Up(
Balanced plant nutrition in sugar beet cropping systems for high yield and quality A cukorrdpa kiegyenlitett tApanyagellit sa a nagy term6s ds a j6 min6s6g 6rdek6ben
Regional Workshop of Beta Research Institute, Sopronhorpfics/Hungary World Phosphate Institute, Casablanca/Morocco International Potash Institute Basel/Switzerland Budapest, Hungary 1-2 September 1999
Balanced plant nutrition in sugar beet cropping systems for high yield and quality A cukorripa kiegyenltett tdpanyagelitdsa a nagy termis 6s a j6 mindsug irdekuben
Edited by: I. BuzAs Hungarian Sugar Ltd. Budapest, Hungary
A. E. Johnston IACR - Rothamsted Harpenden, UK
INCA 4231
International Potash Institute Schneidergasse 27, PO. Box 1609 CH-4001 Basel/Switzerland Phone: (41) 61 261 29 22/24 (41) 6126129 25 Fax: E-mail:
[email protected] Website: www.ipipotash.org
World Phosphate Institute B. P. 15963 Casablanca/Morocco Phone: (212) 2 48 41 22/24 (212) 2 48 4121 Fax: E-mail:
[email protected]
© All rights held by:
International Potash Institute Schneidergasse 27 PO. Box 1609 CH-4001 Basel/Switzerland Phone: (41) 61 261 29 22/24 Fax: (41) 6126129 25 E-mail:
[email protected] Website: www.ipipotash.org
and World Phosphate Institute/IMPHOS B. P 15963 P 0. Box 161)9 Casablanca/Morocco Phone: (212) 2 48 41 22/24 Telefax: (212) 24841 21 E-mail:
[email protected] 2000
ISBN 963 85126 I X Printing: Print-Tech Ltd. and Printer Art Ltd., Hungary
Proceedings of the Regional Workshop of Beta Research Institute - IMPHOS - IPI Contents / Tartalom
Welcome address / Megnyit6 The situation of sugar beet production and the problems of the sugar industry / A cukorripa-termeszt~s helyzete 6s a cukoripar gondjai ..................................... ........................................................ A . Z sigrn ond
7 8
T Mrabet
.......................................................
11
A . Krauss
.......................................................
14
Plenary session / Plemiris el6adfsok Economy of sugar beet nutrition, nutrient management of sugar beet /A cukorr~pa-tr-gyizAs gazadasfgossfiga 6s a cukorr~pa tipanyagelhitfisa ............................ 17 Economy of sugar beet nutrition in K. Ohiund Central Europe - An overview / A cukorr6pa trggyAzAsfnak gazdas6gossdga Kbz6p-Eur6pfban (Attekint6s) ................ 18 Impact of soil and nutrient management on sugar L Buzds beet yield and quality in Hungary / A talaj 6s a tfpanyagelldtds hatisa a cukorrdpa term6s6re 6s min6s6g6re Magyarorsz6gon ..... 22 Panel discussion / Felk6rt hozzAsz6l6k Nutritional constraints of sugar beet production in Central Europe / A cukorr6pa tnigydzdsdnak sziiks6gess6ge K6z~p-Eur6pdban ............................ 61 Nutritional constraints of sugar beet production in Austria / H. Eigner A tApanyagellftfs hatfsa a cukorr6paterm6sre AusztriAban ...... 62 Nutritional problems of sugar beet production in Bulgaria I M. Nikolova A cukorr6pa-termeszt6s tApanyag-ellAtisi probl6mAi 68 BulgArifban ............................................. A. Kristek Nutritional constraints of sugar beet production in Croatia / and V Kovacevic A cukorr6pa tfpanyagellftfsinak fontosstiga Horvtorsz6gban ....
J. Chochola F Csima
L. Bene
77
The state and problems of sugar beet fertilization in Czech Republic / A cukorr6pa tr6gyAzAsAnak helyzete 84 ds probl6mfi Csehorszfgban ................................ Possibilities for reducing fertilizer costs in sugar beet production with various financing structures / A cukorr6pa tfpanyag-elitMAsi kdlts~geinek cskkenttsi lehet6s6gei 92 kiildnbbz6 finanszirozdsi konstrukci6kkal ..................... Effects of humid conditions on the quality of sugar beet / A humid k6riilm6nyek hatdsa a cukorrdpa min6s6g6re .......... 109
M. Dumitru and Z. Borlan
J Bizik
F Bavec
L Gutmanski, M. Nowakowski and J. Mikita
R. Kastor, V Marinkovic andJ Crnobarac
Sugar beet response to NPK fertilisers in long duration field experiments on chernozem soils in Romania / Az NPK trigyizis hatasa a cukorr6pira csernozjom talajokon v6gzett tartamkis6rletekben Romaniiban ........................... III The situation in sugar beet production in Slovakia with regard to its nutrition / A cukorr6pa-termeszt6s helyzete 6s a cukorr6pa trigy6zjsa Szlov~kiiban .................................. 113 Nutrient management, yield and quality of sugar beet in Slovenia / TrigyizAsi szaktanicsadts, a cukorr6pa termeszt6se ds min6s6ge Szlov6ni~iban ....................... 114 Possibilities of balanced sugar beet nutrition in Poland! A cukorrdpa kiegyens6lyozott tdpanyageilltAsinak lehet6sfge Lengyclorsz gban .......................................
120
Sugar beet yield and quality in Yugoslavia from the aspect of mineral nutrition / A cukorr6pa term6seredm6nyc 6s min6s6gc JugoszlIviAban a mtitr6gydzfis szemszog6b6l ..................
131
General papers / Eldadsok Balanced plant nutrition in sugar beet cropping systems! A cukorr~pa kiegyensfilyozott tfipanyagellittisa ............... 139 Szdsz G. As Loch .. Az 6ghajlati stressz szerepe a cukorr~pa-termeszt6sben MagyarorszAgon / Climatic stress and sugar beet production in H ungary ............................................. 140 Ruzsdnyi L. A cukorr6pa viz- 6s tipanyagellAt6sa / Water and nutrient supply of sugar beet ...................................... 154 E. Kiss and L. Poxyondi Relationship between nutrient supply and diseases of sugar beet, integrated plant protection / Osszefiigg6s a tfpanyagellitis 6s a cukorr6pa-betegsfgek kozott, integrilt ndv6nyv6delem ......... 168 L. Kulcsdr and L Jdszberdnyi Nutrient management and advisory systems for sugar beet in Hungary / A cukorrdpa tdpanyagellitAsdnak szaktanicsadisi rendszere M agyarorszdgon ................................ 185 W Grzebisz Nutrient management and advisory systems for sugar beet in Poland / A cukorr6pa tApanyagelljtgsa 6s szaktanAcsadis Lengyelorszigban ....................................... 203 I. Eigner Nutrient management and advisory systems in Austria / A cukorr6pa tr~gyAzAsinak gyakorlata 6s szaktanAcsadfsi rendszere Ausztriiban ....................................
211
Welcome address
The situation of sugar beet production and the problems of the sugar industry Megnyit6
A cukorrepa-termesztishelyzete es a cukoripargondjai
.7
A. Zsigmond Research Institute of the Hungarian Sugar Industry, H-1084 Budapest, Tolnai L. u. 25, Hungary
Ladies and Gentlemen, dear Colleagues, It is a great honour for me to greet the sugar beet experts participating in this very important event. My name is Dr. Andrfs Zsigmond, I am the executive manager of the Research Institute of the Hungarian Sugar Industry. I welcome you not in my name only but in the name of the whole Hungarian sugar industry, the producers and the processors. For this reason, I would like to say a few words about the importance of the quality of sugar beet. All of you know very well that the sugar industry faces great challenges all over the world. The decline in sugar consumption and the substantial overproduction have caused very low sugar prices on the world market. Such low prices have effected many sugar producers, especially the poor cane sugar producers in countries where cane is grown in monoculture. Due to the low sugar prices, certain countries are very near to bankruptcy, nothing but realistic prices can solve the economic catastrophe in these countries. A few years ago, we could say that it is easy to produce sugar at low cost if there is no concern for the environment, labour safety, national health, education, etc. as it was in the case of cane sugar. But, somebody must pay the costs of environmental pollution, improved labour safety, better national health and education now or in the future. We know that sugar production in Australia is amongst the cheapest in the world, without environmental pollution, with a high level of labour safety, national health, education, etc. And the Australian sugar is cane sugar. The evidence from Australia is that sugar can be produced at low cost while fulfilling all the requirements of a developed society. And this is the real challenge for the sugar sector, especially the beet sugar sector, to produce sugar cheaply, because as recent trends show, nobody can expect sugar prices to increase much above that of the really low cost producers. The problem in the beet sugar sector is greater than in cane sugar. Beet sugar has about a third of the global sugar market. The low world market price has badly effected the beet sugar exporting countries, especially those where there is no protection for the domestic supply, as in the ex-Comecon countries. The absence of appropriate protection has resulted in many sugar factories being closed, 5 out of 12 in Hungary. The low world market prices and the WTO agreements do not make it possible to achieve an appropriate domestic price which will cover the real expenditure on labour, environmental protection, and the development and improvement of growing and processing technology. The ex-Comecon countries are in a very interesting situation. The production costs are about double that of the world market price for sugar, and the small protection (70% custom duty in Hungary) is enough to stop or reduce sugar imports. However, these countries themselves have an over capacity for just the domestic market and exporting sugar at the world market price is not economical. Despite this, to avoid social tension, they have continued to produce and export excess sugar increasing the financial losses. My personal opinion is that, as these countries are not members of the EU, the sugar sector cannot expect much greater protection than now. So for the next few years, we will have to stay with the present situation. As a non EU member state, the
8
Hungarian sugar sector has only one chance to survive: instead of dreaming about high sugar prices, it must increase the efficiency of sugar production and reduce production costs. The long-term prospect for EU countries is not too optimistic either. The present level of protection allows a much higher domestic price than the world market price. Such high prices ensure welfare for farmers and sugar producers, protection of the environment and the development of technology. However, this ideal situation for the EU sugar industry is under attack from the cane sugar producers on the grounds of a free market. Also within the EU, industrial sugar consumers seek lower prices for sugar used in sweeteners, soft drinks, etc. Nevertheless, although protection for most agricultural products has been reduced in the EU, the sugar regime which existed in 1968 remains basically unchanged. The quota system and the intervention price ensure a considerable profit for both farmers and processors. The beet sugar sector cannot avoid changes in the next few years. As a result of the WTO negotiations, we can expect reductions in both the quota and the price sooner or later. The EU countries respond to this challenge by: - reducing the costs of raw materials, - reducing production costs, - extending the length of the harvesting campaign, - improving the quality of the products, - creating less environmental pollution. The keyword is efficiency in both production and processing. EU sugar experts say that to survive the challenge of the next few years, there must be a substantial increase in efficiency. What about Hungary? Similar to other Central European, ex-Comecon countries, the Hungarian sugar industry was badly affected during the last eight to ten years. The above-mentioned problems affected not only the sugar sector, but the whole agro sector as well. In fact, it is my personal opinion that the sugar sector could more easily survive the period of transformation than could many other sectors of agriculture. Thanks to a relatively well developed sugar production, the well organized beet production and last, but not least, the early privatization of the industry, it had a reasonable chance to survive. Naturally we could not avoid a reduction of sugar production, nor a reduction of the non-profitable export of sugar. Despite the success so far the future is doubtful. If the period until Hungary becomes an EU member state is too long, the low sugar price will be only enough for the industry to survive but there will be no development of the processing technology, nor in beet production. This means that by the time Hungary is an EU member, the technical level of the whole sector will be very low, much below the acceptable EU level. In any case, the Hungarian sugar sector has only one way to survive: increase its efficiency in both production and processing.
9
Osszefoglalds
Zsigmond A. Cukoripari Kutat6 Int6zet, 1084 Budapest, Tolnai Lajos u. 25. H6lgyeim 6s uraim, kedves koll6g~k! Nagy megtiszteltetds szAmomra, hogy r6szt vehetek ezen a fontos tandcskozAson. Mini a Cukoripari Kutat6 Int6zet igazgat6ja, k6sz6nt6m On6ket az eg6sz magyar cukoripar nev6ben. A cukoripar a cukorr6pa fogyaszt6ja ds szerctn6k n6hiny sz6t sz6lni a cukorr6pa min6s6g6nek fontossAgAr6l. Mindnydjunk el6tt ismeretes, bogy a cukoripar nagy kihivfsoknak van kitdve az eg6sz viligon. A csokken6 cukorfogyasztAs 6s az Alland6 tiiltermel6s alacsony vilfgpiaci cukorArat eredm6nyezett. Az alacsony Ar n6hAny ndcukrot termel6 orszagban igen nagy gazdasigi neh6zsfgeket okoz. SokAig az tartottik, hogy a nidcukor azfrt olcs6, mert a szeg6ny orszigok term6ke, ahol nem t6r6dnek a kbrnyezetv6delemmel, a beruhizisok fejleszt6s6vcl, a kutatAssal stb. Ma Ausztrilia termeli a legolcs6bban a cukrot a vilfgon. NAdcukrot termelnek, krnyezetbart m6don, magas szintfl munkav6delem, kutatilsi tAmogatAs stb. mellett. Ez bizonyitja, hogy a nddcukor igy is komoly vet61ytirsa a r6pacukornak 6s reilisan senki sem szAmolhat azzal, bogy a cukor viligpiaci ra sokkal magasabb lesz, mint a val6s el6Alliisi k6ltsdgek. Az alacsony viligpiaci cukorAr leginkAbb azokat az orszAgokat s6jtja, amelyekben nincs megfelel6 v6delme a hazai cukoriparnak. Ez okozta, bogy Magyarorszfgon is 5 cukorgyArat be kellett zjrni a 12-h6I. A magyar cukoriparnak nines mis lehet6s6ge a megmaradfsra, mint emelni a termels hat6konysfigiit, cs6kkenteni a k6lts6geket. Az EU-orszfgok sincsenek hosszi tAvon sokkal jobb helyzetben. Ndhiny sz6t MagyarorszAgr6l. A tbbbi volt ,szocialista" orszAghoz hasonl6an a magyar cukorvertikumot is sokkszerfl csapfsok 6rtdk az uiols6 9-10 6vben. Term6szetesen nern csak a cukorrdpa-termesztds, hanem az egfsz magyar agrfrgazdasAg nagy nehzs6gekkel kuzd. V6lem6nycm szerint azonban a cukorrfpa 6gazat gyorsabban tud alkalmazkodni a vdltoz6 k6rIlm6nyekhez, mint sok mAs mez6gazdasigi-ipari terilet, mert a cukortermel6s arfnylag j6 szinvonalon van 6s a r6patermeszt6s j61 szervezett. Jelenleg a cukorar sajnos csak a vegetAlAsra elegend6, fejleszt6sre nines lehet6sdg. Ez azzal a vesz6IlyeI jar, bogy az EU-ba vaI6 bel.pdsig messze elmaradunk az EU-ban megk6vetelt versenyk6pes szinvonalt6l. Ezfrt a gazdasdgossfg, a hatdkonysAg nbvel6se az egyetlen lehets6ges fit mind a cukoripar, mind a rdpatermel6k szAmAra.
10
T.Mrabet IMPHOS, 3 rue Abdelkader Al Mazini, Casablanca, Morocco Dr. Zsigmond, Director of the Research Institute of the Hungarian Sugar Industry, Dr. Krauss, Director of the International Potash Institute, Distinguished Guests, Ladies and Gentlemen, It is my great pleasure on behalf of the World Phosphate Institute (IMPHOS) to welcome you to this workshop on ,,Balanced Plant Nutrition in Sugar Beet Cropping Systems for High Yield and Quality". I am delighted to report that more than 100 participants from most of the countries in Central and Eastern Europe are attending this workshop. I am very grateful to the Research Institute for the Sugar Industry who accepted the invitation to host this workshop and I express my thanks to the Director and his collaborators for their assistance and co-operation in organizing this event. I am very pleased to underline the close collaboration we have had with the International Potash Institute (IPI) and commend IPI for its sterling efforts in supporting the planning and organization of this workshop. I am delighted to also extend my thanks to the members of the scientific and organizing committees who have so efficiently organized all the scientific and logistical arrangements. Particular thanks must go to the speakers who have prepared and will present their contributions to this workshop. I am pleased to welcome them and all the participants, in particular, those from the neighboring countries of Hungary. Now, distinguished guests, ladies and gentlemen, most of you may ask: What is IMPHOS? In this welcome address, please allow me to provide you with some relevant information about IMPHOS. The World Phosphate Institute is a scientific, non-profit organization founded in 1973 by the world's main producers of phosphate rock. Its primary mandate is to collect and disseminate scientific data to encourage and promote the use throughout the world of fertilizers based on phosphate rock for which the principal use is to both increase and sustain agricultural production to meet the food requirements of humankind worldwide. Recently, the mandate of IMPHOS has been broadened to encompass environmental issues arising from the use of phosphates in both agriculture and industry. The main objectives of IMPHOS include: ;wencouraging and promoting the worldwide use of fertilizers manufactured from phosphate rock with the view to obtaining the most effective and balanced use of all plant nutrients; "-contributing to the development and the continuous improvement of farming techniques and the most efficient crop production technologies, and to help extend them to farmers; " promoting desk studies and experimental research involving the various uses of phosphate rock, phosphoric acid, phosphate fertilizers and their derivatives; facilitating the optimal use of research findings, cooperation with international and governmental agencies, and specialized institutions.
II
To translate the above objectives into operational activities, IMPHOS have developed appropriate and relevant strategies that include the planning and implementation of activities based on the specific socio-economic considerations and the characteristics of the soils and climate in the target regions; the pursuit of a sustained and bold policy of cooperation with national, regional, and international agricultural and technical research organizations, fertilizer manufacturing associations, and international development agencies; and the development of communication activities consisting mainly of publishing newsletters, organizing international events (congresses, conferences), regional workshops and seminars, and national meetings. In the international context, there are rapid and permanent changes. In the various regions of interest for IMPHOS (Asia, Europe, Africa and Latin America), the changes are very different as is the level of development so that the needs of each region have to be addressed specifically. Currently IMPHOS projects are mainly conducted in Asia, Western Europe and Africa. In Central and Eastern Europe, we are beginning to identify the key issues, potential partners, and relevant activities that might be undertaken. For example, IMPHOS held in September 1998 in Pulawy, Poland, in conjunction with the international symposium of CIEC and in collaboration of IPI, a regional workshop on ,,The Current Use and Requirement of Phosphorus Fertilizers for Sustainable Food Production in Central and Eastern European countries". This workshop stressed the urgent need to reverse the situation of decreasing crop production and soil nutrient mining, occurring in several countries within this region, to one of a more productive and sustainable agriculture. In particular, the workshop recommended the promotion of balanced fertilization on the most common soil types and for the most important cropping systems. I am pleased one year after the Pulawy workshop, to underline that we have been able to organize, here in Budapest, a workshop on the theme of balanced fertilization. We are convinced that this approach is critical and is the key for increased and sustained crop yield and quality. I am sure that the papers and discussions from this workshop will clearly demonstrate the need for balanced fertilization and relevant actions and recommendations will come out from this event. The World Phosphate Institute is ready and open to all organizations committed to further the use of balanced fertilization to promote agricultural and economic development in this region. Distinguished participants, ladies and gentlemen, during this workshop you will share scientific views and research findings, discuss promotional activities and formulate suggestions and recommendations. The World Phosphate Institute thanks you very much for your contributions, which I am certain, will make this event a real success. I wish you a successful workshop and I thank you for your kind attention.
12
-
Osszefoglalds
Mrabet, T. IMPHOS, 3 rue Abdelkader Al Mazini, Casablanca, Morocco Tisztelt Zsigmond 6s Krauss igazgat6 urak, kedves venddgeink, hdlgyeim 6s uraim! Nagy drOm szdmomra, hogy az IMPHOS, a FoszfAt Viligint6zet nev6ben (idvdz6hetem On6ket ezen a tankskozfson. Koszdn6m a magyarorszAgi kdzremfk6d6k 6s az IPI, a Nemzctk6zi K6lium lntzet szervez6sben nyfijtott segits6g6t. Engedj6k meg, hogy r6viden tij6koztassam On6ket az IMPHOS tev6kenys6gdr61. Az IMPHOS egy non-profit tudomAnyos szervezet, 1973-ban alapitottAk a vilIg legjelent6sebb nyersfoszfft-kitermel6 cdgei. Alapvet6 feladata a foszfitfeIhasznAI6ssal kapcsolatos ismeretek gyuijt6se 6s terjeszt6sc a mez6gazdasgg 6s az ipar teriilet6n egyarAnt. Ennek megfelel6en sz61es k6rti nemzetkdzi kapcsolatokkal rendelkezik, rendszeresen szervez tandcskozisokat a kiil6nb6z6 r6gi6kban, igy AzsiAban, Eur6piban, Afrikdban 6s Latin-AmerikAban. Most, egy 6wel a Pulawy tandcskozds utfn itt, Budapesten hallhatunk el6adAsokat a kiegyensfllyozott t-panyagellhisr6l. Az IMPHOS mindig k6sz szervezeteit a mez6gazdasAg fejleszt6s6nek szolgflatAba Allitani, 6s a kiegyensfllyozott tgpanyagellitAs hangsflyozAsAval is hozzdijgrulni e r6gi 6 gazdasfgi fejl6d6s6hez. Kivfinok Ondknek hasznos tan.cskozdist. K6sz6nOm figyelmfiket.
13
A. Krauss International Potash Institute, Schneidergasse 27, P.O. Box 1609, 4001 Basel, Switzerland Esteemed Guests, Delegates, Ladies and Gentlemen, dear Friends, It is an honour and it gives me great pleasure, to welcome you on behalf of The International Potash Institute, IPI, to this workshop on ,,Balanced Plant Nutrition in Sugar Beet Cropping Systems for High Yield and Quality". IPI is very proud and grateful to have the Beta Research Institute as a joint partner in Budapest and IMPHOS as the co-organiser and co-sponsor. Personally, I am also very pleased to be in Budapest again, the beautiful capital of Hungary. First, for those of you who are not familiar with IPI, a few words to introduce ourselves: - IPI, founded in 1952, is a non-governmental, non-profit organisation with its Head Office
in Basel, Switzerland. Supported partly by the European Potash Industry, IPI aims to study, in on-farm trials and scientific experiments, the effect of balanced fertilization on the yield and quality of annual and perennial crops; to disseminate the results of these studies through publications, field days and workshops so that farmers, extension workers, the fertilizer sector, researchers and decision makers are better informed about the need for balanced fertilization. IPI also seeks to stimulate further research on this topic. > PI is represented through its Coordinators not only in Central/Eastern Europe and the Former Soviet Union, but also in India, China, Southeast Asia and Latin America. There has been a long-lasting relationship between IPI and the countries of Central/Eastern Europe even though the situation until recently did little to encourage close relationships. IPI held its l0th Congress in Budapest in 1974 with speakers from Hungary, Bulgaria, Czechoslovakia, the Former GDR, Romania, Russia, Yugoslavia, as well as from Western Europe and other overseas countries. Seven years later, in 1981, the 16th Colloquium was held in Warsaw, again with speakers from Central/Eastern Europe, including Hungary. In 1990, the 22.d Colloquium on the ,,Development of K Fertilizer Recommendations" was held in Soligorsk, Belarus, the first major IPI meeting in the Former Soviet Union. In 1992, the 23rd IPI Colloquium on ,,Potassium in Ecosystems" was held in Prague. The relationship between IPI and the countries of Central/Eastern Europe has greatly improved during the period of economic reform. Numerous field trials, as in Sopronhorpacs or Mez6hegyes in Hungary, are evidence of this closer cooperation. These field experiments have been complemented by publications in the regional languages. For example, IP1 Research Topics No. 15 on ,,Potash for Yield and Quality" by Prof. Loch et al., and crop specific leaflets on fertilization for vegetables by Dr. Terbe or for sugar beet by Dr. Debreczeni in Hungarian. Comparable Research Topics and leaflets have been published in Bulgarian,
14
Czech, Polish, Romanian and Russian. Last, but not least, IPI has made awards to young scientists in Hungary for their research work on .,Potassium in soils and plants". Today's joint workshop on ,,Balanced Plant Nutrition in Sugar Beet Cropping Systems for High Yield and Quality" is a further step to strengthen the traditional links, which started decades ago. The workshop is concerned with sugar beet, a crop of great agronomic and economic importance in the region. Sugar beet is an integral part of crop rotations in Europe. As a deep rooting, leafy crop, sugar beet fits well into cereal dominated rotations not only to recycle nutrients from deeper soil layers but also to control the development of pests and diseases of cereals. Almost all the crop can be utilised, as a source of sugar and energy and as a feed for animals. The sugar yield from a well-grown beet crop is of the same order of magnitude as from an average crop of cane. However, whereas cane production is steadily expanding, world sugar beet production is stagnant, at around 260 million tonnes of roots, and contributes only about 30% of the global sugar production. Although yield is changing little, the global sugar beet area is actually declining as yields per unit area are increasing in many regions. Sugar beet has a large requirement for nutrients; a 50 t/ha crop removes about 200 kg N, 100 kg P20 5 and 300 kg KO. However, because the crop has a rather small root length density, it requires a reasonably high soil fertility status; especially for immobile nutrients such as P and K. Compared with cereals, sugar beet requires a larger concentration of K in the soil solution to ensure the same K uptake rate as for cereals. No wonder then that this crop receives more K than cereals, the average application of potash to sugar beet is 180 kg/ha in France and 154 kg/ha K20 in Germany. In Central/Eastern Europe, however, IFDC estimates that the average application is only 42 kg/ha K20 in the Czech Republic and even less, 2 kg/ha K20 in Bulgaria. Under these conditions, soil K reserves are being depleted, lowering the availability of soil K, which, in turn, reduces fertilizer use efficiency, especially of N fertilizers. Low fertilizer use efficiency is economically unacceptable, a waste of natural resources and for N and P a threat to the environment. It is not surprising that due to the uncertainties during the period of economic reform, the mean root yield in this region declined from about 34 t/ha at the end of the 1980s to less than 29 t/ha a few years later. However, FAO statistics show a substantial recovery in sugar beet root yields in recent years although they are still below the potential. The average yield during 1996-98 of 36.2 t/ha, ranging from 12.5 t/ha in Bulgaria to 46.6 t/ha in Slovenia, is about 2/3rd of the average yield (56 tlha) in Western Europe. This joint workshop on ,,Balanced Plant Nutrition in Sugar Beet Cropping Systems for High Yield and Quality" brings together scientists from most of the countries of Central/Eastern Europe to exchange views and experience in sugar beet nutrition. The workshop aims to find ways to both overcome low yields and to improve the quality of beet while economising on inputs to ensure an adequate income for the growers. Increased farm incomes increases the purchasing power of the rural area and helps prevent migration from them. At the same time, greater purchasing power attracts other businesses, which ultimately creates jobs and contributes to social stability. A whole region would benefit from ,,Balanced fertilization" and this message should be conveyed to decision makers to encourage them to adjust agricultural policy to ensure profitable crop production in Central/Easterni Europe.
15
Finally, allow me to express, on behalf of IPI, my cordial thanks and gratitude to the organisers for their efforts and the time they have spent arranging this workshop. I am also very grateful to the speakers who responded to our request to prepare their reports and, to them and the delegates who have come to support this workshop. I hope you will find this workshop scientifically stimulating and wish you a pleasant stay in Budapest. Thank you very much.
Osszefogialds
A. Krauss International Potash Institute, Schneidergasse 27, PO. Box 1609, 4001 Basel, Switzerland
Tisztelt vend6geink, kfild6ttek, hdlgyeim 6s uraim! Nagyon 6riilk, hogy a Nemzetkdzi Klium lntdzet (IPI) nev6ben iidv6zdlhetem Ondket ezen a tanicskozAson. Nagy 6r6m6mre szolgtil, bogy a mcgrendezdshez olyan j6 partnert talAltunk, mint a Beta Kutat6 lnt6zet 6s az IMPHOS. N6hdny sz6 az IPI-r6l. 1952-ben alapitottfk, nem llami non-profit szervezet, kbzpontja Svfjcban, Bfizelben van. Az eur6pai kiliipar a f6 t~mogat6ja. Szabadfdldi kisparcelltis 6s Qzemi kisdrletek segits6g6vel tanulmfnyozzdk a kflium szerep6t a kiegyenstilyozott tdpanyagellftgsban. Az IPI 6sszek6t6 szerepet tdlt be az ipar 6s a mez6gazdasAgi gyakorlat, valamint a tudomdnyos kutatis k6z6tt. K6z6p- Cs Kelet-Eur6piban r6g6ta j6 kapcsolatokkal rendelkezik. Az IPI 1974-hen Budapesten tartotta 10. KongresszusAt, 1981-ben Vars6ban a 16. Kollokviumft, 1990-ben Soligorskban (Feh6roroszorszfg) a 22., 1992-ben Pr6gAban pedig a 23. Kollokvium kerlilt megrendezdsre. A mai tanicskozison a cukorr6pa kiegyenstlyozott tApanyagelltfsfval foglalkozunk. A nem kielgit6 tipanyagellfts az egyik legd6nt6bb tdnyez6je annak, hogy az ebben a rdgi6ban lv6 orsztigok egy FAO felmdrds szerint csak kis r6szben tudjfk kihasznilni 6kol6giai potenciiljukat. Ez a mai tanAcskozAs 6sszehozta a tudominyos kutat6kat 6s a gyakorlati szakembereket, igy kicser6lhetik tapasztalataikat. Rem.lhet6leg ez is hozzfjfrul ahhoz, bogy K6z~p- 6s KeletEurdptban a mez6gazdas6gi termel6s j6vedelmez6bbd vAiljon.
16
Plenary session
Economy of sugar beet nutrition, nutrient management of sugar beet Plendris eldaddsok
A cukorrepa-tragyazasgazdasagossagaes a cukorrepa tdpanyagell4tdsa
17
K. Ohlund
Economy of sugar beet nutrition in Central Europe - An overview Novartis Seeds, Hilleshlig AB. PO. Box 302, 261 23 Landskrona/Sweden At the beginning of the 1990s, sugar production in Eastern Europe was around 15 Mt but today production has declined to around 7 Mt. This very dramatic decline linked to the current low world market price for sugar will put a very severe strain on the economy of sugar production both at the farm and factory level. The slow transition to a market oriented economy, particularly in the Commonwealth of Independent States (CIS countries), has aggravated the situation even further. In the European Union, for many years the existing policies have introduced stability for sugar production through a fixed price policy. The variation in total sugar production in EU is more a reflection of differences in weather conditions between years. The present dramatic decline in sugar production in Central Europe is due mainly to: - the declining economies in many countries, - the slow privatization and restructuring of farms and sugar factories, - a dramatic reduction of agricultural inputs - in particular in CIS and Romania. Many countries in Eastern Europe do not have any specific sugar policy and are, therefore, exposed to the world market prices. Countries, which in the past exported sugar, are now reducing production to satisfy domestic consumption only. When production costs in different countries in the world are compared (Fig. 1), it is obvious that the cane sugar producing countries have a much lower cost profile. The survival of sugar production in Eastern Europe is, therefore, dependent on some level of protection, at least in the short to medium term, to give time for the reconstruction of the sugar industry and also to give farmers time to recover financially. This means - in broad terms - better prices for their products in order to pay for optimum levels of inputs and, at the same time, create a profit for new investments.
18
60. 140 20
°
80
Fc~/ *rwwiiI
60
OTI.8 costs
40 20
Fig. 1. Comparison of field, factory and total costs, expressed as a percentage of the worldweighted average, for producing beet and cane. The key to success at farm level is to increase sugar yield per hectare. The new applicants for EU membership must reach yield and production cost levels comparable to the EU countries in order to compete for sugar quota. The price level for sugar beet is today only 50% of that in EU countries (Table I). Table 1. Prices for agricultural products in CEE, 1998 level. PRODUC
1 I
i
!%of l el
A
%.f EU Icvc
In mroA
Nor E iI
to
%N! -1 EUlIoel
I Eo A
POLAND
SLOVAKIA
CZECHIA
HUNGARY
809
WHKAT
98
78
116
92
I1[
89
137
MAIZE
73
55
820
9
03
77
117
8
BARLEY
95
80
90
76
108
9
113
93
SUGAR BEET
27
4
5,
25
so
26
52
MILK
214
72
65
191
64
50
78
1843
69
1447
5
83
1323
79
1242
74
751
38
121$
94
BEEF PORK CHICKEN
1427 17$ 142
M4 93 81
193 1
884 L393 996
77
Historical data show that the yield potential in many East European countries is equal to or better than that in many EU countries. In countries like Hungary and Romania, the sugar yield potential is between 7 and 8 t/ha. In recent years, adapting production to just meet domestic consumption in combination with yield increases per hectare in countries like Hungary and the Czech Republic, have resulted in a dramatic reduction in the area grown (now almost half what it was five years ago). In these countries also the reconstruction of the sugar industry is in a more advanced stage of development. 19
Root yield per hectare is the most important factor for the economy of the sugar beet crop. In most countries, a root yield of about 30 t/ha is necessary to cover the cost of production. Any new payment system which includes recognition of sugar percentage and beet quality in general, will have an increasing impact on the profitability of the beet crop. The quality of the beet is strongly linked to the extractability of sugar and therefore of direct importance for economical sugar production (Fig. 2). A low % sugar linked to low extractability means more tonnes of beet to process to produce one tonne of sugar.
...... . ..
70. . . . -
..
-.-.-.-.-.... I
9
Extralctti lily
Fig. 2.The effect of beet quality on the weight of beet required to produce one tonne of sugar. The negative relationship between increased prices for crop inputs (fertilizer, crop protection, etc.) and low prices for farm crops has had the effect of decreasing inputs, for example, fertilizers. Statistics from the 1990s show a steady decline of the application of nitrogen (N), phosphorus (P) and potassium (K) (and also of microelements). The lack of nutrients in the soil has led to steady decline in yield in many East European countries. The effect of soil compaction and low pH has caused further stresses on plant growth. Many experiments testing levels of fertilizer on sugar beet show clearly that the lack of nutrients in the soil decreases yield. What perhaps has not been linked to the lack of nutrients is the increased risk of secondary infections of soil-borne diseases. Fungi that normally do not attack healthy beet, can attack unhealthy ones and damage them so that they deteriorate in storage. A high water content in the soil and high temperature give ideal conditions for infection by the fungus causing ,,root rot" which creates great damage to beet. Sugar losses during clamping of such beet are substantial and processing losses are large or even make it impossible to process the beet. Further clarification of the linkage between infection and nutrient deficiency is needed. Irrespective of whether there is or is not a direct link, a well balanced nutrient status of the soil givcs the optimum conditions for the growth of healthy beet. The beneficial effects of lime in increasing yield are due to better seedling emergence, leading to a better plant population and greater accessibility of nutrients in the soil.
20
Future potential The yield potential of sugar beet in many countries in Eastern Europe is not being reached due to some of the reasons discussed in this paper. The potential is there to be developed. There is a great scope to increase yield per hectare and reduce costs per hectare. The agricultural structure of farms can give cost reductions due to the economy of scale and the yield potential can be greatly enhanced by using the best possible agricultural technology. At the sugar factory level, the potential of rationalization is even greater than on the farm. It is possible to considerably reduce the cost of producing one tonne of sugar. Increased competitiveness in agricultural production is linked to the economic development in a country. The key is to develop the framework needed for the economic development of agriculture within the overall economy. This, however, is often a political issue which makes the speed of the progress more uncertain in some countries. It is quite clear that many of these countries will be in the future very efficient producers of food and here we also see a potential reserve of food production for an ever growing world population.
Osszefoglaids
A cukorr pa trigyiz'isdinak gazdasdigossiiga K6z p-Eur6paiban (Attekint s) K. Oblund
Novartis Seeds, Hillesh6g AB. P.O. Box 302, 261 23 Landskrona/Sweden A 90-es 6vek elejdn Kelet-Eur6pfban 6vi 15 milli6 tonna cukrot Mitottak e16, ami napjainkra 7 milli6 tonnra zsugorodott. Ezzel egy id6ben a cukor viligpiaci Ara is drgmaian cs6kkent, ami egyarAnt stilyosan 6rintette a rdpatermel6ket 6s a cukoripart. Az EU-ban folytatott cukorpolitika a tagorszfgokat megv6dte, Cs a termels ingadozdsa inktibb az id6jArisnak tudhat6 be. A legtbbb kelet-eur6pai orszAgnak nincs dtgondolt cukorpolitikfija, 6s ki vannak tdve a viligpiac ingadozAsainak. Az olcs6bb nAdcukorral kell versenyezni. Ez csak t6gy lehets~ges, ha n6veljiik a hekttironknti cukorterm~st, ennek viszont feltftele a termeldsbe bevitt anyagok (mttrigyik, n6vdnyvd6 szerek, energia) drtk&nek n6vel~se. A j6 talajmaiveldsi, n6vfny.polisi technol6gia Cs a megfelel6 tipanyagelits hitinya eredm6nyezi, bogy a kelet-eur6pai orsztigokban nem tudjfk kihasznAlni az adott termel~si potenciAlt.
21
I. Buzais
Impact of soil and nutrient management on sugar beet yield and quality in Hungary Magyar Cukor Rt., H-1138 Budapest, Vici (t 202, Hungary Summary The significant changes in land and fertilizer use which have taken place in Hungary in the past decade are described below. The use of fertilizers decreased to one fifth of the previous quantity with only one third of the agricultural area fertilized. Although the national nutrient balance is negative, the quantity of fertilizers applied for sugar beet is several times larger than the country average. A precondition for competent, economical advice on the fertilization of sugar beet is well calibrated soil analysis performed in advance. Our experience gained from the calibration of data from a soil nitrogen (N) test performed by means of the EUF method, shows that beet grown on the residual N after a green crop or by N fertilizer spread in the autumn, give much larger sugar yields than when N fertilizers are applied in spring. Above a medium level of EUF-N, even a small amount of N fertilizer (50 kg/ha) applied in spring will considerably reduce the amount of sugar recovered. The soil test data for phosphorus (P) and potassium (K) are currently being calibrated. Calibration is very important because data on beet production in the last 18 years indicate that the impact of the factors controlling soil fertility is different on sugar beet quality than on sugar beet yields. Deviations from the average have been illustrated in maps. Introduction In the last two years, considerable changes have taken place in both the ownership structure of arable land alike and in the way it is cropped. The arable land area is continuously declining, while, to a smaller extent, the size of forests is increasing (Fig. 1). The reduction of arable land might urge one to now use it more intensively than previously. The privatization of land (Fig. 2) which took place between 1991 and 1995 provided a good basis for this by creating direct motivation but, in spite of this, the use of organic and inorganic fertilizers, as well as plant protection chemicals, has decreased dramatically during the same period (Fig. 3). Fertilizer consumption dropped to one fifth of the previous quantity (Fig. 4), putting Hungary towards the bottom of the list of European countries in the use of fertilizers (Fig. 5). The national NPK nutrient balance is currently negative (Fig. 6), which leads to the exploitation of plant nutrients in the soil and to the deterioration of their fertility (Fig. 7). Depending on location and time, fertilizer use is extremely variable. Statistical data show that only about one third of the agricultural area is fertilized (Table 1). Fertilizers are used mainly for intensive cropping, like sugar beet production. As indicated in Table 2, the quantity of
22
As
C
t
(aIILCL u
Ilc Lt
pri\
knit
li!ntiill.
fwtc mnr ulvp (1hnt the a'cratec nplil'tiil
e~i
peet shew una er it 1>ittrtt]t u unitrul land I [ t - t
tCrnli, dl i]
th ' 'n"
ll
1eet1
K, prdIL
ttu, f o I td "Ath tpiac l0im o I tlold fipti ibh tl npn cunn i mit adltlhtlIC th cot Ptl ofI hT d , c the Ihioll field Mct,tlhet itle aintilltt of tetilil And
hud iti ei/ c ueeI Icrtlt Laitni, It] c ps.)" nen tiolal, tttcItid sptelt ca1lve e~lt'n etiCHtf11 lono crenis ice new tli, g onC III tCrtnsof Pan K. thisnppi iit llw ink t il Oh '11"'if coittCait LIeclte used1 1Mpt
Itlt "IL' h
t tort I it nthiec
1 it
I
ii
It
I I[i
I pI lit
it apsnc
l
he t i
te ti
q licn
I i at tl
hittise c
V"nI]
itin
o t n hirtnr ntot , Alil
r
pr 'n ii skill. I.' <sie ! Iceat ur' oII t noproile the, tutiuLn eat]cn... 'tt l itt v'i i intcrc~tsc the ttr
Iput applicd tl lllut i' I t> un illt i %wN lafV %en Wilul , it iati hC>I gcl rlioatii i/ "ht N with a mp ictie ilan dcline itt nar =lu fi t octltl
il
al
toAIh
I t
c Li Hit
Otwt he' Iw
t
)
lint
;tart ick attid tti lhe'
1C iI" I Ihod
o
IlWe V
ttct1itVt
tnt
tptl
't
na
Wk %N Ie. Itct
i
I III ted
1
II
[IW, 4ViNu'iO pl' d wtcttat
Itotx
,
niii
i tt
itt
r
cc that tht IAtticsne t. twtotttll tt ttlldtit stii; hurt ptu rlMt ii t i ItA tott i citd l hci i t MU itt MU IW PO il owi.' l ng I t 1i snn ts tihts it In l 't t l u i l1y, tIlloun/t ll Ih ihi trI lakt alrau iltal i o tt lelil t i aultt ptittesstttOt resi ttlh om:,of Cattseitt i lith, . t ti 'ert l h tttt l in'IcrItIt c ott1tme t I ht t II O< t l it' " -tittttt dat ho, hwe~ aI Q miakr wrw~itd tml WeI nemml
pmlO
[h'l Men
md miedd
wo pmv, my".;
Fig. I. ( haingst
laln iif
u
in Il uighr
Wit
~I
I'
bew,
Fig. 2.
hanges in land
omncrshi1,
1491
')'
1994
frii
24
Fertilization, pesticide input and output of plant production in Hungary 6
.. NPK a
5
110 1i. kglo ipu t
it(;rainl unit I(GI t hli • Pv,6ildv, a.Lilk
4
M r g a lnic ill
outputl
It )i input
u11i t, 1h a ,i nlp u t{
SS
1980
1982
1984
1986
988
1990
992
994
1996
(year)
Fi.
4,
1000 t active ingredients
1947 1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995
F
Fig. 5
Application rate of rertiiers used in wlieat production in Europe .active
ingredients per hectare. 1995) IfAO)
(kg ha)
N4 P K
~L
Li"
Nutrient (NPK) balance in Hungary {AKILMTA IAKI) 601
N
pO
KO
40
U
U
U U
20
Uw U,
0
n U
.21)
-40
1985
1486
1987
1988
1989
1990
year
1991
992
1993
I944
1995
Fig. 7. Average P- and K-supply in Hungary (represented 133.147 ha) (Pl mai-HonAth 1998) 216
1820
IN
160
Lw---P
K0
120
IN 1978-9I80
II1.1J
1987.199 I1
104-1986
1
--n9I
Table I. Fertilized cultivated land 1.000 ha
1985 1986 1987 1988 1989
4394,2 4392,9 4311,4 4270,0 n.a.
1990
n.a.
1991 1992 1993 1994 1995 1996 1997 1998
2965,2 2203,2 2089,4 1890,9 1850,1 1802,0 1841,7 n.a.
(n.a. - no data)
29
aT Use of fertilizers for some plant production 1998
Plant winter wheat winter barley summer barley pea apple potato [_sugar beet mais sunflower sojabean grape rice altogether .represented of 133.147 ha
N KG/HA 114 122 42 54 40 132 79 111 59 55 27 155 89
P20
2
K20
KG/HA KG/HA 36 36 44 45 13 14 28 32 22 38 95 149 51 103 27 33 20 23 27 33 127 132 60 0 43 33
*
NPK
NPK
Yield
KG/HA 185 211 69 114 100 376 232 171 102 115 286 215 165
% 112 128 42 69 61 228 141 103 62 70 174 131 100
T/HA 5,0 4,5 3,8 3,5 15,0 29,0 47,0 7,2 2,1 2,2 8,7 3,2 -
Table 3. Application of fertilizers in Hungary (FM-STAGEK, AKII) active ingredients 1000 t
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
N
P 20
493 613 655 621 583 600 514 651 580 377 140 148 160 222 191 203 206 248
358 390 432 422 383 392 325 338 278 126 23 21 25 27 29 34 42 39
5
K20
Total
Kg/Ha*
474 491 528 464 468 453 368 467 398 194 33 20 21 31 27 33 37 41
1325 1495 1615 1506 1434 1444 1207 1456 1274 697 196 189 207 280 247 270 285 328
204 230 246 232 221 222 186 224 196 107 32 31 33 45 40 44 46 53
* for I ha agricultural area
Soil nutrient analysis As a rule, nutrients (but also non-nutritive and toxic components) are present in the soil in a form directly available for the plant as well as in numerous forms not directly available for the plant. For a particular nutritive element, the ratio between the available form (form B) and the non-available forms (forms A) depends on: soil temperature and moisture, which can both be influenced by cultivation, the type of soil and other factors.
31
During nutrient uptake, the plant consumes form B. For predicting the nutrient supply from the soil, it is necessary to know the speed of uptake for each element during the growth season. For characterizing soil nutrient supply, the concentration of form B ([B]) is measured in the soil test with the amount in forms A + B ([A] + [B]), and the speed of transformation of forms A into form B (wl) (Fig. 8). Fig. 8. Kinetic model of soil nutrient supply
[C)
,]-]
[B1
-
W
JAI: contrentation ofa nutritive element in not availableforns fBI: concentration of a nutritive element in available foren [CI: absorbed nutrient element by plants w w "velocity of transformation offorms A into Band vice versa wy velocity of nutrient uptake by plants
Nutrient tests used in practice are simple extractions. Many methods are known for each nutrient, they differ from each other in the composition of the extraction agent, in the soil and extractant ratio as well as in the extraction method (shaking time, temperature, etc.). Depending on the intensity of extraction most of the form B and smaller or larger parts of forms A are found in the extract. The total quantity in the extract is determined by a suitable analytical method. For any single soil sample, depending on the method used, the ,,nutrient element content" may vary by even two orders of magnitude from each other. Because of this variability, the analytically determined nutrient contents of the soil only must be calibrated with crop data from field experiments. Nutrient test values from soil analysis should be applicable for the whole growing season of a crop. Under standard conditions, the amount of the form of nutrient directly available for the plant should be enough for characterizing the nutrient management of the crop. But temperature, soil moisture content, aeration, etc. change several times during the growing season of sugar beet. Therefore, a soil test taking into account not only the directly available 32
form B, but that part of form A of an element, which is likely to become available in the course of the growing season, gives a better correlation with nutrient availability during the growth period. This is what the EUF (Electro-Ultra-Filtration) method attempts to achieve. Water is the extractant and two extractions are made: one at a low temperature and lower voltage, to identify the amount of directly available nutrients, and one at higher temperature and higher voltage (after UV radiation for the N-test) to identify the amount of forms A which easily transform into form B. The total amount of each element determined in the two extracts can be calibrated by means of field tests. Consultation, diagnosis and therapy related to NPK fertilization Conventional fertilization tests only indicate what yields (sugar) can be expected at the nutrient supply level given by a particular soil test. It is not possible to determine directly on the basis of these tests how much nutrient should be applied to the soil to achieve maximum yields under given conditions. But this information is required to give advice on how much nutrient to add to a soil of known test value in order to increase the nutrient value to that required for maximum yields. It is obvious that soils with a 10:1 ratio between forms A and form B require less fertilizer to increase the unit amount of form B than soils where this ratio is 100:1. In the EUF method, temperature and voltage are selected so that the nutrient concentration found in the first extract relates to the amount of form B while that in the second extract relates to the amount of forms A expected to transform into form B during the growing season. The proposed amount of nutrients to be applied will vary according to the nutrient retention capacity of soil (the ratio between [A] and [B]). Thus the amount of clay minerals retaining K can be taken into account at calculating K fertilizer doses, the P retaining capacity of soil in calculating P fertilizer doses, and N fixation depending on the CZYN ratio of soil at calculating N fertilizer doses. Calibration tests Nitrogen uptake by sugar beet Specific experiments are needed to calibrate the soil nutrient test values. Most of the fertilization tests carried out in Hungary were set up for different purposes, therefore, there are not suitable for calibration. For the calibration test, various amounts of fertilizer are applied either to the green crop preceding the main crop or in the autumn before sowing the sugar beet in order to set up plots with gradually increasing nutrient supply, and the soils are analyzed by appropriate methods. Then increasing amounts of fertilizer are applied to each plot with different nutrient supply in order to establish the amount of fertilizer required for maximum yield at each nutrient level. By relating the amount of fertilizer applied to maximum yield, a calibration curve is obtained as function of the soil analysis data. From such curves, the dose of fertilizer required for maximum yield can be read for any soil analysis value. The calibration curve relating N fertilizer doses required for maximum effective sugar yield and the EUF-N (EUF-N inorg. + EUF-N org.) values is shown in Fig. 9.
33
Fig. 9.
Calibration curve to determine N-fertilizer rate belonging to EUF-N total value 180
40
-
"6
2.6
.=&426x -lfl.6xt421.0S..
3
3.4
3A8
42
4.6
5.4
5
6,2
6.6
7
Average EUF-N total 0.-W em (EUF-N anoqg + EUF-N oam)
Calibration tests have brought about further interesting practical results. They showed that the ,,inherent" N content of the soil (as a residue of a green crop or from N fertilizer applied in the previous autumn) influences the sugar yield per hectare in a different way to the N fertilizer applied in spring before sowing. The effective sugar yield increases continuously with increased EUF-N values without fertilization in the spring. On the other hand, the maximum sugar yield achieved by increased spring applied N fertilizer lags far behind the yields achieved with zero N dose if the ,,nherent" N supply is good, and at an EUF-N level above a medium value, even the lowest amount of spring applied N caused considerably lower sugar yields (Fig. 10). It is well known that large sugar beet yields with high sugar content can be achieved if abundant N supply is provided in the first half of the growing season and a N deficiency prevails at the end of the growing season. This, together with the relatively low temperature and with the lack of precipitation typical in late summer, induces intensive sugar accumulation in the sugar beet root. Our evaluation of data indicates that the explanation for the adverse effect of spring applied N fertilizer is that the soil N supply is increased too late in the second half of the growing season for sugar beet, because this N does not increase yields but reduces the sugar content and adversely affects other quality factors. Phosphtorusand potassium uptake by sugar beet Experiments to calibrate the soil analysis methods for P and K are being carried out at present. For a yield of 60-70 t/ha, sugar beet takes in 40-50 kg P2O/ha and 400-500 kg K,0/ha (Figs. I I and 12). Most of these quantities should be supplied by the soil within three weeks. The largest uptake is I kg P 2O5/ha/day and 10 kg K20O/ha/day. The soil solution in the soil layer penetrated by the sugar beet roots may contain only 0.5-1 kg P and 10-40 kg K in the form of + , H2PO4" and K i.e. directly available for the plant (form B). This means that it is crucial for sugar yield that the non-available P and K (forms A) in the soil are able to supply in available
34
forms quantities of P and K at a speed (wl) adequate to replace the amounts taken up by the sugar beet each day. Experience shows that this can be expected from soils with adequate P and K when green crops precede the sugar beet. Otherwise, the soil is not able to supply the required amount of Por K at the appropriate rate in the critical weeks. In such cases, the sugar beet will not achieve maximum yields in spite of the fact that the soil analysis indicates P and K contents several times larger than the required amount. This means that the factors retarding the nutrient supply capacity of soil should be taken into account in addition to the nutrient content of soil at establishing the nutrient supply capacity of the soil. This is indicated in Figs. 13 to 15 along with sugar beet yields, sugar content and effective sugar recovery per hectare on key sugar beet production areas, as well as the different amounts of sugar effectively recovered from one hectare over a period of 18 years. It can be seen clearly what factors influence production and what factors influence the quality (effective sugar content). The resultant of these two is the effective sugar recovery per hectare which fundamentally determines the profitability of both sugar beet cultivation and sugar production. References Soil Conservation in Hungary, Condition of Soil Quality. (Ed.: IMOLEX Consulting) Ministry of Agriculture, Budapest, 1997. Sugar Beet Production in Hungary 1994-1997. BETA Research Ltd., Sopronhorprics, 1998. Buzfs, I. (1987): Introduction into Practical Agro-Chemistry. Agricultural Publisher, Budapest. Kulcsfr, L. and Buzfts, I. (1996): N-Calibration Test with Sugar Beet as Indicator Plant. Detailed report of Beta Research and Development Ltd., Sopronhorprcs, pp. 60-73. Kulcsdr, L. and BuzAs, I. (1997): N-Calibration Test with Sugar Beet as Indicator Plant. Detailed report of Beta Research and Development Ltd., SopronhorpAcs, pp. 38-46. Kulcsfr, L. (1998): Impact of Autumn and Spring N-Fertilization on the Nitrate Contents of Soil and on Sugar Beet Yields. Detailed report of Beta Research and Development Ltd., Sopronhorpfcs, pp. 28-34.
35
N-fertilizer rate in spring needed for maximum white-sugar yield
at different soil N value (Kulcshr L. Sopronhorptics, 1995)
(Kulcsfr L. Sopronhorpdics, 1996) 12
10
11,5 9,5 t€
o
9
11 0
'
N
A
lA
.
. 10,5
9
0
-9 •8,5 -
0
9 7
*
EUF N=2.65 mIg/OOg A EUF N=6.42 mg10g E
EUF N=3.11 mg/100g 0 EUFN3.62 mg/bOg
8,5
ANEUF N=3.71 nglOOg
0 EUF N=8.40 mg/1OOg
7 0
50
100
0 EUF N=3.98 mg/1OOg
150
N-fertilizer rate in spring
8 200
0
20
40
60
80
100
N-fertilizer rate in spring
120
140
Fi
I I. i- uptake of tile sugar beet k, P ha da,
lZ I ha
~IIf a
42
0.8 10
24 0.4
Is
122
21
21
17 19
25
2
2
31
33
S\IVK
39
3537
lig. 12. K-uplake of the vilgar )eet K,O k,,ha d.
K Al k, h;
12
480*
4201
6
S
24) 4 1so
12)1 S
S
611
53
9
21
23
5
,
2s
31
33
3
3'
%,
~~I' P1!' 'Th AIlI
'
HI
p
.1
•
VILL)
IFig. 14.
Sugar yield 4i ., erage t
1'
-' a2 ...
D'
2.
::: :r
SI
K
I Sv aI 18
100"
Iig. I
StLigar
id tha 4.4 t Ilad= I10'
4Wall,
Ilkr
Ossefoklalds
tizas Ist'lin
A talaj 6s a tapanyagelitas hatisa a cukorr pa termesere es min6segre Magyarorszigon \1agar (ukor RI.. 11-1138 Budapest, \.ici 61 202,
: ' \',
I
t
Si'tticiiutiL[ tl
II
lt
]
l , "Of~l/!
,nI
l\/l ,ikltt~l
lII k '/
'
(
k l
I /1" 1 1,% ) 'k c[ 1!1"
IT I tl
a mutt; ,izi~atvt',valat 11/
<s
', [~
Ai[tn Isc
(ITNL \Liu I
ll
lmi
ti
igcltt
,
~ ~l I[cl L' In,UI
[I II. i. it,tii
I4
n IIdali N I/,,cld
titr[11
I tKllLJL <
L
,III
,
,I,:l
ii;
,11 1"/,
L
iii
Li
o
-iu
Ut LA!k
'/'t11
Im
A,
ili
LwrIT wl i " //ii
'u
Lttil-
k
t )
lcl kadhtmilakolA o otL,[ pc. .z I~l~h'~l~l i Idilok
,pol I III] LA l l~ "L"
i, IN.[ l , ti k,,, II L LL . l 11, clftt ilI tr I httt/tl>! u ,.' ct l nAL, I) ivslttl~kit.t < IL~i/Ikl \ tc-lvb~l i uLi1> zt ,i ' Lt Li:. LLK L l[L t;t/ tt-tC LI! il,'C It ittll.k t[tCl l]l irI x~ t 't ifll tl tl) i * itsl'Lit llt l iliL k~lttlik }uti' L I~t t~lcip *,C irtt til t l"li\C ,/ kt 1 1, 1 \it t i-uslt ikI t i It , tickicc ciS -L. Ill"mi tjCL ttt';t
~.kl
~
Fc!4 lt
'
ntiLL
ttll
i/
N
i
a
rk C0LICtti~C't
i~
i
utlcll'
tl riii,itlt tiltuSi
c I>
t
fiitlltliC
i
LC ilti
I 1,11" iIcL
l
/
iicrk-t! tItC LitI
s t Litliic
;s-it it
k[it
i\/
'
-iIkbci i
i
u tl itt ;1s ik si i \
iii
iI,ij--
Ti\iCi h
i
ikt ir
Li,
ii
tilL
It
If
it.LL4I-
icr1ti''kI pm ,t-ss c ii r liil LItkZ
, Litt
L i ith.- llli
K vit>
]tis
tuttsi
-
i.
tlt.); K
' sLih
ccs
I
7
<-L t
itr
itLi
ax
lut-
%,'t L tltiiL.
miavkNi- ii I
il
TTA 111s tic tNiioiut
~
ici
ill
ittt
it.>CL
tttltC'fC kAi' LLIII
tiusic'
]ir,'
Liiti
t;Ll
cnt< L kii i
mlit
l
h il/it~i
I UliiiiI ibtl
t
1
-itkc~lc
iiac.ii1 tili
NiL~tisL/it
/Ctl llcl
u,i itall ukt lle
p
r
lt
u
ilt.
ukI.,c
kcrick
titt t
tyt/f}it
i
ax-~~hitt *ii
i
i~ii~ -tiitk K-'C
vitL
+shi/i I I
x
utziii '7;
Li iLK.
s-C l'h ILLP Iii\Ltt
jti
ii
f
ik~t lltc
ti l
{ittt lt+ 1i
tliiit
1/Ct
Dh
[-Ltk~sit
t
lltmi,
4it:!;pa
i'[t
tit
rlClti
Li a
/
ti
t'ui
; j
I
ll
t tiiki bci 1ii A ii
}
N1il' tt Ld .- rt.
'I'; "I.\
'i
.X,ors/ag Il (ItvaIcr Ir-i~tI~~fb
a It,nsi
mei svFP
ii
'ok /C Iill
,i0
"II
i>> iI
IkuKk
.iiiii
I;iIIIK
ii I
K'
hV
n
Ih lj l
/
iIkii~il
isK:
\
'IKIKSL I
l
lIII
. w kmh l
nItl
i;ilta
JI>-
ol\ II
'
L
I
{I
lowl
'111111%
Ha'['
{ "\ l :
~ ~
II
a
!
LI/11'
aH 1i
,
'Z111
I
i
p Ii-
''
k
i
.IiK
11112
Ik L
Fi k i now, as u
I a k/'' T 1 m 'I i
I
I 111'a111
1kj/
I,
Kjti
I ,i II14 kIiC t
lit /
anI:/I iln
I
11 l
.k , Hw" klis ,i0
>'k lli i "IlAl~WII II j, '5tL KR',
al~xcl,a
i
h' '.'..... Ii ,
'
a;
ri
W ;l W
11"
1' 1c
talla"I
allo'£/1'11 a T~~ll
d
}:1(i;:[/ n;III;
I
ll
a,;t i
c 1/
1
IK5
,~
~l
/k
LIfl 1Tle 'LI
{
ls
c'
W
S
I mwi iIu:c
lk~bl
u
kp iiV\
'
P' stlk
I
~ i inomt ~
~
KKIL av Iul, hl\K' ti
KS1I0TA 11
WATIi-
I1[, ILK> '' 1k LWI yL HltI', l 110 ,IkILA kil \ IKK II LlS K M hhlh& I S
,KpI
a itil
di'h''lh1' h kIL '5t I K"M I a I iii KbKllKil 2II'ii IKI>'/Lml Sclii'/hLILJ \
11
i
IsI WI'
.V
K',i hI '
[,1'/t
11 i,
II/ LK
.
L\ 1pK'Ku isIIlII'il; W 1
I
t
iI
tIk Il ' 1 Fll k
l I/din,
1 L 1i/ !/0 dzLxo 1u k
vyitI~~I I I-Hl;[
ulm ;i
ItN
LL~ak
I
'" u
" c
AM
Mini
r
}Cl,
il
X
I'
il
tl
!/It l,
ick]t ,'lc i n!.'c
i''\
lolh
LI'IIIMh AlIsl ..... h'
1, I,;,
/oi Q No
WMWklcrc\
i I
:i
'}l
a, cut""T
nawlllk/'-c!
(
0"1
cwhclhun
Yln
c
I!;I.k
I
.
Clolb
U
t
'YL/K
mc \,ihtik
mliI
a
icu
Km
k U
} I~
.
~
\
\/
\
anaLlic,
l
,
IlL IIIWLI1 aIL
Oclct
ILuillIIILa roI IIc
N la
szIk~Lai
I>ILIaI}o LLI
iLtLfk&I
crcdrnoncllk~lnt
a ctnKoTrr}[LILuic L
/viic cik eth a Itla%> ga LIo Ik I
I hL/IIok I, c
panjvi-in~agizsgLilata
[I% nLLSQIlI tapcl-m Li& a l)LdLlLnck FLe'lLnLcilicto i a t\IIikus 1cmI k i,) ih i in c > atnI11 I thi I ikH / iLv I IIt w kePunw Ina st, il1. \, Ittllun vI n , i iw, ift 1 ii. LlL I uIa, kI/S cI i ItII ncm IcIschitta scasnlcl wag, ionthisijtun tlohiamo a Lalk in I Isiipcnn don a lIchcll) JaLLId H p1us is a non/lLlcto 0 iierlmjlak ( kit nik) nnl }inuk ia iLL i119 a Ilal p 111105 m , Isit iii
n
i
'
kal ntll
nLnCky
I
I/
i
ll ILinLIAI p
t Itdai\I Lf
i
, ,xAL a,
iAcsiculsrw
IIsg kI ,t
\i lu l ii>
l I I
,
cvcWig1 la, cg,:
t> s/i[5ClhkiA-Iin
i&II illto n /is /a NA ta pill' I" >IiIgi]l IhLIk uAllto' cku aI LapaLLLa"L'i/, gaI it oi~i1 In> kullni 1L01ll an H fiirlnin kisivltt luniu It Ifl I a Iillsho L'ILL1 (tL$.'LSLL illM gis cl (I I+ IlIlus , i bm, ukIikI-ItI111
A paukoilti:llm hav ]lSlilina ug ttdo -i~g h ai'/lanh l ct<'% " I iii, Ill I/ i talal I IIl l LLlIkHtt ht flltidsiiII,ItTu TCI lL 1 h\rss II
tis~c~ [alLIS < >nQS uttluL t uLI~n~'~ OItlipI
ht
iPJ
l:icak11.0111z us I>LISC
L.i kihil i
I
}/tl
kwi da~olk \1mldcit
an<sc&/I% kktlu
[ki
iI~not tim LIanwIII/u i tmo ck cs. Isiilsuk it II liinLl L l a LI kisI.Ll lti l nalIs
iho/inck ,m$aIL
\/
uNlt kILIIILLSLL an kiul1
ki\ iuIovit
ici ItLI
iniam i d<
Is)diCtlh lliimiCLL
W"liI MIWOkll Itx / I h I kiit n-5gAIlL ilsb It IIiltlh ta A ki ,s i uiL tcnitmihuanak ,l /cLS'
qIM 0 0
nhd,/lox~ (l hi a>Cl;kii kcI nog ,oglttcnd cl I, kulonlho/hel,,k IIL] I'il~l
rt IalaIiitilla k PiLSLt i Iti
ori~kkPILA. c Pl aLihL5LhIIS tilaul
i l l
it
IutIIlitLlCP C[ICIILlL.
I tckts/stn
cg
Cthii,I;A ,kiit zoNc:I~h
(<<5 FLS(ll (Iclic
c satkiA
\NkalihsrAIis LIZ LitLL cicclst i
ln
L'.jIclcni.
hoN) tsaad lk i kisrlclck soawdl Lti,'a1ta iitjnk. Iogv /u cg LLllijLisgaL~ii crtcl kcta ltLato LaaLoiIL II lmLLUCsL jLsII>lV LILIL(01,gSL cukorrepa tcrus, il. houg m on1im a hicktiron knnh ( Pinel ictLo) uokamctm,
4I>
166I
I
.................. ....... '=
1661
\
\
f6611
\
[
Z661
p
(166 1
61,
l)
ou4IIl ~I
o.l
l
a
l;
)jaWIa) v r,;I q I%, !
U o
.q U; I1Sti?
j
4. Anhla
ezertonna hatdanyag (N+P0 +K O)
1947 1951 1955 1959 1963 1967 1971 1975 1979 1983 1987 1991 1995
fickt'iroinknt felismlt ritnidgya hat6anI)agmennvis ge. hUIza (1995) (I-A()
( kg ha
127IIY N 1'1K
h
I L
L L LL-t L
S.C
'Iiipanyag- (NPK) infrleg Magyarorszfgon (AKIIN \IA I\K1) 61;
N
KO
*PO
414)
21)
20
-2O
40 1985
198
198l7
104HR
I9N9
19911 6X
941
19q
193
1Q
195
7. ibra A talajok tlagos P- 6s K.ellftottsgfinak alakulfisa a vizsgdlt 133147 ha terfileten (PAImai-Horvfith 1998) 20o 22
to 11.
-K
1201
1951-1953
197811950
1987-1990
19541986
1994-159
1. tfblfizat
Mfitrigyizott teriflet 1000 ha
(n.a.
=
1985 1986 1987 1988
4394,2 4392,9 4311,4 4270,0
1989
n.a.
1990
n.a.
1991 1992 1993
2965,2 2203,2 2089,4
1994 1995 1996 1997 1998
1890,9 1850,1 1802,0 1841,7 n.a.
nins adat)
49
Matrigya-felhasznlfIs n6v~nyenk~nt 1998 * N KG/HA
I
6szi b~za 6szi 6rpa tavaszi 6rpa bors6 alma burgonya cukorr pa kukorica napraforg6 sz6ja sz616 rizs 6sszesen
*reprezentatv felm6r~s
114 122 42 54 40 132 79 11l 59 55 27 155 89
P 20 2 K20 KG/HA KG/HA 36 44 13 28 22 95 51 27 20 27 127 60 33
36 45 14 32 38 149 103 33 23 33 132 0 43
NPK KG/HA
NPK %
Term6s T/HA
185 211 69 114
112 128 42 69 61 228 141 103 62 70 174 13L 100
5,0 4,5 3,8 3,5 15,0 29,0 47,0 7,2 2,1 2,2 8,7 3,2 -
100 376 232 171 102 115 286 215 165
3. tdblizat
A mftrigya-forgalmazfis alakulfisa Magyarorszfigon (FM-STAGEK. AKII)
Hat6anyag ezer tonna
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 *
N
P20 5
K20
Ossz.
Kg/Ha*
493 613 655 621 583 600 514 651 580 377 140 148 160 222 191 203 206 248
358 390 432 422 383 392 325 338 278 126 23 21 25 27 29 34 42 39
474 491 528 464 468 453 368 467 398 194 33 20 21 31 27 33 37 41
1325 1495 1615 1506 1434 1444 1207 1456 1274 697 196 189 207 280 247 270 285 328
204 230 246 232 221 222 186 224 196 107 32 31 33 45 40 44 46 53
I ha mez6gazdasAgi teroiletre
Csak olyan tipanyagvizsgflati drtdkek kalibrdlhat6k, melyck jellemz6ek a talaj cukorr6pa tenydszideje alatti tfpanyag-szolgfltatdsira. Standard korilm6nyok kozdtt a talaj tOpanyagszolg6ltatfsgnak jellemz6s6re, a k6zvctleniil felvehet6 t6pelemforma mennyis6g6vcl arAnyos szim elegend6 lenne. A h6m6rs6klet, a nedvess~gtartalom, a leveg6z6tts6g stb. azonban t6bbszbr is vdltozik a cukorr6pa tenydszideje sordn, ez6rt a talaj teny6szid6 alatti tOpelemszolgAltatisAval jobb 6sszefiigg6st ad az olyan talajvizsgfilati 6rt6k, amely a k6zvetleniil felvehet6 tfpelemforma (B-forma) mellett az A-forma azon r6sztnek mennyisegere is jellemz6, amely a tenydszid6 alatti vfltozAsok sorfn feltdtelezhet6en felvehet6v6 alakul. Erre
51
tesz kis6rietet az EUF (Elektro-Ultra-Filtrici6) m6dszcr. Az eljrirs sorin a viz a kivon6szcr. K6t kivonatot k6szitenek: egyet alacsonyabb h6m6rs6kleten 6s kisebb clektromos feszailts6gn6l a k6zvetlenul felvehet6 tipelemforma mcnnyis6g6nek, egyet pedig magasabb h6m6rs6kleten 6s nagyobb feszdlts6gn61 (illetve N-vizsgilatnil UV-besugirzis utin) a k6nnyen felvehet6v6 alakul6 tIpelemformik mcnnyis6g6nek jellemz~s6re. A k5t kivonatban tahilhat6 clemmennyis6g 6sszessdge ezdrt j61 kalibrflhat6 a szabadf6ldi kfs6retek segfts6g6vel. 8. iibra
A talaj kbzvetlenijl nem felvehet6 6s felvehet6 tpelemformi 6s a n6v6nyi tipelemfelv6tel szeml6ltet6se
--
W
I
ww
fA ]: a k1zi'ztliiI niero fclh',we6 tilpel,'forlndk, /B/: a kiizesleniilfelvehetd tpclemIfomudk koncetrdrci5ja a talajban, ICI: a n'vdnv tdpelemniginye, wPw z az egesfonnik eqymdha ya) dtalakuldsdnak .ebess/ge, w a nMvdnv tdlplemfelMelinek sebess/ge.
NPK tr~aizfisi szaktanfiesadis, diagn6zis 6s teripia A hagyom6nyos tr6gyAzdsi kis6rletek csak azt mutatjik meg, hogy adott talajvizsgflati 6rt6kkel jellemzett tipanyagellftottsigi (tipanyag-szolg6ltatsi) szintn6l milyen termds (cukorterm6s, kinyerhet6 cukorterm6s) wirhat6 (diagn6zis). Ezen kfs6rletek alapj6n nem lehet megmondani, hogy a vizsgih tjpanyag-szolg4Iltatfs6i talajba mcnnyi tipanyagot kell juttatni ahhoz, hogy az adott k6riilmdnyek k6zdtt el6rhet6 maxirnlis term6st kapjuk (ter6pia). A feladat 6gy is megfogalmazhat6, hogy ismert tfpanyagvizsgIlai 6rtfket mutat6 talajhoz mennyi tpanyagot kell adni, hogy a talaj tOpanyagvizsgAlatakor m6rt drt6k a maxim~lis term6shez tartoz6 tipanyagvizsg6lati 6rt6kre n6jdn. Nyilvinval6, hogy egy olyan talajhoz, ahol
52
az A- 6s B-formdk mennyisdg6nek arfnya pl. 10 : 1, kevesebb trdgya kcll a B-forma mennyis6g6nek egys6gnyi nbvel6s6hez, mint egy olyan talajnmil, ahol cz az ar.ny 100 : 1. Az EUF m6dszern6l 6gy vilasztottfk meg a h6m6rsdkletet ds a fesziilts6gct, hogy az els6 kivonatban talilhat6 tdpelem-koncentrkci6 a B-formAk, a mfsodik kivonat6 a tenydszid6 alatt esetleg B-formij6vfi alakul6 A-formik mennyisdg6vel legyen arinyos. A kiadisra javasolt trigyamennyis6get aszerint v~ltoztatj k, hogy a talaj a tApanyagokat mennyire kbti meg adagjfnak (mekkora az [A] : [BI ariny). Igy figyelembe lehet venni a kiliummtitrigya 6 kiszmitzisindl a kiliumot megkdt6 agyagisvdnyok mennyis6g t, a foszfor-mitrAgya adagjfnak kiszlmitfsakor a talaj foszformegk6t6 k6pess6gdt, a nitrog6nmitrgya adagjnak kiszAmftisakor pedig a talaj OIN arinyft61 fiigg6 N-fixici6t. Kalibrci6s kisrietek A cukorrpa N-felvitele A talajok tnipanyagvizsgilati drtdkdnek kalibrilfs6hoz speciflis kis6rletckct kell vgezni. Az orszfgban vfgzett triigyzsi kisrIetek ttlnyom6 r6szft mAs c6lb61 Illitottik be, igy kalibr~idsra nem alkalmasak. A kalibrfci6s kisdrlcthez a cukorrdpa el6vctem6nyeinek termeszt6se sordn vagy a cukorrdpa vet6sft megcl 6z6 6sszel kuilonb6z6 mitrzigyaadagok kiadisival az illct5 tipanyaggal I6pcs6zctesen n6vekv6 ell6tottsigti parcellikat alakitunk ki, 6s a vIlasztott m6dszerrel elvdgezztik a tipanyagvizsgdlatot. Fzutin a kiilonbz6 ellktottsig6 parcelhik mindegyikre s megillapitjuk, bogy az egycs n6vekv6 adag6i mfitr6gyamennyis~gckct juttatunk, tipanyagszintcken mckkora adag trigyival 6rttik cl a maximilis termfst. A maximflis 6 term6shez tartoz trigyaadagot -brizolva talajvizsgilati 6rtdk fiiggv6ny6ben kapjuk a kalibrAci6s gdrb5t, amelyr61 leolvashat6 a maximlis tcrm6shcz szflks6ges trigyaadag brmely talajvizsgilati 6rt6kn61. A maximilis hasznos cukortermdshez sziiks6gcs N-mftrfgya adagok 6s az EUF-N (EUF-N anorg. + EUF-N org.) 6rt6kek kalibrici6s grb6jt a 9. ibra mutatja. A kalibrici6s kis6rIetek tovbbi 6rdekes gyakorlati eredmfnyt hoztak. Megmutattik, bogy a talaj ,credeti" (el6vetemfnyek ut-An marad6 vagy az 6sszel kiadott nitrog6nmiitrigytival el6rt) nitrog6nellItottsiga misk6ppen hat a hektironk6ti cukorterm6sre, mint a tavasszal vel6s cl6tt kiadott nitrog6ntrfgya. Tavaszi mtrggyizfs n6IkOIl az EUF-N 6rtdkek ndveked&svel folyamatosan n6tt a hektronk6nti hasznos cukorterm6s. Ezzel szemben a tavaszi motrigyaadagok n6vel6s6vcl eldrhet6 maximdlis cukorterm6s messze elmaradi a j6 ,,crcdeti" N-ellitottsig mellett nulla tavaszi nitrog6nadagnl eldrhet6t6l, s6t egy kdzepcsnek tekinthet6 6 EUF-N 6rt6k felett mAr a legkisebb tavaszi N-adag isjelent scukorterm6s-cs6kken6st okozott (10. bra).
53
9. Abra Az EUF 6sszes N rtikek kaiibrdci6s g6rb6je S160 120
p
N
100
__
40
20
2.6
_
3
3.4
3.8
4.2
4.6
5
5.4
5.8
6.2
6.6
7
Atlagos EUF 6bsz N (mg/l00 g) 0.60 cm
K6ztudomfis6, hogy akkor Iehet nagy r6paterm6st 6s magas cukortartalmat elrni, ha a cukorr6pa teny6szidej6nek cls6 fel6ben b6s6gcs nitrog6ncllMtsban r6szcsll, a Ienyszidej6nek v6g6n pedig nitrog6nhitnyban szenved. Ez, valamint a nydr v6g 6 n szokAsos viszonylag alacsony h6m6rs6klc 6s csapad6khiAny induk Ija a cukorr6pfiban az intenzfv cukorfelhalmozAst. Vizsgilataink alapjAn val6szinisflhct6, bogy a tavasszal kiadott NmitrAgya el6nytclen hatisAt az okozza, hogy a talaj N-szolgfltadsdtI k6s6n, a cukorr6pa tenydszidejfnek mfsodik felfben emeli meg, amikor a nitrog6n a terni6st mir nem noveli, csak a cukortartalmat cs6kkcnti 6s az egy6b min6s6gi mutat6kat rontja. A ctukorr4pa P- Js K-felvdtele A foszfor 6s kAlium t6pelemek talajvizsgflati m6dszercinek kalibrAci6jfhoz szfiks6ges kfsdrlctekct jelenleg v6gezzflk. A cukorr6pa 60-70 t/ha-os termdshez 40-50 kg foszfort 6s 400-500 kg K20-val egyen6rt6ki kfliumot vesz felhektdronk6nt (1 1-12. Abra). J61 I6thatd, hogy a mennyis6g t6Inyom6 r6sz6t hirom hdt alatt kell a talajnak szolgiAtatnia. A tipanyagfelv6tel legnagyobb scbess6ge 1 kg P/ha/nap, ill. 10 kg K20/ha/nap. A cukorr6pa gykercit61 Atjfrt talajr6lcgben a talajoldat azonban legfcljcbb 0,5-1 kg foszfort 6s 10-40 kg kiliumot k6pes meglarlani a nOv6ny szdmAra kdzvetlenil fclvehct6 H 2PO4- ds K + formfiban (B-forma). A cukortcrm6s szempontjfib6 ddnt6 tehit, hogy a talaj kozvetleniil nem felvehet6 foszor- 6s kilium-formAi (A-formnk) kdpcsck-e olyan (w1) sebessfggel kzvetlcnol felvehet6 formijtiv6 alakulni, hogy a cukorrfpa Altai naponta fclvctt mennyisfget p6toljfik. A tapasztalat szerint cz esak az el6veteninyek termelse sorfn foszforral 6s kAliummal kell6en felt6h6tt talajoknll vfrhat6. A talaj a kritikus
54
hetekben egy6bk6nt nem tudja a n6vny dMtal felvett mennyis6gct a megfelel6 sebess6ggel szolgfltatni. llyenkor a cukorrdpa nem adja az adott lehet6s6gek kdz6tti maximnilis teradst annak ellentre sem, hogy a talajvizsgfilatok szerint a talaj P- 6s K-tartalma esetleg a sziiksdgesnek t6bbsz6r6se. 6 A talaj tfpanyagszolgfiltat k4pess6g6nek megit616sekor tehit a talaj 6tOpanyagtartalma mellett 6 figyelembe kell venni a talajok tipanyag-szolg6ltat k~pesseg~t gfitl t6nyez6kct is. A 13-15. brin ezeket 6brfzoltuk 6s a f6bb r~paterm6 terileteken feltiintettiik a r6paterms, a cukortartalom 6s a hektciranknti hasznos cukorterm6s 18 dyes AItlagAt6 val6 elt6r~seket. J61 szeml1het6, hogy melyek azok a t6nyez6k, amelyck a term6s nagysAg;it, ds melyek azok, amclyck ink6bb a min6s6g6t (a hasznos cukortartalmat) befolyAsoljjk. A kett6 ered6jek(nt jelentkezik a hektfronkdnti hasznos cukorterm6s, amclyt6l alapvet6en fiigg mind a r6patermel6s, mind a cukorgyArtAs gazdasgossfga.
Irodalom Soil Conservation in Hungary, Condition of Soil Quality. (Ed.: IMOLEX Consulting) Ministry of Agriculture, Budapest 1997. Sugar Beet Production of Hungary 1994-1997. BETA Research Ltd. SopronhorpAcs 1998. Buzjs .: Bevezet~s a gyakorlati agrok6mifba. Mez6gazdasagi Kiad6, Budapest 1987. KulcsAr L.-Buzis .: N kalibrdci6s kis6rlet cukorr~pa jelz6n6v6nnyel. Beta-Kutat6 6s Fejleszt6 Kft. r6szlctes jelent6se. Sopronhorpcs 1996. 61-73 p. KulcsAr L.-Buzis .: N kalibrAci6s kis6rlet cukorr6pa jclz6n6v6nnycl. Bcta-Kutat6 6s Fejleszt6 Kft. r6szletes jclent6se. Sopronhorpacs 1997. 38-46 p. Kulcsir L.: Az 6szi 6s tavaszi N-mfitrigyzfs hatAsa a talaj nitrdttartalmfAra 6s a cukorr6pa tcrm6sdre. Beta-Kutat6 6s Fcjleszt6 Kft. r6szletes jelentdsc. Sopronhorpfcs 1998. 28-34. p.
55
U,
A tavaszi N-trAgyfizs hatisa a kinyerhet6 cukorterm6sre kildnb6z6 N-ellitottsfgi szinteken (Kulcsdr L. Sopronhorpfics, 1995)
(Kulcsfir L. Sopronhorpfics, 1996) 12
101
11,5 9,5 ,0
11
9
.
1"8,5
10,5
n0
0
9,o,
84'
9, U iissz N=2.65 7 EUF 6ssz N=4.57
7
78 0
o
mg/10Og mg/1O0g EUF 6ssz N=6.42 mg/100g
'
8
100
150
N-adag kg/ha tavasszal
EUF bssz N=3.11 mg/1OOg
0
EUF 6ssz N=3.62 mg/100g
U EUF 6ssz N=3.71 mg/100g
8,5
EUF 6ssz N=8.40 mg/100g
50
*
0 EUF tissz N=3.98 mg/100g
200
0
20
40
60
80
100
N-adag kg/ha tavasszal
120
140
I I.
lrl
ele
A cukorr~pa fosiforfk'
k, P h. nap
kg Pha
48
1.1 L"
42
0,11
4)7
I0
24 11.6
a
fi'5
I,
21
1' 19 21
25
2'
IS
31
31
35
1)
37
1(11(
12, abhrai
N.cukorrqpa
kablilelilk~le KO kR ha .. Ip
K.0 k,,h.
12
11
481) ISO 120)
4
1
1
1
2
5
2
1
2
5
2
3611
/
__ 314
2
(
/2
t
1
5
II
3
• !
t
7
Hl
4)7
lk ~IIat Crnlts t
i.3. td va
ih IS ov, ailag 110' 37,0 I
O
A'<S
NI
I
ctikor (%
4.ttKin~erhet6i
I
S
/ |*"" 4
'
,
I5. a bra
Kij'elri
tu kor t/ha 4.4 t Il= ]OW,
Panel discussion
Nutritional constraints of sugar beet production in Central Europe Felkrt hozzdsz6l6k
A cukorr'patrdgydzzdsdnak sziiks~gess~ge K6zepEur'pdban
61
H. Eigner
Nutritional constraints of sugar beet production in Austria Zuckerforschung Tin, Reitherstrasse 21-23, A-3430 Willn, Austria Summary Large sugar yields and favorable beet quality can only be achieved with optimal growing conditions in the field. Representative harvest samples record an actual potential of white sugar yield of about 10.5 t/ha. The increase in yield has been about 75 kg/ha white sugar per year since 1983. Fertilization influences yield and quality of the beet. The efficiency of fertilizer use is limited by soil fertility and additional factors. In Austria, fertilizer recommendations for sugar beet are based on the results of soil analysis by the EUF (Electro Ultrafiltration) System for more than 25 years. In contrary to phosphorus (1P),potassium (K) is determined during the routine analysis of the internal quality of the beet. The beet % K is less affected by the K content of the soil than by site and year. Introduction In Austria, about 50,000 ha of sugar beet are grown annually and, at present, it is the most profitable crop for farmers. A large yield of white sugar is a prerequisite for the future development of the sugar beet crop. The total quantity of extractable sugar is based on root yield and the percentage of sugar which can be extracted from the roots. Extractability mainly depends on sugar content but also on the content of K, sodium (Na) and alpha-amino nitrogen. The genetic potential of sugar beet will allow both large yields and quality once the nutritional constraints have been defined and considered. However, fertilizers represent an important share of costs in sugar beet growing. Development in sugar yield Anually, end of September, harvest samples of 2.25 m2 are taken at about 250 sites in Austria and one sample represents about 200 ha of sugar beet. Because of their number, the results give a good view of the actual productivity if losses during harvest and storage are excluded.
62
Fig. I. Sugar yield t/ha 1970-1997, five year moving averages. 1312-
. =
SY
4
01038x+ 9408
* campaign
7
70 74
72 76
74 78
76 W0
78 82
80 84
82 86
84 8
86 90
88 92
90 4
92 96
94 98
period
The results of this investigation are illustrated in Fig. I for the period 1983 to 1997. Five year moving averages have been chosen to overcome the influence of annual weather conditions. The linear regression indicates an average, annual increase in sugar yield of about 100 kg/ha corresponding to about 75 kg/ha white sugar. Including campaign results from 1970 to 1988 based on factory data, it shows a steady increase in sugar produce since 1970. Efficiency of fertilization
The efficiency of fertilization concerning yield and quality is closely linked to the nutrient supply of the soil so that fertilizer recommendations based on soil analysis favour a maximum economic return (Wiklicky & N6meth, 1981). Beside possible nutritional constraints, other factors of great influence have to be optimum in order to achieve success. Variety, time of sowing, plant population, pests and diseases, irrigation, time of harvest, beet handling as well as harvest and storage conditions affect the final result (Huijbregts et al., 1996). Information on soil fertilty is given by an example from a long-term experiment on organic nitrogen (N) fertilization (Hbsch & Dersch, 1997). This experiment was started in 1986 by the Federal Office and Research Center of Agriculture, Vienna and comprises four different, organic manuring treatments and five mineral nitrogen fertilizer treatments. In 1998, sugar beet was the test crop (Table 1).
63
Table 1. Influence of different organic manuring on yield and quality of sugar beet. International organic nitrogen fertilization long-term experiment Yield and quality of beet Fuchsenbigl, 1998 Experiment started 1986 by the Federal Office & Research Center of Agriculture, Vienna
Crop residues removed Crop residues removed, stable manure, 30 t/ha before beet Crop residues remain, mustard as intercrop mcl. 50 kg N/ha Crop residues removed, slurry 30 m3nha before barley & beet LSD 5%
Root yield Ulan 85.6 93.9
Sugar content Sugar yield t/ha % 12.8 15.01 13.6 14.52
mmol/100° sugar Na Alpha-N K 15.31 3.56 31.76 19.69 4.56 40.31
94.8
14.87
14.1
36.51
4.39
18.96
88.5
14.49
12.8
38.57
4,86
20.44
6.7
0.30
1.0
1.90
0.79
2A)
The effect of fertilizer N was small (not given in Table 1) and yields were significantly less where crop residues were removed and not replaced by another organic input. This suggests that fertilizer N did not compensate for lack of an organic matter input in the case of sugar beet. Fertilizer recommendations to sugar beet In Austria, for more than 25 years, fertilizer recommendations for sugar beet are based on the results of soil analysis by the EUF (Electro Ultrafiltration) System (Wiklicky & N6meth, 1981).
64
Table 2. EUF-Fertilizer recommendation to sugar beet for 1999. Fertilizer recommendations Soil sampling 1988
Amount of
Nutrients recommended Nutrients out of organic manure Total
N
P20
75 10 85
kg/ha 31 14 45
5
1(0
83 27 110
n = 11004 fields
Table 2 shows the amount of N, P and K recommendations for sugar beet on the average of about 11,000 fields. Generally, the recommendations for N range between 40 and 120 kg/ha, for P between 0 and 160 kg P2O,/ha, for K between 0 and 300 kg K20/ha. In case of heavy clayey soils, N recommendations are increased up to 150 kg/ha. Usually, beet tops remain in the field. Therefore, taking organic manuring into account, the recommendations fit exactly the amount of nutrients exported with the delivered sugar beet. A limited, regional survey about farmer acceptance of the recommendations in 1995 (Table 3) showed that for 740 fields, more N and P,but not K, were applied than were recommended on average. Especially, zero and low fertilizer recommendations are not accepted by farmers. Table 3. Acceptance of the recommendations for sugar beet in 1995. Fertilizer recommendations Survey on the acceptance 1995
Amount of
Recommended Fertilizer n = 740 fields
N
P,0
79 97
kgfha 17 48
5
K 20
112 115
Evaluation The evaluation of fertilization strageties for P and K requires long-term experiments (Muller, 1994). For sugar beet, additional information is given by the beet % K, which is determined as part of the assessment of beet quality. Analysis of the harvest samples taken between 1983 and 1998 showed an average K concentration of 4.54 ± 0.20 meq K/100g beet (Figure 2) with little annual variation about the mean for the 16-year period. 65
Fig. 2. Potassium content of sugar beet, harvest sampling 1983-1998. Harvest sampling 1983-1998 Potassium content of the beet (neq K/tO0 gbeet) 6 5,5 5 4 E
3,5 3 2,5 83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
year
Although the annual average varied little from year to year, single individual values varied considerably. However, data from 60 field trials testing N, focused on the effect of soil K, location and year on beet % K. At optimum N supply, a multiple regression (Table 4) showed that the K content of the beet was less affected by the K content of the soil than by site and year. Table 4. Effect of soil content of potassium, location and year on the potassium content of sugar beet. Influences on the potassium content, location and year Potassium content of the beet (meq M100 g beet) 60 field trials with nitrogen, 1992 to 1995 Level of optimum supply of nitrogen Multiple regression Independent variable Intercept; pan. climate, 1992 EUF-KI, mg/100 g soil IND irrigated area IND humid area IND 1993 IND 1994 IND 1995 r2 = 0.95
66
Coefficient 3.76
Significance ...
0.03 0.90 0.51 -0.56 -0.14 0.26
+
n.s. n.s.
A variation of about 10 mg EUF-K/l0Og soil caused'a change of only about 0.3 meq K/100 g beet. Primarily. the K content seems to be influenced by the availabilty of water. The K content was about 0.9 meq/100g beet higher in irrigated sites and about 0.5 meq/100g beet higher in high rainfall areas than in beet grown on sites characterized by the dry pannonian climate. References Wiklicky, L. & N6meth, K. (1981): Diingungsoptimicrung mittels EUF-Bodenuntersuchung bei der Zuckerriibe. Zuckerind., 106, 982-988. Huijbregts, A.W.M., Glattkowski, H., Houghton, B.J. & Hadjiantoniou, D. (1996): Effect of agronomic factors on parameters used in formulas to estimate extractable sugar in sugar beets. Proceedings of the 59th IIRB Congress, 353-368. H6sch, J. & Dersch, G. (1997): Der Internationale Organische Stickstoffdauerdiingungsversuch (IOSDV) Wien nach neun Versuchsjahren. Arch. Acker- Pfl. Boden.,Vol. 42, 67-77. MUller, H.J. (1994): Reaktionen von Zuckerruben auf Daingung mit Phosphor und Kalium unter Beriicksichtigung von EUF-Bodenvorriten. Zuckerind., 119, 1016-1023. Acknowledgements I thank Dr. G. Dersch, Federal Office and Research Center of Agriculture, Vienna, for the possibility to participate in the long-term trials of the Institute.
Osszefoglalds Eigner, H.
A taipanyagellaitais hatisa a cukorr paterm sre Ausztridban Zuckerforschung Tin, Reitherstrasse 21-23, A-3430 Tulln, Austria Az Ausztridban v~gzett nagyszmti szabadfoldi trAgyAzAsi kis~rlet j6 alapokat ad a talaj tipanyag-vizsgfilati drt6keinek 6rtelmez6sdhez 6s a trfgyfzdsi szaktanicsadfshoz. Meglep6en nagyszfuma kisdrleti helyen a nitrog6ntrggyAzds egyAltalfn nem nbvelte a term6st. A legjobb ds 10 cukorterm6st akkor 6rt6k cl, ha a betakaritott r6pdban az amino nitrogen tartalom 5 6 EUF els az ha hogy mutattIk, azt mmol N/100 'S volt. A trfgyfzfsi tartamkis~rletek g K/100 mg 10-16 kliumtartalom a ill. g talaj P/100 mg 1,3-1,6 frakci6ban a foszfortartalom talaj, mintegy 54 kg P2O5/ha-os ill. 120 kg KO/ha-os trigyaadaggal fenntart6 trdgyfzfsra van szfiks6g. A trfgyizgsi tanicsadAsnl fontos, hogy az optimAlis term6shez sziiks6ges tr'igyaadagot a talaj ell6tottsfgdt61 fogg6en hatirozzuk meg. A szaktanicsad6snmil figyelembe kell venni a gydkerekt61 6tjfrt nulyebb talajr6tegeket is. A kis.rietek sorn ner talmltak ktildnbs6get a kflium-klorid 6s a kdlium-szulfdt mfitrfgya hatAsa kozbtt. 67
M. Nikolova
Nutritional problems of sugar beet production in Bulgaria University of Forestry, Faculty of Agriculture, 10 Kliment Ochridski bul., 1756 Sofia, Bulgaria Summary Sugar beet is a traditional crop in Bulgarian agriculture but its production is decreasing sharply. A sixteen-fold drop in the area grown and a two-fold decrease in sugar beet yields have been observed during the last 20-year period. The decline in yields has been is caused mainly by a decrease of fertilizer use from 390 kg ha-t NPK (1:1.1:0.6) in 1986-1990 to 47 kg ha-' (1:0.07:0.0) in 1998. Unbalanced nitrogen (N) use and neglecting to a large extent the use of potassium (K) are typical in recent years. This report reviews experiments with sugar beet carried out on several soils in Bulgaria. In spite of the fact that sugar beet is grown mainly on soils classified as medium to well supplied with K, the optimal fertilization treatment was to apply all three nutrients. The effect of K on yields was larger on soils with a medium supply (18-35%) of K. Introduction Sugar beet is a traditional crop in Bulgarian agriculture but its production is decreasing sharply. Over the last 20 years, the area growing sugar beet has dropped from about 65000 ha to 4100 ha in 1998. Over the same period, the average yields decreased from 29 to 15.6 t ha-'. There are many reasons for these downward trends but one of the most important is the large decrease of fertilizer consumption. During the transition period from a centralized- to a market- oriented economy, the use of NPK dropped from 764000 t in 1989 to 174000 t in 1998. The largest decrease was in the use of K fertilizers, from 93000 to 7000 t, the latter corresponding to 0.04 kg K2 0/ha. According to the Ministry of Agriculture, only 3000 ha cropped with wheat, potatoes and vegetables were fertilized with K in 1998 (Agricultural Report, 1998). Unbalanced N fertilization has prevailed in Bulgarian agriculture in recent years. As it is generally known, sugar beet, in common with other carbohydrate-producing root crops, has a high K requirement. The quantities of K (and sodium (Na)) are of utmost importance for white sugar yield. It can be expected that a neglect of K nutrition could be a reason for the deterioration of both root and sugar yields. The effect of K on root and sugar yields has been reviewed and fertilization practice has been analyzed with special reference to K to reveal some of the possible reasons for the dramatic decrease of sugar beet production in Bulgaria in the last decade. Methods The influence of K on the yield, crop quality and K status of the soil has been studied systematically at the N. Poushkarov Institute of Soil Science and Agroecology in long-term
68
experiments on ,,Potassium Balance" in a crop rotation including sugar beet. Four K rates: 0, 80, 160 and 320 kg K 2O~ba were tested at two levels of N and phosphorus (P) (NoP0 and N MP20) in field trials on three soils with a medium supply of K: Cromic Luvisol (Sekirovo), Luvic Chernozem (Rakovski) and Haplic Kastanozem (Trastenik) and one well supplied with K - a Haplic Chernozem (G.Dabnik). Data from the last 20 years including three or four sugar beet harvests were analyzed. In addition, available data from other experiments on sugar beet in Bulgaria were analyzed as well as statistical data and data published by the Agricultural Ministry. Results and discussion Sugar beet is grown on relatively fertile Chernozems in Northern Bulgaria and Vertisols in Southern Bulgaria. These soils are characterized by a relatively favorable K status, being medium to well supplied with K. This is one of the main reasons for the relatively few field trials with K. Long-term field trials with increasing K rates are the experiments called ,,Potassium Balance". Yield data from soils with a medium exchangeable K (K.,) showed variability in the response Generally, the effect of K was greater at the to K, depending on the NP fertilization (Table 1). Haplic Kastanozems - up to 30% increase on obtained was effect largest higher NP levels. The in root yields and 160 kg K2 0/ha was the optimum K rate. On the other two soils with medium K, (Chromic Luvisol and Luvic Chernozem), the response to K was not so large (up to 10%) because of the influence of other factors that restricted root yields. Adding K to the soil well supplied with K (Haplic Chernozem) did not effect yields. Potassium fertilization increased both the sugar content (Table 1)and the sugar yield (Fig. 1) on all four soils and the effets on sugar yields were more significant than those on root yields. This effect was especially well pronounced on Haplic Kastanozems. On the Haplic Chernozem well supplied with K, the sugar yield was increased with 10%, notwithstanding that K did not effect the root yields. The results show that the application of K is indispensable when growing sugar beet to increase sugar yields. From these experiments, the optimum K. for sugar yields ranges from 32 to 40 mg K20/100 g soil. Results from other experiments carried out with different rates and ratios of N, P2 0 5 and K20 1976) showed significant effects of K on both root in different regions in the past (Lichev et al., and sugar yields on soils with both a medium and a good supply of K (Table 2). In these experiments, the optimum K rate was mostly in the range 120-140 kg K20/ha. An increase up to 240 kg K2 0/ha did not further increase yields irrespective of the NP rates used. Experiments with increasing rates of N and P at two K levels (0, and 200 kg K2 0/ha) were set up at the Institute for Sugar Beet in Shumen (Table 3). The results of these studies showed that the effect of K on both root and sugar yields was small, increases from 2 to 7%, when the crop was not irrigated. However, when the crop was irrigated, K increased yields significantly, root yields by 5-15% and sugar yields with 10-15%. The optimum fertilizer rate was NI PI0WK 2W0 (Krastev, 1984). There are relatively few studies on the effect of K on other quality factors. Results from the experiment ,,Potassium Balance" showed that K reduced the concentration of a-amino N and Na and increased the sugar content and alkalinity coefficient (Table 4). The reduction in aamino N and Na content and the increase in the sugar content, juice purity, alkalinity
69
coefficient, total output and white sugar yield affected by application of K were established also in the studies at the Institute for Sugar Beet (Krastev, 1984). This review of results from experiments on sugar beet in Bulgaria show that the best results are obtained with combined NPK fertilization, even on soils with medium and good levels of Kx. The effect of K on root yields is larger on soils with a medium Kr,. Sugar yields were increased by K on soils with both medium and good levels of Kc. The optimum values for K,, in these experiments are within the range of 35-40 mg 1(,0/100 g soil. These findings justify the recommendation for applying K when growing sugar beet. Results from the experiments at the Institute for Soil Science and Agroecology ,,N. Poushkarov" and the Institute for Sugar Beet were used to develop a model for optimizing fertilizer recommendations. According to the model, for sugar beet the N rate is determined by the balance principle, taking into account the N uptake with the expected crop yield and the content of Ni n in the soil (Dinchev etal., 1985). The P rate is based on creating an optimum P level in the soils (Neikova-Bocheva, 1985). The K rate for soils with a medium Kex is based on the K uptake by the expected crop yield. It is recommended to apply 120-160 kg K2 0/ha on soils with a good K,, and 200 kg K20/ha when the expected yield exceeds 40 t/ha (Krastev, 1984; Milcheva, 1985). The average fertilizer recommendations for growing sugar beet in Bulgaria on this basis and an expected average crop yield of 35 t/ha was 135 kg/ha N, 165 kg/ha P20 5 and 135 kg/ha K20 (N: P20 5 : K20 = I :1.2 :1) at the end of the 1980s. Even at that time, increased amounts of N and P were used while K fertilizers were insufficient, so the ratio N : P20 5 : K20 was practically I :1.1 :0.55. It has already been noted the use of fertilizers declined sharply during the period of agrarian reform. In 1998, the Ministry of Agriculture reported that only 44 kg/ha N and 3 kg/ha P2 0 5 were applied in the fields cropped with sugar beet and no K was used, so the N : P20 5 :K20 ratio was I : 0.07 : 0.0 (Agricultural Report, 1998). No trace elements were applied but many soils need boron and zinc (Stoyanov, 1985). Obviously, good yields from sugar beet cannot be expected because of the severely disturbed nutrient status of the soils and this can be considered as one of the most significant reasons for the sharp reduction in sugar beet production. Conclusion An analysis of the experiments on fertilization in Bulgaria shows that good results can be obtained from sugar beet when balanced NPK fertilization is used, even on soils with a relatively good supply of K, The application of K with NP increases both root and sugar yields on soils with a medium level of K, and improves most of the quality factors. The optimum levels of K., for sugar yield, established from the results of long-term experiments, are within the range 35-40 mg K20/100 g soil. For this reason, K fertilizers arc recommended for soils with a medium (with respect to the expected crop yield) and soils with a good K., when the recommended rate is 120-200 kg K2 0/ha. Data from commercial practice show that K has not been applied for growing sugar beet lately and amounts of P are insignificant. The absence of K and trace elements does not allow optimum utilization of N, which is only applied in small amounts. Both unbalanced N
70
fertilization and the poor nutrient status of the soils have been one of the main reasons for the sharp decline in sugar beet yields lately. Improving sugar beet production in Bulgaria requires the soil nutrient status to be monitored. Fertilizer rates for sugar beet should be based on the Nmin and available P205 and KO in the soils. It is necessary to stimulate farmers to invest in improving the nutrient status of their land. Co-operation between different sectors - researchers, advisors, sugar beet producers and the processing industry - is essential to overcome the present crisis in sugar beet production. References Agricultural report (1998): Ministry of Agriculture, Sofia. Dinchev, D. et al. (1985): Basics of Nitrogen Fertilizing Model. Soil Science, Agrochemistry and Plant Protection, vol. XX (1), 6-29. Krastev, S. (1984): NPK fertilization of sugar beet on calcareous chemozem- Ph.D. Thesises, Sofia. Lichev, S.etal. (1976): Fertilization of Sugar Beet. In: ,,Fertilization in Intensive Agriculture". Sofia, 236-242. Milcheva, M. (1985); Basics of the Potassium Fertilizing Model. Soil Science, Agrochemistry and Plant Protection, vol. XX (1), 43-55. Neikova-Bocheva, E. el al. (1985): Basics of the Phosphorus Fertilizing Model. Soil Science, Agrochemistry and Plant Protection, vol. XX (1), 31-39. Statistical Annals Stoyanov, D. (1985): Boron fertilizing. Soil Science, Agrochemistry and Plant Protection, vol. XX (1), 82-88.
71
Chromic Luvisols
Luvic Chernozems
Haplic Kastanozems
Haplic Chernozems
Exchangeable K
Exchangeable K
Exchangeable K
16 mg/100 g Roots Sugar
Exchangeable K
18 mg/100 g Roots Sugar
21 mg/100 g Roots Sugar
30 mg/100 g Roots Sugar
Ko
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
K,,
106.1**
104.8
105.6"
107.8
105.7
107.4
99.0
101.7
K 160
111.7"*
113.6
101.9
104.7
114.8
116.7
97.4
102.2
K3
110.7'*
111.9
108.4**
111.9
117.2**
119.2
101.7
107.3
KO
100.0
100.0
100.0
100.0
100.0
100.0
100.0
100.0
Kw
112.4"*
114.9
104.2"
107.4
119.0"*
129.5
103.0
108.2
2 -
Ki0
100.2
104.7
105.3"
110.1
130.4"*
142.7
102.8
110.1
0
K320
101.5*
104.9
105.7*
111.0
133.7"*
144.6
105.1'
113.9
Variants
_
d
1. Noso
11.N120P1 20
r
Statistically proved at p<0.05 Statistically proved at p<0.01 *¢0
0
0
0
Haplic Kastanozems (Alvanovo) Exchangeable K20 21 rg/100 g Roots Sugar 100 100 135 127
Variants
000 NIoP8o
137
N120PoKI20
131
Haplic Kastanozems (Trastenik) Exchangeable K20 20 g/i100 g Roots Sugar 100 100 134 133 151
Luvic Chernozems (Rakovski) Exchangeable K2 0 18 mg/100 g Roots Sugar 100 100
144
Verisols (Badashte) Exchangeable K(O 26 mg/100 g Roots Sugar 100 100 145 134 169
2 E:
no
156
NIS0PA
134
108
N18oP80KI40
152
131
144
132
Nt2oPt4KI
146
140
M"
NISO P140
136
116
0
NISPI KW o
153
137
0
N2 o PM
135
114
157
139
NZoPMK
o
N2Q P2M
152
141
181
156
N2 40P 24 1 K120
155
142
204
176
N2QP24
152
139
155
140
o
171
160
51
E-
Table 3. Relative effect (in %) of potassium on root and sugar yields with and without irrigation. Haplic Chernozem, exch. K20 -30 mg/100 g (Krastev, 1981). Variants
Root yields With irrigation Without irrigation 100 100
000 NIMPM NIPIxKO NPIM NMIPIU)K2(M NMIPM N 3ooP(xK (X, 2 NINPM, NIooP 2 oKBX) N2N)P2M
N 2 oPtK
2 X)
N3MP20o N3oP2N)K N) NIMPM)
NIM0P 3 MoK N2oP3oo
N 2M P3 MKm) N33o o N 3MoP3 MoK"
154 159 141 151 135 146 153 157 138 155 131 146 151 159 138 155 136 148
Sugar yields With irrigation Without irrigation 100 100
112 114 114 115 109 116 112 116 114 116 113 114 112
115 113 115 112 118
147 157 132 135 113
108 110 105 107 95
123
103
145 155 119 136 110 124 144 155 118 139 111 125
107 112 105 109 99 100 108 113 105 106 97 103
Table 4. Composition of sugar beet from the field experiment ,,Potassium balance". Soil Haplic Kastanozems
Haplic Chernozems
74
Variant
K
K,, KM K1W
Na a -N mg/1OOg beet 3.14 1.15 3.74 3.83 0.98 3.65 4.06 0.94 3.62
Sugar content, % 16.92 17.09 17.11
Alkalinity coefficient 1.14 1.32 1.38
K320
4.74
0.72
3.33
17.21
1.64
KO K, K1fo K320
3.27 4.17 4.93 5.12
1.72 1.50 1.39 1.32
3.34 3.21 3.08 2.95
16.39 16.52 16.63 16.50
1.49 1.77 2.05 2.18
I1I
'
r=290077777
4
"
q
E
4
Os "zfiogla/a ikohr aN\I.
A cukorr6pa-termesztus tpanyag-ellitisi problnaii Bulgiriiban t i ersitI of ForesItrx, Factu I bul.. 1756 Sofia, Bulgaria kk\
*n*
filse lifl s 'h>
c
ISI nys/ s lHO)t p(L~ IlImm >s li kk K ito i w int t U UtI 1
p> 0M
lii
kuilm;a); Cf'l
i
-SZms i '- nthlq tlc tu sl s I
0
LilItO
i
altritc
BIhICJW A nLL h k)Cen, h.
1%6N liticLlc tiJ V wu d
k wI
k~o
ni
Istiji
~lOxtcn on
;
kiol t
stl h
i jm kwd"
o
N
w
ofAgrien lt ire, 1) KIiment Ochridski
l k i)i>iik. h: i l q tlcsk
ittw
\ttt t
Ci>
jl
Lq nhu[II.J i l
~ PK |l n W
K
.
Iil .1 . k lii ck k I;
t'uc
\Pmk Mnou
cllaittit
tlapik Ko
ifl h" S kI.hm I Ind
f
hi p \ WTI<
wlk tii
pI ii h >1/. luii Nrt1 04i1 I
c kt/ rp io
ail wkt
is.3s5' ol
i
ki
s
Wtwt nIt
-hai
tt
a
A. Kristek and V. Kovacevic
2
Nutritional constraints of sugar beet production in Croatia I Sugar Beet Breeding Institute, M. Divalta 320, HR-31000 Osijek, Croatia 2 Faculty of Agriculture, Trg sv. Trojstva 3, HR-31000 Osijek, Croatia
Summary
In Croatia, sugar beet is the eighth most important but more than 80% of the crop is grown in Eastern Croatia. During 1981-90, the area harvested was 27,850 ha, with a sugar percentage of 15.41%. Due to the war, these values had fallen to 14,200 ha and 14.03% sugar in 1991-95 (data of the Croatian Sugar Beet Producers Association). The decrease in % sugar is explained by climatic changes. The mean montly air temperature during July and August ranged from 20 to 240 C, some 3 to 50 C above of optimal temperature for sugar beet. Also, in the last few years, fertilizer use has declined tremendously. Total beet root yields are insufficient for the processing capacity (total 19,000 t day-') of the four sugar factories in Croatia. With the aim of improving yields and beet quality, the use of nitrogen (N), phosphorus (P) and potassium (K) fertilizers and other nutrients such as calcium (Ca), magnesium (Mg) and boron (B) should be based on soil testing. For example, in the last three years, 1337 soil samples from 4743 ha were analysed by the EUF method. The percentage of samples with small nutrient contents was 31% for P, 20% for K, 39% for Ca and 17% for Mg. A foliar application of magnesium (as Epsom salt, MgSO 4.7H 2 O) applied as a
5% solution at 400 1 ha-1, was tested by applying it twice at an interval of 10 days in June. The sucrose content of the beet was increased, on average by 0.25%, 0.20% and 0.26% in 1995, 1996 and 1997, respectively. A foliar application of Mg was especially effective on soils characterized as having only a moderate supply of magnesium in the soil. Introduction
In Croatia, sugar beet is the eighth most important arable crop by harvested area. On average, in the period of 1980-89, the harvested area (ha x 103) was: corn, 507; wheat, 311; potatoes, 81; clovers, 63; alfalfa, 60; barley, 56; oats, 29; sugar beet, 28; rape seed, 18; soybean, 14. In general, more than 80% of the sugar beet crop is grown in the five counties of Eastern Croatia which account only for 22% of the country. Warm and relative dry summers are the main climatic characteristics of Eastern Croatia. For example, mean monthly air temperatures during July and August range from 20 to 24 0 C which is 3 to 50 C above the optimal temperature for sugar beet. Because sugar beet is grown as a rainfed crop, plant growth and development, including drying of leaves, is closely related to the occurrence of drought and heat stress. The total beet root yields are insufficient for the processing capacity (total 19,000 t day I) of the four sugar factories in Croatia. To improve both root yields and quality, the use N, P, K fertilizers and other nutrients (for example, Ca, Mg and B) should be based on soil testing. For
77
this reason, the Croatian Sugar Producers Association has been supporting soil testing and the results are published in the annual reports for 1996, 1997 and 1998. Also, experiments, including different fertilizer treatments, have been conducted on sugar beet fields. For example, foliar application of Mg (as Epsom salt, MgSO 4 .7H 20) has increased yield and quality, especially sucrose contents in some cases (Kristek et al., 1997, 1998). Material and methods The data of the Croatian Sugar Producers Association on the harvested area, root and sugar yields and sucrose contents are given in Table 1. Weather data (rainfall and average air temperatures) were collected in Osijek (Cerenko) Weather Bureau (Table 2). Soil testing was by the EUF method as part of the project for improving sugar beet production supported by the Croatian Sugar Producers Association. This project covered 4744 ha (or about 6% of sugar beet growing area) for the 3-year period (1996-1998). Soil samples (to 30 cm) were collected in the autumn of the previous year and N, P and K fertilizer recommendations were made in accordance with the soil nutrient status. In addition, three field trials, including different sugar beet hybrids, were conducted on commercial farms (formerly large state farms) situated in Osijek (Os), Djakovo (Dj) and Donji Miholjac (DM) in Eastern Croatia in the three years 1995 to 1997. Each treatment was replicated four times in 1995 and 1996, and eight times in 1997. Each plot measured 10 m2 (two 10-m rows; inter-row spacing 50 cm). In 1995 and 1996, two replicates tested a foliar application of Mg as Epsom salt. The Mg was applied in a 5% w/v solution at 400 1ha-; in two applications at an interval of 10 days in June; the other two replicates were the control. In 1997, ESFF test was made on four replicates. In total, 13 sugar beet hybrids were tested in 1995 and 1996 and 19 hybrids in 1997. Thus, the data on the response to Mg are mean values from 26 (for 1995 and 1996) and 76 (for 1997) individual results. The roots from the whole plot were used for root yield and chemical analysis. Sugar beet yields were calculated on a plant density basis. Analyses on the root samples were made at the Osijek Sugar Beet Breeding Institute using VENEMA equipment (The Netherlands). Sucrose was determined polarimetrically, root K and Na flamephotometrically and a-amino N colorimetrically. Results and discussion The area of sugar beet which is grown and the total root yield (Table 1) are insufficient for processing capacities of the four sugar factories situated in Osijek, Zupanja, Beli Manastir and Virovitica. It is estimated that the combined processing capacity could cope with an area of 34,000 ha/year based on an average of 44.5 t/ha (the 10-year average in 1981-1990) and 80 processing days per year in each factory. In the period of 1991-1995, the area of beet grown decreased by about 50% and processing capacity by about 23% compared to before the war in Croatia (Kristek et al., 1999). Soils with a high fertility status are required for sugar beet but there is a limited area of these soils because of the normal farm practice based on a four crop rotation. Beet grown on less favourable soils and with less favourable weather conditions, together with poor management practices (for example, inadequate soil tillage and fertilization) constantly replaces dead leaves with new ones. Using sucrose to form new leaves decreases root sucrose concentrations under these stress conditions (Anda, 1995).
78
Table I. Sugar beet harvested area (ha x 103), yields and sucrose content in Croatia (data of the Croatian Sugar Producers Association).
5-year averages
Variations in individual years*
ha x
Yield (t ha-')
Period
l0
Root
Sugar
Sucrose %
Year
103
Root
Sugar
%
1961-65 1966-70 1971-75 1976-80 1981-85 1986-90 1991-95
20.0 23.3 22.3 24.9 29.1 26.6 14.2
30.7 40.7 41.9 44.6 45.2 43.7 36.8
4.92 6.21 6.17 7.13 6.90 6.80 5.16
16.01 15.26 14.73 15.98 15.26 15.55 14.03
1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
25.6 28.3 24.9 27.0 27.1 9.4 14.7 12.2 15.9 19.0 21.3 26.4
45.3 39.4 38.5 50.6 44.4 45.7 31.7 36.3 36.9 36.7 43.3 37.6
7.37 6.26 5.79 7.35 7.09 6.65 4.78 5.18 4.77 5.06 6.68 5.90
16.28 15.91 15.03 14.52 15.97 14.56 15.07 14.25 12.92 13.77 15.42 15.69
1998
29.0
43.0
6.13
14.25
* the reduction in the harvested area in the period
from 1991 to 1996 was connected with the war. The occupied area (nearly 30% of the territory) is not included in the statistics
ha x
Yield ( ha')
Sucrose
In general, the long-term average % sugar in the roots is fairly stable, but there are large annual fluctuations (Table 1) mainly due to weather conditions (Table 2). The small % sugar in 1994 and 1995 was mainly the result of high air temperatures and too long a period of drought. From June 30 to August 9, 1994 and 1995, there was 19 and 23 mm of rain and average air temperatures of 23.9 and 23.6"C, respectively. In 1996 and 1997, the corresponding 0 weather data were 115 and 119 mm rain and 19.9 and 20.8 C air temperatures, respectively, and % sugar was average. Table 2. Rainfall (mm) and average air-temperatures (0C).
Osijek Weather Bureau: rainfall (mm) and average air temperatures (C) Month
Unfavourable seasons 1994 1995 0 mm C mm C
Favourable seasons 1996 1997 mm C mm IC
May June July August September
35 88 19 84 120
78 30 95 77 157
Total mm Mean C
262
17.0 20.2 23.9 22.6 19.4
84 120 23 82 203
15.6 18.8 23.6 20.8 16.0
512 20.6
18.0 21.1 19.9 2(0.6 13.0
434 19.0
38 86 91 41 53
17.8 20.8 20.2 20.5 16.2
309 18.5
Average 1961-1990 mm IC 59 88 65 59 45
16.5 19.5 21.0 20.3 16.6
316 19.1
18.8
Data from the recent soil testing (Table 3) show that 39% of samples were very low in Ca, 31% very low in P, 44% (classes 1+2) very low in K and 17% very low in Mg; while 39% soil samples could be designated as rich in Mg, 14% rich in P and 10% rich in K and Ca.
79
Table 3. Survey of nutrient availability in some fields used for sugar beet growing in the Eastern Croatia (Osijek Sugar Beet Breeding Institute). Area covered by soil sampling (ha), number of samples (n) and % of samples in classes from 1 to 5: EUF method (data for the fraction extractable at 200 C) (in mg/100 g of soil) Soil class
3
2
Soil class
1 4
15
1
ha n %
<10
1.0-5
115-1.8
1470 416 31
1606 437 32
582 161 12
<20.0 1792 528 39
3
14
15
Potassium (K)
Phosphorus (P) ha n %
2
1.8-225
>2.25
<5.0
5.0-7
7.0-10
100-15
>15
503 42 II
583 181 14
966 262 20
1193 326 24
1322 367 27
912 251 19
351 131 10
Calcium (Ca) 20-30 3040 40-50
>50
<4.0
Ma nesium (Mg) 4.0-5 50 - 6 >600
1193 332 25
445 115 9
719 224 17
105 287 21
665 193 14
650 169 13
1133 302 23
1836 524 39
* total: 4744 ha and 1337 (100%) soil samples for the 3-year (1996-1998) period.
For the experiments on foliar Mg, the sugar beet were grown on soil types with the characteristics of those of an eutric cambisol (brown soil) which is the soil type used for growing the crop in Croatia. In general, the soils used were suitable, except the S2-95 Dj (Table 4). The small yields at this site cannot be explained by the data from any of the soil tests. We used two published studies (Wiklicky, 1982; Nemeth and Rex, 1980) to help interpret our EUF soil test data. For example, EUF-Mg-20 0 C above 3 mg Mg/00g and EUF-K-20'C 11-15 mg K/100g soil are required for optimal sugar beet nutrition.
Table 4. Chemical properties of the fields used for testing the response of sugar beet to a foliar spray with Epsom salt (Kristek et al., 1999).
IEF-fraclion 20C/200V Soil (S).
pH
(KCI)
j
Humus
gm100 g of soil
Fe
ppm Mn I Zn
1.84
-
1-
0.71
1.98 1.84
0.87 4.15
1.29 2.80
0.42 0.42
0.75 0.15 0.33
1.38 1.55 1.03
Na I P
Mg
Cam
3.58 3.22
23.4
10.3
2.51
6.53
5.65
2.23 2.91
[1.63
4.43 15.4 2.55
0.85 189 :.I69
[0t.60
K 1995
SI-95 Os
6.30
2.07
S2-95 Dj 5.30 S3-95 DMj 6.00
1.90 1.99
J4.74 J35.1 J9.01
-
1996
1.20 2.60
5.81 414
5.93
1.67
0.44
0.32
0.36
3.34
1.63
1.07
0.95
0.84
59-97 DM 5.40 1.70 2.63 15. 5.3 18 Osijek (Os). Djakovo (Dj) and Donji Miholjac (DM) area.
079
.2
063
12
S7-97 Os S8-97 Dj
80
5.80 7.04
27.8 44.7
S4-96 Os S5-96 Dj S6-96 DM
6.42
3.75 4.35
J2.40 J4.42J4.
2
5.40
2.30
5.24
19.3
1997 5.36
5.46
2.66
3.57
20.8
7.27
The effect of soil and foliar applied Mg on the yields, % sugar and K, Na and a-amino N in the beet are in Table 5. Table 5. Sugar beet status as affected by soil (A) and foliar spray (B) with Epsom salt (Kristek et al., 1999). Treatment designation
1 root
mmol/lO0g
Sucrose
Yield (/ha)
(%) sugar
K
(sugar beet) I Na I a-amino N
1995 12.09 10.82 14.23
3.91 3.92 4.10
1.71 3.84 1.53
3.09 1.34 1.43
0.4
0.23
0.13
0.15
0.15
3.4 3.5
12.25 12.50
3.95 4.M83
2.37 2.36
1.9 1.91
38.5 168 45.6
3.7 1.3 5.4
LSD A 5%
3.9
B I (control) B2 (Epsom sal)
33.4 33.8 nts
rs
Al (Soil 1-95 Os) A2 (Soil 2-95 Dj) A3 (Soil 3-95 DM)
LSD B 5%
0.19
ns
ns
ns
14.61 14.85 15.81
4.38 3.04 4.42
0.80 1.15 0.96
1.30 1.43 2.08
1996 A I (Soil 4-96 Os) A2 (Soil 5-96 Dj) A3 (Soil 6-96 DM)
54.1 42.4 59.5
67 55 8.0
LSDA 5%
0.7
0.1
0.15
0.09
0,10
0.17
B I (control) B2 (Epsom salt)
52.1 52.0
6.8 6.7
14.99 15.19
3.95 3.95
1.00 0.94
1.69 1.52
ns
ns
ns
n,
0.06
LSDIB5%
0.0
1997 Al (Soil 7-97 Os)
62.87
8.10
15.40
4.33
1.53
2.43
A2 (Soil 8 97 Dj) A3 (Soil 9-97 DM)
53.00 52.93
6.79 7.06
14.74 15.81
2,87 4.47
1.21 1.19
2.62 1.97
LSD A 5% BI (control) B2 (Epsom sait) LSDB5%
2.51
0.45
0.38
0.31
0.15
n.
55.16 57.38
7.12 7.52
15.18 15.44
3.83 3.95
1.32 1.29
2.48 2.45
0.84
0.13
0.08
0.04
nit
ns
Drought stress in 1995 (Table 2) could explain the low % sugar (12.38%) compared with that (15.10%) in 1996 and (15.31%) in 1997. Root yields and % sugar, K, Na and a-amino N in the roots (Table 5) were influenced by the soil conditions (Table 4). In general, there were significant differences in yields and % sugar as well as K, Na and a-amino N in the roots between years due to weather factors and soil differences between sites. The foliar application of Mg increased % sugar by 0.25%, 0.20% and 0.26% in 1995, 1996 and 1997, respectively. But, sugar yield was increased significantly (by 0.40 t/ha) only in 1997 while the decrease in a-amino N was found only in the second year. Foliar application of Mg was especially effective in increasing % sugar when soil Mg supplies were moderate, i.e. in experiments S4-96, S5-97 and S6-97. Conclusions In general, environmental conditions in the Eastern Croatia are favourable for sugar beet growing although weather conditions, especially rainfall and temperature, have a large effect on annual yields. Improvements in root yield and quality are possible by appropriate soil and 81
crop management practices especially basing fertilizer recommendations on soil testing for the nutritional status of the soil. Foliar applications of Mg benefited root yields and quality, especially % sugar. We recommend foliar spraying with Mg (as Epsom salt) as a normal crop management practice, especially for soils with a moderate supply of Mg and/or S. Acknowledgements These investigations have been supported by Croatian Sugar Beet Producers Association, Ministry of Agriculture and Forestry Zagreb, Croatia and Kali und Salz GmbH, Kassel, Germany. References Anda, A. (1995): Investigations into changes in yield of sugar beet under dry weather of 199394 by using both plant and meteorological data. Novenytermeles, 14 (2), p. 131-145. Kristek, A., Andres, E., Kovacevic, V, Liovire, I. and Rastija, M. (1997): Response of sugar beet to foliar fertilization with Epsom salt. In: Developments in Plant and Soil Sciences, Volume 78: Plant Nutrition for Sustainable Food Production and Environment (Edited by Ando, T, Fujita, K., Mae, T, Matsumoto, H., Mori, S. and Sekiya, J), p. 939-940. Kristek, A., Kovacevic, V. and Rastija, M. (1999): Response of sugar beet to foliar fertilization with Epsom salt (MgSO 4 .7H2 0). Rostlinna vyroba (in press). Kristek, A., Kovacevic, V, Uebel, E. and Rastija, M. (1998): Influence of foliar fertilization with Epsom salt (MgSO 4.7H20) on sugar beet quality. Abstract of International Workshop of EUFA (Ege University, Faculty of Agriculture) and IAOPN (International Association for Optimization of Plant Nutrition) ,,Improved Crop Quality by Nutrient Management", 28 September-I October, Bornova, Izmir, Turkey. Kristek, A., Magud, Z. and Rastija, M. (1998): Environmental and genetical influences on sugar beet yields and root quality. li: ,Fifth Congress of ESA (European Society for Agronomy), 28 Junc-2 July, Nitra, The Slovak Republic. Short Communications, Vol. I (M. Zima, M.L. Bartosova, Eds.), p. 269-270. Kristek, A., Rastija, M. and Magud, Z. (1998): Status and perspectives of sugar beet growing in Croatia. In: ,,Fifth Congress of ESA (European Society for Agronomy), 28 June-2 July, 1998, Nitra, The Slovak Republic. Short Communications, Volume I (M. Zima and M.L. Bartosova, Eds.), p. 111-112. Kristek, A., Uebel, E., Kovacevic, V., Rastija, M. and Lioviac, 1.(1998): Influence of sugar beet fertilization with magnesium sulphate on root yields and quality. In: ,,Book of Abstracts" 6th European Magnesium Congress, May 13-16, 1998, Budapest, Hungary. p. 76. Nemeth, K. and Rex, M. (1980): Einfluss der Machtigkcit des durchwurzelbaren Raumes auf die K-Dungerwirkung. Landwirtsch. Forsch. 37, 633-644. Wicklicky, L. (1982): Application of the EUF procedure in sugar beet cultivation. Plant and Soil 64, 115-128.
82
Osszefoglalds Kristek, A.'-Kovacevic, V.2
A cukorr6pa tipanyagellitaisainak fontossiga Horvitorszigban ISugar Beet Breeding Institute, M. Divalta 320 HR-31000 Osijek, Croatia 2 Faculty of Agriculture, Trg sv. Trojstva 3, HR-31000 Osijek, Croatia A cukorrdpa a bevetett terfilet nagysfgAt tekintve a nyolcadik helyet foglalja el Horvitorszfigban. A cukorr~pa-teriilet t6bb mint 80%-a Kelet-Horvitorszdgban talilhat6. Az 1981-90. dvek itlagfiban a betakaritott terailet 27850 ha, a cukortartalom 15,41%, az 1991-95. 6vekben pedig a h6borfi kdvetkeztdben 14200 ha 6s 14,03% volt. A csdkken6 digestio r6szben klimatikus t6nyez6kkel magyar6zhat6, mert a lcveg6 havi 0 kdz6ph6mdrs6klete 20-24 C volt, ami 3-5°C-szal magasabb a cukorr6pa-termeszt~s szempontjdib6l optimflis h6m6rs6kletndl. Azonban az ut6bbi n~hiny 6vben a trdgyafelhasznilAs is rettent6en visszaesett. A horvftorszAgi term6terbiletet, ill. a megtermelt cukorr6pa-mennyis6get a n6gy, bsszesen 19000 t/nap feldolgoz6kapacitAs6 cukorgydir szabja meg. A cukorr6paterm6s n6vel~se 6s a r6pa min6s~g6nek javitAsa 6rdek6ben talajvizsgAlatokra alapozott N-, P-, K-, Ca-, Mg- Cs B-trAgydzdsra van sziiks6g. Az ut6bbi 3 6vben 1337 talajmintAt vizsgAltunk meg 6s a talajmintdk %-Aban kifejezve 31% foszforhifnyos, 20% k~lium-, 39% Ca-, 17% pedig Mg-hifnyos volt. Epsom s6 (MgSO 4° 7 H 20) 5%-os oldatAval 400 I/ha-os adaggal jfiniusban 10 napos id6kdzzel k6tszer v~gzett lev~ltrAgyAzfssal a cukortartalmat 0,25; 0,20 6s 0,26%-kal lehetett nvelni az 1995; 1996 6s 1997. 6vben. Az Epsom s6val v6gzett lev6ltrAgydz&s kiil6n6sen hatisos volt magn6ziummal gyeng6n elldtott talajokon.
83
J. Chochola
The state and problems of sugar beet fertilization in Czech Republic Sugar Beet Institute, CZ 29446 Semcice 69, Czech Republic Sugar beet growing in Czech Republic has been going through a difficult period of restructuring. Repeatedly an overproduction of sugar occurs, which is always followed by a drop in sugar beet and sugar prices and in the area growing sugar beet. Sugar beet price is now (1999) lower than in 1993 and the area grown is approximately half as great. Growing costs have increased in the meantime from 30,000 to 40,000 CZK/ha. This situation has considerably affected sugar beet fertilization. During the last ten years, nitrogen (N), phosphorus (P) and potassium (K) rates in the form of industrial fertilizers applied to sugar beet have decreased from 150 to 78 kg N, from 80 to 50 kg P2 0 5 and from 140 to 51 kg K0/ha, respectively. Lime, in effect, is no longer applied, and only 50% of the sugar beet area receives farmyard manure (FYM). These and further characteristics of the current sugar beet growing are summarized in Table I. The decrease in fertilizer use is manifest in the increasing proportion of soils with low P and K reserves (up to date about 20% of the area, Fig. 2) and a decrease in the area with a very high K reserve. This is one of the causes of a decreased content of molasses-forming substances in sugar beet and an increased sugar yield from 78-80% in 1990 to the present 8485%. Despite insufficient fertilization the yields of sugar beet have increased - nowadays they are approximately 45 t/ha with a sugar content of 16% instead of 35 tlha ten years ago (Fig. 2). In experiments, the optimum N rate fluctuates between 60 and 120 kg/ha and the optimum N rate correlates well with the nitrate reserve in soil in early spring (Fig. 3). In the 1980's, it was not possible to prove the efficiency of P and K fertilization on sugar beet yield. Today, there are many locations with only a small reserve of these two nutrients and therefore responses to applied P and K fertilizers (Fig. 5). Since 1986, we have been monitoring the soil nitrate reserve during winter and spring in all the important sugar beet growing regions. On the basis of this monitoring, regional N fertilization recommendations are given. From this work, there has been a surprising result, namely the nitrate reserve in the soil layer of 60-90 cm was still increasing 5 years after the amounts of fertilizer N used had decreased (Fig. 6). In Czech Republic, there are regions where the quality of sugar beet has not increased significantly so far. In these regions, there are large nitrate reserves in the deeper soil layers and also there is rhizomania and cercospora leaf spot. The large nitrate reserve in the deeper
84
soil layers results in an increased N availability in the second half of the growing period and this impairs sugar beet maturation and causes low quality of the beet (Fig. 7). Table 1. Typical characteristics related to Czech sugar beet growing. Growing area (1999) Number of growers Sugar beet area per grower Average size of sugar beet field Sugar beet as a % of farm cropping Frequency of sugar beel cropping after 3 years after 4 years after 5 years Ploughing in of sugar beet tops Organic fertilization (farmyard manure) N Average fertilizer rates P20 K 20 MgO Plant spacing Cropping density Average vegetation period from sowing to harvest Costs of industrial fertilizers Costs of herbicides Total costs of sugar beet (1998199)
ca 58,000 ha ca 900 ca 60 ha 25 ha 10.30% 3% 25% 20% 90% of the area 50% of the area 79 kg/ha 50 kg/ha 51 kg/ha 5.7 kg/ha 180 mn 85.000 beets/ha 184 days 3,280 CZK/ha 7.480 CZK/ha 39,500 CZK/ha
173 DM/ha 394 DM/ha 2079 DM/ha
Fig. 1. Nutrient reserves in the Czech fields.
-
100% 80% 60%
-
40%
-
20% 0%
I lVH tHi
o Goodl O3Ace
-
,L,
v
: pH
Phosphorus
Kali
Magnesium
Occurence rateinagricvitural soil (%)
85
Fig. 2. Sugar beet growing area and yields in Czech Republic
Sugar beet area in Czech Republic - ha 160000 000 0012000(1)000000g00 " -
120000-111 60000
LUHif
UL -R --ilii-
nil-
Sugar beet yield with 16 per cent sugar content Pm~gnsted
50
40
6_030 20-
- -
10 0
.I
6.020
White sugar yield in Czecbia
6,0 - 5,0 340 1,0 -4,0
86
-
-
-
-
-
Fig. 3. Results of trials with gradually increased nitrogen fertilization (ONR = optimal
nitrogen rate) Kralice (PV) 1996, reserve N 62 kg,
Cejetice (MB) 1996, reserve N 95 kg,
prognosis ONR 120 kg Sugar yield i/ha 11,5
prognosis ONR 90 kg Sugar yield tgha 12I 11,5, 11 10,5
"
to --
-
1
10
9,5 -
9 60
0
120
1 60
0
240
180
120
180
240
Nitrogen rate kg/ha
Nitrogen rate kg/ha
Unlovice 1997 reserve N 85 kg. prognosis ONR 110 kg Sugar yield t/a
Katvsice 1997, reserve N 88 kg, prognosis ONR I10 kg Sugar yield Uha 12,5 •10,5
10 9,5 11,5
9
60
0
120
8, 5
.
4-.
11 9
180
60
0
240
Bystrice 1998 (IC), reserve N 75 kg, prognosis ORN 76 kg/ha N Sugar yield t/ha
240
Katusice 1998, reserve N 54 kg, prognosis ONR 134 kg/ha N Sugar yield I/ha
11,00
11,60 11,4 0 1 1,20
10 ,80
-
10,60
11.00 10,80 "
--
10,40
-
-
10,40 ___
10,20 10,00 98 9,8 9,80
--
10,00 9,80 9,60 •-
180
Nitrogen rate kg/ha
Nitrogen rate kg/ha
10,20
120
9,60
-0
60
120
180
240
K
0
60
120
180
240
87
Fig. 4. Effect of phosphorus and potassium fertilization on sugar yield with lower nutrient reserve. Katusice 1997, P 32 mg/kg, K 198 mg/kg Sugar yield t/ha 13,4 13,2 13 12,8 12,6 12,4 12,2 POKO
P200K0
P400K0
POK200
P200K200 P400K200
Katusice 1998, 29 mg/kg P, 147 mg/kg K Sugar yield t/ha 12,00 11,50
11,00 10,50
10,00 9,50 POK0
POK200
P200K0
P200K200
P400K0
P400K200
Bysttice 1998,32 mg/kg P, 258 mg/kg K Sugar yield t/ha 12
11,5
I1
10,5 POK0
88
POK200
P200K0
P200K200
P400K200
Fig. 5. Monitoring of nitrogen reserve in the Czech sugar beet fields. Nitrogen in sugar beet fields in winter - average of the last ten years 250 200 50 50 15- 01-
IS- 15-
01-
15- 01-
15- 01-
15- 01-
15-
30-
Nov Dec Dec Jan Feb Feb Mar Mar Apr Apr May May May
Nitrogen reserve in sugar beet fields at the end of February 87 - 9 6
97
--_
_
0 60- 90 0lI. 30-60
!
97
00-30
_
98 0
50
100
150
200
nitrate nitrogen kg/ha
Nitrate reserve in the soil layer 60 - 90 cm 70 60
_
z
f
_
--
-
50 40
3020 10
-
.
.
...
.
.
89
Fig. 6. Effect of nitrogen reserves in deep soil layers on their availability to plants in the second half of the vegetationNitrate reserve and nitrogen need during vegetation of sugar beet - simulation
200
'N
needs
1kg/ha N in soil
t-
kg/ha
50
01 3
I
5
7
9
11t
13
15
17
19
21
Weeks after emergence
,,Desirable" state with a low reserve in the layer of 60 - 90 cm: 0-30cm 25 kg/ha N 30 -60 cm 50 kg/ha N 60 -90 cm 25 kg/ha N Nitrate reserve and nitrogen need during vegetation of sugar beet - simulation
F I
250-------------------200 ,4
150
N needs
kg/ha
-
I
100----
50. -50
50
---J_
I_.I
-
_II
Weeks after emergence
Moravia 1995 - high reserve of N in deep soil layers: 0 -30 cm 59 kg/ha N 30 - 60 cm 74 kg/ha N
60 -90 cm 90 kg/ha N
90
Ninsoil kg/ba
N fert. kg/ha
Osszefoglalms Chochola, J.
A cukorrepa tr igyizaisinak helyzete 6s probl'mii Csehorszmigban Sugar Beet Institute, CZ 29446 Semcice 69, Czech Republic A rendszcrvfiltAst k6vet6en a cukorrpa-termeszts Csehorszigban neh~z id6ket elt -6t. Az ismdtelt ttiltermel6s kdvetkezt6ben cs6kkent a cukor 6s a cukorr6pa ara es csokkent a term6terfillet is.A cukorr6pa 'ira ma kisebb, mint 1993-ban, a term6terbilete pedig csak fele az akkorinak. A termeldsi k6Itsdgek ezalatt a hektAronk6nti 30000 cseh koronir61 40000 cseh koronira n6ttek. Emiatt a kiadott N-mtitrAgya mennyis6ge 150 kg N/ha-r61 78 kg-ra, a Pmtitrdgya 80 kg P2O5/ha-r6l 50 kg-ra, a K-mfitrgya pedig 140 kg K2 0/ha-r61 51 kg-ra esett vissza. A meszez6st teijesen elhanyagoltdk s csak a terulet 50%-a kap szerves trfgyAt. Ennek hatiisAra cs6kkent a talajok foszfor- ds k-ilium-kszlete. Szerencsdre a ktirosan nagy kMliumtartalmig teroiletek is cs6kkentek 6s rdszben ennek is tudhat6 be, bogy a cukorkinyer6s az 1990-es 7880%-r61 84-85%-ra n6tt. A cs6kkent mfitrAgya-felhaszni's ellen6re a 16%-os cukortartalomra Aitszimflott r6paterm6s 10 6v alatt 35 t/ha-r61 45 t/ha-ra javult. A szfnt6fdldi kfs6rletek eredm6nyei szerint az optimfilis N-adag 60-120 kg N/ha kozdtt vdltozik a talajok kora tavaszi nitrfttartalmdt61 fiigg6en. A 80-as 6vekkel cllentdtben, ma mir nagy szfmban talilunk olyan talajokat, ahol a P- 6s K-trdgyzAs nagy m6rt6kben n6veli a cukorr6pa term6s6t. A nitrftvizsgilatok meglep6 eredm6nyt hoztak. A talajok nitrzittartalma az ut6bbi 5 6vben a 60-90 cm-es talajr6tegben a csdkken6 nitrog6ntrfgy Azs ellen6re is n6tt. Meg.11apitottAk, bogy ez az oka annak, bogy a cukortartalom egyes r6gi6kban nem javul kiel6git6 m6rt6kben. Ezeken a terilteteken a rizomAnia 6s a ccrkosp6ra is nagyobb val6szniis6ggel fordult e16. A m6lyebb talajrtegben taldlhat6 magas nitrfttartalom kildnsen rontja a r6pa min6s6g6t, mivel a tenydszid6 v~g6n, vagyis akkor szolgfltat sok nitrog~nt a cukorr6pfnak, amikor mAr a j6 min6sg el6r6se drdek6ben inkAbb a nitrog6n hifnya lenne az el6ny6s, igy a mdIyebb talajrdtegek magas nitr.ttartalma a rossz min6stg egyik legf6bb oka.
91
F.Csima
Possibilities for reducing fertilizer costs in sugar beet production with various financing structures Magyar Cukor Stock Co. Factory 10-12. Pcsi u. H-7400 Kaposvir, Hungary Summary In Hungary, sugar beet is grown on large areas of arable land and fertilizers are a major input expenditure. The substantial cost, coupled with the position of agricultural producers with respect to liquidity, which is generally not favourable, together with the low levels of profitability, can lead to exceptional difficulties in financing the costs for chemical fertilizers. This results in the situation that sugar beet producers who cannot self finance the production costs, primarily those operating on smaller farms, often do not have access to bank credit individually, or, if they do, the conditions which are attached are extremely unfavourable. Frequently, such producers do not meet the credit assessment requirements specified by the banks, as they are not in a position to provide adequate guarantees or cover. In consequence, sugar beet fertilization is influenced by economic aspects, and in unfavourable cases, this can adversely effect both yields and the date of harvest. To solve these problems, since the early 1990s those involved insugar production have gradually been developing an integrated approach to growing the crop which involves the banks and insurance companies to ensure adequate financial support. In this way, the costs of fertilizers have remained at levels related to the sale price of the beet. Introduction In Hungary, sugar beet is grown on large areas of arable land and fertilizers are a major input expenditure. The substantial cost, coupled with the position of agricultural producers with respect to liquidity, which is generally not favourable, together with the low levels of profitability, can lead to exceptional difficulties in financing the costs for chemical fertilizers. The situation is exacerbated by the fact that sugar beet is not included in the system of landbased crop production subsidies, and also, in contrast with the production of grain crops, there is no state guarantee for capital loans repayable within one year. The result is that sugar beet growers who cannot self finance production, primarily those operating on smaller farms, often do not have access to bank credit, or, if they do, such credit is available only on very unfavourable conditions. This is because such producers do not meet the credit assessment requirements specified by the banks, and it is not a strategic objective of the banks to finance agriculture, in particular, on small farms which they consider to be too great a risk. In consequence, the nutrition of the sugar beet crop is influenced by economic aspects, and so the yield and date of harvest can be severely effected. To try to solve these problems, since the early 1990s those involved in sugar production have gradually been developing an integrated approach to growing the crop which involves the banks and insurance companies. For the banks financing producers through integration with the sugar industry, along with appropriate guarantees, is a much more attractive approach than granting credit to individual producers. The favourable conditions for such credit and the 92
long instalment payment period helps solve the liquidity problems of the producers during the growing season, while the price of fertilizer, due to the large quantities purchased for a group of growers may be more favourable than where individual purchase prevails. Thus, it is worthwhile to take a look at certain solutions for financing sugar production, while also analysing the advantages and disadvantages of these respective mechanisms. Traditional pre-financing The simplest method of pre-financing sugar production is that between the sugar beet producer and the party commissioning production. After signing the contract, the producer receives pre-financing paid in cash in the spring, perhaps as much as 40% of the anticipated return. By way of guarantee, the producer authorises the commissioning party to deduct the value of the pre-financing from the final value of the crop. The producer takes out an insurance policy to cover possible destruction of the crop, the beneficiary of the policy being the party commissioning production. The major drawback of this system is that, among the various inputs required, there is no possibility of a substantial reduction in the cost of chemical fertilizers, because the producers organise their purchases individually, and their ability to influence the price is minimal because their bargaining position is weak. The advantages of this system are its relative simplicity and its uncomplicated administration, together with the fact that the cash sum granted may be used not only for the purchase of fertilizers from the party commissioning production, but also from other sources or for financing the costs of purchasing and applying organic fertilizer. (Fig. 1.)
93
Traditional pre-financing
Party commissioning production
7. Seed distributor
.o E
n Plant protecting mtra an chemical fertlizerdistrbutor
Ic
Producer
Inuac
opn
Pre-financing in kind
Party commissioning production I
-
uSeed
A>
e distributor
Producer 'C
Plant protecting material and chemical fertilizer distributor
Insurance company
Pre-financing in kind In contrast with the system of pre-financing in cash, in the case of pre-financing in kind, the various input materials are supplied to the producer directly by the party commissioning production. Thus, the latter party undertakes the responsibility for the purchase of chemical fertilizers and the accompanying price discussions, on the basis of an assessment of the requirements of the producer. This integration expands vertically, as the companies involved in manufacturing the various inputs are incorporated into the production system. The advantages of this system are the more favourable prices for the various inputs, from an improved bargaining position arising from unified ordering procedures and competitive bidding between suppliers. This system is crop specific; thus, there is limited opportunity to use the inputs for which finance for other crops. The disadvantage of this system is that it entails both additional work (in the form of price discussions with the manufacturers) and extra administration for the party commissioning production. This gives rise to costs, including these of stock building which in this case is borne by the party commissioning production. (Fig. 2.) Distributor-producer collaboration This is a more highly developed form of pre-financing in kind. It differs from the simpler one in that the party commissioning production is responsible only for the price discussions, while the costs of stock building, administration and financing involved in distribution are met by the companies distributing the materials for which pre-financing is granted. The advantage of this system is that there is a direct link between the producer and the distributor. Thus, any technological questions about the use of the products can be settled directly between the producer and the distributor. In consequence, much of the specialist advice about fertilizers comes from the distributor. A further advantage is that favourable prices can be negotiated for bulk purchases, while the costs of stock building and administration become the responsibility of the distributors. The result of more direct cooperation between the distributor and the producer also gives the opportunity for financing solutions for crops other than sugar beet. (Fig. 3.) Bank - producer - distributor - party commissioning production system
This form of pre-financing for sugar production is at present the most highly developed one and is also the most multifaceted. It requires the participation of practically every organisation involved in sugar production. The party commissioning production invites bids for all the inputs required by the producers, including chemical fertilizer. The successful distributor then contracts for the supply of all the inputs required. For these purposes, banks are invited to bid to finance this branch of production. While such financing is not part of their expressed strategic objective, because the granting of credit to agricultural producers is judged to entail a high degree of risk to the banks the financing of trade, to the value of several billion forints, is an appealing proposition. The successful bank establishes a credit limit with the producers who have a contractual relation with the party commissioning production. The amount of the credit advanced varies between 40 and 50% of the anticipated return. The distributor undertakes to guarantee the bank for the repayment of the credit; thus, the distributor provides the appropriate credit guarantee and also bears the burden of the risk arising from it. The significance of this is that, if the returns to the producer are not sufficient to cover the repayment of the credit to the bank, and if the producer cannot settle the amount due any other way, then the distributor is obliged to settle the amount outstanding to the bank. Data for 1997-98 indicate that the degree of risk was extremely small, varying between 1 and 2%. The credit made available to the producer may only be used for the purchase from the
96
distributor of chemical fertilizer, seed or pesticides, or for the taking out of insurance policies, but in all cases both the party commissioning production and the distributor must agree. The assignee for the returns of the producer is the bank. The producer is obliged to take out insurance for the sugar beet crop with the conditions determined by the distributor, the party commissioning production and an insurance brokering company. Again, insurance companies are invited to tender. The beneficiary of this insurance policy is the bank. The major advantage of this system is that the producer can apply for state support for the credit received. The degree of support is determined as a percentage of the basic rate of interest of the bank issuing the credit: this is generally 20 to 30%, dependent on the year in question. The disadvantage of this system is its relative complexity because of the large number of parties involved and the extra costs of administration. One benefit of this system has been that, in 1998 and 1999, producers have had access to credit at interest rates of approximately 10 to 12%. This contrasts with an annual price increase of 20 to 25% (depending of the fertilizer) set by the chemical fertilizer distributors in previous years. The distributor companies, recognising the great market opportunities latent in this system at farms producing sugar beet, are also developing similar systems for other crops (maize, wheat and sunflower) and are providing opportunities for the costs of autumn applied fertilizers to be financed in this way. (Fig. 4.) Results and discussion The existing links in sugar beet production have survived the adversities of the change in political system. Indeed, between 1995 and 1999, the relations between the various groups involved in sugar production including the manufacture of basic materials, the producers, the processors and the banks, have become increasingly strong. Partly as the result of this integration, the profitability of sugar beet production and the efficiency of production, having shifted from the nadir of 1993, are now more favourable. If now the appropriate root quality can be achieved, this will generate suitable profits for improved production and more efficient processing. In consequence, the decline in inputs for the sugar beet crop has not been so serious as for other crops. The recent development of the integrated connection between all involved in sugar production has, in part, presented a solution with respect to the liquidity and credit situation among producers. This may enable other crops to be incorporated into these systems, which, it is hoped, will exert a similar beneficial effect on input prices to that experienced in the case of sugar beet. References Sugar beet production contracts and its annexes of Kaposcukor and Magyar Cukor in years 1995-1999. Michael Tracy: Food production and Agriculture in market economy. Institute of Agrar-economical Searching and Information: Agrar-economical statistical pocket book. Hungarian Broad of Agriculture: The Hungarian Agriculture and food industry in numbers 1997. Institute of Agrar-economical Searching and Information: Cost and price analysis of the sugar and sugar beet production.
97
Distributor-producer collaboration
Party commissioning production
4>
o
COf
CC~
0
Seed distributor
R
oPlant
protecting mara andcbemica fertlier disribto
E Ip
Producer
Insurance company
Bank - producer - distributor - party commissioning production system
Party commissioningPcediscusions
production
" =
Insurance company
itiuo
U
E E
plant protecting material and chemical fertilizer
Producer
Bank
State subsidizing of interest
Csima Ferenc
A cukorr pa tipanyag-ellitisi k61ts geinek cs6kkent si lehetds gei kiiI6nb6zd finanszirozisi konstrukci6kkal Magyar Cukor Rt. Kaposvfiri Cukorgydra, 7400 Kaposvir, P6csi u. 10-12. Osszefiglalds A cukorrdpa tOpanyagellitzisa a nagy terfileten termesztett szint6fbldi nbvdnykult6rfk k6ziil az egyik legmagasabb hektfironk6nti rffordftfist igdnyli. Ez a jelent6s rforditisigdny, pdrosulva a mez6gazdasdgi termel6k Altalfban j6nak nem mondhat6 likviditdsi helyzetfvel 6s alacsony j6vedelmez6s6g6vcl, rendkiviili nch6zs6geket okozhat a mOtrigyizis k6Itsdgeinek finanszrozAsAban. Mindez azt eredm6nyczi, hogy azok a cukorrdpa-termel6k akik 6ner6b6 kdptelenek megfinanszirozni a termcldst, els6sorban a kisebb gazdasfgok, egyfnileg gyakran nem tudnak bankhitelekhezjutni, vagy ha igen akkor rendkivl kedvez6tlen felttelek mellett. Ennek okai, hogy cgyr6szt nem felelnek meg a bankok hitclbfrdlati k6vetelmfnyeinek, inert nem tudnak megfelel6 garanciikat, illeive fedezetet biztositani. A folyamat k6vetkezm6nyekdnt a cukorr6pa tipanyagelltAsit a gazdasfgi szempontok alapvet6en befolyfsoljAk, 6s kedvez6tlen esetben el6fordulhat, hogy emiatt nem mcgfelel6 a kijuttatott tApanyagok mennyis6ge 6s a kijuttatfs id6pontja. A fenti probI6mk megoldgsdra a cukoivertikum szerepl6i a hagyomiAnyosan is er6snek mondhat6 integrAci6s kapcsolataikat a 90-es dvek elej6t61 fokozatosan tovAbbfejlesztett6k. A bankok, biztosft6tfrsasfgok rendszerbe t6rt~n6 bevonAs6val olyan finanszirozfsi rendszert dolgoztak ki, amellyel az ilyen jellegai gondokat orvosolni lehet. Ezen m6dszerek segits6g6vel amiltrdgya-beszerz6si 6rak, ellent6tben a korAbbi 6vek 20-25%-os Aremelked6s6vcl, anyagt6l fiigg6en a felvfisArlsi irak ndveked6s6nek szintj6n maradtak. A mez6gazdasfigi tcrmel6k kedvez6tlen likviditisi 6s p6nziigyi hclyzet6nck a tfpanyagellAtfsra gyakorolt negativ irdnyii befolyzisa pedig jelent6sen lecsdkkent. Bevezet6s A cukorr6pa tipanyagelldtrsa a nagy terfileten temiesztett szdnt6f6ldi n6v6nykult6rk k6ziil az egyik legmagasabb hektfronk6nti riforditst ig6nyli. Ez a jelcnt6s rAforditdsig6ny, pfrosulva a mcz6gazdasdgi termel6k fltaliban j6nak nem mondhat6 likviditsi helyzet6vel 6s alacsonyj6vedelmez6(sg6vel, rendkiv~ili neh6zs6geket okozhat a mhtrfgydzAs k6its6geinek finanszirozdsdban. Mindez azt eredm6nyezi, hogy azok a cukorr6pa-termel6k, akik 6ner6b6l k6ptelenek megfinanszlrozni a termelist, els6sorban a kisebb gazdasigok, egy6nileg gyakran nem tudnak bankhitelckhezjutni, vagy ha igen, akkor rendkiviil kedvez6tlen felt6telek mellett. Ennek okai, hogy egyr6.t nem felelnek meg a bankok hitelbirflati kOvetelm6nyeinek, mert nem tudnak megfelel6 garancidkat, illetve fedezetet biztositani. A folyamat kdvetkezm6nyek6nt a cukorrpa tdpanyagelhitfsAt a gazdasfigi swempontok alapvet6en befoly6soljk, 6s kedvez6tlen esetben e!6fordulhat, hogy emiatt nem megfelel6 a kijuttatott tfpanyagok mennyis~ge ds a kijuttatfs id6pontja.
100
6 A fenti probl6mfk megoldfsfra a cukorvertikum szercpl i a hagyominyosan is er6snek tovfbbfejlesztett6k. A fokozatosan clej6t6 dvek 90-es a kapcsolataikat mondhat6 integrdci6s bankok, biztosit6tirsasAgok rendszerbe t6rt6n6 bevonisdval olyan finanszirozAsi rendszert dolgoztak ki, amellyel az ilyen jelleg6 gondokat orvosolir lehet. A bankok sz.JmAra a cukorvertikum termel6inek cukoripari integrci6ban tbrt6n6 finanszirozfsa ugyanis megfelel6 garanciAkkal sokkal vonz6bb piacot jelent, mint a termel6k egyedileg t6rt6n6 hitelez6se. Az igy ig6nybevehet6 kedvez6 hitelkondici6k, illetve a hosszti t6rleszt6si id6szakok pedig egyr~szr61 megoldhatjAk a termel6k likviditdsi problmAit a vegetfci6s id6szakban a cukorr6pa Arfnak kifizet6s6ig, mAsr6szr6i a m6trfgya beszerz6si Ara az integrAci6 keret6ben tbrt6n6 nagyt6telh beszerz6sek miatt kedvez6bben alakulhat, mint egy6ni beszcrz6s rev6n. trdemes tehft ttekinteni a cukorvertikumban alkalmazott egyes finanszirozfsi megoldfsokat, mindemellett elemezni az egyes mechanizmusok egymAshoz viszonyltott el6nycit 6s hitrinyait.
Hagyominyos eldfinanszirozis A cukorrdpatemels cukorgyfri el6finanszirozdsanak ez a legegyszerfibb m6dszere, ahol az integrAci6s kapcsolat csak a termel6 6s atermeltet6 kdzdtt alakul ki. A termel6k a termeltet~si szerz6ds megk6t6se utAn, tavasszal k6szp6nzben kapnak el6finanszirozfist, ditalAban a vfrhat6 Arbev6tel 40%-Aig. Garanciak6nt a termeI6 engedm~nyez6si szerz6dds keret~ben enged~lyezi, hogy az el6finanszirozfs 6rt~kdt a termeltet6 a cukorrdpa v6gelszdmolAsakor az Arbevdtelb6i levonja. A termei6 biztositdst kdt az esetleges kipusztulAs esetre, a biztositAs kedvezmdnyezettje a termeltet6. A rendszer legnagyobb h'trAnya, bogy az input anyagok, k6zt0k a mfltrAgya bcszerz6si diraiban sem drhet6k el jelent6s kedvezm6nyek, mert a termel6k beszerz6seiket egy~nileg bonyolitjik 6s egyedi piacbefoly isoI6 szcrepiik kicsi, igy alkupozici6juk gyenge. EI6nye a viszonylagos egyszers~ge 6s k6nnyO adminisztrAci6ja, valamint bogy a k6szp6nz nem csak a termeltet6 Altal biztositott m6trAgyAra, hanem birmilyen tipus6 mftrigya beszerzesere, illetve a szervestrAgydzAs k61ts6geinek finanszirozAs6ra is felhasznilhat6. (1. dbra)
101
.=-.
A hagyomdnyos el6finanszirozds
Termeltetd
NiVvenyvdd6szerVsmgtrrgya-forgama6
Termel6
Biztosft6
Term~szetben t6tmn6elfdinanszirozAs
Termeltetd
VetNmag-forgalma6
EN
E
Termel6"
N6v6nyv~d6szer ds milr~gya forgalmaz6
Biztosit6
Term~szetben tort~n6 el6finanszirozis A k6szp6nzzel t6rt6n6 el6finanszirozfissal ellentdtben itt a termel6k szfmdra a kiildnb6z6 input anyagokat a termeltet6 k6zvetleniil biztosftja. Ebben az esetben a termeltet6 v'llalja a termel6i ignyek fclm6rdse alapjAn a mItrfgya beszerz6s6t 6s az czzel jfr6 drtirgyaldsokat. Az integr.ci6 vertikAlisan kiszdlesedik, hiszen a rendszerbe bekerlilnek az fizemi anyagokat gyfrt6 c6gek is. El6nyei a hagyomAnyos el6finanszirozissal szembcn a kcdvez6bb input 6rak el6r6se, 6s a piaci alkupozici6 javulksa az egystges megrendel6s, valarnint a bcszillit6k k6zotti versenytfrgyalAsok kiirAsa miatt. A rendszer n6v6nyspecifikus igy a finanszirozott anyagok csak korlitozottan hasznilhat6ak fel m6s kultfrgkban. Hftrfnya, bogy a termeltct6 szAmAra t6bbletmunk6val (Artirgyaldsok a gyjrt6kkal) 6s t6bbletadminisztrAci6val jfr, mely kdltsdgeket credm6nyez, illetve, bogy a k6szletez6s 6s finanszfrozis kdlts6gei ebben az esetben a termeltet6t terhelik. (2. Abra) Forgalmaz6--termeld egyittmfikid~s A term6szetben tdrt6n6 el6finansziroz.s fejlcttebb formija. Abban kii6nb6zik t6le, bogy a tcrmeltet6 csak az rtArgyalisokat vdgzi el, a forgalmaz~ssal jAr6 k6szletcz6s, adminisztrfci6 6s a finanszfrozAs koits6ge azonban az el6finanszirozott anyagokat forgalmaz6 c6geket terhelik. EI6nye, bogy kdzvetlen kapcsolat alakul ki a termel6 6s forgalmaz6 k6zdtt, igy az esetleges technol6giai k6rd6sek nem a termeltet6n kercsztil, hanem kdzvctlenil rendezhet6k. Ennek kbvetkezt6ben a szaktandcsadgsi feladatok nagy r6sze is tkerfll a termeltet6t6l a miitrdgya-forgalmaz6hoz. EI6nye, bogy megmarad a term6szetben tCrtdn6 el6finanszfrozdsn.l emlitett cgys6ges beszerz6sb61 ad6d6 kedvez6 bescrz6si Ar, a k6szletez6s, az adminisztrAci6, valamint az ezzel jfr6 kdits6gek azonban Atkeriilnek a mfitrggya-anyagokat forgalmaz6 cdgekhez. A forgalmaz6 6s a tcrmcl6 kdzdtti kdzvetlenebb cgytittmfikodds sorAn lehet6s6g nyflik a cukorr6pAn kiviili term6kek, esetleg egy gazddlkod6 minden nvdnytermeszt6si Agazattra kiterjed6 finanszrozAsi megoldAsra is. Bank-termel'-forgalmaz6-termeltet6 rendszer A cukorgyfri e!6finanszirozis jelenleg legfcjlettebbnek tekinthet6 6s legsokrdtfbb formija, melyben a vertikum gyakorlatilag minden szcrepl6je r6szt vesz. A termeltet6 pAlyfzatot ir ki a termel6k Altal igdnyelt input anyagok, kdztik a mfitrfgya teljes mennyis6g6re. A t6bbfordul6s pflydzaton nyertes forgalmaz6 c6g felv6llalja az 6sszes igdnyelt anyag beszerz6s6t. Ennek 6rdek6ben versenytfrgyalAst ir ki a bankok szfmAra, amiknek az 6gazat finanszfrozfsa egy6bk6nt nem kifejezetten strat6giai c6ljuk, mivel kockAzatosnak tdlik meg a mez6gazdasfgi termel6i szektor hitelezds6t, de a t6bb milliArdos forgalom finanszirozdsa mgr szAmukra is vonzer6t jelent. A versenytArgyalAsb61 gy6ztesen kikeril6 bank hitelkeretet nyit a termeltetvel szerz6d6scs kapcsolatban Iv, termel6kkel. A hitel dsszege a vArhat6 Arbev6tel 4 0-50%-a k6zbtt mozog. A hitel visszafizet6s66rt a forgalmaz6 kezess6get vAlIal a banknAl, tehAt 6 biztositja a megfelel6 hitelgarancift 6s viseli az ebb6l ered6 kockdzatot is. Ez azt jelenti, bogy ha a termel6 Arbev6tele nem fedezi a banki hitel visszafizet6s6t 6s a termel6 mAs
104
iton sem tudja rendezni tartozAs~it, akkor a forgalmaz6 kdteles helytilini a termel6 banki tartozisfnak erejdig. Az 1997-98. 6vi tapasztalatok szerint a kockizat m6rt6ke rendkviil alacsony volt, 1-2% kdz6tt mozgott. A termel6 rendelkezdsdre bocsAtott hitelkeret esak a forgalmaz6t6l trtkn6 mfitrigya, vet6mag, 6s n6v6nyv6d6 szer vdsgrAsdra, valamint biztositgs megk6t6s6re hasznAihat6 fel, a termeltet6 ds a forgalmaz6 egytittes igazolisAval. A termel6i arbevdtel engedm6nyezettje a bank. A term6terfiletre a termel6nek biztositfst kell k6tie, ennek kondici6it a forgalmaz6 6s a termelhet6 biztositAsi br6kerc6g bevondsAval szint6n pilyAzati 6ton v6gzi el. A biztositds kedvezm6nyezettje a bank. A rendszer legfontosabb e6nye, hogy a termel6 az igdnybevett hitel utAn jogosult Milami kamattimogatAs ig6nybevtcl6re, melynek m6rtdke a jegybanki alapkamat %-ban keril meghatfrozdsra 6ltaliban annak 20-30%-a az adott 6vt61 ffigg6en. Hftrfnya a finanszirozAsban r6sztvev6 szerepl6k nagy sz6ma miatti viszonylagos bonyolultsfga, 6s az c=el jir6 t6bbletadminisztrAci6. A fenti rendszer azt eredm6nyezte, hogy a termel6k c finanszfrozfsi forma eset6ben ca. 10-12%-os 6vi kamatlib mellett jutottak hitelhez 1998 6s 1999-ben, a mitrigya-forgalmaz6k 6vi 5remel6se ellent6tben a korAbbi 6vek 20-25%-os remelkedds6vel anyagt 6l fuigg6en a felvAs rlAsi 'Arak n6vekedd6dnek szintj6n maradt. A forgalmaz6 c6gek felismerve a rendszerben rejl6 nagy piaci lehet6s6geket, a cukorr6pa-termeszt6 gazdasdgoknAl, mis ndvdnyi kultfrAkra is kidolgoznak hasonl6 rendszereket (kukorica, biza, napraforg6) 6s Ichet6s6get biztositanak az 6szi mfltrigyAzfs k61ts6geinek ebben a formiban t6rt66 finanszirozasara is.(4. abra) Eredminyek, megdllapitAsok Megfllapithat6, bogy a cukorr6pa-termeszt6sben fennAll6 integrfci6s kapcsolatok ttldltdk a rendszervtas viszontagsigait, s6t az 1995-99. dvekben a kapcsolatok egyre er6ssdtek az alapanyag-el6Allit6 iparigak, a termel6k, a feldolgoz6k 6s a bankok kdzdtt. R6szben ezen integrAci6s kapcsolatok eredm6nyek6ppen a cukorr6pa-termeszt6s j6vedelmez6s~ge 6s a termel6s hat6konysdga, elmozdulva az 1993. 6vi mdlypontr6l, kedvez6 tendencift mutat. Megfelel6 min6s6gGi cukorr6pa megtermelse esetdn lehet6v6 teszi az 6gazatban sziiks~ges nyeres6gfgi fejlcszt6si alapok 1ktrehozAsAt 6s fet6lt6s6t, valamint a k6ltsdgig6nyes termelesi folyamatok finanszirozAsAt. Ennek kdvetkezt6bcn az input oldali j6vedelemelvonfs nem 6rintette olyan s6lyos mdrt6kben a cukorrdpa-termesztdst, mint a t6bbi n6v~nytcrmesztdsi Agazatot egy0ttvdve. Az integrAci6s kapcsolatok ut6bbi id6ben vaI6 fejl6d6se r6szben megoldist jelenthet a termel6k likviditfsi 6s hitelcz6si helyzet6re 6s lehet6v6 teszi mAs ndvdnyi kulttrAk bekapcsolAsAt is ezekbe a rendszerekbe, melynek rcm6lhet6leg hasonl6an kedvez5 hatisa lesz az input rakra, mint amilyen az a cukorr6pa eset6ben volt tapasztalhat6.
105
Forgalmaz6-termeld egyiittmfik6ds
Termeltet6 6r6
Vet6mag-forgalmaz6 __
E
N6v~nyv~dLzer6s mitrdgy forgalmaz6
Biztosft6
el
Termel6
Bank-termeld-forgalmaz6-termeltetd rendszer
Termeltet6
rt5rgaAsok
Biztosit
Vet6mag-, n6vdnyvdd6szer-, m tr~gyabeszerzst koordin616 forgalmaz6
E -
a
'0'
EV
f~ ermel6 Term
an
rb ev te l en g ed m ny ezd s e
...... i[ .A
~
ael6
d
Bank
A1amikamatt-aiiib-gt~s -
Felhaszndlt irodalom 1.) A Kaposcukor Rt. 6s a Magyar Cukor Rt. 1995-1999. 6vi Termeltet~si Szerz6d6sei, valamint azok mell6kletei. 2.) Michael Tracy: EIcimiszer-termel6s 6s mez6gazdasAg a piacgazdas6gban. 3.) AgrdrgazdasAgi Kutat6 6s Informatikai lntzet: Agrfrgazdasdgi statisztikai zsebk6nyv. 4.) F61dmflvel6siigyi Miniszt6rium: A magyar mez6gazdasig 6s 6lelmiszeripar szfmokban 1997. 5.) Agrrgazdas~igi Kutat6 6s lnformatikai Int6zet: A cukorr6pa-tcrmcszt6s 6s cukorgyfrt6s k6ltsig- 6s 6relcmz6se.
108
L. Bene
Effects of humid conditions on the quality of sugar beet BETA Research Ltd., F6 u. 70., H-9463 Sopronhorpics, Hungary Among the factors influencing the yield and quality of sugar beet, climate is especially important. In Hungary, the quantity of rainfall and its distribution during the growing season has the greatest effect. There are often dry, droughty periods, especially on the Great Plain, and crops including sugar beet, have to survive these periods. In these areas, water is usually the limiting factor in sugar beet production. Water determines yields, although given sufficient water the quantity of nutrients makes a much greater yield possible. Under dry conditions, however, absorption of nutrients is impossible. Sugar beet is a water demanding crop, requiring 500-570 mm in July and 320-340 mm in August. Irrigation requirements differ greatly depending on the stage of growth of the crop, the climate conditions and on the water management characteristics of the soils. On average, the irrigation need in rainy and dry years is 150-280, 120-180, 80-120 mm in very dry, dry and moderately wet areas, respectively. Irrigation has to be started when the soil water content falls to 50% of the water holding capacity. In 1998, the majority of sugar beet producing companies did not use irrigation because of the favourable weather. Because of the ideal distribution of rainfall and an extremely humid July, there was no need for irrigation in Magyarhomorog in 1998. Despite of this, the author was able to examine 26 sugar beet varieties under humid conditionsIn his study we get answers regarding how quality and quantity characteristics of certain sugar beet varieties were influenced by humid conditions.
109
Bene Lszl6
A humid k6rilm nyek hatasa a cukorr pa min6s g re BETA-KUTATO Kft., F6 u. 70, 9463 Sopronhorpdcs A cukorr6pa term6smennyisdg6t 6s min6sdg6t befolyiso16 tdnyez6k k6ziil kiemelked6 jelent6s6gfek az 6ghajlati adottsdgok. Haztinkban az egyes id6jArAsi clemek kdziil a csapad6k mennyisdge 6s teny6szid6 alatti eloszlasa a legnagyobb hatis6. A teny6szid6 szakasz6ban a vizelkitottsdg nem mindig zavartalan. Sokszor sziraz, aszAlyos peri6dusok fordulnak el6. HazAnk term6szeti viszonyai k6z6tt, f6k6nt az AIfbld6n, az asz~lyok kdlnosen gyakoriak, melyeket a termesztett n6v6nyeknek, igy a cukorr6ptinak is 6t kell v6szelnie az fjabb csapadk lehullAsfig. Ezeken a teriileteken a cukorr6pa termeszt6s6ben t6bbnyire a viz a minimumfaktor. Ez szabja meg a term6sercdm6nyek nagysAgft, noha a tipanyagok mennyis6ge j6val nagyobb termds kialakt~sit teszi lehet6v6. A tApanyagok azonban szhraz kaOrlm6nyek k6zdtt a n6v6ny sz~umira felvehetetlenek. A cukorrdpa vizigdnyes n6v6ny. A teny6szid6ben 500-570 mm, j61ius-augusztusban 320-340 mm vizet igdnyel. A cukorrdpa vizig6ny6t6i, a term6tAjak klimatikus viszonyait6l, valamint a talajok vizgazdilkodfsi tulajdonsfigait6l fugg6en jelent6sen kOl6nbOzik az 6nt6z6viz-sziiksdglet. Atiagosan csapad6kos vagy szraz 6vekben term6helyenkdnt 150-280, 120-180, 80-120 mm dnt6z6viz kijuttatAs~val lehet szzmolni, stilyosan szAraz, szdraz 6s m6rs6kelten nedves tdjakon t6rt6n6 termesztdsi k6r0lm6nyek k6z6tt. Az dnt6z6st akkor kell megkczdeni, ha a talajnedvess6g a hasznos vizkapacitis 50%-5ra cs6kken. 1998-ban a cukorrptit termel6 gazdasAgok nagy tobbs6g6ben a kedvez6 klimatikus vfltozAsok miatt nem folytattak 6nt6zdses termeszt6st. A tenydszid6 idetilis cspad6keloszldsa 6s a kimondottan humid jhlius miatt 6nt6zdsre Magyarhomorogon scm volt szfiks6g az 1998-as gazdas6gi 6vben. Ennek ellen6re a szcrz6 26 cukorrdpafajtdt tudott vizsgilni humid viszonyok k6z6tt. Munkfjiban vflaszt kapunk arra vonatkoz6lag, hogy a humid kdriilm6nyek hogyan hatottak az egyes cukorr6pafajtdk min6s6gi 6s mennyis6gi tulajdonsfgaira.
110
M. Dumitru and Z. Borlan
Sugar beet response to NPK fertilisers in long duration field experiments on chernozem soils in Romania Research Institute of Soil Science and Agrochemistry, Marasti 61, Crd. 71332 Bucharest, Romania Factorial NPK, long-term field experiments in appropriate crop rotations on eight rainfed and seven irrigated chernozem soils were started in 1967-1968. These experiments were designed to measure the effect of fertilizers on the yield of sugar beet grown in rotation with other field crops and on some soil chemical properties (pH, PA, KA. Along with the usual Fisher's analysis of variance, the data have been interpreted also using the Mitscherlich-Baule nutrient sufficiency concept, which estimates the efficiency of the nutrient supply from both soil and applied NPK fertilizers. Using the regression of yield on both soil agrochemical properties (including nitrogen index NI, mobile phosphorus, PA. and potassium, KAL as characterising N, P and K supplying power of the soil) and on fertilizers applied (N: 0-160; P: 0-160 and K: 0160 kg/ha each year) model-formula have been established and used to quantify: -
efficient N, P, K supplies from soil nutrient reserves; degrees of sugar beet nutrient sufficiencies; economically sound rates (ESR) of N, P and K for maximising net profit per unit area; optimal rates (ORSSSCP) for NPK fertilizers aimed at stabilising soil chemical properties for sustained crop production; - impact of ESR and of ORSSS on KAL in the ploughed layer; - specific yield increases (kg of yield per 1 kg of N, P2 0 5 , K20) from applied fertilizers in ESR and ORSSSCP
111
Osszefoglalds Dumitru, M.-Borlan, Z.
Az NPK traigyizais hatasa a cukorrepdra csernozjom talajokon v6gzett tartamkis6rletekben Romninidban Research Institute of Soil Science and Agrochemistry, Marasti 61, Crd. 71332 Bucharest, Romania 1967-68-ban faktoriflis szabadfdldi NPK tr6gy~zdsi tartamkis6rleteket ,ltottak be 8 helyen idinrdzs n61kiIl, 7 helyen pedig 6nt6zds mellett csernozjom talajokon, annak 6rdek6ben, hogy megdilapitsk a trfgyzAs, a vet6sforg6 6s n6hiny talajtulajdonsdg (a pH, az amm6nium-laktft oldhat6 P- ds K-tartalom) hat6sit 6s k6lcs6nhatfst a cukorr6pa term6scre. A kis6rleti adatokat varianciaanalizissel elemezt6k 6s dsszefiigg6st kerestek a Mitscherlichg6rbe segits6gdvel a talaj PAt 6s KAL-drt6ke, valamint az NPK-mftrtgya-adagok hatisa k6z6tt. A term6seredmdnyek, valamint a k6t agrokdmiai adatcsoport (ezek a nitrog6n index-NI, mozg6kony P, PAL 6s KAl, a szntott r6tegben a talaj tfpanyag-szolgdltat6 kdpess6gdnek jellemz6s6re, mAsr6szt a hasznmilt mftrAgyaadagok N:0-160; P:0-160; K:0-160 kg hat6anyag/ha/dv) k6zti dsszcffiggdsekre matematikai modellt dolgoztak ki, hogy meghatArozzAk a kovctkez6ket: - a talaj N-, P-, K-szolgdltat6 kdpess6g6t, - a cukorr6pa tuipanyagig6nyft, - az egys6gnyi tertileten maxim6lis profitot crcdm6nyez6 N-, P-, K-adagokat (ESR), izemek optimAlis N, P, K mfitrAgya-fclhasznildst (ORSSSCP) a - a mez6gazdasdgi talajk6miai folyamatok stabilizAhdisnak, mint a fenntarthat6 ndv6nytermeszt6s alapj6nak figyelembev6tel6vel, - a fajilagos termdsn6vekcd6st (kg term6sn6veked6s 1 kg N, P2 0 5 , K20 hatAs'Ara), ha a felhasznflt mfltr6gya az ESR-nek, ill. az ORSSSCP-nek felcl meg.
112
J. Bizik
The situation in sugar beet production in Slovakia with regard to its nutrition Research Institute of Irrigation, Drainage and Landscape Engineering, Bratislava, Slovak Republic Slovakian sugar beet production is unsatisfactory, in 1991-1997, the average annual yield of the refined sugar was only 4.23 t ha-'. In experiments, both yields and sugar content are larger than in commercial practice. The level of fertilization greatly influences the yield and quality of sugar beet, especially the relation between the supply of N, P, K, Ca, Mg added in fertilizers and from the soil. There are possibilities for improvement in sugar beet production in the Slovak Republic in relation to fertilization concerning these points: a) Expertise in nutrition management through an information system based on soil and plant. Even if, as at present, the application of P and K has been considerably reduced, application should be gradually improved. b) The assessment of soil analysis related to yields and weather should be more precisely defined. c) More intensive exploitation of existing irrigation systems for the irrigation of sugar beet to increase sugar yields per hectare and water use economy. Osszefoglalis Bizik, J.
A cukorr6pa-termesztes helyzete es a cukorrepa tra'gya'za'sa Szlovaikia'ban Research Institute of Irrigation, Drainage and Landscape Engineering, Bratislava, Slovak Republic A szlovik cukorr6pa-termeszt6si eredm6nyekkel nem lehetiink el6gedettek. 1991-97 k6zbtt a kinyerhet6 cukorterm6s 4,23 t volt hektironk6nt. A kutatfisi eredmnyek ugyanakkor mutatjfk, hogy potenciflisan lehet6sdg van j6 min6s~g, magas cukortartalom mellett nagy r6patermes el6rdskre. Az is megAllapithat6 volt, hogy a trAgyizAs nagymdrt6kben befolysolja a r~paterms nagysdgdt 6s min6sdgt egyardnt. A talaj tgpanyag-szolgdltatfsa ds a trgydval kiadott NPK tripanyag mennyisege egytittesen alakitja a cukorterm6st. A Szlovdk K6ztArsasdigban a cukorr6pa-termeszt6sjavitfsa 6rdek6ben a trigyizds tertlet6n az aldbbiakban lehet 6sszefoglalni a teend6ket: a.) Szakmai ismereteink b6vit6se egy talaj-n6veny informici6s rendszer segits6gdvel. Mivel a P-ds K-trdgydzfs er6sen visszaesett, ezen fokozatosan javftani kell. b.) A trfgyfzAsi szaktanAcsadfs szfmAra pontosabban meg kell adni a talajvizsgilati eredm~nyek, a term~s ds az id6jdrAsi t6nyez6k k6zti 6sszefugg~seket. c.) A megl6v6 bnt6z6berendez6seket jobban ki kell hasznlni a hektAronk6nti cukorterm6s n6veldse ds ezAltal a cukorrdpa-termeszt6s gazdasfgoss.gfinak javtisa 6rdek6ben. 113
E Bavec
Nutrient management, yield and quality of sugar beet in Slovenia* University of Maribor, Faculty of Agriculture, 30 Vrbanska, SL 2000 Maribor, Slovenia Summary Sugar beet production has increased in Slovenia. In 1981-93, the average area was 3824 ha, which gave 42.3 t of roots ha-1 and 6.5 t of sugar ha-,. By 1999, the area growing sugar beet had increased to 10500 ha, and the yield to 46.3 t roots ha-'. Thus, Slovenia is among the ten most successful sugar producing countries in Europe. In the last decade, there were no large oscillations in the use of fertilisers per ha to the beet crop, which is fertilised according to locally determined target values for individual nutrients following soil analysis by the EUF method. Possibilities of the further increase in production or profit certainly depend on the intensive development of nutrient management as well as factors such as crop rotation, crop protection, methods of cultivation, including direct drilling, which has been already introduced to Slovenia, etc. Introduction In Slovenia, the experimental production of sugar beet started in 1976 to meet the needs of our own sugar beet factory, which was built at Ormoz in 1979. The factory had a processing capacity of 4000 t day-' of roots or 320000 t year-'. Because the average consumer uses 37 kg of sugar annually, two thirds of the amount used being in the form of white sugar, to meet this demand at least 8000 ha of land were needed to grow sugar beet. The introduction of sugar beet in the late 1970s coincided with the increased consumption of nitrogen (N), phosphorus (P) and potassium (K) mineral fertilisers in Europe, especially in the East-European countries. However, the change in the agricultural structure and politics in the last two decades caused a considerable decrease in the consumption of fertilisers and in the average production of all crops (Uebel, 1998). But, the decisive factor in the quantity and quality of agricultural produce is based on knowledge, especially in the area of plant nutrition for, in our case, sugar beet. This paper analyses sugar beet yields, the effect of the use of fertilisers on different soil types and various approaches to plant nutrition in Slovenia. Methods Advice on fertilisation with individual nutrients has been based on both production and quality parameters gained from data on production (FAO yearbook, 1998; Statisticni letopis Slovenije, 1998, Annual reports, Sugar beet factory Ormoz), on the consumption of fertilisers (Statisticni letopis Slovenije, 1998), on the amount of nutrients in soil
Keywords: sugar beet, yield, fertilisers. EUF method, fertilisation target value.
(laboratory data), on legal regulations, on research findings (Annual reports, Sugar beet factory Ormoz) and on publications (Stefancic, 1998).
114
Results and discussion Essential difficulties in sugar beet production in Slovenia These difficulties are as follows: Great diversity in soil and climate as well as the suitability of soil preparation. Too frequent growing of sugar beet and consequently the need to use crop protection agents. Losses due to admixture with soil at storing, especially in a rainy autumn. Achieving larger crop yields with the emphasis on both quantity and quality (at least 16% sugar and 85% of good use in the factory) and lower expenses for processing. - Increase in the possibility of irrigating sugar beet crops, especially in dry areas and on light textured soil. - Unregulated lease of the land, and - Optimal fertilisation adjusted to the diversity of the soil.
-
Successful production is limited by many factors but here the focus will be only on the problem of optimal fertilisation. Sugar beet yield and quality The comparison of data on sugar beet production in Europe (FAO, 1998) shows that seven European countries (Austria, Belgium, Switzerland, Germany, France, Greece and the Netherlands) produce larger quantities of beet than Slovenia in the last decade. Production in Slovenia in the last few years ranks among that of Denmark, Italy and Sweden. The average production of both roots and sugar in Slovenia has increased since 1993 (Table 1). Table 1. Yields of sugar beet in Slovenia from 1990-1998. Year
ha
1980 1985 1990 1991 1992 1993 1994 1995 1996 1997 1998
2953 4182 3639 3448 2762 3107 4800 6200 6261 6370 7670
1999
10500
Sugar t/ha 6.1 6.6 7.1 7.3 5.7 6.9 5.7 6.6 7.8 7.4 7.1
Yield ti/ha 38.9 36.3 46.8 50.6 36.2 46.0 45.0 43.2 48.5 45.3 49.6 1
1
(Statisticni letopis Slovenije, 1998; Stefancic, 1998). Juice purity (Py = 99.36-0.1427 (K + Na + a - amino N) mmol 100 g sugarl**) varied between 84.9* to 89.8; the alkalinity coefficient (Ac = K + Na mmol 100 g sugar-' / a - amino N) ranged between 1.05* to 1.55; percentage of recoverable sugar (Rs = %S - Py -0.6) varied fr.'m 74.6' to 82.4%; the yield of white sugar (Ws = yield of roots (t/ha) x Rs/100) varied from 6.22* to 9.78 and polarised sugar (Ps = yield of roots x % sugar / 100) between 4.85- to 8.07 t/ha depending on the date of harvest, climatic and other production conditions. 115
Data from the first harvest (20h Aug.). ** % sugar is derived from °S the rotation on the sugar scale. *
Consumption of fertilisers in Slovenia Contrary to the data from south-eastern Europe (Uebel, 1998), there was no large decrease in the use of mineral fertilisers, except for the minor decrease in 1990 and 1991 (Table 2). Table 2. Consumption of mineral (commercial) fertilisers, kg ha-', in Slovenia. Year
Total arable land
Private arable land
1985
267
1990 1992 1993 1994 1995 1996
206
229 293 376* 403 388 397
1997
183 274 337* 355 354 360
440
383
(Statisticni letopis Slovenije, 1998, * star of new - EU comparable stistical methodology). Note: More and more ecological farms (approx. 300 with controlled production) will contribute to the lower consumption of fertilisers. How to assess the level of nutrients Following the examples of growers from Austria, Germany, Hungary and Ireland, Slovenia decided to invest in the EUF method of soil analysis, which gave more accurate results. The laboratory, which began operating in 1981/82, has analysed more then 22000 samples for sugar beet growers from about thirty to forty types, subtypes and varieties of soil. The sugar beet growing areas in Slovenia are farmed extensively and contain only modest levels of nutrients. On the basis of a pedological survey, only small amounts of P were found in the soil. Testing for K gave the opposite result showing a sufficient amount in the second soil horizon independent of the method extraction (Al, CAL). Only 10% of the samples showed a poor level (degree A) of K. Prescribed levels of the nutrients have often failed to follow ecological standards and caused damage to the production. New parameters had to be established and adjusted to Slovenian production because the analytical values from other countries proved inappropriate for the nutrient poor and heterogeneous Slovenian soil types. We have calculated the appropriate level of nutrients according to both root and sugar production, and the quality of the sugar beet juice. On the basis of experiments, the following optimal nutrient levels and fertilisers target values have been established for the production of 8 to 9 t of white sugar.
Phosphorus Determined as the EUF-P I fraction, the optimum level was 1.2 to 1.5 mg P 100 g-1 for a target yield 8 to 9 t sugar ha- t . Only 13% of the samples analysed had a sufficient level of P, the remaining fields require fertiliser in excess of that required to replace P offtake by the crop.
116
Upper target values for applied P for brown eutrophic soil are 180 kg P20 5 ha-' and for planosoil (pseudogley) 200 kg P205 ha-1.The values are greater, by approx. 70 to 100 kg P2O5 ha-t where soil P is very small. The amount and composition of the fertiliser are adjusted to the pH of the soil, concentration of heavy metals in the soil solution and the level of EUF Ca. In the extremely poor and dry areas, fertilisation with P in the spring (approx. 50 kg P205 ha1), as well as in the autumn proved very successful. The nutrient level in the soil is considered insufficient if it does not reach 0.5 mg P 100 g-' EUF P I fraction, or 15 mg P20 5 I00g-' when using the Al method. Potassium The optimal nutrient level is 8 to 12 mg K 100 g-' EUF-K and approx. 25% of the samples 1 analysed contained more than 9 mg K 100 g- , which satisfies crop demand. The upper target value for K for the brown eutrophic soil is 300 to 350 kg K20 ha- and for the planosoil 160 to 300 kg K20 ha-1. For soils with insufficient K, it is recommended to increase the amount of K to 600 kg K20 ha-' but the quantity of clay which binds K selectively should also be taken into 1 account. When the applied K exceeds 300 kg K2 0 ha- , there is more K in the juice and a smaller profit in sugar production. Increased production on brown eutrophic soils fertilised with K is up to 14.6% and up to 15.9% on the planosoils, although these increases are often not recognisable visually. Nitrogen The general recommendation is 90 to 158 kg N ha- for the brown eutrophic soil, 90 to 160 kg t N ha-' for the planosoil and 149 to 220 kg N ha- for poor brown eutrophic soils containing little humus. Advice on the fertilisation is in practice based on the development stage of the sugar beet and assessed, individually for each field, according to the N balance and on the proportion of EUF-NO,-N to EUF N0 ,g-N. In the latter case, the proportion of Ca to humus in the soil is also taken into account. The estimation of the accessible N during the growing period from I mg EUF N org.N ha-I or less presents a problem. To estimate the target N application, advisers of the Sugar beet factory Ormoz use a general equation following the German example: Level (kg N ha-) = 275 + 75 - (150 x EUF - Norg 11.fr./L, fr. -44 x EUF - N0 3-N)- (44 EUFNor -N) 1 Instead of 55 t roots ha-' we calculate for 50 t and take away 250 kg N ha- . A shortage of N is Advisers do not seasons. in dry areas in non-irrigated possible with this type of calculation usually use N min data in the soil in the growing period. Calcium The soil in north-eastern Slovenia contains only small levels of calcium (Ca). Only 10% of 2710 analyses contained 30 to 40 mg Ca 100 g-' EUF I fraction in 1983-1984. Ordinary ranging from 15 experimental variations on the brown eutrophic soil with pH 5.7 gave values 11 to 23 mg Ca 100 g-' and on the planosoil 9.1 to 17.8 mg Ca 100 g-' at p - 5. On the fields without lime, production decreased by 13% on the brown eutrophic soil and 15% on the planosoil. Levels of Ca are estimated according to the type of soil, percentage of humus and particularly according to the ability of the soil to bind K with active clay minerals in the following way: 117
Upper limit of lime addition, kg CaO ha-1, in the autumn: - up to 5% of K binding clay minerals: 1000 kg CaO ha-' - from 5 to 10% of K binding clay minerals: 1500 kg CaO ha-t - from 10 to 20% of K binding clay minerals: 2000 kg CaO ha-' - above 20% of K binding clay minerals: 2500 kg CaO ha-t Great attention is given to over-liming because of the antagonism between Ca and other nutrients, especially Pand boron (B). Boron All areas in Slovenia contain small to medium levels of B, therefore 2 to 3 kg B ha-' are advised with basic fertilisation or 4 to 5 kg of solubor or other appropriate fertilisers when fertilising with foliar application. Sodium Soil in north-eastern Slovenia contains sufficient Na. I mg Na 100 g-t EUF - I fraction satisfies the requirements for sugar beet production. Magnesium We cannot achieve optimal production if the soil contains less than 3 mg Mg 100g'l. Light textured and acid soils contain little Mg. Manganese A shortage of Mn is possible mostly in sandy and alkaline soils. In most cases the problem can be solved by using the ,carbonatan" lime (leftovers from sugar beet production) or Thomas's scoria but in the cases of shortage the advised amount is 12 kg Mn SO4 ha- 1. Contradictory data from research in the Faculty of Agriculture and in the literature make it difficult to determine specific limit values for Mn for Slovenia. Conclusion The area planted with sugar beet is increasing with the average yield of roots per ha, which places Slovenia among the ten most successful sugar beet growing countries in Europe. Fertilising is based on data from the EUF method of soil analysis and on our own fertiliser target values which advisers can modify to include specific productive features of the area. Further increases in yield and quality require better advice on fertilisation because of the heterogeneous soil, specific climate and other factors controlling production. References Statisticni letopis Republike Slovenije (Statistical yearbook of Slovenia), 1997. Stefancic, T (1998): Sladkoma pesa (Sugar beet). CZP Kmecki glas, Ljubljana, Ormoz, 190 p. Tovarna sladkorja d.d. Ormoz (Sugar beet factory Ormoz). Letna porocila o pridelovanju sladkorne pese in rezultati poljskih poskusov (Annual reports on sugar beet production and on the results of field tests), 1981-1998. Uebel, E. (1998): Current fertiliser use in Central/Eastern Europe (CEE) and the arising consequences for soil fertility and crop production. CIEC Symposium Proc.: Codes of Good Fertilisation Practice and Balanced Fertilisation, Pulawy (PL), 406-416.
118
Osszefoglalds Bavec, E
Trigyizisi szaktanacsada's, a cukorr pa termeszt se es min6s ge Szlov niiban University of Maribor, Faculty of Agriculture, 30 Vrbanska, SL 2000 Maribor, Slovenia Szlov~niAban n6 a megtermelt cukorrpa mennyis6ge. 1981-93-ig az 6tlagos term6teriilet 3824 ha, az tlagos r~paterm6s 42,3 t/ha volt 6,5 t/ha cukorterm6s mcllett, 1999-ben viszont mir 10500 ha-on termesztenek cukorr6pft. Az ut6bbi 6vekben az itlagterm6s 46,3 t/ha, ami Szlov6nidt Eur6pa tlz legfontosabb cukorr6pa-tcrmel6 orszAga k6z6 emelte. A megmflvelt 6 terfileten az egy hektfrra jut trigya mennyis6g6ben az ut6bbi tiz 6vben ner volt szimottev6 ingadozis. A cukorr6pit az EUF-analizisre alapozott trdgyizisi szaktancsadAsnak megfelel6en tr6gyizzAk, az adott helyen el6rhet6 term6snagysfg figyelembev6tel6vel. A term6seredm6nyek fokozisa 6s a profit ndvel6se nagym6rt6kben att6l fiigg, hogy milyen intenzfven fejl6dik a tlpanyag-ellAtisi technol6gia. Emellett mAs agrotechnikai tenyez6ket is, mint a vet6sforg6, n6v6nyv6delem, 6j talajmivel6 rendszerck, bele6rtve a direkt vct6st, amit mAr bemutattak Szlov6niAban stb. szfmitAsba kell venni.
119
1.Gutmanski, M. Nowakowski and J. Mikita
Possibilities of balanced sugar beet nutrition in Poland Department of Root Production Technology, Plant Breeding and Acclimatization Institute (IHAR), Al. Powstanc6w Wlkp. 10, PL 85-090 Bydgoszcz, Poland Sum mary
Growing sugar beet has started in 1802 in Poland to supply the first sugar factory built by Fr. K. Achard. In Europe, Poland is the third country for both the area growing beet and sugar production. This paper discusses the climatic and soil conditions for sugar beet production, its nutrient requirements, the methods of determining of available nutrients in soil and balanced mineral fertilization. It is suggested that nutrient rates could be reduced, thereby decreasing fertilizer costs, by placing granulated fertilizers alongside and below each row of seed, and the use of multicomponent fertilizers. These agricultural practices ensure both large yields and good processing quality of the beet. Keywords: sugar beet, nutrients, balanced nutrition. Introduction Growing sugar beet started in 1802 in Poland to supply the first sugar factory built by Fr. K. Achard. Previously in 1799 in Wroclaw, there was published the first paper in Polish on the cultivation of sugar beet as a feed stock for saccharose production. Root yield was 6 t /ha and sugar content 4-6% (uczak, 1981). Since then, selection and breeding has increased root yield and sugar content appreciably. Today in Poland sugar beet is grown on 410,000 ha and yearly annual production of sugar is over 2 M t from 76 factories. Poland is third in Europe, after France and Germany, in sugar production. Average yields, in recent years, have been about 40 t of roots and 5.5 t of sugar per ha (Gulmanski and Nowakowski, 1995; Jaworowski, 1999; Lights World Sugar and Sweetener Yearbook, I998). This paper discusses problems with balanced nutrition in Poland; the latest research results from the Department of Root Production Technology on the agrochemical state of soils designed for sugar beet cultivation and possibilities for reducing [he use of mineral fertilizers and fertilization costs. Methods In Poland, current soil analysis measures pH in I N KCI, phosphorus (P as P20 5 ) and potassium (K as K20) by extraction with calcium lactate (Egner-Riehm's method), and magnesium (Mg) in a CaCI 2 extract (Schachtschabel's method). To better estimate the agrochemical conditions of the soil, we at IHAR Bydgoszcz have adapted Spurway's method for estimating soil fertility under sugar beet (Gutmanski, 1991). In one acetic acid extract we 120
estimate the following ions: calcium (Ca), magnesium (Mg), potassium (K), sodium (Na) and phosphorus (P), as well as nitrate-N and ammonium N. If necessary soil salinity is estimated and expressed on the following scale: to 0.20 very low; 0.21-0.40 low; 0.41-0.80 medium; 0.811.60 high and over 1.60 g/dm 3 of the soil very high. The correlation coefficient between the nutrient content estimated by the DL method and by Spurway's method is very high for: K 0.963, Mg 0.892 and P 0.860. For extraction with 0.03 N acetic acid or 5% K2SO4 , the correlation coefficients amounted to N03-N 0.965 and NH4-N 0.997. There was a similar good correlation (0.972) for NO3 -N measured by ion-selective electrode and by colorimeter (Gutmanski, 1991). Five soil classes from very low to very high are used to characterise the Ca, K, Mg, Na, P and Nmin content of the soil using the acetic acid extractant (Table 2). Similarly lime requirement based on pH is based on five classes (Table 1). The range of nutrient concentrations in each class varies according to soil texture based on clay content. According to the clay content soils are divided into: light soils (11-20% of clay), medium-heavy soils (21-30%) and heavy soils (over 35%). The best soils for sugar beet are medium-heavy soils with at least a medium content of each nutrient. In Poland soil analysis by the EUF method is not used. An experiment on the efficiency of N fertilizers comparing placed and broadcast application was started at the Plant Breeding Station Wieclawice in 1994 on a chernozem with pH 7.3, 2.45% humus, low N0 3-N and medium or high content of other nutrients. Nitrogen was tested at: 0; 47 (0.33x); 94 (0.66x); 140 (1.00x); and 187 kg/ ha (1.33x) were the quantity 1.00x was based on soil analysis and on the estimated root yield. The broadcast N was applied presowing as ammonium nitrate. When placed, it was applied at drilling using a special fertilizer applicator installed on the drill. The fertilizer was placed 7 cm from the beet row at a depth of 6-7 cm. Field trials comparing placed and broadcast P (triple superphosphate) fertilization, started at the Experimental Station Konczewice in 1998. On a grey podsolic soil, with 0.78% humus and a small amount of P Ca, Mg and NO3 -N and large K content. Phosphorus was tested at 0, 40 (0.33x), 80 (0.66x), 120 (1.00x) and 160 (1.33x) kg P2O5/ha. An experiment on the effect of multicomponent fertilizers, applied in spring, was carried out in 1998 at the Experimental Station Piwnice on agrey podsolic soil with pH 6.2, 0.65% humus, a small content of K, Ca, Mg and NO3 -N and a medium P content. The experiment tested 120 and 150 kg N/ha, the fertilizers with the higher rate of N were divided 3/5 pre-sowing and 2/5 top-dressed with adequate amounts of the remaining nutrients applied as multicomponent fertilizers - ammo-phos-potassium fertilizer (compensating N amounts by ammonium nitrate), Kemira Beta, Hydro Viking and a blend of ammonium nitrate, triple superphosphate and potassium chloride. The chemical composition of the fertilizers and the amount of each macronutrient are shown in Table 5. An experiment on the effect of K at 100 and 200 kg K2 0/ha applied as kamex (40% K2 0, 60% MgO, 3% Na2O) and potassium chloride (60% K2 0) was started at the Plant Breeding Station Wieclawice in 1997. The third fertilizer treatment was 200 kg lO/ha together with two sprays of 5% bitter salt solution (16% MgO, 13% S) at the six leaf stage and two weeks later. This experiment was carried out on chernozem with pH 7.1, 2.12% humus, a small K content and small or medium content of other macronutrients.
121
Results and discussion In Poland, the limiting factors for sugar beet productivity are comparatively low rainfall during the growing period (average 350 mm), a large percentage of poorer quality soils with considerable variation in quality, even on small areas of land and too short a vegetation period (Gutmanski, 1990 and 1991; Gutmanski and Nowakowski, 1994). But there is a considerable potential for improvement. The experiments of the Research Centre for Cultivar Testing (COBORU) carried out in 1990-1998, showed very large differences between root and sugar yield in field trials and farmers' practice amounting to 42% and 50%, respectively. In many other EU countries, these differences are smaller, usually not larger than 30% (Si6dmiak and Heimann, 1999). A major influence on yields was fertilizer use in the 1990s. The average application of mineral fertilizers decreased from 164 kg NPK/ha in 1990 to about 80 kg NPK/ha in 1995. In this period, livestock also decreased by about 25% so there was less FYM and organic fertilization also decreased greatly (Kasperska-Furman, 1997). The basic factors likely to limit sugar beet productivity and its processing quality are nutrient resources of the soil, balanced nutrition and the professional knowledge of growers. Over 1100 soil samples were taken in early spring between 1990 and 1998 from the surface layer of soils where there were large concentrations of sugar beet. The results of analysis showed a large percentage of soils in the fifth and fourth classes for both pH and nutrient content (Table 3). There was also a large percentage of alkaline soils (28%) and soils with very high nutrient concentrations (12-42%). The nutrient most deficient was K. There were few soils with high and very high salinity. Together with the increase in pH, the ratio between Ca plus Mg and Na plus K also increased (Table 3). On the basis of many soil analysis and field experiments, a number of authors state that at emergence and early growth, sugar beet stage soils should not contain more nutrients than those shown in Table 4 (Gutmanski, 1990 and 1991; Gutmanski and Nowakowski, 1996; Gutmanski and others, 1998). The investigations performed so far at our institute (Gutmanski, 1990; Gutmanski and Nowakowski, 1994 and 1996; Gutmanski and others, 1998) have shown that on medium-heavy soil with pH 6.0-7.6 and at least a medium content of all nutrients, it is possible to attain the largest root and sugar yields by applying 120 kg N, 80 kg P2 05, 160 kg K20 plus also 20-40 kg MgO and Na 2O per ha. On soils with a low nutrient status, fertilizer applications should not exceed 160 kg N, 120 kg P20 5 , 240 kg K,O, 80 kg MgO and 80 kg Na20 per ha. It is possible to achieve a significant improvement in N fertilizer use efficiency, and large savings (about 30%), by row application together with seed sowing (Fig.i) Only two-thirds of the broadcast application being required, the row fertilization technique significantly increases both sugar content and recoverable sugar yield and has both economic and ecological benefit. Research in Poland has confirmed the benefits of this fertilization method, as described in the foreign literature. Applying N in the row eliminates the negative influence of N on plant emergence, better final stand and reduces tractor traffic. Similar positive effects on recoverable sugar yield and sugar content were found when P was applied in the row (Fig. 2). Row application could reduce recommended P application rates by about a third. Recently in Poland, interest in the use of multicomponent fertilizers in spring has increased because it saves time and decreases the number of destructive tractor wheelings on wet fields. However, when using high analysis multicomponent fertilizers doses on poorer fields, the total application should be split into two 3/5 and 2/5. First dose is applied 10 days before sowing at the very latest, the second after plant establishment (Table 5). This limits the potential 122
influence of large salt concentrations on emergence and final plant stand. The positive effects of multicomponent fertilizers with a large content of Mg and Na on root and recoverable sugar yield was seen on a grey podsolic soil and chernozem (Table 5, Fig. 3). Conclusions 1. Factors limiting the efficiency of balanced nutrition for sugar beet are the small amount and unequal distribution of rainfall during the short vegetation period; the large percentage of soils with low pH and low nutrient content; irregular soil analysis to determine pH and nutrient content; not adhering to the principles of mineral and manure fertilizer use; insufficient agricultural knowledge of many sugar beet growers. 2. The row or placement fertilization technique improves N and P use efficiency, significantly reduces the amounts needed and the costs of these fertilizers. This technique contributes to a significant increase of recoverable sugar yield and improved root processing quality. 3. Multicomponent fertilizers containing balanced amounts of NPK, other important nutrients such as Mg and Na have a beneficial influence on the quantity and quality of sugar beet roots.
123
Fig. 1. Relationships between nitrogen applied either broadcast or placed in rows and root and recoverable sugar yields (Nowakowski et al., 1997).
Root yield t/ha ROW
44. 43 42 41 40 39 38 0 (0)
47 (0.33)
94 (0.66)
140 (1.00)
187 N kg/ha (1.33)
Recov. sugar yield t/ha
5,5RO 5,4 5,3 5,2 5,1 5 4,9 4,8
124
I
I
0 (0)
47 (0.33)
94 (0.66)
140 (1.00)
187 N kg/ha (1.33)
Fig. 2. Relationships between phosphorus applied either broadcast or placed in rows and sugar content and recoverable sugar yield (Nowakowski et al., 1997).
Recov. sugar yield t/ha 7 ROW
6,5 6,5
VERALL
6
NIR-LSD=0.20 (P=0,05)
5,5 0
40
80
120
(0)
(0.33)
(0.66)
(1.00)
160 P 0
kg/ha
(1.33)
Sugar content % 16,6 16,4 16,2 16
OVERALL 158
NIR-LSD=.21 (p=0,05)
(P=0.0o
15,8 15,6 0 (0)
40 (0.33)
80 (0.66)
120 (1.00)
160 P 0 (1.33)
kg/ha
125
Fig. 3. Relationships between root and recoverable sugar yields and potassium source (KCI 60% 1O) or kamex (40% K20, 6% MgO, 3% Na2 O) together with two sprays of a 5% solution of bitter salt (16% MgO, 13% S) (Nowakowski et al., 1997).
Root yield t/ha 50 48
U
46 44
42 I
40
100
0
200* K 0 kg/ha
200
Recov. sugar yield t/ha 7,8 KAMEX
7,4 SALT POTASSIUM E
7
6,6
6,2
I
I
0
200
100
200* K
200* - 200 kg K 2 0/ ha dose and twice spraying with 5%-solution of bitter salt
126
0
kg/ha
Table 1. Determination of liming requirements. Class and liming Soil agronomical class- - pH in KCI requirements light medium-heavy V necessary < 4.5 < 5.0 IV needed 4.6-5.0 5.1-5.5 III advisable 5.1-5.5 5.6-6.0 II limited 5.6-6.0 6.1-6.5 I needless > 6.1 > 6.6 * silt content: light soil 11-20%, medium-heavy soil 21-35%, heavy soil >35%.
heavy < 5.5 5.6-6.0 6.1-6.5 6.6-7.0 > 7.1
Table 2. Content of Ca, K. Mg, Na. Pand Nu. analysis in 0.03 N CH COOH. 3 Classand nutrient content
Ca light
I K Agronomical class* ofsoil and nutrient content (mg/f) heavy light mediumheavy light
medium-heavy I
V very low IV low ll middle high , I veyhigh
-4
<-300 301450 451-700 701-1000 >1000
450 451-700 701-1000 1001-1300 >1300
_<40 41-80 81-120 121-160 >160
60 61-100 101-160 161-200 >200
medium-
P
Nmin
heavy
all
all
540 41-60 61-80 81-100 >100
20 2145 46-70 71-95 >95
10 11-20 21-30 3140 >40
heavy
heavy
600 601-850 851-1100 1101-1900 >1900
M orNa
80 81-120 121-200 200-250 >250
20 21-30 31-50 51-70 >70
30 31-50 51-70 71-90 >90
Table 3. Macronutrient content, pH and soil salinity of heavy-medium soils under sugar beet, Soil anaysis in 0.03 N CH3 COOH, pH in KCI
Class
Ca 9.0 19.2 17.8 11.7 42.3
3.2 10.6 31.0 26.6 28.6
V IV 111 II I
Soils percentage of nutrients Na K Mg 1.8 15.6 9.3 11.5 20.8 21.5 43.7 32.2 20.3 30.5 12.3 12.2 12.5 19.1 36.7
content (%) salinity P 62.4 5.5 27.8 18.5 7,2 21.4 2.1 13.0 0.5 41.6
Content (Ca+Mg) : (K+Na) 2.2 3.8 4.7 5.9 9.8
Table 4. Maximum values of pH, soil salinity and nutrient content at the beginning stage of sugar beet growth (Gutmafiski).
pH in KCI 3 Ca mg/dm 3 K mgldm 3 Mg mg/dm 3 Na rng/dm N0 3-N mg/dn 3
salinity g/din
3
light soil
medium-heavy soil
heavy soil
6.8 3000 200 100 100 80
7.2 4000 300 150 150
7.6 5000 400 200 200
t00
120
1.0
1.5
2.0
* silt content: light soil I1-20%. medium-heavy soil 21-35%. heavy soil >35%.
Table 5. Yields and quality of sugar beet depending of applied multicomponent fertilizers; Experimental Station Piwnice 1998. Sugar Yield in tha of Fertilization % content leaves recover, sugar roots Dose kg N/ha (+ adequate amounts of PKNa) Fertilizer
S p K H LSD
Na
a-NH 2-N
0
58.2
8.88
34.7
16.92
3.38
0.26
1.29
120 (as I dose)
65.1 65.7 68.4 67.5
9.71 9.78 10.31 10.14
44.9 45.1 46.3 44.0
16.67 16.68 16.85 16.78
3.50 3.54 3.50 3.49
0.29 0.30 0.31 0.29
1.89 1.91 1.83 1.83
150(90+60) (as 2 doses: 3/5+2/5)
67.0 68.5 71.6 70.1
9.99 10.24 10.74 10.43
45.8 46.2 49.0 46.8
16.70 16.76 16.81 16.69
3.2
0.27
3.9
0.23
3.55 3.58 3.54 3.59 n.s.
0.28 0.31 0.36 0.28 0.06
1.97 1.90 1.96 2.00 0.24
without S P K H
Content meq/100 g K
(p--0.05)
Fertilizers: S - ammonium nitrate (34% N), triple superphosphate (46% P20 5), potassium chloride (60% K20), n.s. not significant P - amno-phos-potassium fertilizer (6% N. 20% P20 5 , 30% K20) + ammonium nitrate (34% N), K - Kenira Beta (13.6% N, 8% P 20 5 , 14% K20, 7.5% Na20), H - Hydro Viking (13% N, 13% P 20 5 ,21% K20). Amount in kg of nutrient per ha: S: 120 N, 71 P20 5 , 124 K20 P: 120 N, 80 P20 5 , 120 K20 K: 120 N, 7t P20 5 , 124 K20, 66 Na20 H: 120 N, 120 P20 5 , 194 K20
S: 150 N, 88 P20 5 . 154 K20 (3/5+2/5) P: 150 N, 103 P20 5 154 K20 (3/5+2/5) K: 150 N, 88 P20 5 , 154 K20,83 Na20 (3/5+2/5) H: 150 N, 150 P 20 5 ,242 K20 (3/5+2/5)
References Gutmanski, I. (1990): Dzialanie wapna, obornika i terminu zbioru na efektywnosc dawek azotu stosowanych pod buraki cukrowe. Cz. 1. Wschody, plonowanie i jakosc przetw6rcza buraka cukrowego. Biul. IHAR, 176; 59-82. Gutmanski, I. (red.) (1991): Produkcja buraka cukrowego. PWRL Poznan, 700. Gutmanski, ., Goszczynski, T, Kreft, K. and Szymczak, D. (1998): Wplyw dawek azotu na wysokose i jakosc przemyslowa plonu buraka cukrowego oraz na wartosc azotu mincralnego w profilu glebowym w okresie wegetacji roslin. Rocz. Akad. Roln. w Poznaniu, z.1. Gutmanski, I. and Nowakowski, M. (1994): Wplyw dawki i formy azotu na wschody, plony i jakosc przetw6rcza buraka cukrowego w dw6ch terminach zbioru. Biul. IHAR, 189; 41-49. Gutmanski, 1. and Nowakowski, M. (1995): Kierunki zmian w produkcji buraka cukrowcgo i w cukrownictwie w Poisce. Nauki rolnicze w warunkach integracji europejskiej. AR-T Olsztyn I. 1/IV; 37-41. Gutmanski, 1. and Nowakowski, M. (1996): Korclacja pomiedzy zawartosciami azotu mineralnego (N-NO 3 + N-NH 4 ) w glebie i plonowaniem oraz jakoscia buraka cukrowego. Zesz. Pr. Post. N. Rol. 440; 131-137. Jaworowski, T. (1999): Syntetyczna informacja o przebiegu i wynikach produkcyjnych kampanii cukrowniczej 1998/1999. Informator STC 2/1020/99; 5-21. Kasperska-Furman, 1. (1997): Organizacja produkcji burak6w cukrowych w gospodarstwach indywidualnych w latach 1985-1995. Zag. Ek. Rol. 4-5; 79-88. Lights World Sugar and Sweetener Yearbook (1998): 1-360. £uczak Cz. (red.) (1981): Dzieje cukrownictwa w Poisce, Wyd. Nauk. UAM Poznan. Nowakowski, M., Gutmanski, 1. and Kostka-Gosciniak, D. (1997): Wplyw dawek azotu stosowanych rzedowo i rzutowo na wschody i plonowanie buraka cukrowego. Biul. HAR, 202; 117-123. Si6dmak, J. and Heimann, H. (1999): Burak cukrowy. Synteza wynik6w doswiadczen odmianowych 1998. COBORU Slupia Wielka. 1141; 1-13. Osszefoglalis Gutmanski I., Nowolowski M., Mikita J.
A cukorr pa kiegyensfilyozott taipanyagellitisinak lehet6s ge Lengyelorszdgban Department of Root Production Technology, Plant Breeding and Acclimatization Institute (IHAR) Al. Powstanc6w Wlkp. 10, PL 85-090 Bydgoszcz, Poland Lengyclorszgban a cukorr6pa termeszt~se 1802-ben kezd6d6tt, amikor Fr. K. Achard az els6 cukorgyfrat meg6pitette. Lengyelorszfg a vet6steriiletet ds a cukortcrmel6st illet6en a harmadik Eur6p~ban. Az el6adAsban foglalkozunk a cukorr~pa-termeszt~s klimatikus ig~nyeivel 6s talajig6nyeivel, a cukorr6pa tfpanyagig~ny6vel, a talajban rendelkez6sre Ai1l6 tdpanyagok meghatirozAsAval 6s a kiegyens6lyozott mfitrdgyahasznalattal. Megmutatjuk, hogy a felhasznilt miitrdgya mennyis~ge 6s ez6ltal a mfitrAgyAz6s k6lts~ge csdkkenthet6, ha a cukorrepa ali sorba adunk ki granulfit mfitrigyfit 6s sokkomponensfi mfitrAgyft hasznilunk. Ez az cljdirds nagy termst 6s j6 ipari min6s~g6i cukorr~pAt eredm~nyez.
130
R. Kastori, B. Marinkovic and J. Crnobarac
I
Sugar beet yield and quality in Yugoslavia from the aspect of mineral nutrition Faculty of Agriculture and Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Yugoslavia Summary In spite of favourable agroecological conditions and high yielding potential of the genotypes grown, there has been a gradual decrease both in sugar beet root yields and sugar percentage. In the period 1994-1998, the average yield was 30.42 t/ha with an average 14.10% sugar. The reasons for this situation are inadequate cultivation practices, moisture shortages in many years and the economic situation in Yugoslavia during the last decade. On average, the total arable land has received scant amounts of mineral fertilizers over a long period, about 15 kg N, 3.6 kg and 3.63 kg K2 0/ha in the period 1993-1997. The situation is no better regarding manuring. Among field crops, sugar beet receives the largest quantities of mineral fertilizers, N 84, P2O 5 58, K20 70 kg/ha, on average. Nitrogen (N) requirements are determined by the Nmin method, phosphorus (P) and potassium (K) requirements on the basis of soil analysis by the AL-method. In many cases, mineral fertilizers are applied randomly; this practice further emphasizes the inefficiency of the small amounts of mineral fertilizers applied. It is reasonable to assume that the insufficient and partially inadequate fertilization is one of the reasons for the stagnation of sugar beet yields and quality in Yugoslavia. In future, attention should be given to the specific requirements of individual genotypes for fertilizers. Introduction In recent years, the area growing sugar beet in Yugoslavia at a relatively small, about 60,000 ha, it is nevertheless an important industrial crop. Sugar beet is an intensive crop affecting positively both field crop and animal production as well as producing an important food constituent. Sugar beet production is economically attractive and it is generally important for the economy as a whole. There are 15 sugar beet processing factories in Yugoslavia. To fully employ their production potential, it is necessary to increase both the acreage grown, the yields and the technological quality of the roots. To achieve this requires optimum nutrition. Sugar beet acreage and yields In Yugoslavia, the sugar beet acreage occupies 1.15% of the total arable land but between 90 and 95% of the acreage is located in the Vojvodina Province, in the northern part of the country. In recent years, the sugar beet acreage has declined from about 90,000 ha in 19821995 to about 60,000 ha in 1995-1998. The decrease was due the low price of sugar and a discrepancy between the price paid for sugar beet and production costs. A consequence of the reduced acreage and hence volume of beet for processing, some factories have ceased operation and some wor: at less than their potential capacity.
131
In spite of the high yield potential of the genotypes grown and edaphic and climatic conditions favourable for sugar beet production, root yields stagnated for a long period or decreased. The average root yield in the period 1983-1991 was 41.8 t/ha, 26.7 t/ha during 1992-1995 and 30.4 t/ha during 1994-1998. This significant reduction in average root yields coincided with the economic embargo imposed on Yugoslavia which was reflected in beet production. There were also decreases in the average yields of other crops, e.g., corn and wheat. The chief reason for the reduction of average yields was the lack of adequate cultivation practices. First, primary ploughing was not performed timely and the quality was poor. This directly affected sowing and plant emergence and, therefore, the number of plants per unit area. In addition, mineral fertilization, especially the application of P and K, was very small even to sugar beet. The shortage of pesticides, their occasional poor quality and high price, created formidable problems in protection against diseases, pests and weeds (Kovacev et al., 1996). These shortcomings also affected the sugar content of the roots which was 15.90% in 19821991 but only 14.10% in 1992-1995 and in 1994-1998. The decrease in % sugar in the latter period was also due to unfavourable weather conditions in some years: insufficient and unfavourable distribution of rainfall or high temperatures in the period of intensive sugar accumulation. Genetic yield potential of the genotypes grown
In Yugoslavia, two research centers are engaged in sugar beet breeding: Institute of Field and Vegetable Crops in Novi Sad and Selekcija - Sugar beet Department in Aleksinac. About 20% of the total Yugoslav sugar beet acreage are sown to foreign genotypes and the remaining 80% are shared in equal proportions by genotypes from Novi Sad and Aleksinac. A study of 100 registered genotypes (60 foreign and 40 domestic) has indicated that the average annual increase of the genetic potential for root yield is 77 kg/ha for the domestic and 72 kg/ha for the foreign genotypes- Sugar concentration in the domestic and foreign gen6types has increased by 0.4)95% and 0.071%, respectively, sugar yield by 0.065 t/ha and 0.045 t/ha, respectively (Kovacev and Cacic, 1999). The yield potential for root yield of the most recent genotypes developed at the Novi Sad Institute is 115.7 t/ha under intensive production conditions with irrigation; 85.1 i/ha in rainfed farming and 43.4 t/ha in commercial production. The respective sugar yields are 18.2, 14.2 and 6.3 t/ha. A low rate of utilization of the genetic yield potential of the available genotypes should be a matter of serious concern for the domestic sugar beet growers. In experiments with intensive cultivation practices, 74% and 78% of the potential for root yield and polarised sugar, respectively, are realised but in production conditions, these values are only 38% and 35%, respectively (Kovacev and Cacic, 1999). It is clear that without larger investments in cultivation practices the genetic yield potentials of the available genotypes will remain only partially utilized. Soil conditions
In the Vojvodina Province of Yugoslavia, sugar beet is mostly grown on chernozem, chernozem like meadow soil and hydromorphic black soil and these soil types occupy more than 80% of the total arable land. Analyses of 1,600 soil samples taken around Vojvodina in 1991 showed that the pH of the chernozem, chernozem like meadow soil and hydromorphic black soil was
132
6.9 to 7.4, 6.9 to 7.5 and 6.7 to 7.2, respectively. Of the total arable land, 70% are medium and 27% well provided with humus, values which are satisfactory for intensive sugar beet production. The concentrations of available P and K in the soil samples showed that 67.4% and 83.2%, respectively, were in the categories of optimum, high and very high (Table 1). The soil conditions of the Vojvodina Province are generally favourable for sugar beet growing and high yields may be expected if adequate cultivation practices are used. In many years, however, insufficient rainfall and especially its unfavourable distribution during growing season, cause significant reductions in sugar beet yields and technological quality. Table 1. Percentages of the main soil types in the Vojvodina Province categorized according to the content of humus, available phosphorus and potassium (Bogdanovic et al., 1993). soil type
chernozem (on loess plateau. loess terrace, timeless) Chernozemlike meadow soil (on loess plateau, loess terrace, limeless) Hydromorphic black soil (calcareous and timeless) >80% of Vojvodina soils
mg P2 05 and K 20 100 ' g soil
Humus content (%)
>50 P20 5 K 20
1-2
24
4-8
5-15 P205 K20
02
63.6
36.2
22.5
7.4
72.0
80.8
6.0
5.7
2.0
69.2
28.7
19.1
6.7
74.7
90.5
6. I
2.8
7.0
77.0
16.0
37.2
15.2
55.4
78.2
7.4
6.6
3.0
69.9
27.1
21.1
9.8
67.4
83.2
6.5
5.0
15-50 P20 5 K20
Use of mineralfertilizers in Yugoslavia Compared with the economically developed countries, only small amounts of mineral fertilizers have been used in Yugoslavia. The largest amounts were used in 1985. In recent years, fertilizer use has decreased drastically, especially the use of P and K (Table 2), due to fluctuating supply, relatively high prices and a relatively good fertility of the soils. The latter has allowed growers to apply reduced amounts of fertilizers and still obtain acceptable yields. Because of the insufficient application of mineral and organic fertilizers, the balance for N, P and K for the arable land of Yugoslavia have been negative for a long period (Table 3). If this trend continues, and there is every prospect that it will, crop yields will be seriously affected. Reduction of organic matter in the soil has also been noticed (Bogdanovic et al., 1993). In addition to the insufficient use of organic fertilizers, harvest residues (straw, cornstalks) are frequently burned although the practice has been prohibited.
133
Table 2. Fertilizer use and nutrients ratios in Yugoslavia.
Year
Application per ha of arable land, kg
1985
Nutrient ratio
N
P20 5
K20
N
P205
K2 0
57.28
30.28
26.19
I
0.53
0.46
I I I I I I I
0.42 0.45 0.21 0.19 0.23 0.27 0.29
0.38 0.41 0.19 0.17 0.24 0.27 0.30
1991 29.63 12.55 11.32 1992 23.63 10.68 9.66 1993 15.82 3.29 3.08 1994 12.72 2.46 2.26 1995 12.51 2.87 3.08 1996 15.45 4.12 4.12 1997 18.36 5.36 5.57 Source: Statistical Yearbook of Yugoslavia (1998).
Table 3. Nutrient balance of the arable land in Yugoslavia in 1997 (kg/ha) (Cuvardic et al., 1999). Factor Removal of nutrients by main product Nutrients added with manure Use of nutrients from manure N fixed by legumes Nutrients added with mineral fertilizers Total nutrients added Balance
N 55.0 26.7 8.0 5.2 18.4 31.6 -23.4
P2 0 26.7 13.4 4.0 5.4 9.4 -17.3
K20 40.8 32.1 19.3 5.6 24.8 -15.9
Fertilization of sugar beet
In Yugoslavia, sugar beet receives the largest amount of mineral fertilizers. This explains the large difference between the average application of N, P and K to all arable land and the amounts added to sugar beet. Also, the amounts of mineral fertilizers used in the Vojvodina Province are larger than those used in other parts of the country. Tables 4, 5 and 6 show the results of a questionnaire sent to growers, farming about 14,700 ha about the use of NPK fertilizers in sugar beet production (Cacic et al., 1999). The answers showed that highly variable amounts of NPK were applied and that many growers do not use soil analyses as a guide when deciding the amount of fertilizer to use. Doses are frequently decided on the basis of the current financial situation of the farmer or some general notions instead of on the actual needs of the sugar beet crop grown on a certain field and the yield level desired. It was also noted that P and K were not added to 10% of the area, while the amounts used on another 20% were largely symbolic. The situation is much better with the use of N fertilizers. The average use of fertilizers on the area covered by the questionnaire was 84
134
* kg N, 58 kg P2O5 and 70 kg KO/ha. When it is remembered that the nutrient balance for the local soils has been negative for a long period, it becomes evident that the amounts used are not sufficient for large sugar beet yields. The results from the questionnaire showed that the largest yields were obtained on fields which received larger fertilizer doses than average. On the better farms, P and K requirements are calculated on the basis of soil analysis by the AI-method, and the anticipated yield level. Usually, P and K fertilizers are added in the autumn, during primary ploughing. Table 4. Amount of N added and yields of sugar beet roots obtained (Cacic et al., 1999). Root yield tha
Acreage
Amount of N (kg/ha)
% ha Average Category 1.1 158 0 0 8.8 1296 41 26-50 17.8 262 70 51-75 29.3 4306 87 76-100 17.0 2494 115 101-125 15.5 2293 135 126-150 10.2 1502 158 151-175 0.3 40 242 >200 1470984 Average Source: Survey data for Vojvodina Province in 1998. * Total.
46.70 40.50 36.98 43.21 42.25 48.31 35.12 25.15 41.67
Table 5. Amount of P20 5 added and yields of sugar beet roots obtained (Cacic et al., 1999).
Amount of P205 (kg/ha) Category
Average
Root yield t/ha
Acreage
I ha
%
0
0
1403
9.5
36.05
26-50 51-75 76-100
42 66 82
3144 7710 2025
21.4 52.4 13.8
41.78 39.78 49.08
107 145
247 180
1.7 1.2
69.49 42.10
101-125 126-150
14709* 58 Average Source: Survey data for Vojvodina Province in 1998. * Total.
41.69
135
Table 6. Amount of K20 added and yields of sugar beet roots obtained (Cacic etal., 1999). Amount of K 20 (kg/ha) Category 0 26-50 51-75 76-100 101-125 126-150 151-175 Average
I Average 0 34 72 88 106 129 173 70
Acreage
I
Root yield
t/ha ha 1403 273 4555 3422 2044 308 247 14709*
% 9.5 18.5 31.0 23.3 13.9 2.1 1.7
36.05 40.50 40.07 44.91 42.29 38.35 69.49 41.67
Source: Survey data for Vojvodina Province in 1998. * Total. 'fable 7. Application of manure and it effect on sugar beet root yield (Cacic et al., 1999). No
Amount of
Acreage
Root yield
manure ha 0 3040 41-50 51-60 30-60
1 2 3 4 Average
13329 540 494 346 1380 14709-
% 90.6 3.7 3.4 2.3 9.4
41.09 40.79 51.73 50.50 47.14 41.67**
Source: Survey data for Vojvodina Province in 1998. * Total; ** Average. Fig. I. Yield of polarised sugar at the ,,Backa" Sugar Factory and the average for the Vojvodina Province (Obradovic, 1994).
8.0-
7.8"Backa" - Sugar Factory 7.67.4-
0.57 t ha
1.24 t ha
7.2-
S7.0
-
-
-
-
-
Vojvodina Province
6&8 -6.6 1977 1978 1979 1980 19'811982 1983 19'84 1985 19'86 19'87 1988 1989 1990 1991
Year
136
N requirements are calculated by the Nmin method after the following pattern: 240 kg N (depending on the amount of N taken out) - Nmin reserve to 90 cm prior to primary fertilization (November), or 240 kg N - 1.2 Nmin reserve to 90 cm prior to sowing (March)(Ma Feng Ming, 1987; Marinkovic etal., 1997). The first half of the total N dose is usually applied in the autumn, during primary ploughing, the other half before sowing. Sugar beet is usually not top-dressed; if it is, only nitrogen is added. Table 7 shows that manure is added to less than 10% of the sugar beet fields. This is primarily a result of underdeveloped animal production. Generally, manuring increases root yield. Average yields in manured fields are generally larger than those obtained with mineral fertilizers only. A long-term study codducted on 10.000 ha of the production area of the ,Backa" factory in Vrbas showed that mineral N from soil and fertilizers is the decisive factor determining sugar beet yield and quality (Obradovic, 1994). The application of the Nmin and EUF methods to fields has rendered the presowing fertilization and top-dressing unnecessary over the entire production area. In several cases, it has been recommended to omit N during primary ploughing. This practice increased the profitability of production. A correlation analysis of data from commercial production and from experiments with increasing doses of N has shown that the large amounts of N present in the soils in that production area (resulting from intensified mineralization of organic nitrogen or by uncontrolled and excessive fertilization) affect negatively root quality parameters namely extractability, a-amino N, alkalinity coefficient, thick juice quotient, as well as the yields of polarised and white sugar. The amounts of P and especially K fertilizers used in this production area are above the average. By applying the methodology described above, the Vrbas factory achieves yields of polarised sugar which are higher than the average of the other II factories in the Vojvodina Province (Figure 1). In the agroecological conditions of the Vojvodina Province, the efficiency of the applied mineral fertilizers and the resulting yield level and root quality are frequently limited by moisture shortage. It is certain that the exploitation of the yield potential and quality of the genotypes grown, soil fertility and added fertilizers, would be enhanced if optimum nutrition were combined with irrigation. As the commercially used genotypes differ not only in the production of dry matter but also in the production and utilization of assimilates, it appears advisable for future fertilization practice to take in consideration the genetic specificity for mineral nutrition of the genotypes used (Kastori, 1979). Besides the generally difficult economic situation and fluctuating supply of mineral fertilizers, there are other reasons which discourage growing sugar beet. One is the relatively low prices of agricultural produce, combined with the already small income brought about by small sugar beet yields. Furthermore, the soil fertility and fertilizer use control system does not function in many production areas. Improvements to the organization and activity of the extension services would facilitate the implementation in the sugar beet production of both domestic and foreign experience in plant nutrition. Together with the introduction of more favourable economic policies, improvements to the work of the extension services would improve the practice of mineral fertilization and the technological discipline in general, without which there is no successful sugar beet production. References Bogdanovic, D., Ubavic, M. and Dozet, D. (1993): Chemical properties of Vojvodina soils and their provision with essential macroelements. 197-215. hi: Kastori, R. (Ed.) Heavy Metals
137
and Pesticides in the Soils of the Vojvodina Province, Faculty of Agriculture, Institute of Field and Vegetable Crops, Novi Sad. Cacic, N., Kovacev, L. and Marinkovic, B. (1999): Analysis of sugar beet production in 1998. 33rd Seminar of Agronomists, Vrnja~ka Banja, 1999. Cuvardic, M., Bogdanovic, D. and Ubavic, M. (1999): The role of fertilization in sustainable agriculture. Zbornik radova, Institute of Field and Vegetable Crops, Novi Sad, 32, in press. Kastori, R., Saric, M., Petrovic, M. and Krstic, B. (1979): The specific characteristics of different sugar beet varieties related to potassium nutrition. Agrohemija, 3/4, 97-107. Kovacev, L., Cacic, N. and Mezei, S. (1996): Sugar beet production in Serbia - current status and recommendations. Agronomska saznanja, 1, 27-30. Kovacev, L. and Cacic, N. (1999): Previous achievements and future prospects of sugar beet breeding at the Institute of Field and Vegetable Crops Novi Sad, Zbornik radova, Institute of Field and Vegetable Crops, 31, 37-46. Ma Feng Ming (1987): Effect of nitrogen nutrition on yield and quality of sugar beet grown in different soil types. Doctoral thesis, University of Novi Sad, Faculty of Agriculture. Marinkovic, B., Crnobarac, J., Balesevic, S. and Rajic, M. (1997): Adapting sugar beet production technology to yield projections and agroccological conditions. Zbornik radova, Institute of Field and Vegetable Crops, Novi Sad, 29, 463-473. Obradovic, S. (1994): Limiting factors of sugar beet yield and quality from the aspect of nutrition and their control. Doctoral thesis, University of Novi Sad, Faculty of Agriculture. Osszefoglalds R. Kastori, B. Marinkovic and J. Crnobarac
A cukorr pa term seredm nye ls minds ge Jugoszldvidban a miitrigyalzd's szemsz6g bdl Faculty of Agriculture and Institute of Field and Vegetable Crops, Maksima Gorkog 30, 21000 Novi Sad, Yugoslavia A kedvez6 agro6kol6giai k6riilmnyek, a termelt fajtdk nagy term6spotencidlja ellen~re fokozatosan csdkken a hektironkdnti gyokdrterms. 1994-98 kdzott az tlagos term6s 30,42 t/ha volt. A cukortartalom is csbkkent, ezen id6szak tlagfAban csak 14,10%. Ezek a szakszerfitlen termeszt6si gyakorlattal, az egyes 6vek szAraz id6jdrdsgval 6s az orszdgban az ut6bbi 10 6vben uralkod6 speciflis gazdasfgi hclyzettel magyarizhat6k. A sziint6tertiletre vetitve 1993-97 kbz6tt 6vente minddssze 14,97 kg N-nel, 3,62 kg P2O5-tel ds 3,63 kg K20-val egyendrt6kO mitrfgyft adtak ki hekt6ronkdnt. A szervestrigyfzfissal sem jobb a helyzet. A szfnt6f61di n6v6nyek k6zOl a cukorrpira adjik ki a legt6bb mfltrfgyft, N 84, P2 O 58 6s K20 70 kg/ha .tlagosan. A N-sziiks6gletet Nmi, m6dszerrel, a P- 6s K- sztiks6gletet AL-m6dszerrel Allapitjak meg. Sok esetben a m6trigytit egyenetlenil adjfk ki, ami mdg tovAbb rontja az am6gy is kev6s matrAgya hat6konysAgft. Meggllapithat6, bogy az el6gtelen 6s r6szben helytelen tr.gyAzAs az egyik legf6bb oka a cukorrdpaterm6s 6s a r6pamin6sdg stagnmiisinak Jugoszliviiban. Ogy ttinik, bogy a jbv6ben drdemes lenne t6bb figyelmet fordftani az egyes fajtik specif1lis tipanyagig6ny6re is. 138
General papers
Balanced plant nutrition in sugar beet cropping systems Eldad6sok
A cukorre'pa kiegyenszilyozott tdpanyagelldtdsa
139
Szisz Gfibor 6s Loch Jakab
Az 6ghajlati stressz szerepe a cukorr patermeszt sben Magyarorszfigon Debreceni Agrirtudomfinyi Egyetem, H-4032 Debrecen, B6sz6rm~nyi u. 138., Hungary Os zefoglalds A cukorr6pa gy6kfrterm6se 6s az id6jArfsi elemek k6z6tt szigor6l pozitfv kapcsolat All fenn: a tenyfszid6szak b6sdges csapadfka 6s az ftlagos vagy m6rs6kelten dtlag alatti h6mdrs6klet a nagy gydkrterm6s optimAlis 6ghajlati feltdtele Magyarorszigon. A cukorr6pa a gydkrtermfs szempontjibd vizig6nyes n6v6ny, ez6rt a t61i b6sfges csapad6k el6feltftele lehet a nagy termdsnek. A cukorterm6s optimfilis igdnye 16nyegesen cltdr a nagy gydkorterm6s ftal timasztott igfnyekt6l. Az enyhe, nem ttilzottan csapadfkos, majd a nyAr eleji - kiil6n6sen a j6niusi vagy j6liusi - csapadfkb6s6g kedvez6 el6feltftcle a cukorfelhalmoz6disnak abban az esetben, ha ezt kdvet6en a termfszetes vizelldtfs csak m~rs6keltt6 cs6kken ds a h6mfrs6klet mdrs6kelten az orszigos Atlag alatti. A tavaszi 6s nyAri magas csapaddk Cs magas vagy Atlagos h6mdrs6klet akadilyozza a cukor k6pz6d6sdt. E tekintetben a Dunantijl nyugati ds d6li teruletei, valamint a Nagyalf6ld 6szaki peremvid6ke tekinthet6 6ghajlati szempontb61 kedvez6 tcrmeszt6si terilletnek. A gydk6r- 6s cukortartalom nagysAga k6z6tt az elmtilt id6szak adatai alapjfn sajAtos 6sszefiigg6s illapithat6 meg. A magas vagy rendkfviil alacsony gy6k6rtermfs idej6n, a betakaritfs idej6n mfrhet6 digestiodrtdke csekfly (10-12%). K6zepes gy6kfrtermfs eset~n lehetett a legmagasabb digestio6rt(ket megfllapitani (16-19%). Az ghajlat kozvetett hatzisa a talaj nitrifikfci6s folyamatainak alakulisAn keresztiil Crv~nyesiti cukortermfst szabiyoz6 szerep6t. A meleg, tart6san nedves talajokon a nagy k6pz6ddtt nitrogdnmennyis6g akadAlyozza a cukor-felhalmoz6dist.
Bevezet~s MagyarorszAgon a cukorr~pa, illetve a cukorterme~s hosszO m6ltra tekint vissza. A mintegy 200 6ves tortdneti termel si id6szak alatt 6riAsi 6s sokrdt6 tapasztalat halmoz6dott fel. Mindez termdszetesen nem jelenti azt, hogy a cukortermel~s k~rddseire vonatkoz6 vflaszok ismertek vagy ma is helytAll6ak. A termelds fejlesztdse sorfn kiildndsen az ut6bbi 6vtizedekben megvfiltoztak a biol6giai alapok, az 6j fajtiAk dkol6giai ig6nyei m6dosultak. A mez6gazdasdgi modernizAci6 nyomdn tovgbbfejl6d6tt a termeldstechnol6gia. Az ut6bbi tekintet6ben ki kell emelni a talajcr6-gazdilkodAs, a vizellhtfs kedvez6 6s kedvez6tlen hat.sainak szerepdt. Mindezek 6s a nem emlitett k6rfilmfnyek egyfttesen vetik fel a cukortermels jelenlegi felt6teleknek megfelel6 kfrddskomplexuma elemzfs6t. E feladat sokrfttis6g~b6l ez alkalommal az agrodkol6giai adottsigok szerepdnek kiemelfse a f6cCl, mivel az determinilja a fajtik produkci6s potencidjinak kibontakozfsAt. E k~rd6skOrb6l kiilfnbsen az 6ghajlati tfnyez6k jelent6s~g~t kell kiemelni, tekintettel arra, hogy az dvjfratok ktildnbbz6s6ge rendkivfil nagy variabilitAst mutat, Cs ezeknek jelent6s hinyada kedvez6tleniil hat a cukorr6pa
140
gy6kdrtermdsfnek, illetve a cukorhozam alakulsfra. A cukortermels optimaliz~ci6ja az id6j~r~si adottsfigok elhanyagolisfival nem oldhat6 meg. Magyarorszfg 6ghajlatft a h6mdrsdkleti is csapad6ksz6ls6s6gek jellemzik, de kfllnoscn a csapad6k szeszdlyes id6beli eloszlhsa olykor rendkivl j61 illeszkedik a n6vdnyi igdnyekhez, mig nagyobb szdzal6kos arinyban rendkivll kedvez6tlendl hat. Az id6jfirsi elemek ftlagfrtdkei alapjan hazfnk 6ghajlatfnak kedvez6 vagy kedvez6tlen jellege nem ismerhet6 fe.. a cukortermels szemszbgdb61 fttlkezve, mivel az egyes 6vjfiratok id6j:risi jellege csaknem kivftel ndlkiil eltdr az Cghajlati Atlagok Altai kifejczctt hclyzctt6l. Az alhbbiakban azoknak az 6ghajlati helyzeteknek a bemutatisft kfv.nom dsszefoglalni, amelyek vagy igen kedvez6ek, vagy rendkivijl kedvcz6tlenek, kfrosak a cukorrdpa fejl6ddsdre, illetve az 6ves cukorhozam alakulsfra. A vizsgflatok adatbfzisa is m6dszere A cukorr~pa gydkfrtermdsdre Cs a cukortermels jellemzdsdre szdles kdrfl adatbdzis i1 rendelkez6siinkre, melyek alapjfn j61 kdrvonalazhat6 az ut6bbi 40 6v alatti termeldsi eredmdnyck trendjc, valamint a kiijlnbdz6 Cghajlati hatfsoknak a termels eredmdnydre gyakorolt hatfsa. Az elemzds tjrgyjt kdpez6 22 6v orszfgos tlagos gydkdrtermdsdnek 6s az egyes 6vjfratokra vonatkoz6 digestio-% id6beli vfItozfsinak alakuhsAt jellemz6 mdrdsek kdpezik. A tcljcssfgre va16 t6rekvfs okn tfjfkoz6dtunk arr6 is, hogy mikdnt alakult a cukorkinyerds feltdteleit reprezentAl6 digestio a koribbi - 1951-74. Cvck kdzdtti - id6ben. Az akkori fajta Cs termesztfstechnol6gia kdzepette a digestio 16nyegesen magasabb volt egyes kdrzctckbcn. Az alhbbi, az ut6bb emlftett id6szakra vonatkoz6 Atlagok voltak a jellemz6k. Pet6hfza 16,00% Mczdhegycs 12,35% Szerencs 15,79% Ercsi 12,21% Sarkad 13,64% Acs 11,48% Kaposvir 13,40% Srvfr 11,70% Szolnok 13,11% Nyilvfnval6, hogy az ut6bbi 6vtizedekre ezek az ftlagfrtfkek jelent6sen mddosultak a mdr emlitett okok folytAn. Thenyk6nt Allapithat6 meg, hogy az orszig kiilonboz6 rMpatermeszt si koreteiben az atlagos digestio ertikeijelentosen ki/onbOznek egmast6l, amely alapos meggondolds alapjdnokol6giai- talaj 4s fghajlatbeli- kflonbsogekre vezethet6k vissza. A gydkdrtermds nagysfga Cs a digestio kdzdtt bonyolult osszefugg6s hll fenn. E megfllapitAsunkat azonos k6rzetek id6sorai elemzds6nek eredmdnyei is meger6sitettfk. Levonhat6 az a k6vetkcztetds, hogy a gyokirtemjs timegit is a betakarioti gyikgr digesti6jdt a kidlnbdz6 dkolcgiai felttelek dont6 m~don hatdrozzdk meg. A cukortermds 6vjfratonkdnt igen tAg hatdrok kbzdtt ingadozik, s ez a magyarAzata annak, hogy a cukortermelds problematikAja hfrom f6 kfrdds k6r6 csoportoslthat6: - a cukortermels optimflis id6jArAsi feltdtelei, - a cukortermelds optimAlis talaj- Cs tApanyagellAtAsi feltdtelei, - a cukorkdpz6ddst szdls6sdgesen gftI6 id6jfrAsi hatdsok (stresszhelyzet). Ezek azok a legfontosabb krddsek, melyek a cukorrfpa jelenlegi termesztfsdnek a legfontosabb probl]maihoz tartoznak, az ezekre vonatkoz6 vizsgilatok eredmdnyei az alAbbiakban foglalhat6k 6ssze. A vizsgAlati m6dszerekre rdviden kitrvc soroijuk fel azokat az elemz6 eljdrAsokat, amelyeknek segftsdgdvel kivfntuk k6vetkeztetdseinkct lcvonni. A korrelfci6s Cs regresszi6s analizis hosszabb-rtvidebb id6szakokra j61 hasznAlhat6, bar meg kell jcgyczni, hogy a termdsek id6sorainak heterogenitdsa csak korlftozott mdrtdkben engedi meg e statisztikai
141
m6dszernck az alkalmaziisit. Kisdrlctet tettOnk a Icgjobb 6s Icgrosszabb Cvck m6dszcr6nek alkalmazdsfra megfelel6 statisztikai, val6szinfs6gi mcgkdlbnbztet6sek biztositAsival (Rgnyi, 1954). A digestio dvjfraton beluili v6ltozAsAra clemeztiik annak dinamikdjAt hdt szcddsi minta alapjdn 6s kisdrletet tettunk a digestio Cvi dinamikijfnak tipiziildsfra. Az id6jfr~isi elemek 6s a gybkrterm~s, valamint a digestio kozotti kapcsolat Magyarorszfgon A gy6k~rtcrmds orsz6gos Atlaginak ingadozdisa 20-50 t/ha kdzdtti, az intervallum sz6lcss6g~t tdjank6nt els6sorban az id6jirgsi adottsfgok v6lboz~konys.g6val magyarAzhat6. A term6sek nagysjggnak alakuldsAban a csapad6k Cs a h6m6rs6klet ddnt6 szerepet t61t be. A hrnldrsjklet 6s a gy6k6rterm6s k6zbtti korrelci6s egyiltthat6k 6rt6ke ndh6ny kiv6teltl1 eltekintve mdrciusban pozitiv 6s legt6bb esetben szignifikfins, a legmagasabb egyftthat6k drt6kei Nyugat6s Dd-DunAnttilra szfmithat6k: r = 0,76, amcly Cri6k egy6rtelmfen bizonyitja a jelent6s b6ig6ny 16t6t. A NagyalfIldon a sz'Amitott ebyfitthat6k Crt6ke 16nyegesen alacsonyabb. Aprilisban a dunAnt6li h6ig6ny tovfibbra is kimutathat6, br szer6nyebb 6rt6kkel, az Alf6ld6n szignifikAns dsszefugg6s nem AIllapthat6 meg. Mdjusban jelent6s fordulat k6vctkezik be: az Atlaghoz viszonyitott alacsonyabb h6m6rs6klct bizonyul kedvez6bbnek csaknem az egIsz orszigban. Jdniusban a hfiv6s jelleg irgnti ig6ny fokoz6dik, f6k6nt az orszig d61i term6teriiletein a szfmitott korrelfci6s egytitthat6 6rt6ke -0,5, -0,6 kdzdtti. iflitusban az Atlag k6riili h6m6rs6klet bizonyult megfelcldnek, ugyanis egyarfnt el6fordulnak pozitiv 6s negativ korreIAci6s egyiiuhat6k, azonban 6rt6k~k egyetlcn esctben sem 6ri el a szignifikancia hat6r6t. Hasonl6 a helyzet angusztusban is, br inkfbb a hvds jelleg irdnti hajlam kibontakozdsa ismerhet6 fel az cgyiitthat6k Crt6kciben. Szeptemberben a legmagasabb korrelici6s egyutthat6k a Kdz~p- 6s D61-Dun6nt6lon (Baranya, Fej6r, Tolna) alakultak ki. Osszessdg6ben megfillapithat6, hop , m-rciust6l eltekintve az Atlag kdriili, illetve az dtlag alatti h6m6rs6klet bizonyul kedvez6bbnek, az cr6teljcsebb 6sszefiiggdsek a nyugat- 6s dCI-dunSntoli adatok alapjdn szfmithat6k. A csapadik szerepe a cukorr6pa gy6k6rterm6s6nek alakuldsdban igen jelent6s. A vizsgflatok eredmdnyei a kdvetkez6 kdpct mutatj6k. Mdrciusban csapad~kig6ny schol sem mutatha16 ki, amely term6szetesen nem jelenti azt, hogy rendkfv~il szfraz telek utfn esetleg ne kelljen csapad6kig6nnyel szfmolni. Hasonl6kdppen alakul a helyzel dprilisban is, bAr meg kell jegyczni, bogy a Kisalf6ld keleti terilctein, valamint a Nagyalf6ld k6zdps6 rdsz6n -0,64, -0,70 Crtdk6i korrelgci6s egyiitthat6kat szfmiloltunk, amelyck inkAbb a csapaddkszegdnys6g sziiks6g6t fejezik ki. Mdjusban az Atlag kdriili csapad6k elcgcnd6nek bizonyul, a korrelfci6s egyiutthat6k nem 6rik el a szignifikancia hatdrAt.Jniusra mewgAltozik a kp, s annak ellen6re, hogy hazfnkban ekkor alakul ki Atlagban a csapad6k dvi ritmusfnak maximuma, m6gis a pozitiv korrelci6k viszonylag magas Crt6ke jellemzi a szAmitdsok eredm6nyeit. A magas korrelfci6k f6k6nt a Nagyalfbld kelti teriilctein alakultak ki (0,53-0,61), a legalacsonyabb korrelici6k a Nyugat- Cs DCI-Dunntilr61 szArmaznak. Mint Icgtdbb egynyAri ndvdnyn6l, 6gy a cukorr6pfnfl is ajiliusi csapad6k bizonyul a lcgkritikusabbnak az eg6sz orszig teriilet6n, bdr a csapaddkban gazdagabb Nyugat-Dunfnt6lon az cgy~itthat6 Crtke a vdletlcn hatAra alatt marad, de a Nagyalfdld kdz6ps6 Cs keleti teriuleteire kaptuk a legmagasabb pozitiv korrelfci6s egyitthat6t (0,63-0,80). Szimitfisainknak cz az eredm6nye azt er6siti meg, hogy a j6liusi csapad6kmcnnyis6g igen fontos kockfzati tdnyez6nek tekinthet6 a gy6k6rterm6s alakulAsdban. Augusztusra a csapad6kigdny ovAbbra is fennmarad, azonban jelent6sdge mfr I6nyegesen csek6lyebb. Hasonl6k6ppcn alakul a helyzet szeptemberben is, ekkor mir a gyk6rterm6s nagysfg~t a statisztikai vizsgflatok szerint a csapad6k jelent6s m6rt6kben nem befolyfsolja. AltalAnos 6rtelemben megAllapithat6, hogy a vetds el5tti id6szakban Atlagban a
142
csapad6khiAny mutatkozik kedvez6nek, majd a teny~szid6szak el6rchaladtval jiliusban egy rendkivol er6teljes csapaddkigdny alakul ki. A gy6k6rterm6s nagys~glt termdszetesen a h6m6rs6klet 6s a csapad6k egytittesen hatirozza meg. A h6mdrsdklet ds csapad6k egyiittes hatisa mdrciusban meg igen szerdny, de a teny~szid6szak el6rehaladtfval a totdlis korrehici6s egyftthat6k 6rt6ke folyamatosan ndvekszik 6sjfniusra el6ri a 0,8-et, amely arra utal, hogy a minta varifinsainak 64%-At a sz6ban forg6 kt elem egyfittesen hatirozza meg. E statisztikai vizsgflat eredm6nye informativnak tekinthet6, azonban e m6dszer csupAn a t6ny megillapitfistra alkalmas, de az okozati Csszefiiggdsekr6l nem nytjt tij6koztatAst. A Baumann (1949) 6Ital kidolgozott legjobb 6s legrosszabb ternm6sfi 6vek m6dszere alapjin kdvetkeztetni lehet cls6sorban a kedvez6tlen id6jfrfsi hattisok feltArAsfra. Az elemz~sek eredm6nyei ttlnyom6rdszt meger6sitik a korrelici6s analizis 6itjAn kapott megAllapi isokat. Eszerint kflln6sen a Dunfntilon jelent6s a mArciusi h6ig6ny, Aprilisra az Jitlag feletti h6mrsdklet kedvez6 6s a csapad6k 6tlagos volta tekinthet6 k6zel optimi~lisnak. A legszabilyosabb k6p jiliusra bontakozik ki, amikor az eg6sz orsztgra jehlemz6nek tekinthet6 a csapad6kig6ny, azonban a h6mtrsfklet csak az Aifold keleti teriilet6n ismerhet6 fel. Vgiil tehAt e m6dszerrel is bizonyithat6, bogy a Nagyalf6ldbn a termel6s kockdzata nagyobb, mig a Dunfnttilon inkAbb a kedvez6 adottsigok gyakoribb volta, enn61 fogva a term6sek kiegyenlitetts6ge Alapfthat6 meg. Ez I6nyeges megdillapftAsnak tekintend6 annak ellen6re, hogy a sokdves ilagterm6sek a Nyugat-Dunintdlon valamivel alacsonyabbak, mint a d6lkelet Ahf6Id6n, de a Ddl-Dunintfil magas term6sftlaga 6s kis termdsingadozAsa arra utal, hogy a kedvez6 feltdtelck e tdrs6gekben alakulnak ki. A cukortermel6s rendszerdben a gy6k6rterm6s nagys~iga a termel6s teljess6g6ben csupAn egy fontos t6nyez6nek tekintend6, inert v~geredm6nyben a gy6kdrtermeszt6s a cukornyerds ci1jdt szolgAlja. A gy6kdrbcn felhalmoz6d6 cukoralapanyag, melyet a digcstio-%-kal szokds jellemezni, egy min6sdgi parameter szemben a gy6k6rtermdssel, mint mennyis6gi paramterrel. A tovbbiakban a digestio teny6szid6szak alatti dinamikdjdnak alakulisAra vonatkoz6 vizsgAlatokat foglaijuk dssze. A teny6szid6szak folyamAn a cukorhozam k6pz6d6se a gy6k6rfejl6ddssel pfrhuzamosan alakul. Tiz cukorgyir 14 6vi gydk6rmintdzfsa alapj6n rekonstruiihat6 a gy6k6r, illetve a digestion6veked~s a teny6szid6 folyamfln. A mintfzds teny6szid6szakonk6nt 8 esetben t6rt6nt meg, mintegy 10 napos id6intervallumban, igy v6giil minden Cvben felismerhet6v6 vflt az, bogy mikdnt viltozott a gy6k6r t6mege ds annak cukortartalma a betakaritAsig. A mintizisok alapjfn megszerkesztett fejl6ddsi gdrb6k tipizAlhat6k a gy6k6r kedvez6 6s kedvez6tlen fejl6d6se, valamint a cukortartalom kedvez6 6s kedvez6tlen halmoz6dAsa szerint. Az 1. a. 6s az 1. b. Abra k6t cukorgypAr mintfizAsi sorozatainak tfpusait mutatja be a digesti6ra vonatkoz6an. Az AbrAkat 6ttekintve megA lapithat6, bogy a kedvez6 6s kedvez6tlen cukorhalmoz6disi folyamat sem egyetlen tipus formAijiban zajlik le. Erdemes megemliteni, hogy a cukorhalmoz6dis mir a nydr elcj6n igen kfil6nbdz6 szintr6l indul el. Ez a megAllapittis 6rvnyes a nagy digestio-%-kal zAmruI6 vjAratokra 4pptigy, mint a kis cukorterm6si 6vjAratokra. A nagy cukorhozamri 6vjfratokban a halmoz6dds mir eleve egy magas 6rtkr61 indul el. MAs esetekben a halmoz6dAs esetn adigestio 6rt6ke alacsony, azonban a nyAr folyamtin jelcnt6sen emelkedik. Ezckb6l az 6vjtiratokb6l szArmaz6 gyarapodAsi g6rbdk alapjdn megtillapithat6, hogy mdr a gy6k6rk6pz6d6s el6tti uralkod6 id6jArfsi feltdtel nagyjAb6l eld6nti a cukortermdsnek a nagysigit. Nagy cukorhozami CvjAratokban mAr a g,6k6rfejl6d6s elejdn a startponti digestio kb. 2-3%-kal magasabb, mint a kis cukortartalmtO 6vekben. A nyAri id6szak tovibbi maghatiroz6ja a cukorhozam nagysigAnak. Vgiil megAllapithat6, hogy a cukortermdst k6t tnyez6 hatfrozza meg: - a gy6k~r digestio-%-a a gy6k~rfejl6d6s kezdet~n, - a ny~ri cukorfelhalmoz6dAs jiteme a gy6k6rfejl6d6s idej6n.
143
I. ibra
A digestio - % tenydszid6szak alatti viltozfisa kis is nagy cukorhozam6 vekben (Sarkad) D
D
18-
20-
16-
18-
,/ , 16-
-"1967
IA
14-
"-
/.." - '...
-
74
12.
14-
10 -
_/"
/ I
l
I
i i
i
4 5 6 7 8
23
23
4 5 6 7 8
minta szed6s
minta szedds
A digestio - % teny~szid6szak alatti viltozisa kis is nagy cukorhozam6 6vekben (Szolnok) +
s
D +D
18 -
2018' 16 - t/
.
16-
'..""'
14 -/
6
.
.
:s .14-
4%S14-
" -
10-
12
I]i 23
144
- -
4 5 6 7 8 minta szed6s
1-I
I I
7i
2 3 4 5 6 7 8 minta szed6s
Mivel a cukorterm6snek k6t kiildnb6z6 felt6tele van, v6gful eszerint minimilisan n~gy viltozat kolonbztctbet6 meg. Az 1. Abra ezekre az esetckre mutat be p6ldit, melyen az alacsony, illetve magas startpontr6l val6 indulst nagy ds kis cukorhozam 6vekre dbrfzolja a cukorhozam v6gs6 6rt6k6t 8 szed6sminta alapjAn. A digestio-6rt6kek nagy cukorhozam 6vekben az utols6 mintdis szerint magas (16-19%), mig a kis cukorhozam6 6vekben (D+) ez az intervallum 12-15% k6zbtti. A nagy cukorhozamii 6vekben a startponti digestio-% (2. szed6s) iltaliban nagy, a kis cukorhozami evek startponti digestio-%-Ahoz viszonyitva. Szembetfin6 a halmoz6disi 6ri6k nagysdg (D+), amely a nagy cukorhozam6 6vjfratokban 5-7% kozotti, mig a kis cukorhozamti 6vjhratokban 2 3% csupin. Mindezek meger6sitik azt az ilftist, bogy a cukortermds nagys6gAt egyr6szt a startponti 6rt6k, mAsr6szt pedig a halmoz6disi iddszak alatti id6jArdsi felt6telck szabAlyozz6k. Kuil6n elemz6st rdemel a startponti digestio-% alakuldsa. A rendelkez~sre A116 statisztikai adatok alapjgn arra a kdvetkeztet6srejutottunk, hogy a startponti digestio-% olyan CvjAratokban alacsony, amikor a tavasz 6s agyok6rfejl6d6s idej6n magas h6m6rs6klet igen j6 vizellcAtotts~ggal tirsul. Ennek az id6jArdsi helyzetnek a k6vetkezm6nye az, hogy igen intenziv a talajban a nitrog6nfeItAr6dhs, b6s6ges a nv6ny nitrog6nelldtottsga, amely kbzismerten kedvez6tlenfil hat a cukortartalom alakulhisra. Ez a magyardzata annak, bogy a nagy tavaszi csapad6k a magas h6mdrs6klettei egyijtt kedvez6tlen 6s ez az oka annak, bogy az optimdilk hatdspdeydk jelentdsen kidhnbdznek a maximtlis cukorhozami ds marimdlisgijkrhozwmt dvjdratok kiz6tt. A iovdbbiakban ineg kell emifteni, hogy az id6jdrdsi hatdsok akfiv 6spaswzivfornnban nyilvdnulnak meg. A passzfv id6jArdsi hatAsok nem k6zvetleniil a n6v6nyt 6rintik, hanem a talajban kiv6ltott valamilyen tulajdonsAgbeli vAiltozison At drv6nyesiil a n6v6nyi szervezetben. A n6v6nytermeszt6snek az egyik legfontosabb t6nyez6je a klfma-talaj kapcolatrendszerben a talajtermkenystg. A talaj fogalmilag dlettelen anyagok 6s 616 szervezetek osszessgnek rendszere, amely sziiksdgszer~en igen kiil6nb6z6 formAban reagAl az id6jirAsi hatAsokra. A meteorol6giai folyamatok iltal kivAltott talajillapotbeli hatisok folyamatosan m6dositjAk a talaj term6kenys6g6t. Az ember Altal befolydsolt talajterm6kenys6g maximlis 6rt6ke becsiilhet6 an7al a ndv6nyi produkci6val, amely kedvez6 id6j6risi felt6telek eset6n azon kdpz6dik. A minimlis talajterm6kenysdgi 6rtdk nem definiilhat6 6s t6ves az a megillapitds, bogy - a nagy term6sek anal6gidjAhoz hasonl6an - a kedvez6tlen kdrtilm6nyek kbz6tt kialakult minimdlis tern6sszint k6pviscli a talajterm6kenys6g 6rt6k6t. Tejesen cgy6rtelm6 az az Alfftis, hogy j6 term6sfi 6vekben a talajterm6kenys4gi szint magas 6s aterm~sek cs6kkendsvel a talajterm6kcnys6g is m6rs6kli6dik k6jnb6z6 tulajdonsdgainak megvAltozAsa kdvetkezt6ben. lyen tulajdonsdgbeli v.ltoz"s a talaj Altal raktirozott nedvess6gtartalom, a talaj t6panyag-szolggltat6 k6pess~ge, zen bell is a talajban lejitsz6d6 nitrifikAci6s folyamatok intenzitAsa. A nbvdnytakar6 a vegctAci6s id6szak alatt jelent6s mennyis6gfl nitrogdnt vesz fel, melynek tdmege 80-150 kg/ha/Cv (Sarkadi, 1975). A Gilvehet6 nitrog6nmennyis6g, amety a ndvdnytakar6 egyik Iegfontosabb tfpeleme, 6vjAratonk6nt rendkviil tdg intervallumban ingadozik. Erre vonatkoz6 vizsgilati anyaggal rendelkezfnk, ugyanis 1975-81. 6vckben k6thetenk6nt szedett talajmintdkb6 a DATE K6miai Tansz6k6n a nitrit-N-tartalom meghatArozAsa folyt. A m6r6si eredm6nyek az alf61di mcz6s6gi talajokra tekinthct6k jellemz6nek, amelyck az orszdg teriilet6nek mintegy 35%-Ara tejednek ki. A hat 6ven At vizsg6Ilt mintegy 400 talajminta N0 3-N-tartalmAnak ismerete lehet6v6 tette e fontos n6v6nyi tipanyag 6vi dinamikAj~nak, szlsos6ges vAltozsainak megismer6s~t. A nitrifikici6s folyamatok 6 Cves vizsgdlataink szerint a h6olvaddst kdvet6en a talajfagy bcfejez6d~s~vei induinak meg, s ekkor kezd6dik meg a NO3 akkumulAci6ja a talaj fels6 r6teg6ben. Ezt k6vet6en a h6m6rsdklet emelked6s6vel 6s a csapad6k n6veked6stvel a nitrdtakkumul.ci6 fokoz6dik. A talaj fels6 r~egeinek nagyfok6 kiszdraddsa idej6n a nitritkoncentrAci6 er6teijesen visszaesik, s a nyAr v6g6n, 6sz elej6n egy misodlagos minimum alakul ki. A fels6 talajr6tegek 6szi ktnedvesed6se alkalmAval 6rt6ke ism6t emelkedik, s ekkor egy mdsodlagos maximum alakul ki. Ez a sajAtos ritmus tehAt klimatikus okokra vezethet6 vissza (Lakatos-SzAsz, 1991). 145
A N0 3-N-tartalom 6vi dinamikiijt vizsgAlva megillapithat6, hogy a vAitoztst t6Ien 6s tavasszal elsi.sorban a talaj h6m6rsdklete, mig a j6nius-novcmber kdzotti id6szak aliatt tilnyom6r6szt a hidrikus t6nyez6k szah'Alyozzdk. Hangs6lyozni kell, hogy az egyes 6vekben az tlagos 6vi menett6l jclcnt6s cit6r6s kdvelkezhct be a mindenkori id6jdrdsi jellegt61 fiigg6en. A vAltoz6konysdg m6rt6ke azonban az 6v egyes szakaszaiban eh&6. A nagy varici6s koefficiensck a legnagyobbak a f6- 6s mfisodIagos maximumok idej6n, mig a nydri minimum idej6n m6rsdkl6dnek. A rcndelkezdsre A116 megfigel6si anyagb6l mcgdillapittst nycrtek a 25, 50 6s 75%-os gyakorisAgi 6rt6kek; ezek 6vi vitiozisM a 2. Abra szemI6lteti. A N0 3-N vAItozfsAt a klimatikus vizmdrleg menetdvel dsszehasonlitva megAllapithat6, hogy ha 40 mm-n61 kisebb a csapad6k a potcnciAlis pfrolgishoz mdrten, 6gy a vizsgfilt talajon jelcnt6s nitritkoncentrici6-visszaes6s nem t6rt6nik. 2. ibra
A felsd talajrteg NO 3-N gyakorisfigi 6rt6keinek itlagos 6vi v~iltozgsa csernozjom talajon 20 NOj -N mg I 100g (0-30cm) 15
25%
___
10
50%
10
..... .......... 75%-
0 .. ~ -:... ........... ......... .. .. ... ....... .......... 0........ 1.
1I,
Ill.
IV
V
VI.
VII.
Vill.
IN.
X.
XL.
XII.
Hknapok
A fentiek alapjfn mcgfllapithat6, hogy a klima haltisa a talajban Iezajl6 nitrifikAci6s folyamat sebesswgre hat, amelynek kdvetkezm6nye a feltfir6dott nitrog6n mennyis6g6ben nyilvAnul meg. Ez a nitrog6n vilik hozzAfif6rhet6v6 a n6vdny sz6mtra, s az ily m6don k6pz6ddtt nitrogdn lesz a ndvdny legfontosabb tipelcmforrisa. Ezzel a folyamattal tehft a metcorol6giai folyamatok kdzvetve hatnak a ndvnyzetre 6s szabAlyozzik annak tipanyagfelvtel6t 6s ndvekcdd6snek a sebcss6g6t. A nitrogdnfelv6telnek a ndveked6sben betltott szerepe kbzismert, fgy annak rdszhatfisaival nem foglalkozunk. Az cl6z6ekhez kapcsol6dva azonban 6rdemes megemliteni c folyamatnak a hatdsdit a cukorr6pa digesti6jAnak alakulisfra. Mint emlitettiik, a b6s6gcs nitrog6nelliitottig cs6kkenti a digestio-%-ot, vagyis kedvez6tlenil hat a cukortcrm6sre. A cukorrdpa term6.sek ds cukortartalmtnak alakulisAban ddnt6 szerepe van a talajok eredeti tfpanyag-tartalmfinak 6s a trigyizdsnak. A nagy cukortartalom cl6felttelc a kiegyenstilyozot, harmonikus tdpanyagelldtds,ezen beiil meghatfroz6 az optimdlkv nitrognelldids. A nitrogentrdgydzds n6veli ar6pa term6siSt, de az optim6lis m6rt6ket meghalad6 mennyis6gben adagolva csikkentia cukortartalmat. A tilzott N-adagok el6segitik a cukor kinyer6s6t akadflyoz6 6n. ,,k6ros" nitrogen (amidok, a-amino vegydletek) felhalmoz6ddsdt. A nitrog6n a fejl6dds kezdeti szakasziban sziisiges, sgiti a lev6lzct kialakuldsit, a k6sei fdzisban felvett nitrogen ndvcli az oldhat6
146
N-vegybiletck 6s hamuanyagok (els6sorban nftrium 6s kfiliums6k) kdpz6d6s6t, aminek k6vetkeztdben a cukor kinyerhet6sege romlik. Az oplimAlis N-adagok megIllapftisdt neheziti, bogy nem hatArozhat6 meg pontosan a teny6szid6 sorin mobilizdl6d6 N mennyisege. Nagy humusztartalmt tcrimdkeny r6ti 6s csernozjom talajainkon az id6j~risi viszonyokt61 fiigg6en viltoz6 a nitrifikci6 fteme, vagyis a talaj term6szetes kszleteib6l k6pz6d6, kbzvetlenil fclvehet6 nitrfit-nitrogdn mennyisdge. Ndmeth (1979) az EUF m6dszer tovbbfejleszt-6vel oldotta meg a talajban jelenlv6, k6nnyen oldhat6 6s oxidfilhat6 kis molekuldj6 szcrves N-vegyiilctck, a (Norg) frakci6 elkiil6nit6sit s meghatrozst. A kdnnyen oldhat6, organikus N-frakci6 a talaj 0,01 m6los kalcium-kiorid kivonatiban is mcghalArozhat6 (Houba, 1986). Osszehasonlit6 vizsgflataink szerint a kiilinbz6 m6dszcrrcl meghatfrozott szervcs frakci6 k6zdtt vignifikdns 6sszcfiiggds mutathat6 ki (Kulcsr- 6szber6nyi-Debreczenin6-Loch, 1997). A szcrves frakci6 nagysfga alapjfn megbecsfllhet6k a kdnnyen mobilizAlhat6 k6szletek, de a t6nyleges nitrifikfci6 az id6jr-Asi viszonyok fiiggv6nye. A kdlium el6segiti a sz6nhidrdtok k6pz6d6s~t 6s szabAlyozza a vfzhdztartist. A cukortermel6s alapjt k6pez6 fotoszintdzist a magndzium s bmr is serkenti. A kAliummalj6l ellftott cukorr6pajobban tOri aszarazsAgot. A cukorr6pa llumsziiksgltejcLent6sen meghaladja a nitrog6n- 6s foszforszfiks~gletet, kfll6n6sen a n6gylcvcles id6szakt6l a levelek teljes kifejl6d6s6ig vesz fel sok kfliumot. A cukorr6pa a nitriumig6nyes kultrAkhoz tartozik. A cukorrdpa 6tlagos magn6ziumfelv6tele 30-45 kg Mg/ha, ezrt esctenk6nt a magn6zium p6tlisa is szuks6ges lehet. Tapasztalataink szerint az 5%-os magn6zium-szulfAt oldattal tort6n6 permtezs m6g a magn6ziummal viszonylag j6l ell~tott talajokon is nbvelheti a cukortartalmat. Ezzcl magyarAzhat6 a m6rs6kelten csapad6kos 6s enyhe tavasz kedvez6 hatAsa, mivel ilyen felt6telek kdzdtt a nitrog6nfclIAr6dAs uiteme 6s a felv6tcl scbess6ge f6kezettebb formdban zajlik le, igy nem gAtolja a nagy cukorhozam kialakul6sit. Osszefoglalva meg'llapithat6, hogy az id6jrAs passziv hatAsa - amely a talajon kcresztiil 6rv6nyesiil - szab6lyoz6 szerepet t6lt be a cukorr6pagy6k6r cukortartalmfnak alakuisiban. Hasonl6k6ppen magyarAzhat6 a cukork6pz6d6s optimAlis id6jArfsi fell6tele is, mcrt az emlitett elemek hatispAlyAja nyomn esak olyan m6rs6kelt nitrifikici6 zajlik le, amely nem gdtolja a cukor halmoz6dAsAt. A passzfv hatisok formijAban szfmos egy6b eset emlithet6, amely els6sorban a vizgazdflkodissal, a talajok h6gazdAlkodisAval kapcsolatos. Mindennck r6szlctes taglalisiba nem bocsdtkozunk, v61het6en az eddigi p6lda j61 demonstrilja a passziv hatis ertelmez6s6t 6s folyamatfnak m6djt. Az iddjAirdsi elemek 6s a cukorr~pa termise 6s cukortartalma kizbtti 6sszefigg~s A cukorr6pa k6zismerten vizig6nyes n6vny 6s ez a megfllapitis abb6l az id6szakb6l szfrmazik, amikor a gydk6rt6meg nagysdga alapjiAn tdrt6nt a term6s nagysfginak a megft6l6se. A val6di k6rd6s az, hogy egy teriiletegysdgr6l mennyi cukormennyis6g nyerhct6, tehit nem a gy6k6rtameg-term6s, hanem a cukorterm6s a reilis 6rt6km6r6 szfm, mivel az ut6bbi a ndv6ny termcl6s6nek a c6lja. A cukorr6pa gyk6rterm6se 6s az egyes id6jdrAsi elemek k6zdtti kapcsolatot r6szletesen mcgvizsgiltuk, mely szerint az enyhe tavasz, valamint a csapad6kos hfv6s nyir kedvez a nagy tdmegfi gy6k6rterm6s kialakulAsfnak. L6nyegesen kevesebb informfci6 All rendelkcz6sunkrc a cukorterm6s id6jArdsi felt6teleir6l. A sz6lescbb korfi informkci6nyer6s c61jib61 mcgvizsgAltuk a hazai cukorgyirak Ailtal begyfijtdtt term6sadatokat (gydk6rterm6s, cukorterm6s). A t6bb mint 10 cukorgyir 45 6ves id6sora olyan adatbizist k6pviselt, amelyb6l mr megbfzhat6 kovetkeztct6sek vonhat6k le. Meg kell jegyezni, hogy a sorozatok homogenitisa nem All fenn, uganis e hossz6 id6szak alatt tbbbszbr6s fajtaviltozs zajlott le, 16nyegesen m6dosult a termel6stechnol6gia 6s megvdltoztak term6szetesen egy6b hat6tdnyez6k is. Ennek ellen6re megfelel6 kritikAval e sorozatok elemzse alkalmas volt kdvetkeztet6sek levondisra, bizonyos megszoritisok figyelembev6tel6vel. 147
Az id6jArdsi elemek, valamint a cukorterm6s kdzotti kapcsolat megillapitisa az Altalinosan alkalmazott m6dszerrel ner jfrt kel6 credmdnnyel, ugyanis a nagy, illetve kis cukorterm6sek id6j6rfsi felt6teleinck igen sok az okozati variinsa. Mfg a gydk6rtermds els6sorban a vizellAtoltsAgra reagAl, igy a csapad6k, a h6m6rs6klct 6s a napf6nytartam alapj6n a term6s becsl6sre szolgti16 regresszi6s cgyenlet ercdm6nye Cs a tdnyleges term6s kdzotti korrelAci6 igen magas. Ez kil't6sba helyezte ant a rem6nyt, hogy hasonl6 statisztikLval a cukortermds is becsiilhct6v6 vilik az id6jArds fdggv6nydben. Ez a rem6ny azonban nern vAlt val6ra a mAr emlftett ok folytAn. Evck hosszti sorAn 5t fem alakult ki egy j61 definiAlhat6 id6jAfirsi felt6telrendszer, amely a cukorterm6st egy~rtelm6en hatirozza meg, nem ismertiik a kiilnblz6 id6jrsi t6nyez6k, clemek hatzispilypijlt a tenydszid6szak alatt. A nehdzs6g elhzirit6sa vdgett cz~rt cls6 16pdsk6nt ner az id6jArAs Cs a cukorterm6s k6z6tti k6zvetlen kapsolat f6lderit6se volt a c6l, hanem arra a kdrd6sre kivAntunk feleletet adni, hogy miyen Osszefflggds dlI fenn a gy6kdrtennds As a cukortems ktzitt. Osszevetve az orszdgos adatokat, egy viligos kp alakul ki az emlitett k~t vAitoz6 kozdtt 6s ezi az 8sszefiigg6st a 3. 'Abra szeml6lteti. E vizsgilat szerint a kdzepes gyok6rterm6sek cukorterm6se volt a lcgmagasabb, a digestio: 17-19% kbzbtti, mig az alacsony termdsek 6s a nagy gy6k6rterm6sek idej6n a cukortermds 17% koriili, a kis gy6k6rterm6si vekben a digestio-% ner haladta meg a 15,5%-os 6rt6ket. E felismerdst rendkfvol fontosnak tekintettlik, 6ppen ez6rt bemutatjuk az 1976-95. 6vek kdzdtti Atlagos digestioszfzal6k 6s gy6kdrterms dvenk6nti drt6keit a 3. AbrAn. Egydrtelmfen llapithat6 meg, hogy amikor a digestioszizal6k elri a csilcs~rt6keket, a hozzAi tartoz6 gy6kdrtermdsek esak k6zepes szinvonalat k6peznek. TehAt ez a magyarAzata annak, hogy Bem lehet a hagyomdnyos statisztikai m6dszerekkel a digestio6rt6ket k6zvetlenfil az id6jArisi elemck alapjAn becsQlni, ugyanis - mikdnt mir emlftettlk - a k6zepes gy6k6rterm6sti dvjiratok jellege igen v'ltozatos. Mivel mind a nagy, mind a kis gy6k6rtermdsekhez alacsony digestio-% tartozik, ennek folytin az azokhoz tartoz6 id6jArAsi jelleg kiegyenlit6dik a statisztikiban, weis sz6val a sz6ls6s6ges digestio~rt6kekhcz tartoz6 Cghajlati adatok Atlag6rt6ke azonos lesz a kozepes term6shez 6s egyben a magas digestio-%-hoz tartoz6 Cvjdratok 6ghajlati 'Atlagaival. Ez a problma minden olyan esetben felmerl, amikor a hatAs nemcsak emeli a fiigg6 viltoz6 6rt6k~t, hanem a maximilis 6rt~k utAn egy er6s depresszi6 alakul ki. 3. hibra A cukorr6pa gyik6rterm6s6nek tbmege 6s a digestio - % kbz6tti 6sszefiiggs 450 35-
0 00 0) 0
30 -
0
0
25 -0
o
I 14
I
I
I 15
16
Digestlo - %
148
0
I 17
A fenti megfontoldsok alapjdn kis6rlet tort6nt arra vonatkoz6an, hogy v6giil hatfrozzuk meg a magas cukortermfs id6jArfsi felt6teleinck nagy vonalakban tbrt6n6 jellemz6s&t. A rendelkez6sre 6116 id6sorok alapj6n vfilasztottuk ki azt a 7 dvet, amikor a cukortermfs maxim6lis volt az orsz6g egdsz teriiletn. Ezeknek az 6veknck a kiildnbbz6 id6szak6b6l szirmaz6 h6m6sdketi 6s csapadkbeti 6rt6keit a sok6vcs 5tlaghoz viszonyitva kdrvonalazhat6 az optimAlis 6s kritikus id6szak, amely a legmegfelel6bb a nagy cukorterm6s kialakulis6hoz. llyen k6zelit6sben megdllapitfst nyert, hogy a tavaszi id6szak akkor a legkedvez6bb, ha a h6m6rsklet 6tlag feletti, mivel ez kedvez a korai vet6snek, egyenletess6 teszi a kel6st 6s kedvez a kezdeti fejl6d6snek. A nagy cukorterm6s6 6vjAratokban a tavasz csapad ksszege dtlag alatti, de nem kifejezetten sziraz, kedvez6nek bizonyult a td1i csapaddk Atlag feletti volta. NyAron a negativ hm6s&kIeti anomiAlia tinik kedvez6bb h6m6rsklcti felt6telnek, vagy pedig egy itlag kdriili h6m6rs klet z, amely a fejl6dfst zavartalannAi teszi. Csapadk tekintet6ben is az 6tlag korili vagy valamivel az 'Atlaga alatti csapadk el6nye bizonyithat6 a cukorhozam alakulAsa alapjdn. Osszel kiilndsebb h6m6rskleti ig6ny ncm meruil fel, de az esetek 50%-6ban 6tlag feletti anomAliAkat Allapftottunk meg. A csapad6kndl m6rs6kelt ktlag alatti bsszegek bizonyulnak kedvez6nek. 4. 6bra A gybkrmenyiskg 6s a digestio - % h6mrskleti 6s csapadk szerinti optimdlis hatdsplyfija Gy6k~rmin6sig (digestio) ig~nypilya
+
Gy6kfrmennyisfg igonypilya
+
"
I
V
IT
1
I -Ix m I
IX
*1
149
A fenti megfllapitasok 6iltalinos 6rv6nybik mellett lehct6v6 Ieszik a k6t emlitctt 6ghajlati elem hatIsp~lyijdnak 5ibrzolI6st. A 4. 5bra a gybk6rmcnnyis6g 6s a cukorterm6s (digestio-%) optimilis hatdspAlydjfit vizolja. A gviikrimennyisdg szerinti hatzspilya nagy tcrm6sek esct6n a k6vctkez6k6ppen alakul: meleg 6s csapad6kszeg6ny tavasz, nyiri alacsony h6m6rs6klct, csapad6kb6stggel biztositja a maximilis gy6k6rt6megct. Ebben az esetben a cukorhozam minimalis. A gyok6rmin6s6g hatispilyfija a rnaximlis cukorhozam esetdre vonatkoztatva ett6l jclent6sen eIt5r: enyhc tavasz m6rs6kclten csapad6kos id6j~irasra. Az Atlaghoz kdzel A116 nyiri h6m6rs6klet 6s egy nem t6lzottan szfraz nyfr biztositja a maximailis cukorhozamot. A hatAspAIlyk a k6rzetek adatai ismeret6ben pontosan szimszcrfsithet6k, megfelel6 h6m6rs6kleti 6s csapad6kintervallummal, havi bontfsban. A statisztikai vizsgAlatok crcdm6nyei 6s a talajok 6vi tApanyagforgalmi, els6sorban a nitrog6n mobilizici6 alakulisa alapjin az altbbi tenydszid6szak alatti digestiodinamikai tipusok kul6nithet6k el: 1.) Magas startponti 5rt6k, zavartalan nyfiri akkumulici6; magas cukorhozam. 2.) Alacsony startponti 6rt6k, zavartalan nyii akkumulIci6; k6zepes cukorhozam. 3.) Magas startponti 6rt6k, nyfri stressz ilta[ g~itolt akkumubici6; kdzepes cukorhozarn. 4.) Alacsony startponti 6rt6k, nyfri stressz 61tal g~tolt akkumulici6; alacsony cukorhozam. E dinamikai tipusokat az id6jirfs alakulstnak kdzvctlcn hatisai (h6m6rs6kIet, csapadk), illetve a kdzvetett koriilm6nyck alakitjik ki. A gyikr 6s cukorlermis stresszhelyzetei A sz61s6siges id6jirisi hclyzetek a ndv6nyek fejl6d6s6t, a term6s t6meg6t 6s annak min6s6git d6nt6 m6don szabAtyozzfik. Azokat az id6jfiriisi helyzetcket, amelyck sz6ls6s6gescn kedvez6tIcnek, dsszefoglal6an streszhelyzetnek szokfs ncvezni. A sz'Ant6f61di n6vdnytcrmcszt6sbcn hazinkban a vizhifnystressz tckinthet6 a legfontosabbnak, mivel ennek el6fordulisa a Icggyakoribb. El6re kell bocsdtani, hogy a pontos 6rtelmcz6s szerint a strcssz megjelen6si forr Aja n6vdnyspecifikts. A cukorr6pa termeszt6se sordn ktfrle stresszfogalmat kell megkiilbnb6ztetni, a gy6krtcrrm6sre hat6 stressz folyamatit el keli kiil6niteni a cukorterm6st jclent6sen csokkent6 stresszhelyzetekt61. Mivel e k6t specifikus stressz meteorol6giai hrttere kiilonb6z6, szidksdgszerien elfogadhat6 az a mcgllapi isa, hogy a cukorripa-termeszt6s stressz okozta kockAzata egydb n6v6nyekhez viszonyitva sz6lesebb kdrO. Mivel a c6l a cukor termel6se, de a gy6k6rtcrm6s t6mege scm hanyagolhat6 el, igy az alacsony cukortartalom vagy a rendkivfil csekdly gy6kdrtcrmds egyardnt cukorhozam cs6kkcndsdt credmdnyezi. Ez a kapcsolat nem hanyagolha16 cl, viszont a kdtfdle hatist okoz6 stressz mecorol6giai oka etir6, cz6rt kiildn kell bcszdlnink a gydk6r-, illetve a cukorstresszr61. A gy6k6rterm6st terhel6 stresszhclyzet a viz hidnydra vczethet6 vissza. A korAbbiakban mir bemutattuk a nagy gy6k6rtcrmds id6jfirAsi ig6nydt, mely szcrint a zavartalan, de kiid6n6sen a nydr eleji b6sdges vizelltits biztositja a nagy gydkdrhozamot. Ez a sajftosigdnypd6a, melynek ment6n a vizelltits 6s vele egyidcjfilcg a hr6rsdklet is kbzel optimilis, dnmagtban nern biztositja a nagy cukorhozamot. A mAr koribban bemutatolt gy6k6rterm6s-digestio kapcsolatb6i elfogadottnak tekinthet6 az a tapasztalat, hogy a maximilis gydkdrhozam hem azonos a maximflis digestio-%-kal, lcgfeljebb a gydkdrtmeg nagy mennyis6ge cllcnsoilyozza a digcstiocs6kkendsb61 szfrmaz6 cukorterm6st. A meleg, csapad6kos tavasz kdl6n6sen a tipanyagokban gazdag vilyogtalajokban igen intcnzfv nitrifikici6t tart fenn, melynek k6vetkeztiben mr a gyOk6rk6pz6d6s clej6n, az tin. startponti digestio-% annyira alasony, hogy a ks6bbi id6szak alatti akkumulici6 a hifnyokat mr nem k.pes p6tolni. Ez azt bizonyitja, hogy a cukortemds stremsz/hezetejelent6sen kfildnbzik agy6kdremds stresszfoarmatIdt6l.
150
A nagy gyokdrtermst veszdlyeztet6 stressz szimszer kifejezdsdre alkalmazhat6 a mir korAbban kidolgozott ny~iri aszAlyhajlam 6rt6ke (Szfsz, 1991), amely I6nyegdben egy olyan vizcl]AtottsAgi m6r6szfim, amelynek szfimitfsa sorin figyelembe kell venni a koribbi h6napok csapad&k6sszeg~nek nagysfgAt is, mint olyan vizmennyis6get, amely a talajban a nyfri id6szakra, a maximgilis vizig~ny idejre tAroz6dik. Tekintettel arra, hogy a talaj nedvessdgtartalminak id6beli vfihozAsa egy stohasztikus folyamatnak tekinthet6, vagyis a mindenkori nedvess6gtartalom a kor6bbi 6s a jelenlegi id6szak vizelltottsAgfnak a fiiggv6nye, ez6rt e m6dszerrel a stresszveszdly trs6gi eloszlisa vagy id6beli alakul6sa szAmszeraen j61 kifejezhet6. Az 5. Abra szemllteti azoknak a tdrs6geknek a fdldrajzi eloszlIsjt, amelycken a nyiri szArazslgi hajlam viszonylag minimAlis, igy a gyokdrterm6s kockizata csek6lynek tekinthet6. Ez a t~rs~g a Dunnttil nyugati 6s ddli tertilete, valamint a Nagyalf6ld 6szaki peremvidke. A relativ vizellftottsigi 6rt~kek az alfbbiak szerint 6rtelmezhet6k: rendkiv0li szArazsfig, <10 VE= stilyos szirazs6g, 11-20 21-30 szfrazsfg, m6rsdkelt vizellAtottsfg, 31-40 41-50 j6 vizelltotts6g, 51-60 b6scges vizelhiltottsfg. Az ut6bb emlitett ;ibra leegyszersiltett t6rkdpet mutat, melyb6l vilIgosan derlil ki, hogy a Nagyalfold t6rs6gein, ahol a vizellIAtottsfig relativ 6rt6ke 25 alatt marad, a r6patermeszt6s esak nagy term6singadozAssal folytathat6. A cukorterm6s ig6nyplyfija a gy6k6r ig6nyp6lyfit 6 jelent6sen elt6r, igy sz6ls6 esetekbcn a cukorterm6st jelent6sen vcsz6dyeztet6 helyzet alakul ki. Az ilyen id6jfrAsi helyzet dghajlati jellemz6inck 6sszess6ge tekinthet6 az in. cukorstressznek. Az ilyen id6szak alatt a talaj nitrifikici6s folyamata zavartalanul intcnziv, tehAt a magas h6m6rs6klct 6s mindv6gig magas talajnedvessdg-tartalom cs6kkenti a digestio6rt6ket. Ilyen esetekben a gyok6rk6pz6d6s els6 fAzisAban a digestio alacsony 6rt6kr61 indul 6s a tOilzoltan szfiraz, vagy tlzottan csapad6kos ds mcleg id6jziriis akadAlyozza a cukortartalom felhalmoz6ddsfit. A cukorstressz m~isik v~ltozata a rendkiviil csck6ly csapad6k 6s a vele egyfitt kialakul6 igen magas h6mrs&let, vagyis az aszAlyos nyr. Ez esetben mind a cukortartalom, mind a gydk6rtcrm6s minimilis lesz. Term6szetesen bekdvetkezhet olyan v-ltozata az id6jfr6si elemek kombin6ci6inak, amikor ugyan a cukorterm6s viszonylagos 6rtdke csak kdzepes, azonban a b6s6ges gyok6rtermds a fajlagos cukorhozamot tfilkompenzAlja. Mindezek a lehcts6ges helyzetek azt bizonyitj6k, hogy a cukorhozam 6s az id6jArfis kbz6tti kapcsolat 6 rendkivll bonyolult ds neo lehet egyetlcn sdmdiban kifejczni az optimilis 6ghajlati ig nyt.
151
-
5. dbra
A relativ vizelltitottsfig teriileti eloszldsa ,
• °" .I ,2I
25
"
C..
,
Maximftis
aszlyhaj la i (
25
~I,. 45
20 35'
20
25
E felt6tclck t6rbeli eloszlAsft elemezve arra a meg;illaptsra julottunk, hogy a DunAnttil kiegyenlitettebb 6ghajlatti, kevdsb6 meleg, de nem t6lzottan csapad6kos teroiletein, valamint az Alf6ld 6szaki percmvid6kdn alakul ki az a klimatikus helyzet, amelyen a cukorhalmoz6dis felt6telei viszonylag a legkedvez6bben alakulnak. Az AIfdld k6z6ps6 6s d6li terfiletein a gyakori aszlyhajlam 6s a magas h6mers6klet kedvez6tlentil hat a cukorhozam alakulIAsra. "Iermdszctesen mindehhez hozzA kell tenni kiegdszit6sk6nt, hogy az dghajlat mellett a talajfeltdtelek d6nt6 szerepet jfitszanak. Vizsgflataink szerint elvileg azokon a terfileteken lehet szfimitani kis gyakorisfigO cukorstresszre, ahol a talajok nitrog6nszolgiltat6 k6pess6ge csak m6rs6kelten intenziv - pl. erd6talajok - 6s ahol az 6ghajlati feltdtelek a fentieknek megfelel6en alakulnak. Irodalom Baumann, H., 1949: Wetter und Erteertag. Dtsch. Bauerverlag, Berlin. Houba, VJ.G.-Novozamsky, l.-Huybrcgts, A.W.M.-Lee van der JJ. (1986): Comparison of soil extraction by 0,01 M CaCI 2, by EUF and by some conentional extraction procedures, Plant and Soil. 34. 433-437 Kulcsir L.-Debreczeni K.-Jszber6nyi .- Loch J. (1997): Investigation of the soil N-fractions in special consideration of the N-fertilizer recommendation for sugarbeet. Poster on the 11th World Fertilizer Congress 7-13. September 1997. Gent, Belgium. Proceedings Volume Ill. 338-342 Lakatos L.-Szdsz G. (1991): A 16gkdri hatdsok szerepe a talajok N-szolgAltat6 kdpess6gdnek alakuis~Tban. Id6jArAs 95: 289-300 Ndmeth, K.-Makhdum, I.0.-Koch, H.-Beringer, H. (1979): Determination of categories of soil nitrogen by electro-ultrafiltration (EUF). Plant and Soil. 53. 445-453 Rdnyi A. (1954): Az MTA Alkalmazott Matematikai Intdzet6nek K6zlemdnyei. 11.243-266 Sarkadi J. (1975): A mfitrAgyaig6ny becsl6s6nek m6dszerei. Mez6gazd. Kiad6 Budapest Szfisz G. (1991): A nyAri aszdlyhajlam terfileti eloszlisa Magyarorszjgon. Acta Geogr. Debrecina, Tom. XXVIII-XXIX. 299-308 152
Summary G. Szdsz and J. Loch
Climatic stress and sugar beet production in Hungary Agricultural University of Debrecen, B6szbrm~nyi u.138., H-4032 Debrecen, Hungary The quality of sugar beet is affected by the nutrient supplying capacity of the soil and by the scheme of soil fertilisation. There is an interrelationship established between soil and climate, and between soil and soil fertilisation. In loamy soils with good water management and with a high supply of organic matter, the mobilisation of nitrogen is very intensive provided the temperature and water supply are right. This will enhance root mass production, though, but will at the same time result a decreased sugar content. The best conditions for sugar beet production are those in an environment where the soil has a moderate nitrogen supplying capacity, but there is a relatively evenly distributed climatic water supply with - compared to the Hungarian average - moderate, or cool temperatures (see for example the western part of Transdanubia or the northern edges of the Great Hungarian Lowlands). When examined over several years, wheather in Hungary shows a fairly diverse picture, which is primarily expressed by the highly uneven distribution of precipitation. Our investigations suggest that the optimal environmental conditions of sugar production differ very significantly. To properly define this, we have introduced the term 'sugar-stress' which is the ratio of temperature and precipitation. The term 'water deficiency-stress', which is the ratio of precipitation and potential evaporation, has to be distinguished from this. Whereas in 'sugarstress' the root mass production is either high or extremely poor accompanied with a low sugar content, in 'water deficiency-stress' both root mass and sugar production are poor. There can be established a very strict relationship between the yield and the sugar content of the sugar beat: an extremely high or low root mass is accompanied with a moderate or poor sugar yield, whereas it is usually high if there are no exteremes in the root mass production.
153
Ruzsfnyi LiszI6
A cukorr pa viz- es tipanyagellitafsa Agrdrtudominyi Egyetein, B6sz6rmnyi u. 138., H-4032 Debrecen, Hungary Osszefoglalds A viz- 6s tdpanyagellitis 6sszhangja a biztonsigos 6s j6 min6stgfi cukorr~patermcszts alapja. Az dsszhang mcgbomlisa mindenkor az eredmfnyt ronija. A hazai Okol6giai viszonyok kozdtt, a term6keny cukorr6patalajainkon a viz- 6s tipanyagelltis dsszhangfiinak megteremtfs6ben prioritis a vizclliitfist illeti. A cukorrdpa tiblfnk6nii trgyaig6nye a vizcllftAs ismerete vagy elfogadhat6 pontossigt bccsldse nflkiil csak kisebb-nagyobb hibival hatirozhat6 meg. A trfgyzs, amennyiben vizhifnnyal pirosul, Mfir k6zepes adagban is rontja a r6pa cukortartalmit 6s cukorhozamt. Kozepes vagy j6 vizellfItis mellett, illetve 6nt6zott k6rilrm6nyek k6z6tt 80-120 kg/ha N-, 90 kg/ha It, 150 kg/ha K-mitrAgya alkalmazisa szdksdgcs Cs clfgsfges a nagy gydkortermshcz 6s a j6 ipari 6rtdk cldrfs6hcz. Sz6ls6s6ges vizellhisi helyzett6l cltckintve a tavaszi EUF-vizsgflatok szfint6f6ldi kisrlctekkel meghatirozott korrekci6k alkalmaziisfval megbizhat6 alapot nyfijtanak a tiblaszinti trigyaadagok mcghatfirozfisira. Az ,nt6z~s a vizhifny megsziintetdsfnek gyakori, egyben lcgbiztonsfgosabb m6dja. Az 6nt6z6s sorn elk6vetett minden szakmai hiba az ercdm6nyt (f6k6nt a cukorlartalmat) ronija. Bevezet6s A viz- Cs tfpanyagcllfitis meghatfroz6 szerepet jfitszik a cukorr6pa produkci6jfnak 6s ipari crt6kfnek alakulisban. Kovetkezik cz abb6l, hogy e tdnyez6k egyenkfnti Cs k6lcsdnhatisa nagy, ezen til szfmos mis t6nyez6rc kozvctlcn vagy k6zvetett m6don hatnak. A viz- 6s tipanyagllitis kicmelked6 szerept a rfpa mis ndv6nyekt6l eltfr6 tulajdonsfga 06 rcakci6kfpess6g, Crz6kenys6g, igfny6t mcghalad6 viz- 6s tipanyagfclv~tel), valamint a viz- 6s tipanyagcllfits nagy fok6 vltozfkonysiga toviibb nbveli. Magyarorszfgi viszonyok k6z6tt a vizellitist t6rben 6s id6ben 2-4-szercs clt6rfs jellemzi. A viz, illelve a vizellitfis ebb6l ad6d6an nagy gyakorisfggal limitAI6 6s intcgr6l6 t6nyez6nck min6siil. A cukorrfpaterm6 talajok nagyobb hfinyada vastag tcrm6rfteg6, dsvfnyi elcmckben, szerves anyagokban gazdagok, a tiipanyagszolgItat6 kdpcss6gfk j6. K6vctkez6sk6ppcn a ndvdnyek nagy, esetenk6nt luxus tipanyagellitfsat nern csak a trigykizis, hanem a talajban lejitsz6d6 (el6re meg nem hatfrozhat6) tflpanyag-fcltfir6disi folyamatok viltjfik ki. Ez6rt jelent kiemelt feladatot hazai viszonyok k6z6tt a cukorr6pa trfgyaig6ny6nek meghalirozils. Ebb6I ad6dik a rfpa cukortartalmnak romlisa, a kinyerhet6 cukormennyisfg cs6kkense, a cukorhozam ingadozisa. A tanulminy mindezeket figyelembe vdve a vfz- Cs tpanyagellts 6sszhangjfnak stilyponti kdrdfsei k6zni a viz- 6s tfpanyagig6ny meghatdrozhat6sgdt, a vfzelAits ingadozdsAt 6s kdvetkezmnyeit, a tipanyagcllitst 6s annak viltozfsiban szcrepet jitsz6 tfnyez6k hatiisinak 6rt6kel6sft, a trigaig6ny meghatiroziisinak problfmiit 6s a trAgydzdis, Cntoz6s hatfisit emeli ki. Ksrletek 6s vizsgflatok A vfz- Cs tfpanyagellitis hatisinak vizsgilatira a Debreceni AgrArtudominyi Egyctem Kis6rleti Telep6n szfn6fdldi tartamksrleteket Allitottunk be cscrnozjom talajon. Az EUF-
154
vizsgjilatokon alapul6 kis6rletek az EBS cukorgyArak kfsreti tcrein folytak csernozjom, 6nt6s csernozjom ds r6ti talajon. A stabililAsanalizis KANG-1993 m6dszer alapjdn k6szilt. A hidrometeorol6giai vdltozfsokat SZASZ G. 5iltal kidolgozott m6dszerrel mutatjuk be. A talaj nedvess~g- 6s N0 3-tartalmt a talaj 0-300 cm-es szelv6ny6b61 vett mintik vizsgflatAval hatiroztuk meg. Az 6nt6zfsi kisdrIetek a Debreceni AgrirtudomAnyi Egyetem Kisirleti Telepdn, illetve az EBS cukorgyfrak tizemi kis6rleteiben folytak. K6szinet a cukorgyfrak igazgat6inak, osztilyvezet6inek a kis6rletekhez nyfijtott segits6gdrt. A cukorrdpa viz- is tdpanyagigdnye
A vizigdny teny6szid6beli v6ltozsa egyr6szt a n6vfny egyedfejl6d6sc kOIClnbCiz6 szakaszainak eltr6 igfnyfb6l, mn6srfszt a klimatikus regulAci6b6l ad6dik. Igy a noivnydilomfiny 6s a klima fdbb param6tereinek ismerete n6lkdI csak megkdzelit6 pontossAgfi lehet a vizig6ny mcghatArozdsa. Evapotranszspirici6s ds szmint6f0ldi m6r6sek, felv6telez6sek, szfmitfsok 6rt6kelkseib6l mcgfllapithat6, hogy a vizig6ny m6dostdsAban a talajadottsIgoknak 6s az agrotechnikfnak (n6v6nyszim, Iombfeluilet, lev61vAfis, teny6szid6 stb.) nagyobb a hatfsa, mint a klimatikus korfilm6nyek vAltozdsAnak. Az agrotechnikai t6nvez6k szAmszerisft6se pedig a termeszt6si gyakorlatban szinte lehetetlen. A tpanyagig6nyt az 6ItalInosan alkalmazott egys6gnyi produkci6ra jut6 tiApanyag segfts6gvel alig lehet elfogadhat6 pontossAggal meghatdrozni. A vizelldids ingadozzisa is kovetkezmnye A vizellitsi szls6s6gek hidrometeorol6giai, hidrol6giai, talajviz-gazdflkoddsi okokra, adottsigokra vezethet6k vissza. A hidrometeorol6giai sz6ss6gek az ut6bbi 6vtizedekben - a koribbi id6szakokhoz viszonyitva - 20%-kal n6ttek (I. 6bra). A vAfitozfsban a szrazsf6gi hajlam n6veked6se dominl. A szfrazsig nem csak, vagy nem els6sorban a tenyfszid6 csapad6kmennyisfg6nek cs6kkcn6s6ben, hanem a t6i csapadfkhiAnyban nyilvfnul meg. Ez Altai a talajbani figg6leges vizmozgis sekdlyebb r6teget 6rint ds a vfzben oldott anyagok bemos6dfsa (tApanyag vesztes6g) kiscbb mdrt6kO. Kevesebb a talajban tirolt, ndv6nyek Altal felvehet6 vizmennyis6g is, k6vetkez6skfppen a cukorr6pa vizelihitsa egyre inkibb a teny6szid6beni csapaddkt6l f0gg, amely 6tlagosan 80%-os gyakorisiggal a vfzig6nyt nem el6gfti ki. A vizelldtAs ingadozdsa a talaj mikrobiflis tev6kenys6gfre is hatfssal van (2. Aibra). A szAraz 6vjiratok gyakori jellemz6je a nyAr v6gi csapad6kos id6jArAs, melynek hat6sdra a talajdlet 616nkil, a t6panyag-feltir6dAs I6kfsszer6 t6panyagellftishoz juttatja a cukorr6pft. Ennek a folyamatnak az eredm6nye a Iombmegtjulfis, a r6pa cukortartalmfnak csbkken6se, az amino N-tartalom n6vekedfse, azaz cukorvesztes6ge. A vizeltitfs ingadozAsa, avfzelldtAsi szdls6sigek gyakorisfginak noveked6se kapcsdin indokolt vizsgAlni ds & tkelni az dvjfrat, valamint a termdsstabilitfs kapcsolatAt (3. Abra). Az 6rt6keIls eredmdnye szerint a term6helyi adottsAgokt6l, a termeszt6si k6rfilm~nyekt61, a term6s nagysgigt6 fflgg6en (melyet a program kbrnyezet ilagfnak vAitozfsdval jel61) az 6vjfirathatis kOi6nb6z6.
155
I. tibia
Hidrometeorol6giai szilsilsigek el6fordulis~nak gyakorisiga (Szsz f. sz6razsigi index alapjdn) 66.0 70 0 .
I-
4.
47 .5
20-
67.0 17
o
145.0
Z0Z
17.5 22.5Carko
46
5
30
1860-1900
1900-1940
1940-1980
1981-1998
A szAraz 6vjirat - a r~pa nagy vizig6ny6b61, j6 vfzreakci6jb6l kdvetkcz6en - minden termesztdsi k6riilmdny mellett a cukorr6pa szimira cl6nytelen. S6lyozottan kcdvez6tlen, amennyiben egy6b term6stbefolyfsol6 t6nyezk is rontjik az eredm~ny esly~t. A hazai 6kol6giai k6rtilm6nyek mellett a cukorr6pa-tcrmeszts szfmfira a legel6ny6sebb az 6tlagos csapadkoss fg6 6vjfrat. A csapad~kos 6vj frat a betakarit fsi nchdzs6gek ds vesztes~gek miatt f6k~nt a nagy termsek esct6n v6lik kedvez6tlenn6. A vfzcllIt6s a cukor be6piil6s6t is jelent6s m6rt6kben befolygsolja (4. Abra). Evr6 6vre ism dtl6d6en tapasztalhat6 az EBS cukorgy frak6r dsi kis6rleteibcn (de m6shol is), hogy szfrazsgg rnellett jilius v6g6n, augusztus elej6n a kis r6pAkban nagy a cukortartalom, mely a k6s6bbickbcn a kedvez6tlcn folyamatok er6sdd6s6vel romlik 6s igen gyakran oly m6don, hogy a gybk& tornege is csdkken. Ezzel szemben ha nincs lombkArosodls 6s Iornbv6ittas, a m6rs6kcltcn csapad6kos id6jIrgs okt6ber vdg6ig lchct6v6 teszi a cukorbe6piil6st 6s megteremti a nagyobb cukortartalorn el6r6sdnck lehet6s6gdt. Az ut6bbi esetben a szachar6z pedig a Iom bvills m iatt a m r zavartalan transzlokdci6ja j ftsz6dik le,sz irazs igban raktrozotr szachar6z kerdi felhasznAlAsra.
156
2. Abra A talaj mikrobiol6giai tev~kenyskge a tenyiszid6ben
80
60
40
20
....-..
IIi
IV
V
VI
VII
Viii
IX
X
Tdpanyagelldtdsbanszerepet jdtszd tdnyezdk
Sekdy term6rtegO, kis szervesanyag- 6s agyagtartalmCi talajokon, csapad6kos klfmAj6 terflleteken a cukorrdpa tipanyagel1AtAsft terveznl lehet, mivel a talaj tdpanyagszolgAltatAsa, a talajban lejjtsz6d6 folyamatok vAltoz6konysAga elenysz6 szerepet jitszik a cukorr6pa tipIlI6sAlban. Ilyen k6rfilm6nyek k6z6tt a tApanyagellAr6s ddnt6en a trdgydzAst61 ffigg, melyb6I a felvehet6 6s hasznosfthat6 tApanyagok mcnnyis6ge 6vjiratonkdnt, term6helyenkdnt kev6s v.ltozik, k6vetkezdsk6ppen a trgyaszflks6glet tpanyagig6ny szerinti meghatirozAsnak sincs akadAlya.
157
3. ibra A cukorr~pa term~sinek stabilithsa kuii6nboz6 6vjiratokban (hat agrookol6giai kbret; 1960-1997) 60
3o
+3,lws YF10 R =0,9477
20 ----
~l-az
y- 1,1695.- 10.Mi
=0,8749
0R
0 20
25
30
35
40
45
kbrnyczet itlaga t/ha
A hazai cukorrdpa-term6talajok 6s a klimatikus adottsigok ett6l eltr6ek, mindlfogva a tapanyagclldtAs talajonkdnt, 6vjdrtonk6nt, teny6szid6n beluili klimatikus viszonyokt6l fiigg6en nagymdrtdkben viiltozik. A cukorrdpa m6lyre hatol6 gy6k6rzet6b6l ad6d6an ismerni kell a m6rt6kad6 talajszelv6ny NO 3-tartalmft, mert az egy 6vtizede tart6 visszafogott mOtrigyahasznilat cllen6re is van a talajban - kiil6nbdz6 m6lys6gben ds m6rt6kben - N0 3-felhalmoz6dis (5. bra), amely 50-120 kg/ha N-elltIAst jelenthct. Tekintettel kell tov~ibbA lenni arra az asvdnyi N-mennyisdgrc, mely a talaj fels6 rdtegdben mikrobiol6giai folyamatok rdvdn feluir6dik 6s a n6v6ny N-tOplsilsban (az id6jArst6 figg6en) kisebb-nagyobb mdrt6kben szerepct j.dtszik. Sz~iraz dvben a feltirdd6 N nem tbb 30-50 kg-nfl, Atlagos vagy csapad6kos 6vjfiratban viszont eldrheti a hektfironk6nti 70-110 kg-ot. Mivel az id6jfirds ner prognosztizAlhat6, a term6helyi adottsag ismeretdben a szdls6 drt6kek kdz6tt csak bccsldsre szorrtkozhatunk. A talajok felvehet6 N-k6szlet6t az e16z6 dvi talajmvel6sek is bcfolyisoljfik. A cukorr6pa rcndszerint 6szi bfzit k6vet a vet6sviltisban. Az 6szi bdza utuni k6sedelcmmentes tarl6hiintiissal, majd a hintott tarl6 szakszerfl mflveldsdvel az elmaradt tarl6hintiishoz viszonyitva hiromszorosfra n6 a talaj fels6 rdteg6nek NO3 -tartalma (6. Abra). Ez a NO 3mennyisdg szfimszerfsfthct6 6s a tfipanyagclldtAsban figyelcmbe vehet6. A talajok P- 6s K-ellAtottsrigdt a talajtani, a klimatikus ds agrotechnikai tdnyez6k kev6sb6 m6dositjzik, igy a m6szeres vizsgdlatok eredmny6vel j61 jellemezhetdk, ds a trfgyaig6ny meghatArozdsdhoz is megbizhat6 thimpontul szolgflnak.
158
4. ibra A cukor beipiiI se szraz 6s m6rsikelten csapadikos ivjimtban (Uzemi tdbIAk 6itlaga 1994-1998) 18
.
Is-7
17
Ab
.
..
-
.
.
1
- -__
14
13
I I
[
-mersikelten
csapod~kosvjlrat
12
VII. 27.
VIII. 10.
VIII. 24.
IX. 7.
IX. 23.
X. S.
X. 29.
Trdgyaigeny meghattirozhaxtsdga js a trdgydzts hatdsa A tApanyagel[itAs v6ltoz6konysgfb6 ad6d6an a csernozjom, r6ti csernozjom 6s a hozzdijuk hasonl6 talajokon a N-trAgyaig6ny meghatfrozdsa az egyik legnehezebb feladat. A fajIagos thipanyagig6ny 6s a fajlagos trAgyaig6ny nagysfgrenddel kiildnb6zik egymdst6l, igy a tipanyagigdny ismerete csak irAnyad6 seg6dIetkfnt vehet6 ig~nybe. A talajban EUF-m6dszerrel mcghatirozott ,,felvehet6" dsvAnyi elemek mennyis~ge kora tavasszal megbizhat6bb tfmpontul szolgfl a mfitrfgyasziiks6glet meghatrozfisdhoz. A hiba ebben az esetben a tenydszid6bcni N-elldtds meghatAroz6s6nak neh6msgeiben rejlik. A kis moIekudjtJ szerves N-vegyfletek AtalakulAsa, felvehet6s&gc, illetve tovfbbi kdpz6ddse az adot! 6v klimatikus viszonyait6l 6s a talaj kfmiai fizikai tulajdonsfgit6 a Ialajban lejftsz6d6 folyamatokt61 ffigg6en m6dosul, melynek m6rt6ke el6re ner ismerhet6. Levfilanalizis eredminyei a n6viny t6panyag-ll6tottsAgfr6, tApanyaghifinyir61 a termeszts szimAra tegtbbbszdr megk6sett informfci61 adnak, igy csak tudomdnyos jelent6sfggel bfrnak.
159
5. 6bra
A talajszelvny NO tartalma rendszeresen 6s id6szakosan trgyzott terlileten (Csernozjom talaj, 1999. tavasz)
30 20
IDI 0
40
60
80
100
120
140
160
680
200
220
240
260
280
300
talajrfteg, cut
Mindezekb6l kdvetkez6en az EUF-mdr6seket ki kell eg6sziteni szint6fdldi kisrIetekkel. Ezen megfontoidsb6l kertilt befilitAsra az EBS cukorgyirak szAnt6f6ldi kis6rleteibcn az EUFm6dszcrrel mcghatirozott ds az att6l citr6 N-mtrfgyaadagok hatfsAnak vizsgilata hdrom talajtipuson (7. bra). Az eddig lefolytatott kis6rletek eredm6nyei t6bb 6rt6kes kovetkeztet6s Ezek kdzul a legfontosabb, hogy az EUF szerint szflks6gcs Nlevongsft tett6k Iehet6v5. matrdgyAnAl kisebb adagok kijuttatAsa a cukorr6pa N-ig~ny6t egyik talajon ser el6giti ki. Megbizhat6 kdvetkcztet~snek min6sfthet6 tovibbAi, hogy a kisebb szervesanyag- 6s 6 agyagtartalm 6nt6s csernozjomokon (6s mi6s hasonl6 adottsAgai talajokon) az EUF mdr6si adatok j61 tukrbzik a vdrhat6 N-ellftfst, igy ezzel a m6dszerrel meghatArozott N-mftrfgya elegend6 a cukorrpa ig6ny6nek kieldgits6re. R~ti talajon viszont nem elgend6 az a Nmftrfgyaadag, melyct az EUF-m6r6sek jeleztek. Csernozjom talajon kapott eredm~nyb61 pedig biztonsfggal csak az Allapthat6 meg, hogy a N-hiiny 6s a N t61z6 adagolIsa rontja a hozamot, az EUF segitsdgvel meghatdrozott N-szuks6glethez k6zeli N-m~trAgyaadagok haszn6latAval el6rhet6 a j6 vagy a Icgjobb eredmdny. A mftrgyaig6ny 6s -hat6s 6rt6kels6 re a t6bb6ves szAnt6foldi kis6rIetek a legmegbzhat6bb tAmpontul szolgAlnak. A mIsf6I-, illctve egy 6vtizedes cscrnozjom 6s r6ti talajon v6gzett kisdrletek eredm6nye szerint a mfltrfgyaig~nyt 6s -hatAst legnagyobb mrtdkben a vizellAt6s befolyfsoija (8., 9., 10. dbra). A sz6Is6sges vizhi6nyban a legkisebb mttrfgya sem hasznosul. Az N.F- vagy a nagyobb mftr6gyaadagok pedig mind a gydk6r, mind a cukorhozamot lerontj~k. A mfltrgyfzAs Altal kivAltott nagyobb lombozat ugyanis a vizhiAny id6beli bek6vctkcz6s6t sietteti, a mdrtdk t pedig n6veli, aminek a legs6iyosabb k6vetkczm~nye a cukortartalom mintegy 2,5-5,5%-dnak a cukorhozam 25%-6nak eiveszt~se. A gyenge vizgazd6lkoddsfl r6ti talajon a szdraz 6vjArat az aszflyoshoz hasonl6 m6don befolygsolta a mtitrigyahatist, fgy a kett6 nem ktildnrthet6 el. Az enyh6bb vizhidnyban a kis mftrggyaadagok hasznosulnak csupAn, az NoPoK1 , fdl6tti adagok f6k6nt a cukortartalmat cs6kkentik.
160
A k6zepes vagy j6 vizellzitis, illetve az 6ntozdtt k6riilm~ny biztositja a cukorr6pa j6 trigyahasznositisAt, egyben a trAgyaig6ny biztonsngosabb meghatArozzisft. llyen esetben a mftrigyaadagok gazdasdgossfgi hatira mind a csernozjom, mind a rdti talajon NI20PoKi50 szint k6riil htlzhat6 meg. Eddig a mitrfgyaadagig ugyanis a rdpa cukortartalma nem vagy csak kism6rtdkben csbkken, a gy6kdrterm6s n6veked6s6nek ilteme pedig alig kisebb, mint a kis mitrAgyal6pcs6kben. A cukorr6pa-termeszt6sben e kfs6letek eredm6nye alapjAn nern igazolhat6 az az 51talfnos 6r6nyO - f6k6nt Ny-Eur6pAban tett - megfllapitAs, mely szerint 6nt6z6s eset6n vagy j6 vizellftfs mellett a n6v6nyek trggyaigdnye kisebb. A cukorr6pa a nagy cukorhozam el6lltAsAhoz tdbb trAgyft ig6nyel, a tApanyaghifinyt vagy trAgyahidnyt a jobb vizellft6s nem p6tolja. Az ig6nyt meghalad6 mftrggyaadagok hasznilata azonban j6 vizellftAs (ntdzs) mellett sem indokolt, merl a cukortartalom oly m6rt6kben csdkken, hogy a cukorhozamban is vesztes6g ill be. A viz- ds tApanyagelltzs sszhangjdnak megteremt6se igy az egyik alapfelt6tele a biztonsfgos, j6 ipari frtdkti r6patermeszt6snek. Az int6zes hatdsa A szAraz 6vj5rat gyakori el6forduldsa, a cukorrdpa nagy vfzig6nye az 6nt6z6st kiemelked6en fontossA teszi. A cukorrdpa 6nt6z6se azonban csak akkor vilik eredm6nyess6, ha a tfpanyag6s vfzeilitfs dsszhangjjt megtcremtjiik, ha 6gy el6gitjflk ki a r6pa vizigdny6t, hogy leveg6tlensdget a talajban ner iddz&nk e16 6s biztositjuk a r6pa vizig6ny6nek folyamatos kieldgit6s6t. Ezen k6vetelm6nyek kiel6git6se egyebek mellett j6 maszaki, technikai felk6sziilts6get, dntoz6gdpparkot ig6nyel. A cs6v6I6 dobos berendczdsek 6nt6z6si egycnetlens6ge a cukorrpAnak nem felel meg. A konzolos 6s a lineJr, illetve a korben forg6 berendez6sek mfszaki. Qzemi paramdterei felelnek meg a cukorr6pa-dnt6z6s k6vetelmdnyeinek. Az EBS cukorgyairakban e c61ra elvdgzett Uizemi kfsdrletek eredmdnyei meggy6z6en bizonyitjAk, hogy kis vizadagok egyenletes kijuttat.sa, az 6nt6zds gyakori 6s k6sedelemmcntes elv6gz6se biztosftja a termdsek n6vel6st, a cukortartilom szinten tartdsdt, ezdltal a biztonsAgos ds nagy cukorhozam el6r6s6t (1. tAbldzat). Az egyenetlcn, rossz min6s6gi 6nt6z6s, mely az 6nt6z6si gyakorlatban nagyon gyakori, ezzel szemben a cukortartalmat oly m6rt6kben lerontja, hogy iltala az 6nt6zds gazdasfgi eredm6nye is leromlik. A kis6rIetek egyben azt is bizonyitjdk, hogy nem t6rv6nyszeril 6s hem helytI16 az a t6bb helyen leirt meg6llapittis, mely szerint az 6ntdz6s a r6pa cukortartalmit csOkkenti. A cukortartalom csdkken6se mindig valamilyen kedvez6tlen hatAs, illetve anyagcserefolyamat eredm6nye. Az 6nt6zs, ha a r6pa vizig6ny6t kdveti az anyagcsere 6knkitds6vel, a szachar6z folyamatos k6pz6d6sdvel 6s transzlokci6jival a hasznos produkci6t, az ipari 6rtdket javitja. Ezzel szemben jelent6s m6rtkben ronthatja a cukortartalmat, amennyiben a r6pa vizig6nydt hem elkgiti ki, az id6szakos vizhidnyt nem sziinteti meg vagy a r6pa ig6ny6t meghalad6 vizelltfifst (ttilontbz6st) teremt. Az bnt6z6s szakszerf elv6gz6se a cukorr6pfiban olyan k6vetclmdny, melyet minden tekintetben teljesiteni kell, inert bArmely hiba bek6vetkezse a gazdasfgilag kivtinatos eredm6ny elmaradAsAval jfr.
161
6. ibra A talaj 0-30 cm-es fels6 r~teginek NO tartalma dszi b6za ut~n tarl6hfintfs elmaradisa 6s szakszerfi eivfgzfse mellett (Debrecen, 1997/98) 35
°
tta
al
30
z15
10
97.07. 25.
97.09.16.
0407.
97. II. 21.
7. Abra Az EUF-m6dszerrel meghatirozott es az att6l eltr6 N-mfitrdgyaadagok hatisa a cukorhozamra (t/ha) (EBS kisIrletek, 1998.) 12
-
_
0-----
.
-----
- - - ift
8 -- Csenozjem talaj -
EUF +80 kg N
162
EUF +40 kg N
EUF ltaln ghaL N-adag
-Ont~s esenrojomn Ilaj
EUF.40kgN
8. Am
A mfitrigyfzfs hat~sa a cukorr~pa produkci6jira kiilinb6z6 vizellftis mellett (Debrecen, csernozjom talaj) Gyok6rterms, Itha 60
5
50.
NO PO KO
N40 p0 K50
NA M KI0
N120MK5
NIWOP120 K20
N200 p0K50
Cukorhozam, t/ha J6 hellt s
-
N
N KO
N4 P30K
NOPKIN
N20IMKIN0
NISOPIOK2M
N
PISN K2O
163
9. fibra
A mttrigy6zds hatisa a cukorr~pa produkci6jfira kikinbz6 vizelltds mellett (Szarvas, riti talaj) Szal6ki S. adatai alapjAn Gv6k nerm~s, t/ha
'0
55
45
35
NO
NO P"
K70
N Il
PI00 KI4O
Pilo pIM5 K210
P500 I4
NI80 P150 1(210
Cukorhozam, t/ha
Non K 0NO
164
PM K0
NI
10. ibra
A mfitrigyfzis hatisa a cukorr~pa cukortartalmira (dig %) kiilbnb6z6 vizellgtgs mellett I)ebrecen, csernozjom talaj 18
17
14
13
12
II
NO PO KO
N4 p3
' m6I
N.
"0
N20ODOKIM
PI20 K2
NZM PISO K20
Szar'as, r~ti talaj 18
11
I,
-
13
I0 12
156 NO PO KO
NO0 M0 K70
mn2 PIN KIMSSM
110PI0K10
165
AZ (5NTOAZS HATASA A CUKORRtPA GY6KO 'RTERM SFRE .SMINOSEGRE" MUtnAbidki Cukorgy ak Rt. 1995
Liner dntoz6brendez~s 7-sri3-szori lutal6k
Terries, t/ha Digestio. % Cuk.hozam. t/ha K, mmol/kg Na. mmol/kg N. mmolkg Kond.hamu. %
Ner bntoztt
39,98 14.50 5,80 44,1 14,2 34,1 0.57
25mm
i]n0iz s 25-35 mm
Cs tSladobos 0ntdz6berendezis 3-szori 6ntza 50 nm ,znorrmikkal (150 mm)
5-sz~ri 0ntdzis 30-40mm
3-siori dntfzds 60mm
(175 .m)
(95 mmn
65.44 15,26 9.99 50,8 12,9 31.0 0.53
52,58 14,56 7,66 47.8 14,5 26,9 0.55
59,98 15,17 9,10 49,7 12.25 28.1 0.61
56.24 14.34 8,06 65,6 14.1 48,2 0.79
51,02 14.41 7,35 51.9 15.1 36.7 0.66
24,46 4,19
[ 2.60 1,86
20,00 3.30
16,26 2.26
11.04 1,.55
(18
.m.)
(10
.m)
flntdzks hatisa Gyokersermdsre (t/ha) Cukorhoamra 1tha)
Irodalom Buzds, 1.(1987): Bevezet6s a gyakorlati agrok~miaiba.Mez6gazdas6gi Kiad6, Budapest. Bfircki, K. (1979): Physiologische Aspekte des stickstoff-Umsatzes der Yuckerrfibe. 1. Verknflpfungen zwischen stiekstoff - und Kohlenstoff - Stoffwechsel. Zuckerind. 104., 1039-1043. .I Graf, A.-Miller, H.J. (1971): Die Rentabilitit von Stickstoff-Dfingergaben bei Zuckerruben, Bodenkultur, Wien, S.-H. 22, 137-168. Izs.ki, Z. (1988): Osszeffgg6s a cukorr~pa tfpIltsAgi illapota, a terms mennyis6ge 6s min6s6ge kdz6tt n6v6nyanalizis alapjuin. Kandidftusi ,tekez6s ,Szarvas. Kang, M. S. (1993): Simultaneous selection for yield and stability in crop performancetrials: Consequences for growers. Agronomy Journal, 85. No. 3., 754-757. Loch, J. (1983): Alkalmaizott k6mia. Mez6gazdasAgi Kiad6, Budapest RuzsAnyi, L. (1993): Eine ertragserh6hend und qualittsverbesserende Bewiisserungsmetode im Zuckerrobenbau. AGRICULTURE Journal for Agricultural Sciences, Bratislava. 399-412. Szal6ki, S. (1995): Az 6ntdzdsi kutatAsok 6jabb kutatisi eredm6nyei (Tanulminy) OKI, Szarvas. SzAsz, G. (1991): Az 6ghajlatvgltozds szerep6 a n6v6nytermeszt6s.strat6gifjiban. K6zirat, Debrecen. Winner, C. (1981): Zuckerruibenbau, DLG-Verlag Frankfurt. Summary L. Ruzshinyi
Water and nutrient supply of sugar beet Debrecen Agricultural University, Bbsz6rm~nyi u. 138., H-4032 Debrecen, Hungary Both the root and sugar yields of sugar beet and the quality of the roots for industrial processing are determined mostly by water and nutrient supplies. The climatic conditions in Hungary can be characterized by frequent extremes in both rainfall and drought. In 7 or 8 of every ten years, sugar beet suffers from water deficiency to a greater or lesser extent. In Hungary, sugar beet is grown on a large area with soils with a deep humus layer. Besides soil properties, the nutrient supplying capacity of these soils is influenced by the water supply. Thus, these two factors are closely correlated but the water supply obviously has priority. Being aware of the water supply and the expected nutrient supply from the soil, the fertilizer requirements and methods of application can be determined much more precisely. Thereby, the effects of nutrient shortage or excess on the quantity and quality of the crop can be reduced. The presentation at the workshop discussed the following topics: - variability in the water supply, trends in this variation and estimation of the possible water supply in the growing season, - evaluation of the factors influencing water supply and water demand, - relationship between water and nutrient supply on soils with different nutrient supply characteristics, - interrelationship of nutrient supply, major production factors and the yield and sugar concentration in sugar beet, - major tasks to determine the nutrient supply to ensure high quality sugar beet production. 167
.
and L. Potyondi
Relationship between nutrient supply and diseases of sugar beet, integrated plant protection BETA Research Institute Ltd., H-9463 Sopronhorptics, F6 u. 70., Hungary Summay
We examined the effects of nutrients on diseases, especially those causing damping off of sugar beet in laboratory, glasshouse and field small plot trials. Seedling emergence can be increased by 10-15% with the application of optimum amounts of fertilisers and fertilising methods. The interrelationship between nutrients supply and root and leaf parasites has been studied; N and NPK nutrition improves the resistance of different varieties. In Hungarian conditions N, NK and NPK foliar fertilisers increase resistance against diseases, resulting in acquired resistance, adding trace elements is favourable. Drought increases susceptibility to diseases to a greater extent than optimum nutrition increases resistance. Mixtures of systemic + contact fungicides together with complex foliar fertilisers result in maximum yields with resistant varieties. The complex foliar fertilisers lengthen the protective effects of the fungicides, therefore less spraying is required, which is economical and environment-friendly. Introduction Diseases of sugar beet are often specific to geographical zones, but they can vary at anyone site with different varieties and also due to variations in cultural practices. Pathogens causing damping off are present in Hungarian soils everywhere and the degree of injury depends on micro-ecological conditions. Since the 1980s, Rhizomania virus has also spread (BNYVV). Among leaf diseases, Cercospora beticola, Erysiphe betae, Alternaria spp.,
Peronospora schachtii and recently Rainularia are frequent. In Hungary, significant damage is caused by physiological drying of leaves. Insect pests of sugar beet are also a problem in Hungarian soils. Several species are known, among which the terricol species and the juvenile leaf parasites can cause the young plant to die (e.g. wire worms, weevil beet flea, ssp., etc.). Later in the growing season, leaf parasites also cause considerable damage (e.g. aphids, caterpillars of noctuid species, etc.). The damage caused by pathogens and pests can be prevented or reduced by integrated plant protection, in which beside pesticides an optimum nutrient supply has an important role. Material and methods As part of a very extensive study, we examined the effects of nutrients on diseases in the laboratory, glasshouse and field. In every case, we tested susceptible (FF) and resistant (RR) varieties. We tested fertilisers and fungicides and their interactions, and also the effects of fungicides plus foliar fertilisers in four small-plot trials. We measured the yield and quality of the crop, pollution and the economic efficiency of sprays at different sites (Sopronhorp6cs, 168
MartfOi, Mez6hegyes). We looked for synergism between contact + systemic fungicides, and between fungicides + foliar fertilisers. Results Interrelationship between nutrient supply and damping off In the era of precision sowing the optimum plant density determines the crop, thus every seed sown has to develop to become avigorous plant. Good emergence is helped by nutrients which can be absorbed easily, therefore readily soluble, starter fertilisers to complement the basic fertiliser are important. In Hungary, there is a 100-year old tradition of applying starter fertilisers at sowing (the Di6szeg method). Starter fertilisers are positioned beside and under the seed. In our experiments, we examined the effects of starter fertilisers with different NPK composition, some of them quickened emergence, others influenced quality and quantity of the crop (Figure 1). On different soils, applying 100-150 kg/ha of an NPK with 8:16:24 proved to be favourable. It is well-known that insecticides and herbicides are embryotoxic to a certain extent but the harmful effects are buffered by 10-20% by starter fertilisers (Kiss et al., 1972, 1978, 1990, 1992). Interrelationship between nutrients supply and leafparasites It is known that the metabolism of plants depends on nutrient supply. Increasing N nutrition increases protein (KirAly, 1976; Gilly and Kirfly, 1979; Pozsfr et al., 1973), from increased aminoacid production, the duration of leaves improves, and there is an improvement in resistance. These changes are more valid for sugar beet than for wheat because the micro-ecological conditions in the beet crop modify the basic influences to a lesser extent than with wheat. In glasshouse pot experiments, we analysed the individual and common effects of basic nutrients on Cercospora beticola susceptibility. The influence of N and a balanced NPK nutrition on improving resistance was shown to be true (Figure 2, A)- But the nutrient effects were only effective when water supply was optimum (Figure 2, A-B). Water deficiency itself causes changes in nutrient uptake, and the effect of this plus that of the pathogens can start the drying of leaves, the harmful consequences of which are known (Kiss et al., 1990; Kiss, 1997). Susceptibility to C. beticola can be influenced by various N forms in different ways, e.g. the resistance of certain species was improved by NH 4 NO 3 top dressing, that of others by NH 4 SO4 (Calvert et al., 1970). Among foliar fertilisers urea is favourable. Foliar fertilisers containing N activate amino acid metabolism, which increases natural resistance and prolongs the protective effects of fungicides at the same time (Kiss e al., 1990). Climatological effects, like precipitation, humidity, temperature, influence the reproduction of pathogenic agents in different ways. Warm (20-22 0C) humid (96%) conditions help C. beticola; warm dry weather is favourable for the reproduction of Erysiphe betae, etc. Interrelationships between weather and nutrients influence the reproduction of pathogens differently on different varieties. Varieties resistant against several pathogens are desirable but there are only a few varieties having this desirable characteristic (Table 1). The cultivation of disease resistant varieties is beneficial to reduce the cost of 1-2 spraying and be environment friendly (Kiss, 1997). In Hungary, several biotypes of C. beticola are known, the more aggressive ones can cause 3040% damage on susceptible varieties, while the biotypes with weak pathogenicity cause only 2-5% of damage (Kiss et al., 1990).
169
Effects offoliarferiliserson acquiredresistance
Sugar beet can absorb foliar applied nutrients. These should be applied at the beginning of a dry period to help the plant through a critical period. For example, the rains come after the 15th August and those sugar beet which have survived the summer drought with less leaf loss have a larger yield (Kiss etal., 1972). In Hungarian conditions, the nutrient supplying capacity of sugar beet soils and the nutrient requirements of the crop are not synchronous in dry summers. When nutrient uptake is hindered by water shortage, N containing foliar fertilisers are profitable. In foliar fertilisers, N is applied as urea, and mezo- and micro elements increase the effect(Mg, B, Zn, Cu, Fe, Mn, Mo). Foliar fertilisers, which improve metabolism, also improve natural resistance in both resistant (RR) and susceptible (FF) varieties, thus the plants acquire resistance. Increased acquired'resistance prolongs the protective effect of fungicides, consequently less spraying and smaller doses are economical (Figure 3). Boron containing foliar fertilisers are in themselves beneficial for metabolism, but do not increase yield as much as more complex fertilizers. hIterrelation.shipbetween foliarfertilisersatd integrated leafprotection Synergism of fingicides
Ion synergism and/or antagonism is a well-known phenomenon in medicine and pesticide chemistry. Synergism has been utilised in pesticide use for 40 to 50 years. By mixing pesticides with different active ingredients their effects can be increased, which results in the need for a smaller dose. Dual fungicide applications can be either contact + contact, contact + systemic or systemic + systemic. Against C. heticola, modern fungicides recommended by manufacturers are mixtures of systemic + systemic agents. Unfortunately, they have produced pesticide-resistant CercosX)ra strains in 34 years in Hungary. Thus it is advisable to apply them mixed with a contact agent. Our research has proved that the synergism of systemic + contact fungicides on resistant (RR) and susceptible (FF) varieties is very successful. With their aid, the fungicide effect can be lengthened and the yield is larger. Knowing the interrelationship among insecticides, herbicides and fungicides are also essential in the plant protection of sugar beet. Interrelationshipbetween foliarfertilisers andfingicides In Hungary, maximum yields with good quality can be achieved by optimum water supply and by expert plant protection. In our semi-arid climate, leaf diseases induce the drying of leaves, which causes a significant yield loss and quality deterioration. Tlbimprove yield and quality, fungicides should be mixed with foliar fertilisers. Long-term research work has proved that in our conditions it is biologically and economically favourable to apply complex sprays. Sugar beet utilises N, P,K and trace elements, applied as foliar fertilisers containing bioactive substances. These improve the duration of leaves, and through this assimilation, resistance and finally the quantity and quality of the beet. Nowadays in Hungary, foliar fertilisers are of great importance because they are more effective than soil applied fertilisers, thus production costs can be reduced. In our conditions, metabolism and sugar synthesis of sugar beet is helped by S and Na (Becker, 1999). Foliar fertilisers with biologically active ingredients are successful on a range of soil types. Because of the synergism between fungicides and nutrients, the number of plant protection sprays can 1990/92; Kiss and be reduced, which is environment friendly and economical (Kiss et al., Kimmel, 1992, 1994) (Figure 4).
170
Effects of different ingredients starter fertilisers on sugarbeet density and yields Figure I..
-
.
S NPlK NPK
\IN NPK "PK
The sensitivity of C. beticola of sugar beet against the nutrients and the water capacitx
Figure 2 A. -B.
Resistance of sugar beet
R
.
I
varieties in H ung ary Table 1.
b02
19 7
C
1\99
3X
V .1) N
DK
,
XI
2 X992
1998
.....
Figure 3.
Dynamics of C. beticola on the sensitive and resistant varieties
(Aquired resistance and variety types)
Economy of resistance on different soil
/
types
Figure 4.
Z\0
II
14 II~ckct.
qj
hn II
I
I
hom>
()H
a
(
Umol ... At ndi1T I Min I mWN 'J
4I
tkht5 Uhl
I
K ai
I
ikll
L'AkC/t lA/li
0
iiki '
"lU k
Isis Ib [,
I
.
(.thknrIr 'i <*->
i
II> £!i< t >IiltKttlt. I
IIto it>~ nc, prob crv
li
[sit>
L)J KIih'
ili n
nq
-h5
)
l 10 I
I'W
tuc~
I1
u
I
khulta MImcmeh>k. Ninombin. lwS k t I Pu k 1 \w 1 \s { I" i[I
(I'purlI-II inutfL,
And
IktoIo
oM'k
I I 1:MI
jsnsc~liot
1
pk
151flK>h:1 Crc\L \
,I
\. S.inJ ()ro. (i),. IS. Kiss. V4, mis nktoli C >Auyloin>>
\1 \ IK!l-I
tnt
1
khl";.
i
nll
11)l O
Ktu ....... X I
j(i}
'L
&vii
~m%
nICI
I
Q dtkik" ('ILINS\>tI>I.A
Lyd
.
ls~a ltllmrik t.'>ull> d1 in ~yst ]ld b1v klu lot r iM I I>cl t
I
1 0
in J
iil.
Ill
k ,,,, j
k,
1 tO M al(
1[
I 1
1
17 14 "zIhlth>1
Aubt
4 lIk. 4 o7 RK11 t 1b 4
I
iIQ F
%LI> ,
tihnl. I:
[T C
)' :[,4i/U'H
Itn
I~kt
I/ipnl rswn k[
IVlIA
IIchi\c L!Ik
NI M
>,"I
UTTiUkttik IchQrj ( .NnT i
KntllI
S 1,
dzI i-Dr. Pi'%oltdti iL
Osszefiugges a tapanyagellaitas a cukorrepabetegs6gek kzitt, integrilt niivenyv delem BFI\-KLt1 IAT)
Kft., Sopronhorpiics
1
tCit 1+1 *1I ti ttllt's dik tso[c A Q lh LlS w Ib t. , 5< t. h i/i 1,11, uI ico[ nosdgninnl< L bnt i C A Ok botUlut Ip nLt I s i lluk tnkI'L/ Itdlnu k )pttk t i t HoktltL.sI A tu \ i'sit'[ik A lt ikno nlckylkmi,,ikuzok 1Ini i,:s/.ih/tcrIt ' lis nmod k ,vtbuiho k Tlmomth 'li nutIra3zv ik ( s InuAI 1l I> kail kclIcSc ,\ inHiili Ulkhdnlu/h iU%'0
I
Mian
tii [ wmL
\iZN tlttik U nvokcicn krcn<.tili Awil I :l IonI I L IcI N atY" >hop Vk.SIINI t /5 [,ai " mcn h(n n i l u bcA t-iSthkkcl hS tliju)I"k \
c, i a Ai
U lncIpctioinik k Insihllia~siaiL [ !iQt[>>Ak t ktis 'Iltubeiloti.
kol
l
I
i,
' n
t it/
Magyarorszfig agrodkol6giai viszonyai k6z6tt az N, NK is INIK IombtrAgy6k tokozz Ak a betegs6gellenill6sggot, tehAt szerzett rezisztencifit eredm6nyeznek, ezek kieg6szit6se nyomelemekkel el6nyos. Szinergista, szisztemikus + kontakt fungicidek keverike is ezekkel szinergista komplex hat6anyag6 Iombtrdgyik, rezisztens fajt6kkal maxim6lis termust eredrnmnyeznek. Szinergista komplex lombtrigyAk a fungicidek v6d6 hatAsAt nyfijtjdik, cz6rt alkalmazAsukkal kevesebb permetez6s is hatisos, mely gazdasfgos is k6rnyezetkim6l6. Bevezetis A cukorrfpa veszflyes betegs6gei geogrAfiai z6nnkfnt jellemz6k, de azonos tcrm6helyeken is a fajtfkkal is az agrotechnikai hatfsokra vAltoz6k. Magyarorszig talajaiban a gy6k6rfekdly k6rokoz6i mindenfltt jelen vannak is a mikro6kol6giai viszonyok alakulIsa fiiggv6nydben kArosltanak. Az 1990-es dvekt6l elterjedt a rizomfnia virus is (BNYVV). A lev6lbetegs6gek k6ziil a cerospora beticola, az Erysiphe betae, az Alernaria spp., a Peronospora schachtii Cs fijabban a Ramularia beticola gyakoriak. Hazfnkban jelcnt6s kdrokat okoz a fiziol6gijs lev6lszfradjs. Talajainkban vcsz6lyesek a rovarkArtev6k. Ezek szdmos faja ismert, melyek kdz6tt a terricol fajok 6s a fiatalkori lcvdlkfrtev6k a rdpa tcljes pusztul]sft okozhatjfik (pl. dr6tf6rgek, bark6 bolha, ssp. stb.). A k6s6bbi levdlkfrosit6k is jelent6s vesztcs6gck okoz6i (pl. lcvltctvck, bagolylepkefajok herny6i stb.). Az el6fordul6 k6rokoz6k is kArtev6k kirtdtclei integrill n6v6nyv6delmi n6dszerekkel kiv6dhet6k, ill. csdkkenthet6k. Ebben jelcnt6s szerepc van a peszticidek mellett az optimflis t6panyagellitisnak is. Kis6rleteink anyaga is m6dszere Jelen dolgozat t6mfii nagyon szerteAgaz6ak, sok rdszt6ma taglalAsit ig6nyeln6k, ez6rt csak a f6bb kutatisi irAnyokat soroljuk feE Kis6rleteinkben a tdpanyagok hatfsft a bctcgs6gck alakulfsfra laborat6riumi, n6vdnyhAzi Cs szabadfdldi kriilm6nyck k6zdtt vizsgIltuk.. Ezekben minden esetben fog6kony (FF) is rezisztens (RR) fajtikat teszteltink. N6gy ism6tlses kisparcellfs kisdrletekben vizsgfltuk: az alaptrigyikat, a fungicideket 6s keverdkeik szinergizmusait, tovfbbM a fungicidek + Iombtrfgyfk egyittes hatisait. Elt6r6 term6tjakon (Sopronhorpfcs, Martffi, Mez6hegyes) vizsgfltuk a termisck mcnnyis6gi es min6s6gi alakulAsAt, a permetek k6rnyezetszcnnyez6s6t is gazdas6gossfg6t. Felkutattunk: kontakt + szisztemikus fungicidek kdz6tti szinergizmusokat, tovfbbM fungicidek + IombtrAgyik szincrgizmusait. Tipanyagellitfs is a gy6krfek6ly k6lcsiinhatuisai A helyrevct6s korszakfban a termds meghatroz6ja az optimilis Allominysfirfis6g, ezert lehet6leg minden elvetett csirdb6l Cleter6s n6vdnyt kell nevelni. A j6 kel6seket a kdnnyen felvehet6 t6panyagok segitik, mirt is fontosak az alaptrAgya kiegdszit6s6rc szolgAl6 gyorsan old6d6 starter trfgyik. Hazfnkban avetdssel egy id6ben adagolt starter trigyazAsnak 100 dves miltja van (lsd Di6szegi m6dszert). Magyarorszdgon elterjedit a vet66gy mei6-al[ adagolds. Kis6rleteinkben kiil6nb6z6 NPK 6sszetdtelOi starterok hatAsAt vizsgAltuk, kdziiliik egyesek jobban serkentettdk a kel~st, mfsok a termds mennyisdg6t Cs min6s6g6t alakitottik (I. Abra).
177
K616nb6z6 talajokon el6ny6snck bizonyult az NPK 8-16-24%-os 6sszet6teltb6 100-150 kg/ha kiadagolAsa. Kzismert, hogy az inszekticidek 6s herbicidek bizonyos mdrtkben csfra-toxikusak. Ezek k6ros hatiskt is 10-20%-ban puffcroljAk a starter mfirdgy6k (Kiss et a]. 1977;1978; 1990/1; 1990/2): A taipanyagelltAs 6s a levlparazitfik k6lcs6nhatAsai Ismeretcs, hogy a n~v6nyek anyagcscr6je a tApanyagellhitzis fiiggv6ny~bcn alakul. A NtfiltApIlIs n6veli a fch6rje-anyagcser6t (KirAly 1976, Gilly-Kirfly 1979; Pozsdr et al. 1973), mclynek nyomin tbb aminosav kelctkezik, a levclk juvenilitfsa javul, ezek egyittesen javitjAk a rezisztencidt. Ez a t6rv6nyszerfs6g r6pAndl nagyobb m6rt6kben 6rv6nyesfl, mint a bdza csctdbcn, mert a n6v6nyAllominy mikrobkol6giai viszonyai kevdsbd m6dostjfik az alaphaisokat. Nov6nyhfzi teny6szed6ny-kis6rlctekben vizsgAltuk az alapttipanyagok egyedi 6s egydttes hatAsdt a C. beticola-6rz6kenys6g alakuisfira. Beigazol6dott a N- 6s a kicgyenstilyozott NPKtiplzihis rezisztenciAt javit6 hatsa (2. Abra: A). A tApanyaghat6sok csak optimiAlis vizellItis eset6n Crv6nyesiilnek (2. 6bra: A-B). A vizhifiny egyidcjtleg tApanyag-felv6teli zavart is okoz, 6s a kett6s hattis plusz a k6rokoz6k er6s lev61sziradfst indithatnak, melynek kfros k6vetkezm6nyei ismertek (Kiss et al. 1990; 1997).
178
Kiil6nb6zd dsszettelti starterek hata'sa a cukorrepa allomanysirusegere 6s termstire I. dbra
-
4:
2r
N PK
\PK
NPK
NP K
2
NP K
V/
A tapanyagellatas es a vfzkapacita's hata'sa a cukorrepa Cerkosp6ra betegsegere
. -.
-
'
2. ibra. A.-B.
f. K*A r
/~f
A cukorre'pa-
I. tihbl~2tt
Bonitfilisi
rl ;kek:
I
-
na
2
-
na dgon logk~on,
ognyr,isutens
3. Abra
A C. beticola fejl6de'se e'rzekeny s fogekony fajta'kon
(A szerzett rezisztencia es a fajtatfpusok)
A rezisztencia gazdasig'ossa.. ke't termdhelyen 4
,II
~/ F. 7gU4
4441 5444.4h4444
I
M V4 1... ..
4
444It
? 44:1 1
3
3
Im
,iII
\
UKi A
I>
ilL] kI
A ,a
/I
'
I
Xl
I I '% i lo w n,
Noll
l
-
I
Ir
IW ' O
ma
I
No-
I I, icI In, I ? W W'llIiiiI C I >ll
I
l
i
ii
II
I
L OiLLI];
I!K'Ii:
[I€ Ris,'
. 1
I n 11
l
l
1
;lt
IlKi
c
'wKLN Iii~iaL
Iti
.ihilK~iI
I\
1n
i" l l l i
n",
~i\
KK IktliIll
h11
11 Nn
II
tnI I i(l
RI I XIQI
hI I
11,ii
ai
!
I,
komiland Ij
I
(.ik
I(KI rKLK
lii
iiKall-ai
thtfl-ij
i
[K I
wk ii
.
sIa
IalKlii-,
hI
\yWiniKO iSL}
ck
< i'
I Ir
n,
viirAi,
k
IM
i\;Lvo
, Ij
1
\1 \lI1\I kvhiIl
C
i
ON loj
......
MK, ,
\ N InK (lP (
iK KNI.a1<(l', :
,
t lI KI N*ilwk I IKLTiK dkldmKIK li ,a ikd uli
hlt ' ( *iikpiL k I i LI K,K10 m ,
I L Iil
ilt I
N
1hhKKK11 itL i
'
VNKCX
11 A
Ij1 '' i4
sl
"KoiV/k i
II
i
LpmK I lakkal ,Mown1Ki
iL\
i
ii]
I111,>11
V
a"k
, I -, io,, 1 90- ,
NoI'tiniL
)l
aii"
K
uni ii
/ Ai Zt il i
li'>1
tlgl SI
I*8 Ikil a Ihi L NOl
cIc t1ii ri t K
): S/iszlol ku, h'IULt~ kitjck n
uj,clLSCkCL
iKiU l\VLk
L
NIg
N.:
I l lql I .
Qchcrjo
irlli/Qk;Lik
IKIIIIL'Sl
i
ikci
L. Kulcsir' and 1.J6szber6nyi2
Nutrient management and advisory systems for sugar beet in Hungary I BETA
Research Ltd. H-9463 Sopronhorpfics F6 u. 70, Hungary University of Debrecen, Department of Agrochemistry, H-4015 Debrecen POB 36, Hungary
2Agricultural
Summary Fertilisation of sugar beet requires special knowledge. An adequate nutrient supply is one of the important factors for both yield and quality of sugar beet. The drastic decrease of fertiliser use in the early 1990s in Hungary had a negative effect on yield. Then, from 1994 the gradual increase in prosperity resulted in a year by year increase in the area of sugar beet which was fertilized. By 1998, the area fertilized had increased to 90%. However, the area given organic manure has remained small, only 30-40% of the sugar beet fields. Average NPK fertiliser use for sugarbeet in 1997 (87 kg/ha N, 80 kg/ha P 20 5 , 125 kg/ha KO) was much more than the average for all crops in the country (41 kg/ha N, 8.4 kg/ha P,O, 7.4 kg/ha K 2 0). In Hungary, the first fertiliser recommendation system for sugar beet was elaborated in the Fertilisation Directive of MEM-NAK. From 1982 an agricultural company in the area of the sugar factory, Mez6hegyes, started a fertilisation system based on EUF soil tests, which later spread to other regions. After a decrease in the use of EUF tests, as a result of sugar factory stimulation in the early of 1990s, the tested area has increased again. In 1998, 64% of sugar beet fields (53,315 ha) were analysed using the EUF method. The EUF N fertiliser advisory system adapted for Hungarian conditions and elaborated by BETA Research Ltd. (nowadays Hungarian Sugar Ltd.) uses it. The N recommendation system, based on 0.01 M CaCI2 soil extraction, is being calibrated in field experiments. Introduction The history of sugar beet production in Hungary is closely related to farm management including nutrients applied in manures and fertilisers. Regular fertilisation was started in 1868 at Bik, Sopron county, where superphosphate was applied to sugar beet fields in the factory area. Until the end of 1880s, fertilisers were used only on sugar beet (Szemz6, 1979) due to the high cost of fertiliser. Only crops with large market value could bear the cost of fertiliser and, at this time, sugar beet was the most profitable crop (Rovara, 1890). As a result, fertiliser consumption in Hungary was minimal before the Second World War. Increased fertiliser use started in the 1960s after the establishment of state farms and co-operatives. Nitrogen (N) fertiliser applications and the yields of cereals have both increased. Increased N use had an effect on sugar beet production also. In 1974 and 1975, percentage sugar in the roots were lower than ever before and although the factories processed twice the amount of roots than in the early 1960s, sugar yields were less than in the 1960s (BuzAs and Ndmeth, 1990). After this period, state research projects were established to optimise the fertiliser requirements of sugar beet The results characterised nutrient uptake and the relationships
185
between quality and fertilisation of sugar beet (Buzds, 1978; Ruzs6nyi, 1981; lzsiki, 1988) and a fertiliser recommendation system was developed and published by MEM-NAK (BuzAs, 1983). In the early 1990s, fertiliser consumption declined drastically severely reducing the input of nutrients for the sugar beet crop. From 1994, the proportion of the crop which is fertilised has risen gradually (Fig. I.) The fertiliser recommendation system, based on soil tests, is required for good fertiliser management and Figure 2 shows that the proportion of tested fields has increased gradually since 1994. From 1982, the Mez6hegyes Sugar Factory used EUF soil test results as the base for fertiliser recommendations (Klein, 1985). The methodology was then used countrywide. In 1994, the area analysed using the EUF method was 27,033 ha, and by 1998 the area was 53,315 ha (Fig. 3). The EUF soil extracts are analysed for N, P,K, Ca and Mg and also for Na, Zn, Mn and B. The NPK fertiliser rates, the lime requirement and B fertilisation are all included in the recommendation system (Borb6ly and Elek, 1983). The Nmin method (Wehrmann and Scharpf, 1980) is used much less in Hungary while the available P and K are measured in an ammonium-lactate (AL) extract (Egneret al., 1960), and B supply is estimated by a hot water extract (Kereszt6ny, 1966). The soil test methods have to be calibrated in field experiments for reliable recommendations to be made. Because N fertilisation is important for sugar beet quality, joint research was carried out to improve the N fertiliser recommendation system in co-operation with the Department of Agricultural Chemistry, DAU and with the Plant Protection and Soil Conservation Station of Jfsz-Nagykun-Szolnok County. Materials and methods Small plot field experiments studied the effect of N rates on yield and quality at three sites with different soils, (i) brown forest soil - Sopronhorpics, (ii) meadow alluvial soil - Szolnok, (iii) calcareous chernozem - Mez6hegyes. The soil characteristics are summarized in Table 1. Table 1.The soil characteristics of experimental sites (0-3) cm). Site Soil type Texture pH-KCI CaCO 3 (%) KA (soil plasticity index) Humus (%) AL-K 2 0 (mg/kg) AL-P205 (mg/kg) N0 3+NO-N (mg/kg)
Sopronhorpfcs chernozem brown forest loam 6.65
Szolnok alluvial meadow clay 6.97
44 1.81 204 164 4.12
63 3.43 166 390 10.3
-
Mez6hegyes chernozem calcareous loam 7.07 2.96 47 3.70 341) 208 17.3
2 In autumn 1995, four N fertiliser rates (0, 100, 200 and 300 kg N/ha) were applied on 150 m main plots. There were four replicates. In spring 1996, two soil layers (0-30 and 30-60 cm) were sampled on each plot. The EUF soil tests were done in the laboratory of the Plant Protection and Soil Conservation Station, Szolnok and the 0.01 M CaCI 2 soil tests were carried out at the Department of Agricultural Chemistry, Debrecen Agricultural University.
186
The main plots with different N supply were split into 30 M2 subplots to test five rates of N (0, 50, 100, 150, 200 kg N/ha). This N was applied before sowing. In this way, the effects of soil N supply and N fertiliser rates on the yield and quality of sugar beet were measured on 80 plots at three different sites. Results Soil test results The soil tests showed that there were significant differences in the soil N supply at the three sites when measured both by the EUF method and 0.01 M CaC, test. The smallest soil N was measured in the brown forest soil (Sopronhorpics) and the largest in the calcareous chernozem (Mez6hegyes). The soil characteristics had a greater effect on soil N than did the applied N fertiliser. Applying 300 kg N/ha to the brown forest soil in SopronhorpAcs resulted in a smaller amount of soil N than was found in the control plot without N fertiliser on calcareous chernozem soil Mez6hegyes. In each soil, applying N fertiliser increased soil N mainly due to the increased N0 3-N fraction, and this was measured by both soil tests (Fig. 4-). There were considerable differences between the EUF Norg and the 0.01 MCaCI, Norg quantities at the various sites but these were not influenced by the application of N fertiliser. The values appear to be characteristic for sites. The N03-N content of soil depends on various factors including soil, N fertiliser rates and sampling time. The correct soil sampling time is important part to achieve appropriate recommendations because Ntot values are considerably modified by the actual nitrate-N content of soil at the time of sampling.
187
Fig. 1. Fertilized sugar beet area relalin to total sugar beet area (%)
049
46lM
7C73
sa 70
572.
Fig. 2. A.nalr d sgrbeet
fields r~elation t1. total
.,g.r bee.t art. (%)
=m
0
____, i
___ _
Fig. 3. Charge, tn the
rea
herv
____- L
______
hiro)gen fetilizer reeomenduations
ame based on the EUF and Nmin met hods
N
188
~
~
-"
A --
Mr
51_INl
60.0
4.0< "
20.0. / 10.0.
0.0
MIezdih~lges
Szolnok -
--
0
/
200
1
Sopronhorpdc s
'
300
N-fertilizer (k/ha)
35
30, 25 20
'00
20
0 0
IN
2,M
MN-filizer (kg/ha)
Fig. 4. Effect of nitrogen on the EUF
-
Ntot (a) and O.OtM CaCi2
-
Niot
(b)
at three different sites in Hungary
189
Fig. 5. The relation between NO -N determined by the EUF and 0.01 M CaC methods for Hungarian soils
30
- Is0
.2S.I
M
-
o..
*' t ..
It.
.
'.4 35
30
15
20
IS
'
o
EUF NO -N (mukg)
Fig. 6. The relation between total soluble N by EUF and 0.01 M CaCd methods for Hungarian soils 40 35
20.
.
-
VS
Is
lb
Is
20
M2
30 5
40
40
P0
Cur toLsiN mg/
190
0
70
75o s
so
.Relationship between the EUF and 0.01 M CaCl 2 soil test results Based on the statistical 6culations, there was a strong linear correlation between EUF NO 3N and 0.01 M CaC, INO-N values, r=0.91 (Fig. 5). The correlation between the EUF Ntot and 0.01 M CaCI2 Ntdt values was not so good (r=0.75) (Fig. 6). The 0.01 M CaC 2 Ntot values were about half of the EUF Ntot values. Houba et al. (1986) and Barbanti (1994) reported similar results. The EUF Norg values are almost ten times higher than the 0.01 M CaC 2 Norg values. Results of calibration experiments Effects on yield of sugar beet There were considerable differences in beet yields on the three sites. The smallest yields (56 and 58.8 t/ha) were at Sopronhorpfcs and the largest (72.2 and 82.7 t/ha) were at Szolnok. Both increasing soil N and fertiliser N increased the yield of sugar beet. However, significant effects of spring applied N fertiliser were found only on soils with low soil N. On plots where soil N supply was larger than 43 mg/kg EUF Ntot or 23 mg/kg 0.01 M CaCI2 Ntot, N fertiliser did not increase yield. Effects on sugar content Percentage sugar varied between sites and was effected by N fertiliser rate. The highest % sugar (17.25% and 17.68%) was measured on plots with little soil N at Sopronhorpcs. Both increasing soil N and N fertiliser decreased % sugar. Much smaller % sugar was measured at Szolnok and Mez6hegyes than at Sopronhorpcs; an extremely small value was measured at Mez6hegyes in 1997. At this site, the effect of N fertiliser on % sugar was not as large as on the brown forest soil in Sopronhorpfcs. Effects on a -amino N content The effect of N on a-amino N is the opposite to that on % sugar. The effect of site difference was greater than that of the N fertiliser. Increasing N fertiliser increased a-amino N at each site but the effect was largest at Sopronhorpdics where the highest N rate'increased a-amino N content to three times that of the control plot. The largest a-amino N in the roots at Sopronhorptics was not as large as that on the control plot of Mez6hegyes. The largest a-amino N values were measured at Mez6hegyes but the effect of N fertiliser was least at this site. Potassium and sodium percentages in the roots The relationships between % K and % Na in the roots and N supply cannot be established. There were considerable differences in % Na between the sites. Most Na (3.6-4.78 mmol/1O0g) was at Mez6hegyes and the least (0.46-0.56 mmol/100g) at Sopronhorpics. The effect of site on % K was larger than that of N fertiliser. The ranges in % K were: Site
K (mmolf100g)
Sopronhorpacs Szolnok
3.24 - 3.49 4.08 -4.53
Mez6hegyes
6.52 - 3.97
The effect of climate was greatest at Mez6hegyes.
191
Effects on sugar yield Sugar yield is the product of root yield and effective sugar content. The effective sugar yields were increased by N fertiliser only at low soil N on all three sites. Based on the results, the• critical values are: EUF Ntot, 43 mg N/kg and 0.01 M CaCI, Ntot, 23 mg N/kg respectively. On soils with less than this critical N supply, 50 kg N/ha was theoptimumirate for maximum sugar yield. On soils with more than 43 mg/kg EUF Ntot, applying N fertiliser decreased sugar yield. Determination of the optimum N application for maximum sugar yield Based on two years results (1996 and 1997), the N recommendation for different ranges in soil N were established (Table 2). Table 2. Boundary values in soil N supply and the N application recommended for sugar beet. EUF Ntot
CaCI 2 Not
N-supply
< 15.5 15.6-19.0 19.1-23.0 23.1 <
poor medium good very good
mg/kg < 33.0 33.1-38.0 38.1-44.0 44.1 <
Recommended N application kg/ha 150 < 50-150 < 50 no
On soils with little soil N, EUF Ntot values less than 33 mg/kg, the N fertiliser requirement was 150 kg N/ha. On soils with a medium soil N, the recommended N fertiliser rates range between 50 and 150 kg N/ha for maximum of sugar yields. On soils with a good N supply, the recommended N rate is 50 kg N/ha or less. The maximum of sugar yield was obtained without N fertiliser on soils with a very good supply of soil N. On these soils, sugar yields were decreased by applying N fcrtiliser. Conclusion The effects of soil N supply and N fertilisation on the yield and quality of sugar beet were studied in field experiments. These experiments, made in 1996 and 1997, were on three different soil types: (i) brown forest soil - Sopronhorpcs, (ii) alluvial meadow soil - Szolnok, (iii) calcareous chernozem - Mez6hegyes. Differences in soil N supply between the sites were established. The soil N supply can he characterised by both of EUF and 0.01 M CaCI2 soil test methods. As a result of field experiments, N fertiliser rates recommended for maximum sugar yield were determined for soils with a range in soil N supply. References Barbanti, L. (1994): New methods of recommending N fertilizer use to sugar beet in the Mediterranean area. Proc. of the 57th Winter Congress of IIRB, Bruxelles. pp. 281-294. Borb6ly, L.-E. Elek. (1983): EUF talajvizsgflatokra alapozott cukorrfpa-tr6gyiizisi m6dszcr 6sjavasolt n6v6nyv6delmi technol6gia. MEM-NAK, Budapest. Buzfs, I. (1978): Az dnt6z6s 6s mItrAfgyizs hatfsa a cukorrdpa min6sfg6re. KandidAtusi 6rtekez6s. O)KI, Szarvas. Buzfis, 1.(szerk) (1983): A n6v6nytApldlis zsebk6nyve. Mez6gazdasfigi Kiad6, Budapest.
192
Buzds, I. and N~meth, T (1990): A cukorr6pa tfpanyag-ellitisfinak tudomAnyos alapjai 6s a mai modern elm6letek kialakuldsa. B6ta Napok, Sopronhorpdcs. pp. 87-97. Egner, H., Riehm, H. and Domingo, W.R. (1960): Unlcrsuchungen iiber die Beurteilung des Nalirstoffzustandes des BWden. II. Chemische Extractionsmethoden zur Phosphor und Kalibestimmung. Ann. Landw. Hochsch. Schwedens 26: 199-215. Houba, V. J. G., Novozamsky, ., Huijbregts, A.W.M. and Van der Lee, J.J. (1986): Comparison of soil extractions by 0.01 M CaCl 2 by EUF and by some conventional extraction procedures. Plant and Soil 34: 433-437. Houba, V. J. G., Novozamsky, 1. and Temminghoff, E. (1994): Soil analysis procedures extraction with 0.01 M CaC 2. Soil and plant analysis. Part 5A. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University. lzsjki, Z. (1988): Osszeffigg6s a cukorr6pa tfpliltsAgi 6llapota, a term6s mennyisdge ds min6s6ge k6z6tt n6v6nyanalizis alapjan. Kandiditusi 6rtekez6s, Szarvas. Kereszt6ny, B. (1966): Egyszerisitett eljirfs a talajok forr6 vizben oldhat6 b6rtartalmfinak kinalizarin reagenssel t6rt6n6 meghatirozisira. Agrok6mia is Talajtan 15: 131-140. Klein, Z. (1985): Az elektro-ultrafiltrici6s vizsgfilat jelent6s6ge a cukorripa-termeszt6sben. Doktori 6rtekez6s, Keszthely. Nimeth, K., Makhdum, 1.Q., Koch, K. and Beringer, H. (1979): Determination of categories of soil nitrogen by electro-ultrafiltration (EUF). Plant and Soil 53: 445453. Rovara, E (1890): R6patermel6s. Pesti K6nyvnyomda Rt. Ruzsdmyi, L. (1981): A mi~trdgy 6zs 6s 6nt6z6s hatAsa a cukorr6pa termds6re 6s a gy6kir beltartalmi 6rt6k6re. N6v6nytermel6s 30: 363-370. Szemz6, B. (1979): A cukorrepa-termeszt6s Magyarorszigon 1808-1938. Akad6miai Kiad6, Budapest. Wehrmann, J. and Scharpf, H. C. (1980): Mineral nitrogen content of soil as the basis of the nitrogen fertilizer requirement of sugarbeet. Proc. of the 43rd Winter Congress of IIRB, Bruxelles, pp. 327-341.
193
Kulcsar Lhszl6l-Jiszbernyi Istvdn
2
A cukorr pa taipanyagellitisinak szaktangcsadaisi rendszere Magyarorszigon IBETA
Kutat6 is Fejlesztd Kft., 9463 Sopronhorp~cs, F6 u. 70. Egyetem Mezdgazdasigi Kemiai Tansz6k, 4015
2 Agrirtudominyi
Debrecen, Pf. 36. O zefoglalds Az 1990-cs 6vek elej6n Magyarorszdgon a mfIrigya-felhasznAlAs drasztikus csdkken6se a cukorr6pa term6stlaginak alakulisAban is 6reztette negativ hatfiszit. 1994-t61 aztfn fokozatos fellenduiis kdvetkezett be. Evr6I Cvrc n6tt a mhtrdgyAzott cukorr6pa-teruletek nagysdga. 1998-ban mdr a cukorr6pa vet6steriilct6nck 90%-At mfltrAgyAztAk. Ebben az id6szakban a szervcstrfgya-fclhasznlds vAltozatlanul alacsony szinten maradt. A cukorrdpa-terllctek 3040%-Ara juttattak szerves tr~gyft. A cukorr6pa-termeszt6sben felhasznilt Atlagos NPK mdtrAgya hat6anyag-mennyis6ge 1997-ben (87 kg/ha N, 80 kg/ha P2 05 , 125 kg/ha K20) t6bbszdrdse az I ha mez6gazdasfgi terflletre jut6 orszAgos Atlagnak ( 41,1 kg/ha N, 8,4 kg/ha P20 5, 7,4 kg/ha K2 0 ). A helyes mOtrngyahasznAlat alapvct6 fclt6tcle a talajvizsgAlatokra alapozott szaktandcsaddsi rendszer. Hazinkban el6 szOr a MEM NAK M6trAgyizAsi irfnyclveiben kerult kidolgozisra a cukorr6pa ti-Agyziz si szaktandcsadAsi rendszere. 1982-t61 a Mez6hegyesi Cukorgyir k6rzet6be tartoz6 iizemckben kIs6rleti jellcggel megindult az EUF-talajvizsgAlatokra alapozott tipanyag-visszap6tl6s, amely azutdn orszfgos m6retvd sz6lesedett. Az 1990-es 6vek elejen bck6vctkezett visszaes6st k6vet6en a cukorgyfrak 6szt6nz6s6re ism6t n6vekedctt az EUFtalajvizsgfilatokban r6szesitctt terfletek nagysdga. 1998-ban mir szerz6d6tt teruilet 94%-in 66 134 ha-on v6gcztek EUF talajvizsgAlatokat. A Magyar Cukor Rt. cukorr6pa teriletein a BETA Kutat6 Kft. Altal kidolgozolt, hazai viszonyokra adaptl~t EUF N-trigyfzfsi szaktanfcsadAsi m6dszert alkalmazzAk. Kisrleti jelleggel megkezdtuik a 0,01 M CaCI2-os talajvizsgflatokra alapozott N-trigyaiza'si szaktankcsadAsi rendszer kidolgozist, ami tizemi kis6rleti felhasznAlAsra vAr. Bevezet~s A cukorrdpa-termesztds kultirt6rt6nete szorosan 6sszcfflgg a ,,korszerdV" gazdAlkodAs 6s a tudatos tipanyagvisszap6tlis eltcrjedds~vel. Hazinkban a mtrAgyAzfs kezdete is a cukorr6pa-termesztdssel ffgg ossze. A mtitrngyist hazinkban m6dszcresen els6k6nt 1868-ban Sopron megy6ben Biik6n, az ottani cukorgyfr gazdasAgfhan haszndltdk, ahol szuperfoszfdtot alkalmaztak a cukorrdpa alA. Az 1860-as dvek vgdt6 az 1880-as 6vek vfg6ig legfeljebb csak a cukoripari gazdasfigok, azok is csak a cukorr6pa alA hasznfltak mfitrAgyAt (SzEMzO, 1979). Ennek oka els6sorban a m6trfgyAk magas ArAban keresend6. Csak azok a kult6rAk visclt6k el a magas mfitrfgyizisi klts6get, amelyek jelent6s Arbev6telt adtak. A korabeli irisok alapjdn tudjuk, hogy a mtlt szAzad v6gdn egyik kult6rn6v6ny sem eredm~nyezett akkora tiszta 194
jdvedelmet, mint a cukorr6pa (ROVARA, 1890). Mindezt egybevetve, a hAbor6 el6tti id6kben haz~nk mftrdgya-felhasznilsa minim~lis volt. Az intcnziv m6trAgyahaszndlat csak a szocialista nagygazdasigok kialakitisa utn, az 1960-as dvekt6l kezd6d6tt. Az akkori m6trdgydzfsi programnak megfelel6en egyre nagyobb N-m6trigyaadagokat hasznAltak, aminek hatfsira a gabonatermdsck hitvinyosan ndvekedtek, talajaink pedig lassan feltdlt6dtek nitrog6nnel. Ennek hatisa a cukorr6pa-termeszt6sben sem maradt el.A r6pa cukortartalma 1974-ben 6s 1975-ben orszigos m6retekben soha ner hitott alacsony 6rt6keket Crt el.A 60-as 6vek clej6hez viszonyftva k6tszer annyi cukorrpdit dolgoztak fel, m6gis kcvesebb cukrot tudtak cl6illtani a cukorgyfrak (BuZAs-NAME-rH, 1990). Ezt k6vet6en orszAgos m6retfi kutatAsi programok indultak a cukorr6pa optimtlis tdpanyagellhtisnak vizsgAlatfra. Hazdnkban els6sorban BUztes (1978), RuzSANYt (1981) 6s lzsAio (1988) munkdssig6nak k6sz6nhet6en sz~mos alapvet6 ismeretet szercztiink a cukorrdpa tfpanyagfelvdtcli sajdtossigair6l, valamint a trfigyfizis 6s a min6s6g 6sszefiigg6seir6l. Eredm~nyeik alapjfn a MEM NAK M6trfgy~zisi irinyelveiben kidolgozfisra keriilt a cukorr6pa trigydzdsi szaktanicsaddsi rendszere (BuzAs, 1983). 1982-t61 a Mez6hegyesi KombinAt Cukorgy6rinak k6rzet6be tartoz6 iizcmekben kis6rieti jelleggel megindult az EUF-talajvizsgilatokra alapozot tipanyag-visszap6tlfis (KLEIN, 1985), amely azutAn orszAgos mdretfv6 sz6lesedett. Jelenleg is 6ventc t6bb mint 50 000 hekt~ron vgeznek EUF-talajvizsgfilatokra alapozott trAgyAzAsi szaktan6csadfst. Az 1990-es 6vek clej6n a mttr6gya-felhasznlAs Magyarorszfgon drasztikusan lecs6kkent, ami a cukorr6pa tipanyagelit 6ban is 6rcztctte negativ hatIsfit. 1994-t61 kczd6d6en azonban ism6t pozitiv vAiltozks kczd6d6tt. 1994-t6 fokozatosan n6vekedett a mfitrigyfzott cukorr6paterilet nagysfga (1. 6bra). A helyes m6trdgyahasznilat viszont nem nElkiildzheti a talajvizsgilatokra alapozott szaktanicsadfist. E tekintetben is pozitiv tendencia mutatkozik. A 2. 6ibrAn 1ithat6, hogy 1994-t61 fokozatosan n6vekszik a talajvizsgilatokban rdszesitett cukorr6pa-teruletek nagysiga. HazAnkban els6sorban az EUF-talajvizsgSiatokra alapozott szaktanicsadfisi rendszer terjedt el.1994-ben 27033 ha-on, 1998-ban mAr 53315 ha-on v6geztek EUF-talajvizsgAlatokat (3. abra). A vizsgilat sorAn a talajszfrletb6 a N, P, K, Ca 6s Mg mellett a Na, Zn, Mn 6s B konccntrfci6jit is meghattirozzfk. A javasolt NPK m6tr6gyad6zisok mellett a m6sztrigy~zgsra, valamint kiegdszit6 B-tr6gydz6sra is adnak javaslatot (BORBIY-EIEK, 1983). J6val kisebb arAnyban alkalmazzfk a Nmin m6dszert, ami a talaj td]v6gi AsvAnyi Nrendszer szaktanicsaddsi alapul6 N-trfgyAzisi meghatfrozgsAn tartalminak (WEHRMANN-SCHARPF, 1980). A N-mellett a talaj P- 6s K-ell6tottsiga amm6nium-lakt.tos (AL) talajkivonatban (EGNER et al. 1960), mig a B-ellAtotts6ga forr6 vfzbcn oldhat6 Btartalom alapjfn it61het6 meg (KERESZTENY, 1966).
195
I. Abra A m6Itr~gj~znt cukonr~palfrilrek na2g 2 sga
vetesteriilet sz 7nl~lk bar
*1
A36 .664
?, 77
__
.
'-
2. ibm 6
Talojvi/sgilatban r szesitett cukorrpa-termIlet nagys ga a vetisterfitet szzaIlkfhan
**.
3.
abra A talajvizsgilatok elterjedItge
196
-
M.0< N0.0.
30.0
20.0
0
IN0
2W
300
N-adag (kg/ha)
35
,
20,
S'0
0,
bp
N-adag (kg/ha)
4. 6bra A N-trAgyAzis hatdsa a Ialaj EUF isszN is O,OIM CaCI2 isszN tartalmira
197
5. bra
6
5sszcffiggis az EUF NO -N is a 0,01 M CaCI NO -N rtkek kbz6tt
35
30
Z
.>"
IS...
:_&
z Is O.082
o
5
0
Is
+ 0.70M•
3o
20
35
EUF NO,-N (mg'kg)
6. ibra
Osszefdggis az EUF 6sszN is a 0,01 M CaCI, dsszN 6rtkek kz6tt 45
.
.
. .
i
0
..
.
.
. . .
.
. . .
. . .
.
40
o
*
s
•19,8::. 20
00 IS
~ 0
-f 0.4465x+ £6011
~
°0HI **m'**k
25
30
35
EU*|
40
45
*
r.-
50
55
Err bOtsON nmg/kg .
198
60
65
70
,75
75
00
05
A szaktanicsadgs c6ljdra azonban a talajvizsgflati m6dszereket szfint6f6Idi kis6rletekkel kell kalibrilni. Azaz megAllapitani, hogy adott talajvizsgAlati &rtfk mellett mennyi mtitrgyjt kell kijuttatni ahhoz, hogy maximilis termdst kapjunk. A cukorr6pa-termesztfs szempontjfib6 a NtrgydzAs kiemelked6 jelent6stgi, ezdrt az elmailt 6vckben a Magyar Cukor Rt. megbizfs6b6l a Debreceni AgrArtudomAnyi Egyetem Mez6gazdasAgi Kdmiai Tansz&6vel ds aJAsz-NagykunSzolnok Megyei Ndv6nyeg6szs6giigyi ds Talajv6delmi Allomdssal egyittmfkodve r6szletesen vizsgfltuk a cukorr6pa N-trAgydzjsi szaktanicsadisi rendszer6t. Anyag 6s m6dszer 1996 ds 1997-ben hfrom term6helyen: Sopronhorpcson barna erd6talajon, Szolnokon rdti bnt6stalajon, Mez6hegyesen m6szleped&kes csernozjom talajon kisparcellAs N-trAgyAzAsi kalibrfici6s kisrIetet Alltottunk be az alAbbiak szerint. 1995 6szin 150 m2-es f6parcellAkra 4 ism6dtldses v61elenblokk elrendez6sben n6vekv6 adag6i N d6zisokat (0, 100, 200, 300 kg/ha N) juttattunk ki. Kbvetkez6 dv tavaszAn EUF ds 0,01 M CaCI 2 talajvizsgdlati m6dszerekkel Allapiltottuk meg a parcellAk N-ellftottsfgft. (NI METH et al, 1979, HOUBA et al, 1994). Az 1996. dvi kis6rletek talajmintAit vet6s el6tt tavasszal vettiik kdt talajrdtegb61 (0-30 cm, 30-60 cm). Az EUF vizsgAlatokat a JiAsz-Nagykun-Szolnok Mcgyei NTA szolnoki talajvizsgAl6 laborat6riumban, a 0,01 M CaCI 2 talajvizsgdlatokat a Debreceni Agr6rtudomdnyi Egyetem Mez6gazdasdgi K~miai Tansz6k6n vdgezt6k el. A kiil6nbdz6 N-szolgAltatfs6 parcelldkat vet6s cl6tt 30 m2 -es alparcellfkra osztottuk, 6s nullAt6I ndvekv6 N-d6zisokat (0, 50, 100, 150, 200 kg/ha) juttattunk ki. igy mindk6t 6vben hfrom term6helyen, kfllnb6z6 talajtulajdonsfgok 6s elt6r6 dkol6giai adottsAgok mellett 80-80 db parcellin tudtuk mdni a talaj N-ellftottsfgfnak 6s az itjonnan kiadott mdtrAgyfnak a cukorrdpa term6s6re es min6s6g6re gyakorolt hat6s6t. A talajok jellemz6 param6tereit az 1. tdblAzatban tilntettik fel. I. tiblAzat A kfs~rleti helyek jellemz5 talajtulajdonsAgai (0-30 cm talajr6teg) Talajtfpus Fizikai talajf6es6g pH KCI CaCO 3 % KA
Sopronhorpics csemozjom bama erdStalaj v.5yog 6,65 0,00 44
Szolnok r6ti 6nt6s agyag 6,97
Mez6hegyes mszlepedekes csemozjom vlyog 7,07
0,00
2,96
63 3,43
47 3.70
H%
1,81
AL K 2O mg/kg
204
166
340
AL P20 5 mg/kg N0 3+ N02-N mg/kg
164 4,12
390 10,3
208 17,3
Eredminyek A talajvizsgflatok eredm6nyei A talajvizsglatok eredmdnyei azt mutatjdk, hogy szignifikans kuionbs6gek vannak a hfrom term6hely talajainak N-ellftottsAggban. Ezt mind EUF-m6dszerrel, mind 0,01 M CaC 2-os m6dszerrel ki lehetett mutatni. Legalacsonyabb N-elAtotts~g Sopronhorpdcson, a legmagasabb Mez6hegyesen volt tapasztalhat6. A talajok N-elltottsAgAt a term6hely nagyobb
199
mdrtdkben befolytisolta, mint az alkalmazott N-tr6gyfzfs. A SopronhorpAcson kijuttatot 300 kg/ha N adag hatisdra a talaj N-elliAtottsAga nem 6rte el a mez6hegyesi kezeletlen kontroliparcella N-6rt6k6t (4. Abra). MindhArom term6helyen a N-trigygzzis hatis6ra n6tt a talajok N-elldtottsAga. Ez a n6veked6s a kfllnbdz6 m6dszerekkel mrhet6 NO3 -N frakci6 nbveked6s6nek tulajdonithat6. A szerves N-frakci6ban a N-trAgyzAs hatAsAra 6rt6kelhet6 vfltozAst nem lehetett kimutatni. Az EUF, illetve CaCI 2 szerves N frakci6k azonban 16nycges term6hclyi kiil6nbs6gekct mutattak. Ezzel szemben a N0 3-N tartalom a N-kezel6sekt6l, a term6helyt6l 6s a mintav6teli id6pontokt6l fdgg6en is vfltozott. A mintavdtel id6pontjfnak helyes megvflasztisa tehAt igen I6nyeges pontja a szaktandcsadisnak, mivel a nitrAttartalom aktulis 6rt6kc jelentfkenyen mdrt6kben m6dosithatja a mdrt Ndssz 6rt6ket. Osszefiggs az EUF js 0,01 M CaC 2 m6dszerrel kapott eredmnnyek kozott. A kflnbdz6 m6dszerrel kapott talajvizsgilati eredm6nyck alapjfn elvdgzett regresszi6analizis sorAn szoros linefris korrelfci6t talfltunk az EUF N0 3-N 6s a 0,01 M CaCI 2 N0 3-N 6rt6kck kdz6tt ( r= 0,91) (5. 5bra). Az EUF N6ssz 6s a 0,01 M CaCI 2 N6ssz 6rt6kek kdzdtt azonban a korrelAci6 j6val lazzibb (r= 0,75) (6. Aibra). Hasonl6 eredm6nyekr6l HoUnA 6s munkatirsai (1986), valamint BARBANTI (1994) is bcszfimolnak. Az EUF m6dszerrel m6rt szerves N frakci6 k6zel 6tsz6rse a 0,01 CaCI 2 m6dszerrel mdrt 6rt6knek. A 0,01 M CaCI 2m6dszerrel m6rt Ndssz 6rt6k abszol6t 6rt6kben kevesebb, mint fele az EUF m6dszerrel m6rhet6nek. A kalibrici6s kisrletek eredmnyei A rdpatemds alakuldsa A kii6nb6z6 term6helyek k6z6tt jelent6s ku1Inbs6get tapasztaltunk a r6paterm6sben. A kezeletlen parcelldk tcrmdscredm6nyci szerint legkisebb tcrm6sek mindk6t dvben SopronhorpAcson (56,0 ill. 58,8 t/ha), legnagyobbak Szolnokon (72,2 ill. 82,7 t/ha) alakultak. A rfpaterm6s a talaj n6vekv6 N-elldtottsAgfival 6s az adagolt N-trigydzAssal ndvekedett. A tavasszal adagolt N-trigyAzAs csak az alacsony N-ellfitottsfg6 parcellAkon n6velte szignifikAns m6rt6kbcn a rpaterm6st. Amcnnyiben a talaj N-elltottsfga meghaladta a 43,0 mg/kg EUF 6sszN 6rt~ket, ill. a 23,0 mg/kg 0,01 M CaCI 2 Ndssz 6rtdket, az adagolt N mfltrAgya term6sn6vcl6 hatAsa nem jelentkezett. A cukonartalom alakuldsa A r6pa cukortartalmAnak alakulAsfban a term6hely 6s a N-trfgyAzfs egyarAnt szerepet jdtszott. A legnagyobb cukortartalom mindk6t 6vben SopronhorpAcson az alacsony NcIlAtottsAig6 parcelldkon alakult ki (17,35, ill. 17,68 %), amely mind a parcellfk n6vekv6 NellItottsdgival, mind a tavaszi N-trfgyzfis hatisAra cs6kkent. Szolnokon 6s Mez6hegyesen mindk~t 6vben j6val alacsonyabb cukortartalmakat m6rtiink. Kuilndsen alacsony drt6keket kaptunk Mez6hegyesen 1997-ben. A cukortartalom a N-trfgyfzfs hatisAra cs6kkent Mez6hegyesen ds Szolnokon, de nero olyan nagy m6rt6kben, mint Sopronhorpicson. Az a-aminoN-tartalom alakuldsa A r6pa a-aminoN-tartalmfnak alakuldsa a cukortartalom vdltozdsdval ellent6tes irAnyP. Az aamino-N-tartalom alakuldsdban igen jelent6s term6helyhatis volt megfigyelhet6, amely sokkal nagyobb m6rt6kben hatirozta meg a r6patest a-aminoN-tartalmft, mint a N-mftrfgyzfs. A N-mttrAgyAzAs hatAsdra mindhfrom term6helyen n6vekedett a r6pa a-aminoN-tartalma. Ez a nfveked6s Sopronhorpicson volt a legkifejezettebb, ahol a legnagyobb N-kezel6sek hatfsAra a kezeletlen kontrollhoz k6pest tdbb mint hAromszorosdra n6vekedett a r6pa a200
aminoN-tartalma, azonban m6g igy sem drte el a mez6hegyesi kis6rlet kezeletlen parccll]Ajin m6rt -aminoN-6rt6ket. A Iegmagasabb c-aminoN-6rtfkek mindk6t 6vben Mez6hegyesen alakultak ki. Itt a N-trgyfzfs hatfsa a legkisebb mfrt6kben jelentkezett. A rpatest K- ds Na-tartalna A r~patest K- 6s Na-tartalma 6s a kiil6nb6z6 N-cllkts kbzbtt igazolhat6 osszefiigg6seket nem tapasztaltunk. A term6helyek kozdtt a cukorrpa Na-tartalmfiban mutatkozottjelent6s kiilonbsg. Legnagyobb Na-tartalmakat a kezelsek tlagAban Mez6hegyesen (1996-ban 3,60, 1997-ben 4,78 mtol/1O0 g rfpa), a legkisebbeket Sopronhorpfcson (1996-ban 0,56, 1997-ben 0,46 mrnmol/100 g r6pa) mrtiik. A term6helyi kfil6nbs6gek a K-tartalomban isjelent6sebbnek bizonyultak, mint a Nt-AgyLkAs. A kezel6sck tlagiban Sopronhorpdcson 1996-ban 3,24, 1997-ben 3,49 mmol/100 g r6pa, Szolnokon 1996-ban 4,08, 1997-ben 4,53 mmoll00g r6pa, Mez6hcgyesen 1996-ban 6,52, 1997-ben 3,97 mmol/l00 g rdpa K-tartalmat mtflnk. Szembettln6 a mez6hegyesi kis~rletben jelentkez6 6vjArathatds, amelyet a tApanyagfelv6tcli kiscrletben is tapasztaltunk. A kinyerhet6 cukortenms alakuldsa A hektAronk6nt kinyerhet6 cukortermfst a rfpatermds 6s a kinyerhet6 cukortartalom hatfrozza meg, amit a melaszk6pz6 anyagok mennyisfge is befolyfsol. A hektironkdnti kinyerhet6 cukorterm6st mindhfirom term6helyen a N-trigyAzds esak az alacsony N-ellftotts6g mellett novelte. Az eredm6nyekb6l ft6lve EUF 6sszN = 43,0 mg/kg, ill. 0,01 M CaCI2 23,0 mg/kg 6rt6k mellett 50 kg/ha N-hat6anyag kijuttatisa elegend6nek bizonyult a maximfilis cukorterm6s elfr6sdhez. A magasabb N-ellfitottsig mellett adagolt Ntrfgya hatAsira a kinyerhet6 cukorterm6s mennyisfge cs6kkent. A maximilis cukorterm~shez sziiks~ges N-adag meghatirozAsa Az 1996-ban 6s 1997-ben kbil6nb6z6 term6helycken elv6gzett kis6rletek credm~hyeit feldolgozva a talajok N-ellitottsfgdnak jellemz6sdrc az alI-bbi kateg6rifkat Allapftottuk meg. 2. tfiblizat TalaJ N-ellitottsligi hatirrtkek cukorr~pa-termeszt& esetkn EUF 6sszN
CaCI 2OsszN N-clldtottsdgikateg6ria
Javasolt N-adag
mgt]000 g
mgt1000 g
kg/ha
< 33,0 33,1 -38,0 38,1 -44,0 44.1 <
< 15,5 15,6- 19,0 19,1 -.23,0 23,1 <
gyenge kbzepes j6 ttizott
150 < 150-50 <50 0
Kis~rleteink eredm6nyei szerint a gyenge dlftotts;Agt parcellAkon 150 kg/ha N-adag bizonyult sztiks6gesnek. Mivel 33,0 mg1000 g talaj EUF 6sszN drt~knCI gyengdbb elttottsAgi parcellAt egyik term6helyen semi talailttink, igy a. kijuttathat6 d6zis fels6 hatrft nem tudtuk meghatirozni.
A kdzepes N-ellAtottsfg eset6f 50. ds 150 kg/ha kdzdtt alakult a maximdlis cukorterm6s eldr6s~hez szfiksdges N4dag. J6 cl ,tottsdgnAl 50 kfhta, illetve kevesebb volt a sziikstges N-d6zis. Az igen j6 ellftottsAg es6t~n N-trggyA-is rilkiIl 6rtiik ela maximAlis cukorterm6st. Ebben az esetben a talaj term6szetes N-szolgAltatdsa clegend6nek bizonyult a maximalis cukorterm6shez, 6s a kijuttatott N-frAgya a cukorterm6s csbkkendstt id6zte el6. 201
Osszefoglalis, k6vetkeztet~sek 1996-ban 6s 1997-ben hArom term6helyen (Sopronhorpdcson csernozjom barna erddtalajon, *Szolnokon rdti dnt6stalajon, Mez6hegyesen mdszlepeddkes csernozjom talajon) sz.nt6fdldi kisparcells N-kalibrdci6s kis6rletekben vizsgiltuk a talaj N-cllAtottsiig6nak 6s a NtrAgyizAsnak a cukorrcpa termds6re ds mind3sdgdre gyakorolt hatAsfit. Megfillapitottuk, hogy az egyes term6helyek kdzdtt jelents kiildnbsdg van a talaj Nel itottsflgAban. A talajok N-szolgAltatsa mind EUF, mind CaCl 2 -os m6dszerrel j61 jellemezhet6. A kalibrdci6s kis~rletek eredmdnyei alapjdn az EUF 6s a CaCI 2 m6dszer tekintetben meghatiroztuk a talaj N-elldtotsligi kateg6ridit, 6s a maximalis cukortermds elrdsdhcz sziiks4gcs N-mftrdgya mennyisdgdt. Irodalom Barbanti, L., 1994. New methods of recommending N-fertilizer use to sugar beet in the mediterranean area. Proc. of the 57th Winter Congress of IIRB. Bruxelles. 281-294. Borb6ly L-Elek t., 1983. EUF-talajvizsgilatokra alapozott cukorrdpa-trdgyA isi m6dszer 6s javasolt ndv6nyvddelmi technol6gia. MEfM-NAK, Budapest Buzd.s ., 1978. Az dntdz6s 6s a mttrfgyz6s hatfsa a cukorrdpa min6sdg6re. Kandidfltusi 6rtekezds. OKI, Szarvas Buz.s I. (szerk.) 1983. A ndv6nytfplfIls zsebkbnyve. Mcz6gazdasdgi Kiad6, Budapest Buzis, 1.-Ntmeth, T, 1990. A cukorrpa tipanyagcllAtflsflmak tudomfinyos alapjai 6s a mai modern elmdletek kialakuhsa. Bdta Napok, Sopronhorpics. 87-97. Egner, H., Riehm, L-Domingo, W. R., 1960. Untersuchungen fiber die Beurteilung des Nahrstoffzustandes des Buden 11.Chemische Extractionsmethoden zur Phosphor und Kalibestimmung. Ann. Landw. Hochsch. Schwedens. 26. 199-215. Houba, V.G., Novozamsky, ., Huijbregts, A. W M.-Van der Lee, J.J.,1986. Comparison of soil extractions by 0,01 M CaCI2 by EUF and by some conventional extraction procedures. Plant and Soil. 34. 433-437. Houba, V. J. G., Novozamsky, l.-Temminghoff, E., 1994. Soil analysis procedures extraction with 0,01 M CaCI2. Soil and Plant analysis. Part 5A. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University Izsfiki Z., 1988. Osszefiiggds a cukorrdpa tiplfiltsflgi dilapota, a termds mennyisdge 6s min6sdge kozdtt ndv~nyanalfzis alapjin. Kandiditusi 6rtekezds, Szarvas. Keresztdny B., 1966. Egyszer6sitett eljtrfls a talajok forr6 vizben oldhat6 b6rtartalmflnak kinalizarin reagenssel tdrt~n6 meghatirozisgra. Agrokdmia 6s Talajtan. 15. 131-140. Klein Z., 1985. Az elektro-ultrafiltrci6s vizsgfdat jelent6sdge a cukorrdpa termesztdsben. Doktori 6rtekezds, Keszthely Ndmeth, K., Makhdum, 1. 0., Koch, K.-Beringer, H., 1979. Determination of categories of soil nitrogen by electro-ultrafiltration (EUF). Plant and Soil. 53. 445-453. Rovara, E, 1890 Rdpatermelds. Pesti Kdnyvnyomda Rt. RuzsAnyi L., 1981. A mfitrigyizis 6s az 6ntdz6s hatisa a cukorr~pa tem~sdre 6s a gy6kdr beltartalmi Crt6kdre. Nfvdnytermelds. 30. 363-370. Szemz6, B- 1979. A cukorrdpa-termesztds Magyarorsz6gon 1808-1938. Akaddmiai Kiad6, Budapest Wehnnann, J.-Scharpf, H. C., 1980. Mineral nitrogen content of soil as the basis of the nitrogen fertilizer requirement of sugarbeet . Proc. of the 43th Wintercongress of IIRB, Bruxelles: 327-341.
202
W Grzebisz
Nutrient management and advisory systems for sugar beet in Poland Department of Agricultural Chemistry, Agricultural University, Wojska Polskiego 71 F, 60-625 Poznan, Poland Summary One of the main reasons for the small yields of sugar beet roots than the potential estimate of about 50 t/ha is poor quality soils and a shortage of some nutrients such as potassium (K), magnesium (Mg) and boron (B). The actual yields of roots harvested by farmers are strongly influenced by two factors, i.e. fertility level and weather conditions during the growing season. In Poland, both organic and mineral fertilisers are taken into consideration in sugar beet nutrient management. The increasing pressure from sugar beet factories for good technological root quality is the main reason to examine the present use of fertilisers both in terms of plant requirements and amounts. To obtain satisfactory yields both of roots and sugar, farmers should cultivate the crop on soils with a medium content of plant available K, phosphorus (P), Mg and B. With farmyard manure (FYM) soils can have low levels of available nutrients. For fertilisation, the following factors should be taken into account by sugar beet growers: - subsoil physical conditions to ensure water and nutrient uptake from deeper soil layers, -soil nutrient resources, particularly K, sodium (Na), Mg and B, - quick and reliable methods to control nitrogen (N) supply from soil resources. Natural conditions and sugar beet yields Besides climate, optimum conditions for sugar beet depend on a number of natural and agrotechnical constrains such as: - soil condition (soil type, soil structure, etc.), because sugar beet prefer soils with a deep soil profile, - soil tillage system, crop rotation system, soil amendments (lime, organic matter) to decrease physical constraints to root growth, - soil fertility level to ensure rapid growth in first months of vegetation and to supply adequate amounts of nutrients to achieve a high technological quality of the harvested roots, - efficient weed control to decrease their negative effect on nutrient and water resources, particularly during the early stages of growth, - protection against diseases and pests to eliminate any disturbances in crop growth. Soil and climatic conditions in Poland are significantly less favourable for sugar beet than in the majority of the neighbouring countries. Consequently, the yield forming potential of sugar beet is also lower. The average yield is 48.6 t/ha roots. Of the total arable land in Poland that which is classified as very well to well suited for sugar beet is approximately 12%, i.e. 3,106,000 ha. But the actual distribution of the crop is not directly related to the main sugar beet growing centres. The largest yields are obtained in regions where sugar beet are grown on soils with However, yield variability due to soil properties is much limited suitability for wheat (Table 1). less than that due to climatological variability. Yields of both roots and sugar exhibit In good years, the average yield of roots considerable year to year variation in Poland (Fig. 1). 203
ranges from 35-45 t/ha but in years with unfavourable climatic conditions, yields are about 10 t/ha less. It is necessary to mention that the cost of sugar production expressed in roots tonnage in years 1997, 1998 was about 28-30 t/ha. So that net return for a farm depends strongly on harvested yield. Table 1. Potential yield of sugar beet according to the soil's suitability for different crops* (Drozd, Nowak, 1993). Complex of soil suitability
I
II
Very well suited to
*
wheat crop Well suited to wheat crop
48.4
Limited suitability
52.5
to wheat Mean yield
49.0
49.0
49.0
Climatological region Ill IV V[
Mean yield VII
46.8
-
52.9
49.7
49.7
46.2
50.2
49.2
46.4
48.1
46.3
48.8
46.3
50.0
47.2
52.1
49.0
48.6
Soils suitable for agricultural use can be classified by climatological and geomorphological characteristics such that soils which exhibit similar agricultural properties and can be utilised in a similar way (for wheat, sugar beet, rape). The main criteria used to classify soils are: soil profile structure and its physical and chemical properties, topography, soil-water regime and climatic variables like rainfall. Wheat, rye (lowland areas) and oats (hilly areas) are indicator crops (Komisarek) 1995).
An assessment of the different factors affecting sugar production (y) in Poland in the years 1961-1997 shows that variability in root yield was the main factor, it was responsible for 34% of the variability in sugar yield. However, interactions with other main factors, included in the equation 3, explain 85% of the variability. I. Yield of sugar beet roots (x,) y=0.494 + 0.039x, 2. Harvested area (x2) 3. Technological quality of roots (x3 ) 4. Interaction of factors No. I and 2 y = 0.827 + 0.046x, + 0.0025x2
R2 = 34% not significant not significant
(I)
R2 = 53%
(2)
5. Interactions of factors No. l and 2 and 3 y = -3.03 + 0.053x[ + 0.0037x 2 + 0.117x 3 R2 = 85% (3) Reasons for the lower than estimated potential yield of sugar beet roots can be explained by: - small nutrient soil resources, - unfavourable weather conditions during the growing season. Consequently, organic and mineral fertilisers are key factors for the cultivation of crops with a large nutrient requirement, for instance sugar beet. The assessment of agrotechnical factors made by Niewiadomski (Nowicki, Marks, 1994) showed that in Poland fertiliscrs are responsible for 40-50% of the harvested yield (Table 2).
204
Table 2. An assessment of the effect of agricultural, factors on the yield of agricultural crops in Poland. Agricultural factors Fertilisers Cultivars Crop rotation Crop protection Sowing/planting date Harvest technology Tillage
Percentage effect on crop yield 40-50 I -20 12-15 10-15 10-15 10-12 3- 8
Factors and threats to sugar beet yield
To make a reliable estimate of the amounts of nutrient which should be applied, the following factors are taken into account: - A reliable estimate of the potential yield attainable as affected by soil, climatic conditions and farm management system. - Sugar beet nutrient requirements and critical phases of its growth and nutrient uptake. - Soil resources of plant available nutrients- External sources of nutrients, i.e. organic and mineral fertilisers. With respect to sugar beet management, the most important current trends are: - Decreases in the amounts of mineral fertilisers applied per farm. - Decreases in the amount of organic fertilisers produced by a farm. - An increasing area of sugar beet grown without an application of farmyard manure. - The increasing pressure from sugar beet factories for growers to produce roots of a very high technological quality. The first two points are extremely dangerous for the stability of sugar production in Poland because of declining soil fertility levels, particularly P and K. As shown in Fig. 2, the amounts of NPK fertilisers applied during the period 1989-1997 decreased by more than 50%. For sugar beet, it is not so much the change in the amount of fertiliser used that is dangerous, but rather the change in the ratio of N:P:K. In 1989, for each kg of N, there was about 0.6 kg of P20 5 and 0.8 kg of K20. Nine years later, this relationship was as I to 0.35 P20 5 and I to 0.41 K20. At the same time, average production of FYM decreased from 6.2 t/ha/year to 5.1 t/ha/year. As a result, average yields of cereals decreased by 10% and became even more dependent on weather conditions. However, in the same period, the yields of sugar beet were relatively large, but highly variable. The next problem is connected with the technological quality of roots which usually refers to root fresh weight sucrose content. The requirements of the sugar factories force farmers and their advisors to pay more attention to Na, Mg, micro-nutrients and N efficiency. Therefore, advisors are having to develop highly efficient systems of fertiliser use under new management circumstances. Thus the main question for advisors is the degree and possibilities of supplying the sugar beet crop with sufficient nutrients under the current soil, climatic and economical conditions in Poland.
205
Fig. I. Sugar beet and sugar production in Poland
1
*
I.
y~rri II
1.
i'm
Ix5
I'S
I'aa
Lna
lBSI
Sugar beet nutritional requirement
The sugar beet crop has very large nutrient requirements. The current approach to manuring in Poland has to take into account the main sources of nutrients such as: - farmyard manure + mineral fertilisers: N, P, K, Na, Mg, B or -straw + mineral fertilisers: N, P, K, Na, Mg, B, Mn, Zn?, Cu ? Recent experimental work on the nutrient requirements of sugar beet has provided an opportunity to re-examine the present use of fertilisers (Grzebiszet al., 1998). The data were obtained in 1996 and 1997 when, due to favourable weather conditions, the growth of the crop was dependent only on nutrient availability. Under these conditions, the yields in some regions were much larger than those estimated on the basis of the local soil-climatological conditions. It is probable that the increased yields resulted in part from improvements in husbandry - early sowing dates, varieties of higher potential, and better seed protection against diseases during germination. Table 3. Maximum nutrient uptake by sugar beet according to Grzebisz el al. (1998) (50 t/ha roots + tops). Plani oFWans
Nutrients. kgfha K Sodium
N
P
Roots
9
50
120
15
17
is
Tops
30
40
205
55
28
32
Total
Magnesium
Catciun
200
90
325
70
45
5I
UptAke relaive IoN
I
0.45
1.625
0.35
0.225
0.25
ay of max.
135
165
135
165
165
135
uptake
Nutrient resourcev of solls
The mineral nutrient resources of the soil, i.e. the content of bioavailable mineral nutrients, have changed significantly in Poland in the period 1989-1997. The relatively good nutrient status at the beginning of this period resulted not ,somuch from natural soil fertility but rather from the relatively large level of mineral fertilisation, mainly Pand N in the preceding years. As a result of the dramatic reduction in mineral fertiliser application in early 1990s, it would be expected that the area of soils with a very small content of the major nutrients will steadily increase (Fotyma and Gosek, 1998; Gosck and Fotyma, 1998). This statement refers mostly to K and Mg because for both of these nutrients, the level of plant availability was not satisfactory even in the 1980s. 206
With reference to micro-elements, B is the most important one for sugar beet. As in the case of Mg, the lowest content of this element was observed in regions with advanced agriculture. Fig. 2. Fertilizer cosumption in Poland
OP.O
Feriliseruse In Poland, the two major sources of plant nutrients are organic manures and mineral fertilizers. The quantities of nutrients available for plants from organic manures are calculated on the basis of the stocking rate per farm, calculated on the basis of ,,large animals" (SD) with manure production per SI) of about 10 t/year. The content of nutrients in any type of organic manure and in any other type of organic fertilisers. The second main source of nutrients for crops in Poland is mineral fertilisers. As evident from Fig. in the amounts of fertilisers I, during the period from 1989 to 1997, there was a significant d -crease used. But there was an even worse situation with respect to the ratio of the individual nutrients. Unbalanced ratios contribute to higher year to year yield variability, lower quality of harvested crop parts and greater susceptibility of plants to diseases and pests of all crops including sugar beet. It isnecessary to assume that beet growers are becoming increasingly aware of the negative effects of awasteful exploitation of soil nutrients resources and their effect on sugar beet quality. Phosphorus, potassium and sodium The content of plant available P and K in soil is determined by means of the Egner-Riehm method (DL) and on the basis of the nutrient content, a soil is placed in one of five classes. With respect to P,there are other additional features included in the system (Table 4). The current soil P status can be assessed as not too bad, but a third of soils are poor. The soil classification system for available K requires that the soil category should also be determined (Table 5). Table 4. Soil classes for available phosphorus content, mg P,0000 g soil. Soil class
Very low
below 5.0*
Law
5.1-10.0
Medium
101-15.0
High Very high *
15.1-20 above 20.1
The assumed yield not attainable. optimalrange forthe available soil P for sugar beetwhen farmyard manure is not applied.
207
Table 5.Soil classes for available potassium content, according to DL method, mg K20/100 gsoil. soil class Very low Low Medium High Very high
Soil texture medium
Very light
light
< 2.6 2.6-7.5
< 5.1 5.1-10.0
7.6-12.5 12.6-17.5 from 17.5
70.-15 1 15.1-20,0 From 20.1
heavy
<7.6 7.6-12.5
< 10.1 10.1-15.0
2.56-20.0 201-25.0 From 25.1
I5.1-25.0 25.1-30,0 Frot 30.1
optimal range for he available oil K forsugar beel when farmyard manure is not applied.
The setting of optimal soil available P and K contents is highly dependent on organic fertiliser management. Therefore, on a farm, four main rules should be taken into account: 1.Sugar beet respond much more to soil available K than to current P and K fertilisation, so that the medium class of nutrient availability is the basis for the rate of fertiliser advised. 2. FYM, usually applied in autumn, allows sugar beet growing even on soils with low levels of plant available nutrients. 3. Too large amounts of fertiliser K applied at one time may damage seed germination. 4. Too large amounts of fertiliser K may be a reason for a lower technological quality of the roots. The application of farmyard manure has many advantages over that of straw. The most important advantages include (i) improvement of soil physical conditions, (ii) acceleration of the rate of organic matter mineralisation and (iii) it is a good source of easily available plant nutrients. Rates of P and K calculated according to the above rules are presented in Table 6. Table 6. Rates of phosphorus and potassium according to the soil available content classification for P and K and for a medium textured soil (assumed yield = 50 I/ha roots). Soil class
Very low L'ow Medium High
Phosphorus, kg P20,ha
Farm. manure 120* 90 60 30
straw 270 180 90 60
Potassium, kg KO/ha
Farm. manure 320 240 160 130 60.
straw 540 400 240
160
Very high 15 30 100 * theassumed yield not allainable; ** possible increase o potassium in roots.
With respect to Na, there are no official soil extractants. In practice, Na is applied irrespective of plant requirements. Magnesium
The system of soil classification for plant available Mg is very similar to those of K (Table 7). Thble 7. Soil classes for the available magnesium content, according to Schachtschabel method, mg Mg/100 g soil. Soil class Very light Very low Low Medium High Very high
< 1.1 1.1-2.0 2.14.0 4.1-6t From 6.1
Soil category light medium <2.1 2.1-3.0 3.1-5.0 5.1-7.0 from 7.1
<3.1 3.1-5.0 5.1-7.0 7.1-9.0 From9.!
heavy <4.1 4.1-6.0 6.1-10.0 10.1-14.0 front 14.1
optitmal range for available soil Mg for sugar beetwhen farmyard manure is not applied.
208
There are four steps to control the amount of plant available Mg: 1. Improve soil pH, which should be in the range 6.0 to 7.4 (IM KCI) by lime application. 2. Supplement soil available Mg to at least the threshold value of 5 mg Mg/100 soil. 3. Fertilise according to Mg requirements for a given yield of roots. 4. Foliar feed during the early stages of growth. With respect to the second step, the following procedure is suggested: - Mgu) x 30 where: Mg, - rate required in kg Mg/ha; Mgr - Mg critical content = 5 mg Mg/100 g soil; Mg Mg current content, mg Mg/100 g soil; 30 is a factor multiplying mg Mg/100 g soil into Mg kg/ha.
Mgr = (Mgo,
Micmnutrients Problems with macro-nutrient application depend on the management of the crop. The general rule for sugar beet is the application of FYM. When FYM is used, B appears to be the only micro-nutrient which needs to be applied as mineral fertiliser. On soils with pH higher than 6.5 (1M KCI), it may be necessary to apply manganese (Mn). When sugar beet are grown without farmyard manure, the application of zinc (Zn) and copper (Cu) should also be included in the fertiliser management system. With respect to soil available B, the soil classification system is presented in Table 8. In Poland, especially in areas where sugar beet are grown, the level of plant available B is low. Almost 75% of arable soils contain less B than sugar beet require. Table 8. Soil classes for the available soil boron* content. Class of soil boron pH. 1M KCI content < 4.5 4.6-5.5 5.66.5 Low < 0.8 < 1.0 < 1.3 Medium 0.8-2.6 1.0-3.2 1.3-4.3 High > 2.6 > 3.2 > 4.3 - determined by extraction with IM HCI.
> 6.5 < 2.2 2.2-7.2 > 7.2
Nitrogen Main goals for N application for sugar beet related to maximisation of (i) root yield per ha; (ii) biological sugar yield per ha; (iii) recoverable sugar yield per ha. The first goal prevails in regions where the sugar factories pay only for the tonnes of roots. The second and especially the third goal are slowly being introduced by some factories. Application rates for N are determined by field experiments. Current results show that 80-120 kg N/ha is sufficient to get the largest yield of sugar per ha, when FYM is applied. Without FYM, the amount of N should be increased by 30 kg N/ha, i.e. up to 110-150 kg N/ha. References Anonymous (1990): Advise in fertiliser use. Part I. IUNG Pulawy, 26 pp. In Polish. Drozd, J. and Nowak, L. (1993): Fertility and productivity of soils. In: Czynniki plonotw6rcze - plonowanie roslin. PWN, Warszawa-Wroclaw, 25-62, in Polish. Cieslinski, G. (1998): Development and advise in fertiliser use in Poland. Fragmenta Agronomica 3/98, 145-156. FAO Yearbooks of Agriculture: 1991, 1994, 1998. Fotyma, M. and Gosek, S. (1998): Long-term phosphorus balance in Poland. Fragmenta Agronomica 3/98, 317-326.
209
Gosek, S. and Fotyma, M. (1998): Long-term potassium balance in Poland. Fragmenta Agronomica 3/98, 443-453. Grzebisz, W., Barl6g, P and Fec, M. (1998): The dynamics of nutrient uptake by sugar beet and its effect on dry matter and sugar yield. Fragmenta Agronomica, 3/98, 242-248. Komisarek, J.(1995): Agricultural Suitability of soils for cereals crop production in Poland. In: Proc. ,,Agrometeorology of the cereals", Poznan, Poland 1995, 21-30. Nowicki, M. and Marks, M. (1994): Stan aktualny i perspektywy uprawy zb6z w Polsee. Fragmenta Agronomica 2, 8-18. Polish Yearbooks of Agriculture 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998. World Crop and Livestock Statistics 1948-1985. FAO, Rome 1987.
Osszefoglalms W. Grzebisz
A cukorr pa tdipanyagellitaisa es szaktanacsadiis Lengyelorszigban Department of Agricultural Chemistry, Agricultural University, Wojska Polskiego 71 F, 60-625 Poznan, Poland Az egyik lcgf6bb ok, hogy Lengyclorszfigban nem 6rik el a termsercdm~nyek a potenci6lisan megtermelhet6 kb. 50 t/ha-os nagysigot, a gyenge talajmin6s6g ds az ebb61 ad6d6 kdlium-, magngzium- 6s b6rhifny. A k6t legfontosabb faklor, ami befolyfsolja a jelenlegi cukorrdpatermnseket a tpanyagellitis szintje 6s az id6ji6ris. A cukorgyftrak rdszdr6l egyre nagyobb a nyomis, bogy j6 technol6giai min6sgg cukorr6p6t kapjanak. Ez volt a f6 oka annak, hogy megvizsgf'ljuk a jelenlegi trfgyfzds soran kiadott tApanyagok mcnnyisgg6t 6s min6s6gt. Megallapithal6 volt, hogy csak akkor kaptak kieldgit6 r6pa- 6s cukorterm6st, ha a cukorrgpI olyan talajokon termeltgk, amelyeken a felvehet6 K-, P- 6s B-tartalom legalfbb k6zepes volt. Gyenge ellitottsfgfi talajokon csak istfll6tragyazassal lehetett j6 ercdm6nyt el6rni. Tr6Agyizfisi szempontb6l a termel6knek az alibbiakra kell figyelemmel lennifik Lengyelorszfgban: -javitani kell az altalaj 1llapotft, bogy a cukorrdpa a mglyebb r6tegekb6l is tudjon tfpanyagot 6s vizet fclvcnni, -javitani kell a talaj tipanyag-szolgAltatfsAt, els6sorban a K-, Na-, Mg- 6s b6rellatAst, - gyors 6s j6 m6dszert kell tailmni a talaj nitrogdnszolgAItatAsAnak meghaturozisfra.
210
H. Eigner
Nutrient management and advisory systems in Austria Zuckerforschung Tulin, Reitherstrasse 21-23, A-3430 Tulin, Austria Summary Results from numerous field trials give a reliable basis for fertilizer recommendations based on soil analysis. An unexpectedly large number of trial sites did not show any postive yield response to nitrogen (N) fertilization. Optimal sugar yields are characterized by 5 to 10 mmol a-amino N/100 g sugar in the harvested beet- According to long-term trials, soil contents of 1.3 to 1.6 mg P/1O0 g soil and of about 10 to 16 mg K/100 g soil in the first EUF fraction indicate an annual maintenance application of about 54 kg P2Os/ha and 120 kg K20/ha, respectively. Recommendations have to prescribe the quantity of fertilizer, necessary to define a certain level of nutrient supply in the soil in order to reach optimal yield. Rooting depth remains a main factor affecting fertilizer recommendations. Long-term experiments comparing applications of potassium chloride and potassium sulphate do not show significant differences. Introduction About 80% of the Austrian sugar beet area is in the northeastern part of the country, which is characterised by a continental climate with moderate precipitation and hot, dry summers. Chernozems derived from loess as well as calcareous alluvial parent materials predominate. Half of this area can be irrigated. In the western areas close to Bavaria, temperature is moderate and precipitation is high and brown earths, often with pseudogleyic characteristics arc typical soil types. In the late 1960s, dramatically decreasing internal beet quality made it necessary both beet and soil samples from all sugar beet fields. The results underlined the necessity for routine soil analysis, appropriate fertilizer recommendations, including N and the heterogenity of the growing conditions as factors in beet quality. Following extended field trials in the 1970s, the EUF (Electro Ultrafiltration) System was established as the method of soil analysis. In the early 1990s, 18,000 soil samples representing about 50,000 ha were analysed each year. Nowadays, about 60% of the fields representing about 70% of the sugar beet area are covered by 11,500 samples. Beside the economical relevance, soil analysis and fertilizer recommendation are of increasing importance for ecological reasons. Development of fertilizer recommendations Following the establishment of the EUF soil analysis (Wiklicky & Nmeth, 1981), the recommendations for N have been reduced markedly from more than 200 kg N/ha to an average of about 70 to 80 kg N/ha (Table I).
211
Table 1. Changes in fertilizer recommendations between 1970 and 1998 in Austria based on EUF soil analysis. Recommended fertilization 1981-1998 Average in kg/ha P20 5 N
Year
200-230 83 69 97 71 73 66 83, 81 55 69 73 73 57 58 66 73 73 75
1970 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998
150-180 152 137 123 130 104 99 77 55 18 19 21 "25 22 25 24 26 34 31
K 20 250-300 162 165 203 212 188 154 120 103 71 72 75 72 74 89 101 - 87. 83 83
The recommendations for phosphorus (P)and potassium (K)decreased, too. These reductions were caused by the change from recommendations covering the demand of both root and leaf to recommendations related to the nutrient export by the root as well as by a steadily increasing precision in the interpretation of soil analysis based on numerous field trials. Nitrogen Table 2 summarizes 83 annual experiments with mineral N fertilizers carried out from 1984 to 1989, including representative sites from the area growing sugar beet (Eigner, 1990). Based on white sugar yield, the results are divided into five groups and averaged within each group according to the response to N fertilizer observed at each site. The table differeitiates between groups with significant results and those where an increase is detected, 'khichis'not significant. At an unexpectedly large number of trials (34), there was no positive yield response to N. This can be explained by the fact that, on average, in this group-the soil contained 5 mg EUF-N/1 tOg soil, a concentration equal to about 200 kg N/fia. The. soil sampies are taken before harvest of the precrop. Table 2. Optimum level of N fertilization based on soil analysis by the EUF method.
34 0kgN/ha
Number of trials Optimumlevelai 0 60 120 180
kg kg kg kg
100.0 97.9 96.0 93.3
Na N/ha Nha N/a
Nitrogen est program 1984-1989, a = 83 White sugar yield, relative to yield without N 9 20 16 0-60kgN/ha 60kgNfa 60-120 kg Nha 100.0 105.0 100.7 98.3
100.0 109.5 107.0 105.5
100.0 114.0 118.3 115.5
Content of EUF-N in soil, end of vegetation before sugar beet rag/100 g soil 2.83 3.25 4.37 5.04 0.41 0.62 0.78 1.15
I
212
4 120 kg Nha 100.0 103.9 .I 17.5 108.6
2.63 0.27
. .
For 20 sites, the significant optimum was reached at the level of 60 kg N/ha and only for four sites was 120 kg N/ha optimum. At 16 sites, there was a yield response between 0 and 60 kg N/ha and at 9 sites between 60 and 120 kg N/ha, but these increases were not statistically significant. These results were confirmed by a further 27 experiments between 1993 and 1995 (Wasner, 1998). At the optimum sugar yield, 5 to 10 mmol a-amino N/100 g sugar in beet is characteristic. One year trials, had an NxK at 12 sites and 7 sites in 1991 in a factorial design. Nitrogen treatments as described for 1984 to 1989 included one treatment with the recommended amount of K and doubling this amount. Within the common parameters of yield and internal quality, there was a small but significant difference only in beet K, equal to 0.5 meq K/100 g sugar at all levels of N. Table 3 gives % variance for the individual factors and their interaction. Table 3. Source of variation for the content of potassium. Componunts of variance for the cotenl of potassium (rneqKII g sugar) Nitrogen a potassium test progtm 1998 and 1991 Year 1988 1991 Number of trals 12 7 Site 64.20 81.60 Nitrogen 660 1.70 Site x nitrogen 2.30 0.10 Potassium I 30 3,00 Site a pota.sium 0.30 Nitrogen potassium 1.50 1.20
ns. s.
Phosphorus and potassium In numerous one year field trials on P and K, significant responses are observed only occasionally (Miller, 1994). The evaluation of fertilization strategies for both nutrients have to be based on long-term experiments (K6chl, 1985). The general improvement in soil fertility of agriculural land means that today it is very difficult to find suitable sites for experiments to test the correctness of (e.g.) K fertilizer recommendations (Kochl, 1987). Experiments on six sites representative of the heterogenous Austrian soil conditions determined the quantity of P and K required to keep the stock of available P and K, characterized by EUF method (Muller, 1994). As shown in Table 4, a soil P of about 2.0 mg P/100 g soil EUF-PI extract did not change during the eight years of the trial even without P fertilization. Table 4. Changes in soil EUF-PI for the treatment without phosphorus application in the period 1979-1988.
site Nikittbh MaMlon Hiasih Fnns Bnck Hichhor..
Changes in tIctsoil UF-P I in tle period1979-1988 forthe tteattnent without phosphorus application ,erintrn started in 1979 by Zatckerforchungsinstitu Fuehse nbigl mg EUF-Pt/1lM g soil Year Soil ctaracteristics
1979
1984
1988
0.87 0.90 165 1.30 1.43 2.03
0,69 0.58 1.52 1.04 0.76 2.29
0.51 0.42 1.40 1.02 0.82 2.27
CuF-Ca2
S%
Z%
C%
17 85 20 55 85 75
24 21 23 3 12 8
48 53 64 77 62 65
28 26 13 20 26 27
For EUF-PI fractions between 1.6 and 1.3 mg P/100 g soil, there was some decrease which was countered by an annual maintenance application of about 54 kg P20 5/ha. Where the first EUF fraction contained less than 0.9 mg P/100 g soil, the soil reserves were sharply reduced by the uptake. In such cases, a maintenance or replacement application of up to 174 kg P 0 /ha was 2 5 indicated.
213
Table 5. Changes in soil EUF-KI for the treatment without potassium application in the period 1979-1988. Changesin the stil EUF-K I in thepcriod 1979-1988 for the osium application treatent without Experiment started in 1979 by Zucker forschungsinslitut Fuchsenhig rag EUF-K I/100 g %oil soil charsatstc year Site
1979
1984
1988
oUF-Ca 2
s%
Z%
C%
Nikisoh Matlon Halach Fan,t
12.M0 97(1 6 10 11%9
12.10 950 5.10 10.60
t1.40 8.50 4,93 7M9
17 85 20 55
24 21 23 3
48 53 64 77
28 26 13 20
Buck Eichorn
7.50 12.50
7.20 12.50
770 t 1.30
85 75
12 8
62 65
26 27
Table 5 shows the changes in the K content of the soil for the treatment without any K application. Yields increased significantly with an application of 240 kg K2 0/ha where there was only 8.7 mg K/100 g soil in the first EUF fraction. With 10.6-16.2 mg K/100 g soil, an annual maintenance application up to 120 kg K2 0/ha sufficed. Sulphur Following a continuous reduction of sulphur (S) emissions into the atmosphere by industry (Bundesministerium fur Umwelt, 1996), increasing attention has been paid to this nutrient since the mid-1990s. For sugar beet, one year trials did not show any response to S ferlilization. Therefore, two long-term experiments with rates of K, 0, 150 and 300 kg KaO/ha, applied as potassium chloride (KCI) and as potassium sulphate K 2SO4), were carried out with sugar beet in 1997. The experiments had been started in the mid-1950s by the Federal Office and Research Center of Agriculture, Vienna. There were similar responses at both sites (Satzinger, 1988). Table 6 shows a small advantage for the application of sulphate in the experiment at Rottenhaus but the differences in sugar yield were not significant. It is not possible to say if the observed effect was a positive influence of S or an adverse effect of chloride. The parameters for internal quality showed rather small differences. Application of KCI resulted in slightly higher concentrations of K and Na. In the case of Na, the increase was caused by its presence in the fertilizer. Including fertilizer costs, the results show no substantial advantage for K2SO4 . Table 6. The influence of the amount and type of potassium fertilizer on the yield and quality of sugar beet. Yield and quality of beet Site: Rottenhaus, bnown earth Experiment started 1956 by the Federal Office and Research Center of Agriculture, Vienna ttmol/ 100 g beet Root yield Sugar content Sugar yield I c-N Na K Lha % tha
17.14
Without potassium 150 kg KO/ha as chloride 150 kg K2 0ha as sulphate 300 kg K2 0ha as chloride 300 kg K2 01ha as sulphate
76.48 80,12 85.18 83.26 87.76
17.30 17,04 17.53 17.29
13,08 13.84 14.50 14.60 15.18
L S D 5%
12.2 6
0 .36
1.9 7
3.87 437 4.18 4.57 4.45
0.63 0.66 0.54 0.66 0.52 ---..
0.90 0.95 0.98 0.92 0.98 ..
Both experiments showed an increasing sugar content from the larger amount of K (see table 6 for Rottenhaus). However, optimum sugar yield at Rottenhaus, where the soil is a brown earth from alluvial material, was given by 300 kg K20/ha. At Fuchsenbigl, where the soil is a
214
chernozem derived from loess, about 150 kg K 20/ha per year was optimum. A reason for this observation might be differences in the K dynamics of the two soils. For both sites, the optimum sugar yield is expected at. about 10 mg K/100 g soil in the first EUF fraction. Therefore, fertilizer recommendations have to prescribe the qtiantity of fertilizer required to achieve a certain level of nutrient supply in he soil to reachoptimum yield. Rooting depth The subsoil contibutes to the nutrient supply, depending on.ihe'crop. For that reason, the optimum level of nutrient supply in the top soil is influencedhby the rooting depth in a wide range of soils. For soils where crops can root deeply, there is a close relation between K in the upper soil layer and-the subsoil (Amt der o.6. Landesregierung, 1993). A long-term experiment, started by the University of Agriculture, Vienna; in 1978 (Table 7)-showed no significant increase in sugar yield with increases in the amount of K applied when the soil in the treatment without K had about 20mg K/I00 g soil inthe first EUF fraction. Rooting depth should be a main factor in fertilizer recommendation. Table 7. Influence of potassium fertilization on yield and quality of sugar beet. Yield and quality of beet Site: Grossenzersdorf Experiment started 1978 by the University of Agricutture, Vienna Root yield - Sugar content Sugar yield mnotl/ g beet tf/ha %ta K Na a-N 0 kg K 20/ha 80.0 '7 63 14.2 30.49 1.98 - 6.33 50 kg K 20ha 83.9 17 78 14.8 31.69 1.95 5.93 IO kg K20/ha 84.3 17.85 15.0 32.72 1.88 5.96 150 kg K 20/ha 80.0 18.30 14.6 3199 1.80 527 LSD 5%
4.4
040
0.7
151
0,14
0.51
References Amt der 0.0. Landesregierung (1993): Oberbsterreichischer Bodenkataster, Bodenzustandsinventur 1993, 88-95. Bundesministerium ffir Umwelt (1996): 4. Umweltkontrollbericht des Bundes- ministers for Umwelt an den Nationalrat, Teil A: Umweltsituation in Osterreich. Eigner, H. (1990): Richtige Dfngung fur optimalen Ertrag. Osterreichisehe Gesellschaft far Land- und Forstwirtschaft, Wintertagung 1990, Tagungsband, 84-93. Koch], A. (1987): Interpretation of long-term experiments with K manuring. Proc. 20th Colloquium of the Int. Potash Institute, Bern, 361-373. Kochl, A. (1985): Untersuchungen fiber den optimicrten Phosphat- und* Kalieinsatz zur Zuckerrobe. Proc. 48th Congr. Int. Institute Sugar Beet Research, Brussels, 43-57. Mfiller, H. J.(1994): Reaktionen von Zuckerrfiben auf Dfingung mit Phosphor und Kalium unter Berticksichtigung von EUF-Bodenvorriiten. Zuckerind., 119, 1016-1023. Satzinger, E. (1998): EinfluB eines unterschiedlich hohen Schwefel-Dongerangebotes bzw. Schwefelgehaltes im Boden auf Ertrag und ausgewfihlte Qualitfitskriterien bei Zuckerrfibe. Diplomarbeit, Universitfit fOr Bodenkultur, Wien. Wasner, J. (1998): EinfluB ausgewfihlter Parameter der EUF-Bodenuntersuchung sowie ausgewiihlter Standorteigenschaften auf die Bemessung der Stickstoffdfngung zu Zuckerribe. Diplomarbeit, Universitiit fur Bodenkultur, Wien. Wiklicky, L. & N6meth, K. (1981): Diingungsoptimierung mittels EUF-Bodenuntersuchung bei der Zuckerruibe. Zuckerind., 106, 982-988.
215
Acknowledgements I thank Dr. G. Dersch, Federal Office and Research Center of Agriculture, Vienna and Dr. P. Liebhard, University of Agriculture, Vienna, for the possibility of participation in long-term trials.
Osszefoglal~s Eigner H.
A cukorr6pa trigy inzisainak gyakorlata es szaktanacsada'si rendszere Ausztria'ban Zuckerforschung Tulln, Reitherstrasse 21-23, A-3430 Tulin, Austria Nagy cukorterm6st 6s j6 r6pamin6s6gct csak akkor 6rhetuink el, ha a cukorrdpAnak a szint6fdld6n optimilis k6rfilm6nyeket biztositunk. A reprezentativ vizsgflatok szerint Ausztrifiban a potenci5Ilisan el6rhet6 feh6rcukorterm6s 10,5 t k6rll van hektironk6nt. 1983 6ta a t6nyleges feh6rcukorterm6s 6vente Atlagosan 75 kg/ha-ral n6tt. A tr6gy6zis jelent6sen befolyfsoija a cukorrepa termds6t 6s min6s6gdt. A trfgytizfis hai6konysfga er6sen fiigg a talaj tfpanyaggal val6 ellitottsfgft6l 6s egydb t6nyez6kt6l is. Ausztridban a cukorr6pa-trigyizAsi tanicsadist t6bb mint 25 6ve a talaj EUF-vizsgflata alapjdn v6gzik. A kliumot, ellent6tbcn a foszforral, rutinanalizis sorfn a cukorr6pfiban is meghatArozzAk 6s megfllapithat6 volt, hogy a r6pa kAliumtartalma jobban ftigg az egycs 6vek elt6r6 id6jdrzsAt6l, mint a talajok kiliumtartalmit6l.
216
-