26,1964 27,9132 4 44 23 39 41 51 89 3 81 43 24 26 46 47 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 64 29 36 63 53 50 57 69 59 38 49 73 72 25 Pooled mean = 27,5311 95% Confidence Interval = 26,6524 28,4098 17 55 37 70 66 62 45 33 48 60 61 68 22 71 75 64 29 36 63 53 50 57 69 59 38 49 73 72 25 65 Pooled mean = 29,3176 95% Confidence Interval = 28,2734 30,3618 62 45 33 48 60 61 68 22 71 75 64 29 36 63 53 50 57 69 59 38 49 73 72 25 65 67 Pooled mean = 30,3359 95% Confidence Interval = 29,2131 31,4588
Table No. 3: Duncan´s test for height in autumn 2001, classified by clone Homogeneous Subsets: 10 76 78 13 94 9 16 91 80 95 14 92 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 Pooled mean = 23,8932 95% Confidence Interval = 22,2482 25,5382 Group 2: 76 78 13 94 9 16 91 80 95 14 92 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 Pooled mean = 24,3981 95% Confidence Interval = 22,7531 26,0430 Group 3: 78 13 94 9 16 91 80 95 14 92 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 Pooled mean = 25,0472 95% Confidence Interval = 23,4256 26,6687 Group 4: 13 94 9 16 91 80 95 14 92 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 Pooled mean = 26,1410 95% Confidence Interval = 24,5739 27,7080 Group 5: 94 9 16 91 80 95 14 92 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 Pooled mean = 27,1736 95% Confidence Interval = 25,6559 28,6912 Group 6: 16 91 80 95 14 92 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 Pooled mean = 28,1694 95% Confidence Interval = 26,6701 29,6686 Group 7: 91 80 95 14 92 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 Group 1:
64
12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 Pooled mean =
28,5927 95% Confidence Interval = 27,0935 30,0920 Group 8: 80 95 14 92 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 Pooled mean = 29,0202 95% Confidence Interval = 27,5209 30,5194 Group 9: 95 14 92 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 Pooled mean = 29,6992 95% Confidence Interval = 28,2236 31,1748 Group 10: 14 92 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 Pooled mean = 30,7730 95% Confidence Interval = 29,3671 32,1790 Group 11: 77 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 Pooled mean = 31,1607 95% Confidence Interval = 29,7498 32,5717 Group 12: 2 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 Pooled mean = 31,7560 95% Confidence Interval = 30,3720 33,1400 Group 13: 86 82 19 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 Pooled mean = 32,1717 95% Confidence Interval = 30,8017 33,5417 Group 14: 1 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 57 36 69 Pooled mean = 33,1500 95% Confidence Interval = 31,7869 34,5131 Group 15: 90 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 57 36 69 60 Pooled mean = 33,4684 95% Confidence Interval = 32,1076 34,8293 Group 16: 8 31 54 7 11 15 79 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 57 36 69 60 45 67 30 Pooled mean = 34,0162 95% Confidence Interval = 32,6731 35,3593 Group 17: 27 81 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 57 36 69 60 45 67 30 35 Pooled mean = 35,3728 95% Confidence Interval = 33,9593 36,7862 Group 18: 55 20 83 18 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 57 36 69 60 45 67 30 35 41 Pooled mean = 35,9018 95% Confidence Interval = 34,4781 37,3255 Group 19: 6 40 39 24 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 57 36 69 60 45 67 30 35 41 70 Pooled mean = 36,7510 95% Confidence Interval = 35,2895 38,2124 Group 20: 4 48 52 64 74 93 3 63 21 28 12 34 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 57 36 69 60 45 67 30 35 41 70 56 Pooled mean = 37,6640 95% Confidence Interval = 36,1617 39,1662 Group 21: 51 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 57 36 69 60 45 67 30
65
35 41 70 56 50 Pooled mean =
40,0714 95% Confidence Interval = 38,3850 41,7578 Group 22: 61 42 43 17 53 23 68 85 5 32 47 49 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 57 36 69 60 45 67 30 35 41 70 56 50 72 73 Pooled mean = 40,9502 95% Confidence Interval = 39,2849 42,6156 Group 23: 46 59 88 37 33 75 25 87 89 26 84 66 62 65 29 58 57 36 69 60 45 67 30 35 41 70 56 50 72 73 44 Pooled mean = 43,7260 95% Confidence Interval = 41,7721 45,6800 Group 24: 84 66 62 65 29 58 57 36 69 60 45 67 30 35 41 70 56 50 72 73 44 22 Pooled mean = 46,9327 95% Confidence Interval = 44,6176 49,2478 Group 25: 60 45 67 30 35 41 70 56 50 72 73 44 22 71 Pooled mean = 51,1061 95% Confidence Interval = 48,1999 54,0122 Group 26: 41 70 56 50 72 73 44 22 71 38 Pooled mean = 55,3333 95% Confidence Interval = 51,9256 58,7411 Table No. 4: Duncan´s test for increment in 2001, classified by clone Homogeneous Subsets: Group 1: 64 92 63 95 19 10 48 81 78 1 13 76 80 77 16 24 49 79 14 82 39 54 59 94 25 53 91 65 55 31 4 2 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 Pooled mean = 8,5292 95% Confidence Interval = 7,4382 9,6203 Group 2: 92 63 95 19 10 48 81 78 1 13 76 80 77 16 24 49 79 14 82 39 54 59 94 25 53 91 65 55 31 4 2 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 Pooled mean = 8,7883 95% Confidence Interval = 7,6973 9,8793 Group 3: 63 95 19 10 48 81 78 1 13 76 80 77 16 24 49 79 14 82 39 54 59 94 25 53 91 65 55 31 4 2 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 Pooled mean = 8,9614 95% Confidence Interval = 7,8764 10,0464 Group 4: 48 81 78 1 13 76 80 77 16 24 49 79 14 82 39 54 59 94 25 53 91 65 55 31 4 2 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 58 Pooled mean = 9,4217 95% Confidence Interval = 8,3182 10,5251 Group 5: 81 78 1 13 76 80 77 16 24 49 79 14 82 39 54 59 94 25 53 91 65 55 31 4 2 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 58 36 Pooled mean = 9,6543 95% Confidence Interval = 8,5493 10,7593 Group 6: 78 1 13 76 80 77 16 24 49 79 14 82 39 54 59 94 25 53 91 65 55 31 4 2 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 58 36 72 Pooled mean = 9,8974 95% Confidence Interval = 8,7940 11,0008 Group 7: 80 77 16 24 49 79 14 82 39 54 59 94 25 53 91 65 55 31 4 2 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 58 36 72 73 Pooled mean = 10,4379 95% Confidence Interval = 9,3134 11,5623 Group 8: 14 82 39 54 59 94 25 53 91 65 55 31 4 2 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69
66
Group 9:
Group 10:
Group 11:
Group 12:
Group 13:
Group 14:
Group 15:
Group 16:
86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 58 36 72 73 70 50 Pooled mean = 11,4031 95% Confidence Interval = 10,2475 12,5587 65 55 31 4 2 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 58 36 72 73 70 50 30 Pooled mean = 12,5654 95% Confidence Interval = 11,3365 13,7942 2 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 58 36 72 73 70 50 30 41 Pooled mean = 13,2677 95% Confidence Interval = 12,0072 14,5281 3 61 83 67 90 15 68 20 74 11 18 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 58 36 72 73 70 50 30 41 35 Pooled mean = 13,5572 95% Confidence Interval = 12,3014 14,8129 51 28 75 8 9 17 43 52 7 27 34 40 69 86 33 57 47 29 23 46 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 58 36 72 73 70 50 30 41 35 84 Pooled mean = 15,0267 95% Confidence Interval = 13,6485 16,4048 6 85 42 5 93 26 66 89 21 37 60 62 87 45 12 32 88 58 36 72 73 70 50 30 41 35 84 71 Pooled mean = 18,7557 95% Confidence Interval = 16,9496 20,5619 26 66 89 21 37 60 62 87 45 12 32 88 58 36 72 73 70 50 30 41 35 84 71 22 56 Pooled mean = 20,9322 95% Confidence Interval = 19,0292 22,8352 87 45 12 32 88 58 36 72 73 70 50 30 41 35 84 71 22 56 44 Pooled mean = 23,5934 95% Confidence Interval = 21,4264 25,7605 32 88 58 36 72 73 70 50 30 41 35 84 71 22 56 44 38 Pooled mean = 25,3750 95% Confidence Interval = 23,0638 27,6862
Growth form 10 pieces out of 451 individuals died in planting of Tilia cordata until autumn 2001. 250 pieces (57%) showed a shrub growth form, 105 pieces (23%) had a branched stem and 86 pieces (20%) had a branchless stem. 18 clones had all individuals with a shrub form of growth, but not a single clone had all individuals only with branched or branchless stems. See table No. 5. Not a single individual out of 441 clones died since autumn 2001 till autumn 2002 in plantation of lime tree. 198 individuals (46%) showed a bush growth, 117 individuals (26%) branched growth of the terminal shoot and 126 individuals (28%) a direct development of terminal shoot. Only one single clone (clone No. 80) out of 95 followed was not represented by a single individual showing shrub growth form. 2 clones had all individuals only with shrub growth form (clones No. 23 and 92) on contrary. See table No. 5. Clones from plus trees from the natural forest area Jihočeské pánve had in autumn 2001 and 2002 a share of individuals with shrub growth form with 27% and 40%, with a branched stem 27% and 27% and with a branchless stem 46% and 33%. Clones originating from the natural forest area Křivoklátsko had a share of individuals with shrub growth form of 49% and 45%, with branched stem 24% and 24% with branchless stem 27% and 31%. Clones originating from the natural forest area Český kras
67
(Bohemian Karst) had a share of individuals with shrub growth form in 34% and 52%, with branched stem 34% and 17% and with branchless stem 31% and 31%. Clones originating from the natural forest area Polabí had a share of individuals with shrub growth form 52% and 43%, with branched stem 27% and 28% and branchless stem 21% and 29%. Clones from the seed orchard Milevsko had a share of individuals with shrub growth form 71% and 46%, with branched stem 19% and 28% and branchless stem 10% and 26%. Table No. 5: The growth form in autumn 2001 and in autumn 2002 Clone
number
No.
mortality shrub form
of
pieces
individuals
1 2 3 4
1–4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
5-19
4 5 5 5
19
pieces
75 5 5 5 4 5 5
20-25
29
26 27 28 29 30 31 32 33 34 35
4 5 5 5 5 5 5 5 5 5
%
pieces
branchless stem %
pieces
%
2001 2002 2001 2002 2001 2002 2001 2002 2001 2002 2001 2002 0 0 25 75 1 3 2 50 2 50 1 25 3 0 0 2 1 0 50 0 0 0 1 100 50 1 1 3 0 1 25 25 2 75 50 1 0 25 3 60 0 40 0 2 2 40 1 20 2 40
4
4 3 3 0 3 0 4 5 2 2 2 2 1 3 3 4
6 3 2 2 4 1 2 2 3 1 3 2 2 4 1 2
27 60 60 0 60 0 80 100 40 40 40 40 20 60 60 80
40 60 40 40 80 20 40 40 60 20 60 40 40 80 20 40
4 2 0 1 0 4 0 0 3 3 2 0 1 0 2 0
5 1 1 0 1 2 2 1 2 1 1 1 2 1 2 0
27 40 0 20 0 80 0 0 60 60 40 0 20 0 40 0
33 20 20 0 20 40 40 20 40 20 20 20 40 20 40 0
7 0 2 4 2 1 1 0 0 0 1 3 3 2 0 1
5 1 2 3 0 2 1 2 0 3 1 2 1 0 2 3
46 0 40 80 40 20 20 0 0 0 20 60 60 40 0 20
33 20 40 60 0 40 20 40 0 60 20 40 20 0 40 60
0
37 1 3 3 1 2 0
34 2 2 3 4 1 3
49 20 60 60 25 40 0
45 40 40 60 100 20 60
18 4 2 2 1 0 1
18 2 1 1 0 0 1
24 80 40 40 25 0 20
24 40 20 20 0 0 20
20 0 0 0 2 3 4
23 1 2 1 0 4 1
27 0 0 0 50 60 80
31 20 40 20 0 80 20
0
10 1 1 1 0 3 2 0 2 2 4
15 1 2 4 1 2 1 1 1 2 2
34 25 20 20 0 60 40 0 40 40 80
52 25 40 80 20 40 20 20 20 40 40
10 0 2 2 2 2 3 2 3 2 1
5 1 1 0 2 1 1 0 2 3 1
34 0 40 40 40 40 60 40 60 40 20
17 25 20 0 40 20 20 0 40 60 20
9 3 2 2 3 0 0 3 0 1 0
9 2 2 1 2 2 3 4 2 0 2
31 75 40 40 60 0 0 60 0 20 0
31 50 40 20 40 40 60 80 40 0 40
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
20 21 22 23 24 25
branched stem
68
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 91 92 93 94 95 26-55, 91-95 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
5 5 5 4 5 4 5 5 5 4 5 5 5 5 5 5 5 5 5 4 5 1 4 5 3
1
3 2 1 1 4 3 4 5 3 1 2 3 1 1 2 4 3 5 4 3 5 1 3 2 3
1 2 3 3 2 2 3 3 1 2 4 2 1 3 3 1 2 4 2 1 2 1 1 2 2
75 40 20 25 80 75 80 100 60 25 40 60 20 20 40 80 60 100 80 75 100 100 75 40 100
25 40 60 75 40 50 60 60 20 50 80 40 20 60 60 20 40 80 40 25 40 100 25 40 67
0 3 2 1 1 1 1 0 2 1 1 1 2 2 1 1 0 0 1 0 0 0 1 2 0
2 0 1 0 2 1 1 2 2 1 0 3 2 1 1 2 2 0 2 3 1 0 2 2 0
0 60 40 25 20 25 20 0 40 25 20 20 40 40 20 20 0 0 20 0 0 0 25 40 0
50 0 20 0 40 25 20 40 40 25 0 60 40 20 20 40 40 0 40 75 20 0 50 40 0
1 0 2 2 0 0 0 0 0 2 2 1 2 2 2 0 2 0 0 1 0 0 0 1 0
1 3 1 1 1 1 1 0 2 1 1 0 2 1 1 2 1 1 1 0 2 0 1 1 1
25 0 40 50 0 0 0 0 0 50 40 20 40 40 40 0 40 0 0 25 0 0 0 20 0
25 60 20 25 20 25 20 0 40 25 20 0 40 20 20 40 20 20 20 0 40 0 25 20 33
163
1
85 5 2 3 1 4 5 5 3 4 2 2 2 3 5 3 2 4 5 4 5 2 3 2
70 2 2 1 1 4 2 2 1 3 2 1 4 4 2 1 2 2 3 2 3 1 2 2
52 100 40 75 25 80 100 100 60 80 40 40 40 60 100 75 50 100 100 80 100 50 100 40
43 40 40 25 25 80 40 40 20 60 40 20 80 80 40 25 50 50 60 40 60 25 67 40
43 0 2 1 1 0 0 0 1 0 3 3 3 2 0 0 2 0 0 1 0 0 0 1
45 1 2 1 2 1 1 2 1 1 2 2 0 1 2 1 0 1 1 1 1 3 0 2
27 0 40 25 25 0 0 0 20 0 60 60 60 40 0 0 50 0 0 20 0 0 0 20
28 20 40 25 50 20 20 40 20 20 40 40 0 20 40 25 0 25 20 20 20 75 0 40
34 0 1 0 2 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 2 0 2
47 2 1 2 1 0 2 1 3 1 1 2 1 0 1 2 2 1 1 2 1 0 1 1
21 0 20 0 50 20 0 0 20 20 0 0 0 0 0 25 0 0 0 0 0 50 0 40
29 40 20 50 25 0 40 20 60 20 20 40 20 0 20 50 50 25 20 40 20 0 33 20
5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 4 5 5 5 4 5 5
1
1 1
2
69
79 80 81 82 83 84 85 86 87 88 89 90
5 4 4 4 5 4 5 4 5 5 4 4
56-90
165
5
Sum Mean
451
10
3 4 4 3 3 3 5 0 3 3 3 4
3
114 250
1 2 2 3 2 2 2 3 2 2
60 100 100 75 60 75 100 0 60 60 75 100
60 0 25 50 40 75 40 50 40 60 50 50
1 0 0 1 2 0 0 3 0 2 1 0
1 2 2 1 2 1 0 1 2 1 1 2
20 0 0 25 40 0 0 75 0 40 25 0
20 50 50 25 40 25 0 25 40 20 25 50
1 0 0 0 0 1 0 1 2 0 0 0
1 2 1 1 1 0 3 1 1 1 1 0
20 0 0 0 0 25 0 25 40 0 0 0
20 50 25 25 20 0 60 25 20 20 25 0
73
71
46
30
45
19
28
16
42
10
26
198 57,1 45,4
105
117 23,1 26,3
86
126 19,8 28,3
Notice: clones No. 1 - 4 …
plus trees from the natural forest area Jihočeské pánve
clones No. 5 – 19 …
breeding trees from the natural forest area Křivoklátsko
clones No. 20 - 25 … clones No. 26 - 55 and 91 - 95 …
breeding trees from the natural forest area Český kras breeding trees from the natural forest area Polabí
Clones No. 56 - 90 …
clones from the seed orchard Milevsko – plus trees from the natural forest area Jihočeské pánve
DISCUSSION Plant growth Average height increment of clones in 2001 was from 0.3 cm (clone No. 64) to 35.8 cm (clone No. 38). The span of average increment values was 35.5 cm. In spring 2001 the span was 30.4 cm with heights measured and in autumn 2001 it was even 55.4 cm with heights measured. This striking height diversity is caused by great differences between the single clones. It is necessary to remind that it was possible to compare 95 clones. The results of measurements of clones from the seed orchard Milevsko are especially interesting, they were on average the highest after the clones from Český kras (Bohemian Karst) in spring 2001 and in autumn 2001. This is especially true with view to the fact that 3 clones directly from plus trees from the forest nature area Jihočeské pánve are identical with the clones in the seed orchard. Clone material from the seed orchard is always higher. Clones No. 1 and 64, No. 2 and 85, No. 4 and 62 are identical. It can be thought about whether the influence in this juvenile stage in the case of clones originating from seed orchard does not have a double vegetative propagation (grafting – in vitro culture) on the initial growth speed. It will be necessary to carry out long-term following of the clone material for comparison of this possibility. Growth form Only 2 clones were after the end of the vegetation period 2002 with all individuals showing a shrub growth form from the overall number of all evaluated individuals of 95 clones. In the previous year
70
there were only 18 clones with this form. It is a distinct decrease of the representation of this shrub growth form clones. This tendency trend showed also in the overall decrease of representation of this growth form in omparison to 2001 from 57% to 45% in favour of the other evaluated forms. With plants with a branched stem the overall representation increased from 23% to 26% and with individuals with branchless stem even from 20% to 28%. This development corresponds to the predictions concerning the changes of percentage representation of the different growth forms by the time (Hajnala, 2002), in favour of the forms with a recognizable main stem. The decline in share of individuals with shrub growth form is concerning mainly clones originating from the seed orchard. There was a decline from the strong above average share in 2001 on an average share in 2002. It is questionable whether the increased share of this growth form is not connected with the secondary vegetative propagation of graftings. Beside this there was an increase of the share of shrub growth form with clones originating directly from plus trees from the forest nature area Jihočeské pánve and with clones originating from Český kras (Bohemian Karst). References Barna, T., 1996: Gene conservation and silviculture of broadleaved mixture species in Hungary. In Turok, J. – Eriksson, G. – Kleinschmit, J. – Canger, S. – compilers: Noble Hardwoods Network (Report of the first meeting, 24 – 27 March 1996, Escherode, Germany). International Plant Genetic Resources Institute, Rome, Italy, 1996. Germany: 64-67 Benedíková, M. - Malá, J., 2001: Výzkum proměnlivosti a opatření k zachování a reprodukci genových zdrojů domácích druhů dubu (Quercus sp.) a lípy (Tilia sp.). Výroční zpráva VÚLHM, Jíloviště – Strnady: 29 s. Canger, S. - Kjaer, E., D., 1996: Genetic resources of Noble Hardwoods in Denmark. In Turok, J. – Eriksson, G. – Kleinschmit, J. – Canger, S. – compilers: Noble Hardwoods Network (Report of the first meeting, 24 – 27 March 1996, Escherode, Germany). International Plant Genetic Resources Institute, Rome, Italy, 1996, Germany: 141-146 Elsner, G., 1992: Length of cuttings and rooting success in cherry, lime and birch. Forst und Holz, 47, 23: 746-748 Hajnala, M.., 2002: Testování potomstev a klonů třešně ptačí , lípy malolisté, hrušně obecné a jeřábu ptačího v pokusných výsadbách na ŠLP Kostelec n. Č. l. Diplomová práce, LF ČZU v Praze: 61 s. Jensen, J., S. - Canger, S., 1998: Lime (Tilia spp.). In Turok, J. – Collin, E. – Demesure, B. - Eriksson, G. – Kleinschmit, J. – Rusanen, M. – Stephan, R. – compilers: Noble Hardwoods Network (Report of the second meeting, 22 – 25 March 1997, Lourizán, Spain). International Plant Genetic Resources Institute, Rome, Italy,1998, Spain:. 28-38 Kleinschmit, J. – Stephan, B., R. – Liesebach, M. – Schute, G. – Steinhoff, S., 1996: Noble Hardwood species in Germany: occurrence and gene conservation measures. In Turok, J. – Eriksson, G. – Kleinschmit, J. – Canger, S. – compilers: Noble Hardwoods Network (Report of the first meeting, 24 – 27 March 1996, Escherode, Germany). International Plant Genetic Resources Institute, Rome, Italy, 1996, Germany: 101-110 Magherini, R. - Nin, S., 1994: Propagation of selected Tilia spp. by seed and semihardwood cuttings. Advances in Horticultural Science, Anglie, 8, 2: 91-96 Maurer, W. D. - Tabel, U., 1995: A methodical study to improve the isozyme analysis for identification of clones of Tilia (linden syn. lime tree). Silvae Genetica, 44, 5-6: 351-356 Rotach, P., 1996: Noble Hardwoods in Switzerland. In Turok, J. – Eriksson, G. – Kleinschmit, J. – Canger, S. – compilers: Noble Hardwoods Network (Report of the first meeting, 24 – 27 March 1996, Escherode, Germany). International Plant Genetic Resources Institute, Rome, Italy, 1996, Germany: 91-100
71
6.3. IN VITRO PROPAGATION OF EUROPEAN MOUNTAIN ASH (Sorbus aucuparia L.) M. MAULEOVÁ1, J. VÍTÁMVÁS1, J.HELLER2 1
Department of Dendrology and Forest Tree Breeding, Faculty of Forestry and Environment, Czech University of Agriculture, Prague, Czech Republic 2 TriStone Partners s.r.o, Prague, Czech Republic
ABSTRACT: In vitro propagation of Sorbus aucuparia has been achieved by using organogenesis. We were concerned with some main stages of axillary bud proliferation (organogenesis) - shoot multiplication and rooting. Furthermore we were engaged in bacteriosis elimination from impure in vitro culture. The winter buds were used as initial explants. Modified MS medium was tested as nutrient medium, supplemented with plant growth regulators cytokinin (BAP) and auxin (IBA), hormones stimulating shoot multiplication rate. For rooting was used a different photoperiod, pulse stimulation and low mineral medium (WPM) supplemented with low concentration of auxins (IBA and NAA). In cultures contaminated by bacillary bacterium we designated a number of techniques to eliminate bacteriosis with Savo, HgCl2 and PPM (Plant Preservative Mixture™). The evaluation of results was assigned via multi-factorial analysis. Key words: Sorbus aucuparia, shoot multiplication, rooting, phytohormones, bacteriosis INTRODUCTION A level of damage done to forest ecosystems and urgency of biodiversity saving requires finding a way to practically use in vitro propagation of forest woods through somatic embryogenesis and organogenesis. Cultivation of organized meristems in laboratory helps us to preserve genetic stability and quick multiplication of genetically identical vegetables. Mountain ash reproduction through organogenesis helps us with breeding programs and also helps us to save valuable genotypes and population of species. As an example of in vitro multiplicated seedlings outplanting usage we can use outplanting of 75 469 pieces of Mountain ash in the CHKO Šumava area in 2000-2001. One goal of in vitro reproduction is the improvement of genetic qualities of grown woods. It could be achieved through multiplication of productive and resistant genotypes we gained via selection, generation crossbreeding and genetic manipulation. Preservation of aseptic environment of in vitro cultures is essential for explantates propagation and progress. Various pathogens could change chemical composition of nutrient medium or its complete corruption. Explantates contamination could result in seedlings physiological alterations and changes of their progress and growth. In some cases contamination could result in corruption of in vitro cultures. After all effort to preserve aseptic environment cultures could be contaminated during propagation and cultivation. Available techniques could be used to heal explantates and their next generation when selection of contaminated cultures is not suitable. MATERIAL AND METHODS We used winter buds from 5-20 year old trees collected from two different locations (Jizerské hory and Prague) as a starting material for aseptic cultures. Scions were stored at a temperature of 20±1 °C and cultivated in March. Buds from nodal segments and tops were degreased, scales were removed and buds were sterilized in 70% ethanol and then in SAVO 10% solution. Then it was sterilized in 0.01% HgCl2. After sterilization buds were washed in distilled water 4 times.
72
We used modified MS medium (MURASHIGE and SKOOG 1962) BAP concentration 0.4 mg/l and IBA concentration 0.2 mg/l to induce organogenesis. Nutrient medium was hardened with Difco Bacto agar (6 g/l). Sucrose (30 g/l) was used as a source of carbon. We sterilized medium in autoclave at a temperature of 121 °C used for 20 minutes. Cultures were cultivated under controlled conditions in air-conditioned growth chamber at a temperature of 24±1°C, under white fluorescent light 35 µmol.m-2.s-1 with 16 hours photoperiod. Shoot multiplication: When the first shoot appeared cultures were moved to MS medium BAP 0.4 mg/l, IBA 0.2 mg/l and they were multiplicated for testing purposes. Subculturing was made after 4-5 weeks. We tested the effect of different BAP level (0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.1, 10.1 mg/l) with stable IBA concentration (0.2 mg/l) on multiplicating mountain ash segments. We tried to stimulate cultures growth and achieve high multiplication rate. Rooting: We tested shoots rooting on lower mineral level medium WPM (LLOYD and MCCOWN 1980) with different IBA concentration (0.1, 0.2, 1.0 mg/l) and NAA (0.2, 0.4 mg/l). Three techniques with two different photoperiods describe different methods of shoots rooting. We evaluated all methods after 3-4 weeks. Techniques description: Technique 1 - Shoots were placed on medium supplemented with IBA 0.2mg/l and NAA 0.2 mg/l. Technique 2 - Shoots were placed on medium supplemented with IBA 1 mg/l and NAA 0.4 mg/l for 7 days. Shoots were then removed onto medium supplemented with auxins IBA 0.1 mg/l Technique 3 (pulse stimulation) – Shoots were placed into hot solution of 30% ethylate supplemented with IBA 1 mg/l for 30 seconds. Shoots were then removed onto medium supplemented with IBA 0.1 mg/l. Half of cultures were placed into a cultivation room with 16 hours long photoperiod, marked Photoperiod S in Graph 2. The rest of cultures were placed into a cultivation room, where they were left in darkness for 7 days (Photoperiod T). Bacteriosis elimination: For further tests we used mountain ash cultures with evident bacteriosis symptoms (white or white-yellow coating). Bacteriosis symptoms were seen mostly on the nutrient medium surface in the whole flask. We didn’t see any symptoms of bacteriosis contamination on seedlings. We tested bacteriosis presence through microscope test (Čížková). We chose five techniques for bacteriosis elimination. Four of them have a similar procedure trying to sterilize seedlings with different preparations and exposition time. The fifth technique utilizes just a special preparation fortifying nutrient medium trying to fully eliminate bacteriosis. All shoots were shortened to 2-3 cm long segments. Explantates were cut about 1-2 cm above medium. Techniques description: We started all techniques washing nodal segments in distilled water. Technique 1 – Segments were sterilized in 70% ethylate solution for 3 minutes. After that we moved them to beaker with 5% Savo for 5 minutes. Furthermore we washed them in distilled water several times. Technique 2 – Segments were sterilized in 70% ethylate solution for 3 minutes. After that we moved them to beaker with HgCl2 for 25 minutes. After that we moved them to beaker with HgCl2 for 25 minutes. Furthermore we washed them in distilled water several times. Technique 3 – Segments were sterilized in 70% ethylate solution for 3 minutes. After that we moved them to beaker with 5% Savo for 5 minutes. After that we moved them to beaker with HgCl2 for 15 minutes. Furthermore we washed them in distilled water several times. Technique 4 – Segments were sterilized in 70% ethylate solution for 3 minutes. After that we moved them to beaker with 7% Savo for 7 minutes. After that we moved them to beaker with HgCl2 for 15 minutes. Furthermore we washed them in distilled water several times. Technique 5 – Segments were subcultured on MS nutrient medium supplemented with PPM (Plant Preservative Mixture™) in 1 ml/l concentration. This mixture, as developer (Plant Cell Technology, Inc.) says, should prevent and eliminate all culture contamination. The mixture is under US Patent II 5 750 402 and we don’t know its exact composition. In all cases shoots were moved to MS nutrient medium supplemented with BAP (0.4 mg.l-1) and IBA (0.2 mg.l-1) after sterilization. Explantates were left in air-conditioned growth chamber under controlled conditions (at a temperature of 24±1°C, white fluorescent light 35 µmol.m-2.s-1, 16 hour photoperiod) for 5 weeks.
73
Criteria for techniques evaluation: The first criterion was a bacteriosis elimination success level. We stated as satisfying status a situation when segment wasn’t damaged by sterilization, there was no sign of contamination symptoms on segments and also next segment generations weren’t contaminated. The second criterion was a technique difficulty. Some techniques could be used easily, in short time period and without special laboratory equipment, while another needs a time consuming preparation, special equipment or skilled and trained staff. This criterion was based on several aspects like how much time-consuming technique is or what laboratory equipment demands etc.
RESULTS AND DISCUSSION Shoot multiplication: From all BAP concentrations tested we achieved the best results in proliferation and rapid growth aspects with BAP 0.8 mg/l concentration level. When nodal segments were placed on nutrient medium supplemented as stated above new shoots from axillary buds appeared in 3-5 weeks. Satisfying results were also achieved with BAP concentration 0.6 or 1 mg/l. On the other hand CHALUPA (2000) states that the optimal concentration of BAP for fine proliferation is between 0.4 and 0.6 mg/l with IBA concentration between 0.1 and 0.2 mg/l In general it could be said that with increasing BAP concentration in nutrient medium (between 0.2 and 1.0 mg/l) we achieved more and longer shoots. With BAP concentration between (2.8 and 4.1 or 10.1 mg/l) we achieved less and shorten shoots, see Graph 1. CHALUPA (2000) achieved similar results with mountain ash (Sorbus aucuparia L.) grown on MS medium supplemented with BAP 3-5 mg/l and with wild service tree (Sorbus torminalis / L. / Cr.) grown on MS medium supplemented with BAP 2-4 mg/l and IBA 0.1-0.2 mg/l. Experiments with nutrient media MS, BTM (broadleaved tree medium (CHALUPA 1985, 1987)), WPM and GD (GRESSHOFF and DOY 1972) and their effect on multiplication rate of mountain ash were performed by CHALUPA (1993). In general it could be said that MS medium is the best for rapid cultures growth of mountain ash (CHALUPA 1981, 1983a, 1983b, 1987a, 1987, 1993, 2001a, 2001b). Russian team (DOLOV et al. 2002) achieved effective micropropagation on QL medium (containing vitamins QL 1 mg/l, BA 1-1.5 mg/l, IBA 0.2 mg/l, GA3 0.5 mg/l). Cytokinin thidiazuron (TDZ) has a significant influence on shoots progression. Significant seedlings proliferation was observed with nutrient medium supplemented with BAP and TDZ cytokinins (CHALUPA 1993). Production of high number of long shoots is usually stimulated on MS media supplemented with low concentration of both cytokinins (BAP, TDZ) together wit low concentration of auxins (CHALUPA 2001a). Rooting: Roots formation was stimulated with the best results on WPM medium with IBA concentration 1,0 mg/l and NAA concentration 0.4 mg/l. We left microshoots on that medium long enough for bases roots formation. After roots formation microshoots were cultured on WPM medium supplemented with IBA 0.1 mg/l. With procedure like that 85% of microshoots rooted within 3-4 weeks. Compared to that technique we didn’t see good results with pulse stimulation technique, see Graph 2.
CHALUPA (2001a) achieved quite good results with WPM medium supplemented with lower concentration of auxins (IBA 0.3 mg/l and NAA 0.3 mg/l). Other sources (CHALUPA 1981, 1983a, 1983b, 1985, 1988, 1999, 2001b) mentioned 70-90% rooting rate on GD and WPM media with a half concentration of auxins (IBA 0.2-0.5 mg/l and NAA 0.2-0.5 mg/l) We also tested positive effect of photoperiod changes, as stated in GASPAR et al. (1987) placing microshoots in air-conditioned growth chamber in complete darkness (Photoperiod T). Worse results were achieved with this Photoperiod as you can see on Graph 2. Bacteriosis elimination: Considering the first criterion quite good results were achieved with techniques 2 and 5. We have got 92,3% of explantates without bacteriosis symptoms with technique 2 and also next generations didn’t show any contamination. With technique 5 we have got 85,7% of clean explantates. Techniques 1, 3 and 4 weren’t effective against bacteriosis.
74
Considering the second criterion the best results were achieved with technique 5. Other techniques were more demanding as you can see in Graph 3. Based on results of both criteria we can say that the best results were achieved with technique 5. This technique was very specific considering the sterilization substance. It was PPM substance from USA and its producer recommends it also for explantates cultures contamination prevention. Other techniques used HgCl2. It is quite good in sterilization when used for correct time period. Based on our results we can say that it’s between 20 and 25 minutes. We can also say that Savo is not very effective against bacteriosis contamination.
CONCLUSIONS The goal of our work was to verify results in micropropagation of Sorbus aucuparia. We tested effect of phytohormones on multiplication rate and microshoots rooting through the use of different techniques. Another tests were taken on cultures contaminated by bacillary bacterium. Our results showed no complications of in vitro propagation of Sorbus aucuparia, which could be used for commercial usage thanks to its progressive growth. Considering a level of knowledge about possibilities of Sorbus aucuparia micropropagation and with respect to Sorbus aucuparia qualities as resistant pioneer species we can assume that Sorbus aucuparia is suitable plant for breeding purposes. It is possible to expect that forestry-breeding programs will use new technologies in molecular biology and genetics soon to clarify the role of genes in coding anti-stress toleration.
Biotechnologies have a great potential for the future with good prospects not only in forestry. With respect to that we should also consider possible risks of those new technologies. Effects and consequences of genetically uniform material outplanting, possibilities of genetic instability, capability of reproduction of trees cultivated in vitro and their next generations – those are the questions still without satisfactory answers. References: DOLOV S. V., ALIMOVA E. A., FIRSOV A. P., 2002. http://www.users.ox.ac.uk/~dops0022/conference/ posters.htm. GASPAR T., COUMAN M., 1987. Root formation. Cell tissue Culture in Forestry. Martinus nijhooff Publishers, vol. 2: 202-217. CHALUPA V., 1981. Clonal propagation of broad – leaved forest trees in vitro. Communicationes instituti forestalis Čechosovenianae 12: 255-271. CHALUPA V., 1983. In vitro propagation of willows (Salix spp.), European mountain ash (Sorbus aucuparia L.) and black locust (Robinia pseudoacacia L.). Biol. Plant 25: 305-307. CHALUPA V., 1983. Micropropagation of conifer and broadleaved forest trees. Communicationes instituti forestalis Čechosovenianae 13: 27-28. CHALUPA V., 1985. In vitro propagation of Larix, Picea, Pinus, Quercus, Fagus and other species using adenine – type cytokinins and thidiazuron. Communicationes instituti forestalis Čechosovenianae 14: 65-90. CHALUPA V., 1987. Effect of benzylaminopurine and thidiazuron on in vitro shoot proliferation of Tilia cordata Mill., Sorbus aucuparia L. and Robinia pseudoacacia L. Biol. Plant 29: 425-429. CHALUPA V., 1987. European hardwoods. Cell and tissue culture in forestry, Martinu Nijhoff Publ. Volumen 3: 224-226. CHALUPA V., 1988. Rozmnožovábí lípy, akátu, jeřábu in vitro a růst stromů vypěstovaných in vitro. Lesnictví 34: 705-720. CHALUPA V., 1993. Micropropagation of European Mountaim Ash (Sorbus aucuparia L.) and Wild Servis Tree [Sorbus torminalis (L). Cr.]. Biotechnology in Agriculture and Forestry. Volumen 18: 211-226. CHALUPA V., 2000. In vitro rozmnožování jeřábu ptačího (Sorbus aucuparia L.) a jeřábu břeku (Sorbus torminalis/L./Cr.). Sborník z celostátní konference – Krajina, les a lesní hospodářství I. Díl: 67-69. CHALUPA V., 2001. Micropropagation of European Mountain Ash (Sorbus aucuparia L.) and Wild Servis Tree (Sorbus torminalis /L./ Cr.) H. Biotechnology in Agriculture and Forestry Volumen 18: 211-226. CHALUPA V., 2001. Zachování genových zdrojů ušlechtilých listnáčů a jejich rozmnožování metodami in vitro. Lesnická Práce 12: 555–556. MURASHIGE T., SKOOG F., 1962. A revise medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15: 473-497.
75
Pěstování jeřábu ptačího (Sorbus aucuparia L.) metodami in vitro M. MAULEOVÁ, J. VÍTÁMVÁS, J.HELLER* Katedra dendrologie a šlechtění lesních stromů, Fakulta lesnická a environmentální, Česká zemědělská univerzita, Praha, Česká republika *TriStone Partners s.r.o ABSTRAKT: In vitro propagace jeřábu ptačího (Sorbus aucuparia L.) bylo dosaženo užitím orgánových kultur. Zabývali jsme se několika hlavními stádii organogeneze – množením a zakořeňováním. U některých kultur kontaminovaných bakteriemi bylo dále stanoveno několik technik eliminace bakteriózy z kultur. K založení primárních kultur byly použity zimní pupeny. Jako živné médium bylo testováno modifikované MS médium doplněné o cytokinin (BAP) a auxin (IBA) – hormony stimulující koeficient množení. K zakořeňování prýtů byla použita změna fotoperiody, metoda pulzní stimulace a minerálně chudší médium WPM obohacené o nízké koncentrace auxinů (IBA a NAA). U kultur kontaminovaných tyčinkovitými bakteriemi bylo stanoveno několik technik eliminace bakteriózy pomocí sterilizačních látek (Savo, HgCl2, PPM). K vyhodnocení byla použita vícekriteriální analýza. Klíčová slova: Jeřáb ptačí, in vitro propagace, multiplikační koeficient, zakořeňování, fytohormony, bakterióza Jako výchozí materiál pro založení aseptických kultur byly použity zimní pupeny odebrané z 5-20 letých stromů. K indukci a dostatečnému namnožení kultur bylo použito zpevněné modifikované MS médium s koncentrací BAP 0,4 mg/l a IBA 0,2 mg/l. Média byla sterilizována autoklávováním. Na segmentech jeřábu byl testován účinek proměnlivé hladiny BAP za stále koncentrace IBA a to se zřetelem na stimulaci růstu kultur a dosažení vysokého koeficientu množení. Zakořeňování prýtů bylo prováděno na minerálně chudším médiu WPM obohaceném o proměnlivé koncentrace IBA a NAA. Různé způsoby zakořeňování byly popsány celkem třemi technikami a rozdělením na dvě odlišné fotoperiody. Dále byly pro pokusy použity kultury jeřábu, které projevovaly příznaky bakteriózy. Pro eliminaci tyčinkovité bakteriózy bylo vybráno celkem 5 technik. Z dosažených výsledků je zřejmé, že z testovaných koncentrací BAP byly rychlý růst a proliferace prýtů nejlépe stimulovány na MS médiu s přídavkem BAP 0,8 mg/l. Po umístění nodálních segmentů na takto obohacené živné médium, se vytvořily z axilárních pupenů nové prýty během 3-5 týdnů. Dobrých výsledků bylo dosaženo i u koncentrací BAP 0,6 resp. 1,0 mg/l. Vytváření kořenů bylo nejlépe stimulováno na WPM médiu s koncentrací IBA 1,0 mg/l a NAA 0,4 mg/l. Na takto obohaceném médiu byly mikrořízky ponechány po dobu potřebnou k vytvoření základů adventivních kořenů. Dále byly mikrořízky kultivovány na WPM médium obohaceném o IBA v koncentraci 0,1 mg/l. Při daném postupu bylo dosaženo během 3-4 týdnů 85% úspěšnosti zakořenění. V porovnání s těmito hodnotami technika pulzní stimulace nevykazovala dobré výsledky. U eliminace bakteriózy na základě vyhodnocení obou kritérií je možno konstatovat, že nejlepších výsledků bylo dosaženo po aplikaci sterilizační látky PPM. U dalších pokusů bylo použito chlornanu rtuťnatého, doba pro dostatečnou sterilizaci touto metodou se pohybuje mezi 20–25 minutami. Na základě výsledků je možno považovat Savo za látku nevhodnou pro eliminaci bakteriózy. Dosažené výsledky naznačily, že v laboratorních podmínkách je možné jeřáb ptačí množit in vitro bez větších komplikací a díky progresivnímu růstu se hodí i pro komerční propagaci. Vzhledem k dosaženému poznání o možnostech mikropropagace jeřábu a s přihlédnutím k jeho vlastnostem odolné pionýrské dřeviny je možné usuzovat, že právě jeřáb je vhodnou dřevinou pro šlechtitelské záměry. Lze očekávat, že lesnické šlechtitelské programy budou v nejbližších letech využívat novinky molekulární biologie a genetiky pro objasnění úlohy genů specificky kódujících toleranci ke stresům.
76
Graph 1 Effect of BAP concentration on shoot multiplication rate
0, 0 0, 2 0, 4 0, 6 0, 8 1, 0 1, 2 1, 5 1, 8 2, 0 2, 2 2, 4 2, 6 2, 8 3, 0 3, 2 3, 4 3, 6 3, 8 4, 1 10 ,1
8,00 7,00 6,00 5,00 4,00 3,00 2,00 1,00 0,00
Concentration of BAP (mg/l) AVERAGE SHOOT LENGTH MULTIPLICATION RATE
Graph 2 Success of shoot rooting 77,30%
90%
69,70%
75% 60% 45%
85,30%
38,60% 25,50%
30% 15%
9,80%
Photoperiod S
Te ch ni qu e3
Photoperiod T
Te ch ni qu e2
Te ch ni qu e1
0%
77
Graph 3 Techniques evaluation based on criteria score 200
Points
150 100 50 0
1
2
3
4
5
Criterion 1
0
92,3
16,7
0
85,7
Criterion 2
50
10
10
10
100
Techniques
Graph 3 description: To work with the first criterion we recalculated results to points (1 point = 1%). For the second criterion we decided to give 100 points to the simplest technique, 50 point to the second simplest technique and 10 points to the most difficult technique.
78
6.4. DO WE REALLY KNOW WOOD OF OUR INDIGENOUS TREE SPECIES – BIRD CHERRY? Ing. Aleš Zeidler, Ph.D. Faculty of Forestry and Environmental Sciences, Czech University of Agriculture, Kamýcka 129, 165 21 Prague 6, Czech Republic Abstract. Utilisation of wood of less known tree species is one of the possibilities how to enhance profit from forest estates and how to broaden an offer of the wood processing industry on the market. Bird cherry (Padus racemosa (L.) Gillib.) belongs among common native species in the Czech Republic. Knowledge of bird cherry wood is insufficient and that is the reason the wood is used for second-rate purposes. Information about wood properties is a crucial factor for better wood utilisation of such tree species. Mechanical and physical properties of bird cherry wood are surprisingly missing in the available literature. The article presents data about the basic properties of bird cherry wood. The tensile strength, the compressive strength, the shear strength, the bending strength, the impact strength and the hardness were tested from the mechanical properties. The density, the shrinkage and the swelling were tested from the physical properties. The discussion about quality of investigated bird cherry wood is based on a comparison with related tree species and common commercial species.
1 Introduction The wood industry makes an effort to bring on markets unusual and attractive species in order to extend and diversify its offer of woods. It looks for these species first of all in the tropical zones. We should not forget that our climate zone also offers wide range of interesting tree species. This fact is proved by information about record prices of wild service tree logs [DRAPIER 1993, BLUĎOVSKÝ 1999]. Bird cherry undoubtedly ranks among such attractive species. Bird cherry is our native species that occurs quite commonly in the Czech Republic. Its wood has an attractive appearance resembling wild cherry wood. Unfortunately the wood is practically not utilised currently or it is used only for low-grade purposes (fuel wood). The reason of inadequate utilisation for such interesting species is, together with poor silvicultural treatment, incomplete information about the appearance of the wood and its properties. Mechanical and physical properties of wood are the principal input data for a selection of proper processing technologies that influences to a great extend a final purpose of utilisation and financial yield. This article investigates the basic mechanical and physical properties of bird cherry wood from Czech Republic territory. The results are judged on the basis of a comparison with related tree species, because the data about bird cherry wood are missing. The work also compares the results with Czech common commercial woods. The article so outlines possible ways of utilisation for this, so far omitted, tree species. Bird cherry is a tree or bush reaching a height of 12 m [HEJNÝ, 1992] with a breast-height diameter of up to 0,6 m [BEGEMANN, 1963]. Leaves, buds, bark and wood smell of almonds [URADNÍČEK, 1996]. It is a fast growing tree species that is mature for harvesting in 60 years [BEGEMANN, 1963]. Bird cherry life expectancy is about 80 – 100 years [PAGAN, 1997]. Bird cherry is the species native in Europe and Asia [URADNÍČEK, 1996]. It is distributed through whole Europe, except for southern part, to Siberia in the east. According to KLIKA [1940] it is found also in the Caucasus and the Himalayas. In the Czech republic bird cherry is the common species in the whole area of the country. It finds the best condition in floodplain forests, along streams and ponds, in more humid broad-leafed and mixed forests. It is often grown in parks and orchards. Bird cherry requires humid and rich soils [HEJNÝ, 1992]. In floodplain forests it bears only a short-term overflow [URADNÍČEK, 1996]. Bird cherry is the species of the continental climate that is resistant to low temperatures and late frosts [PAGAN 1997, URADNÍČEK 1996]. It is a half-shade tree, but with growing age the requirements for solar radiation are higher (PAGAN 1997). The tree bears polluted conditions, but it is not suitable for growing in big cities (URADNÍČEK 1996).
79
Bird cherry is a tree of no interest from the point of forestry (KLIKA 1940, URADNÍČEK 1996), it soon slows down in its grows and loses in competition with other tree species (KLIKA 1940). Formerly it was used in a folk healing and in the case of need as fruits. Currently bird cherry is used for decorative purposes [HEJNÝ 1992, URADNÍČEK 1996] and sometimes on the banks of rivers as an erosion control tree [HEJNÝ, 1992]. Bird cherry leaves improve a soil quality [URADNÍČEK, 1996]. Great content of phytoncides with a bactericidal effect is also noticeable [PAGAN 1997, URADNÍČEK 1996]. Wood. Bird cherry wood has heartwood well defined from sapwood. The heartwood colour is yellowish-red or yellowish-brown (older trees) [JIROUT, 1928], according to PAGAN [1997] brownish-red and BALABÁN [1955] describes the colour of the heartwood as brown. The sapwood is quite wide, its colour varies from yellowish to pinkish [LYSÝ, 1954]. Annual rings are quite good visible to the naked eye. Rays are visible as shiny bands on the radial surface. The wood is diffuse-porous, vessels are invisible to the naked eye [BALABÁN 1955, JIROUT 1928, KAVINA 1932]. The wood smells of bitter almonds [BALABÁN 1955, KOFRÁNEK 1950, LYSÝ 1954], but the scent disappears after seasoning [BEGEMANN, 1963]. The microscopic structure is similar to that one of plum wood [BALABÁN, 1955]. GREGUSS [1959] mentions greater number of vessels with bigger diameter in comparison with other species of Prunus genus. The vessels occur in groups of 2 – 4, they are filled with a brown gum in the heartwood. The parenchyma rays are 1 – 4 cells broad [BALABÁN, 1955]. The wood is medium-hard [LYSÝ, 1954], according to some authors quite soft [BALABÁN 1955, JIROUT 1928, KAVINA 1932]. BEGEMANN [1963] describes the wood as soft and medium-weight. Bird cherry wood is easy to split [BEGEMANN 1963, KAVINA 1932], but it is tough [JIROUT 1928, LYSÝ 1954]. The wood shows also good elasticity and bending properties [BALABÁN 1955, BEGEMANN 1963 a KAVINA 1932]. It has low natural durability against outdoors conditions [BEGEMANN, 1963]. The weight of the green wood is 900 kg.m-3, the air-dry wood 610 kg.m-3 [LYSÝ, 1954]. BEGEMANN [1963] mentions the weight of the green wood 1 000 kg.m-3 and the specific gravity 0,62 for 15% moisture content. Bird cherry wood is easy to polish and it gives good results [JIROUT, 1928]. The shrinkage from the green to the air-dry state is considerable [JIROUT, 1928]. On the contrary BEGEMANN [1963] says the shrinkage is small. The wood loses moisture easy and quickly, but there is marked tendency for warping to occur. Heating value is poor. It works well with both machine and hand tools [BEGEMANN, 1963]. Formerly the wood was used for turning works and joinery [BALABÁN 1955, KOFRÁNEK 1950, Kolektiv 1970, LYSÝ 1954]. It was used for wheel-making and a toy manufacture to some extends [LYSÝ, 1954]. It can be also used for wood-carving [Kolektiv, 1970]. Charcoal was used for the gunpowder production [BALABÁN 1955, KAVINA 1932, KOFRÁNEK 1950, LYSÝ 1954]. According to BEGEMANN [1963] bird cherry wood can be used for the same purposes as wild cherry wood, i.e. for example panelling, interior joinery, furniture. Young shoots are flexible and elastic, therefore they were used for cask hoops [BEGEMANN 1963, JIROUT 1928, LYSÝ 1954]. 2 Experimental The wood for this research was taken from two trees in two different growing regions in the Czech Republic. The first sample tree was cut in Křivoklátsko area (central part of the Czech Republic). The tree had a diameter of 22 cm at breast height and a height of 12 m. The tree was about 35 years old. The second sample tree comes from Hořice region (north of the Czech Republic). The diameter was 30 cm at breast height and the height of the tree was 11 m. The age of this tree was about 50 years. The both trees were cut down in the winter in order to avoid biotic and abiotic agents that influence a quality of wood. The sample trees were in good condition, without visible defects or harms. The butt log at the length of three meters was cut from each of the trees. These logs were transported from stands for subsequent processing. The samples for individual tests were made after decline of a moisture content under 15 %. 2.1 Mechanical Properties The compressive strength parallel to the grain, the tensile strength parallel to the grain, the shear strength parallel to the grain, the static bending strength, the impact strength and the hardness were tested from the mechanical properties. The hardness in the radial, tangential and axial direction of the wood was determined by the method of Brinell. All the mechanical properties were carried out according to the Czech standards (ČSN). The dimension of the specimens for the compressive strength and the hardness was 20 x 20 x 30 mm (height x width x length). The dimension of the specimens for the bending strength and the impact strength was 20 x 20x 300
80
mm and more complex specimens were prepared for the shear strength and the tensile strength according to the standards. All the specimens for the mechanical test were conditioned at a temperature of 20°C and a relative humidity of 65 %. These conditions should ensure the moisture content of approximately 12 %, which is required by standards. 2.2 Physical Properties The density, the swelling and the shrinkage were tested. The samples for the mechanical tests, those ones which dimensions fitted the standard, were also used for determining the density. The density was determined for the moisture content of 12 %. The swelling and the shrinkage in the tangential and the radial direction as well as the volumetric swelling and shrinkage were tested according to the correspondent Czech standards. The dimensions of the specimens were 20 x 20 x 30 mm. Only the maximum swelling and shrinkage were determined at a temperature of 20°C. 3 Results 3.1 Mechanical Properties The mechanical properties of the bird cherry wood are presented in Table 1 and 2. The averages for the individual mechanical properties are given in Table 1. Table 2 shows basic statistical data for the mechanical properties – the standard deviation, the variation coefficient and number of the specimens. The comparison of the results with the related species is given in table 6, Table 7 then confronts the results with the wood properties of our common native species. Except for the compressive strength, the shear strength in radial surface and the static bending strength, other mechanical properties of the heartwood turned out to be higher than those of the sapwood. The differences between radial and tangential surface (concerning the shear strength and the hardness) were statistically verified in all cases. The compressive strength is relatively highly correlated to the density (R2 = 0,72), the dependence of the hardness on the density is lower (R2 = 0,49 – 0,6 depending on the surface). Table 1. Mechanical Properties of the Bird Cherry Wood (MC 12 %) Property
unit
average
Compressive strength parallel to the grain
MPa
40,9
Shear strength parallel to the grain (tangential surface)
MPa
11,3
Shear strength parallel to the grain (radial surface)
MPa
7,9
Hardness (Brinell) across the grain (tangential surface)
MPa
16,3
Hardness (Brinell) across the grain (radial surface)
MPa
14,1
Hardness (Brinell) parallel to the grain
MPa
28,3
Bending strength
MPa
81
Impact strength
J.cm-2
9,9
Tensile strength parallel to the grain
MPa
104
standard deviation
variation coefficient [%]
number of specimens
5,4
13,1
97
Table 2. Basic Statistical Descriptions of the Mechanical Properties
property Compressive strength parallel to the grain [MPa]
81
Shear strength parallel to the grain (tangential surface) [MPa]
1,2
11,1
50
Shear strength parallel to the grain (radial surface) [MPa]
0,8
10,2
50
Hardness (Brinell) across the grain (tangential surface) [MPa]
1,5
8,9
100
Hardness (Brinell) across the grain (radial surface) [MPa]
1,1
8
100
Hardness (Brinell) parallel to the grain [MPa]
3,2
11,3
100
Bending strength [MPa]
9,1
11,3
98
Impact strength [J.cm-2]
2,9
29,7
98
Tensile strength parallel to the grain [MPa]
19,5
18,7
18
3.2 Physical properties The results for the physical properties are presented in Table 3, 4 and 5. The mean values of the density, the swelling and the shrinkage are given in Table 3. The basic statistical descriptions for the physical properties are shown in Table 4. Table 5 brings coefficients for the swelling and the shrinkage. The results are compared to the physical properties of the related tree species in Table 6. The comparison with commercial native species is given in Table 7. Except for the radial shrinkage, the physical properties of the heartwood do not differ from those of the sapwood. Both the swelling and the shrinkage proved the differences between tangential and radial direction.
Table 3. Physical Properties of the Bird Cherry Wood property
unit
average
kg.m-3
547
Swelling tangential
%
10,8
Swelling radial
%
4,4
Swelling volumetric
%
14,9
Shrinkage tangential
%
9,7
Shrinkage radial
%
4,1
Shrinkage volumetric
%
12,2
standard deviation
variation coefficient [%]
number of specimens
38,7
7,1
350
Density (12 % moisture content)
Table 4. Basic statistical descriptions of the physical properties property Density [kg.m-3]
82
Swelling tangential [%]
1,8
16,9
100
Swelling radial [%]
0,9
21,4
100
Swelling volumetric [%]
1,4
9,6
50
Shrinkage tangential [%]
1,5
15,9
100
Shrinkage radial [%]
0,9
22,5
100
Shrinkage volumetric [%]
1,4
11,7
50
Table 5. Physical Properties – coefficients tangential
radial
volumetric
coefficient of the swelling [%] [%]bobtnání [%]
0,36
0,15
0,50
coefficient of the shrinking [%]
0,32
0,14
0,41
Table 6. Comparison of the Results with Related Species property
Prunus domestica
Prunus avium
Prunus avium
50,5
46,3
result
Padus serotina
Compressive strength parallel to the grain [MPa]
40,9
48,4
Shear strength parallel to the grain (tangential surface) [MPa]
11,3
12,6
Shear strength parallel to the grain (radial surface) [MPa]
7,9
9,5
8,6
Hardness (Brinell) across the grain (tangential surface) [MPa]
16,3
20,6
15,1
Hardness (Brinell) across the grain (radial surface) [MPa]
14,1
17,3
16,7
18,3
Hardness (Brinell) parallel to the grain [MPa]
28,3
33,8
31,6
30,3
Bending strength [MPa]
81
90,6
97,3
116,6
Impact strength [J.cm-2]
9,9
5,5
Tensile strength parallel to the grain [MPa]
104
Density [kg.m-3]
547
615
Swelling tangential [%]
10,8
11,1
11,1
Swelling radial [%]
4,4
4,9
5,4
Swelling volumetric [%]
14,9
Shrinkage tangential [%]
9,7
8,2
800
610
593
17,5 9,7
83
8,9
8,7
9,3
Shrinkage radial [%]
4,1
Shrinkage volumetric [%]
12,2
4,2
5,0
5,0
4,3
14,0
13,8
Table 7. Comparison of the Results with Native Commercial Tree Species result
Quercus petraea
Acer pseudoplatanus
Fagus sylvatica
Betula verrucosa
Compressive strength parallel to the grain [MPa]
40,9
55,0
49,0
53,0
43,0
Shear strength parallel to the grain (radial surface) [MPa]
7,9
11,0
9,0
8,0
12,0
Hardness (Brinell) across the grain (radial surface) [MPa]
14,1
34,0
-
34,0
-
Hardness (Brinell) parallel to the grain [MPa]
28,3
66,0
-
72,0
49,0
Bending strength [MPa]
81
94,0
95,0
105,0
125,0
Impact strength [J.cm-2]
9,9
7,5
6,5
10,0
10,0
Density [kg.m-3]
547
680
610
710
640
Shrinkage tangential [%]
9,7
7,8
8,0
11,8
7,8
Shrinkage radial [%]
4,1
4,0
3,0
5,0
5,3
Shrinkage volumetric [%]
12,2
12,6
11,8
17,5
14,2
property
4 Discussion and Conclusion Although bird cherry ranks among quite widespread species in the Czech Republic, the information about the properties of its wood is insufficient. The results could be compared only with the related tree species with a similar appearance of wood – wild cherry and black cherry. The comparison of the results with the related species showed that the mechanical properties of the bird cherry wood, except for the impact strength, are inferior to those of wild cherry and black cherry wood, which correlates to the markedly lower density of the bird cherry wood. Great value of the impact strength is one of the biggest surprises of the investigated bird cherry wood. Its value surpasses black cherry wood nearly two times. It even surpassed such species like oak and corresponds with its quality in the impact strength to beech wood. The determined density is considerably lower than the density of the related two species. Bird cherry ranks, on the basis of the density, among species like willow, alder or lime [KOLLMANN, 1951]. The values of the swelling and the shrinkage correspond to those of wild cherry and black cherry wood. The wood of the bird cherry can be, on the basis of the results, described as a soft wood with quite high value of the impact strength and with the shrinkage values that correspond to the common Czech commercial species. The inferior mechanical properties of the bird cherry wood should not be a reason for limited utilisation of this wood. The wood of bird cherry will hardly be used for constructional and other purposes that require high strength of wood. The leading domain for utilisation of its wood will be in decorative works. According to BEGEMANN [1963] bird cherry could be used for the same purposes like wild cherry wood, i.e. for decorative panelling, furniture making, veneers and production of luxury things. On the contrary, slightly different appearance from wild cherry and black cherry wood makes bird cherry wood more attractive for consumers.
84
References Zeidler, Aleš (2002) “Vybrané vlastnosti dřeva našich domácích dřevin – třešeň ptačí (Cerasus avium (L.) Moench.)”, Zprávy lesnického výzkumu 47(4): 204-207. Zeidler, Aleš (2003) Kvalitativní vlastnosti dřeva méně obvyklých introdukovaných dřevin. Závěrečná zpráva. Praha: LF ČZU. Kolektiv (1970) Dřevařská technická příručka. Praha: SNTL. Lexa, Jaroslav and Nečesaný, Vladimír (1952) Technologia dreva I. - Mechanické a fyzikálne vlastnosti dreva. Bratislava: Práca. Wagenführ, RUDI.- Scheiber, Ch. (1974) Holzatlas. Leipzig: Fachbuchverlag. LYSÝ, František. and JÍRŮ, Pavel (1954) Nauka o dřevě. Praha: SNTL. JIROUT, František (1928) Dřevo v přírodě a řemeslech v živnosti a průmyslu vůbec II. Praha. BALABÁN, Karel (1955) Anatomie dřeva. Praha: SZN. KOFRÁNEK, Vladimír (1950) Stručný přehled našich dřev. Praha: Státní nakladatelství. KAVINA, Karel (1932) Anatomie dřeva. Praha: MZ. HEJNÝ, Slavomil and SLAVÍK, Bohumil (1992) Květena ČR 3. Praha: Academia. URADNÍČEK, Luboš and CHMELAŘ, Jindřich (1996) Dendrologie lesnická, 3. část – Listnáče II (Angiospermae). Brno: MZLU. BEGEMANN, Helmut F. (1963) Lexikon der Nutzhölzer – Band 1. Mering: Verlag und Fachbuchdienst Emmi Kittel. DRAPIER, N. (1993) “Le boom sur le marché de l´Alisier torminal”, Revue forestiére francaise 45(3): 319 – 320. BLUĎOVSKÝ, Zdeněk (1999) „Kvalita dřeva a výnosovost lesa“, Lesnická práce 78(12): 536 – 537. PAGAN, Jozef (1997) Lesnická dendrológia. Zvolen: TU. KLIKA, Jaromír (1940) Dendrologie. Písek: Matice lesnická. ČSN 49 0101 (1979) Drevo. Všeobecné požiadavky na fyzikálne a mechanické skúšky ČSN 49 0103 (1979) Drevo. Zisťovanie vlhkosti pri fyzikálnych a mechanických skúškach. ČSN 49 0108 (1993) Zisťovanie hustoty pri fyzikálnych a mechanických skúškach. ČSN 49 0110 (1977) Drevo. Medza pevnosti v tlaku v smere vlákien. ČSN 49 0113 (1991) Metóda zisťovania pevnosti v ťahu pozdl’ž vlákien. ČSN 49 0115 (1979) Drevo. Zisťovanie medze pevnosti ve statickom ohybe. ČSN 49 0117 (1982) Drevo. Rázová húževnatosť v ohybe. ČSN 49 0118 (1979) Drevo. Medza pevnosti v šmyku v smere vlákien. ČSN 49 0126 (1988)Metóda zisťovania napúčavosti. ČSN 49 0128 (1988) Metóda zisťovania zosýchavosti. ČSN 64 0128 (1953) Tvrdost podle Brinella. GREGUSS, Pál (1959) Holzanatomie der europäischen Laubhölzer und Sträucher. Budapest: Akadémiai Kiadó. KOLLMANN, Franz (1951) Technologie des Holzes und der Holzwerkstoffe – Erste Band. Berlin: SpringerVerlag, 1951. 1050 s.
85
6.5. Fotodokumentace k inventarizaci semenných sadů vzácných lesních dřevin 6.5.1. Semenný sad jasanu ztepilého „Motykov“ na LS LČR Jablunkov
86
6.5.2. Semenný sad olše lepkavé „Dubák“ na LS LČR Křivoklát
6.5.3. Semenný sad javoru klenu „Řepčonka“ na LS LČR Frýdek – Místek
87
6.5.4. Semenný sad jeřábu břeku „Pustá Seč“ na LS LČR Křivoklát
6.5.5. Semenný sad jilmu horského „Řepčonka“ na LS LČR Frýdek – Místek
88
6.5.6. Semenné sady jilmu vazu „Střeň“ na LS LČR Šternberk
89
6.5.7. Semenný sad třešně ptačí „Čeladná“ na LS LČR Ostravice
90
6.5.8. Semenný sad lípy malolisté „Vranice“ na LS LČR Milevsko
91