Advanced Analysis of Concrete Structures
Lectures PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Advanced Analysis of Concrete Structures Prof.Ing. Vladimír Křístek, DrSc. Doc.Ing. Alena Kohoutková, CSc. Ing. Helena Včelová Department of Concrete Structures and Bridges
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Web site:
http://concrete.fsv.cvut.cz~kristek
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Textbook
Z. Šmerda, V. Křístek :
Creep and Shrinkage of Concrete Elements and Structures, Elsevier, Amsterdam, Oxford, New York, Tokyo, 1988
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Deformation of concrete in terms of load duration
range of linearity (approximately)
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Strain independent on stress Reversible
Irreversible
Caused by temperature εt = α Δt
Short-term
Caused by shrinkage εs
Long-term
Strain caused by stress Reversible
Irreversible
Short-term
elastic – Hooks’s law
plastic
Long-term creep
delayed elastic
delayed inelastic
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Measurement of shrinkage and creep development
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Strain due to shrinkage and constant stress acting from time to = 7 days until t = 500 days
creep after unloading shrinkage age of concrete
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Factors affecting creep and shrinkage of concrete 1. Composition of concrete : ● type and quantity of cement: higher contain of cement – larger creep and shrinkage ● grinding of cement: finer grinding – larger creep and shrinkage ● water-cement ratio: higher contain of water - larger creep and shrinkage ● grain size of aggregate: finer aggregate – larger creeo and shrinkage PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
2. Density of concrete Higher strength concrete and concrete with closed structure: lower creep and shrinkage
3. Hygrometric conditions Drier conditions: larger creep and shrinkage
4. Cross-sectional dimension and shape Thin elements: more intensive creep and shrinkage caused by rapid drying up – characterized usually by cross-sectional area and circumference
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Significant time factors ● Age of stress application (to, t´ orτ): concrete loaded at early age exhibits higher creep rate ● Investigated age (t) ● Stress duration - (t - t´ or t -τ): long term loading results in high creep ● Curing of concrete – wet conditions -> beneficial effect PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
To express creep and shrinkage effects, two approaches are available :
● Point models ● Cross-sectional models
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Application of the point model – drying : ● a wall – constant surface humidity 50% ● distribution of humidity for various ages ● free deformation of individual layers ● stresses and cracking
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Appliacation of the cross-sectional model: Variation of internal forces due to change of structural system older part
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
younger part
Time development of internal forces
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Roof– spatial shell structure
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Load carrying capacity according to various assumptions
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Creep and shrinkage of concrete 1. Point models ● Free shrinkage ● Free thermal dilatation ● Pickett efect (stress induced shrinkage, stress induced thermal dilatation) ● Basic creep ● Drying creep Only this approach allows to obtain real stresses PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
2. For different thickness of slabs and webs ● Differential shrinkage ● Differential drying creep 3. Cross-sectional models ● Common approach in design practice ● Only internal forces M, N, Q and deflections can confidentially be obtained ● however, not stresses and thier distributions over cross sections PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Expression of concrete strain – the first method:
by the creep coefficient
Strain due to stress σ acting from age t0 to age t
ε(t,t0) = σ (1 + φ(t,t0)) /E(t0) φ(t,t0) is the creep coefficient PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Creep coefficient φ(t,t0) ● Multiplier of instanteneous strains ● Range: from 0 to 6 (depending of concrete age, duration of loading, concrete composition, external humidity, etc.) ● Expressed on the base of experimental investigations
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Measurement of shrinkage and creep development
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Expression of concrete strain – the second method:
by the compliance function Strain due to stress σ acting from age t0 to age t
ε(t,t0) = σ J(t,t0) J(t,t0) is the compliance function
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Compliance function
J(t,t0)
● Strain due to unit stress acting from age t0 to age t (pro instantaneous load, J is the reverse value of Young´s modulus) ● Depends on age of concrete at loading, load duration, concrete composition, environmental conditions, etc. ● Expressed on the base of experimental investigations
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Relation between the creep coefficient and the compliance function
ϕ(t,t0) = J(t,t0) E(t0 ) - 1
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Linearity of the creep effects Two constant stresses σ1 and σ2 acting from age to, produce the creep strain at age t
(σ1 + σ2) φ(t,to ) / E(to) The total strain at age t is
ε = (σ1 + σ2) (1 +ϕ(t,to )) / E(to) (only for σ1 + σ2 less than cca 40% of strength) PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Strain variation due to stress history ε
t1 t2
σ1
σ2
t3
t
σ3
Stress increments σ1, σ2 , σ3 … acting from t1, t2, t3,…. , the corresponding strain at age t is
ε = σ1(1 +ϕ(t,t1 )) / E(t1) + σ2(1 +ϕ(t,t2)) / E(t2) + + σ3(1 +ϕ(t,t3)) / E(t3) + ….
(σ1 + σ2 + ….) must be less than 40% of strength
PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Strain variation due to stress history – wrong method
ε
t1
σ1
t2
σ2
t3
t
σ3
Stress increments σ1, σ2 , σ3 … acting from t1, t2, t3,…. , the corresponding strain at age t is not
ε = σ1ϕ(t2,t1 ) / E(t1) + + (σ1 +σ2) ϕ(t3,t2) / E(t2) + + (σ1 +σ2+ σ3) ϕ(t4,t3) / E(t3) + …. PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz
Loading and unloading ε (t) = σ(1 +ϕ(t,t1 )) / E(t1) σ(1 +ϕ(t,t2)) / E(t2)
After unloading: Strains are varying without stress action! Modeled as two equal stresses of opposite signs acting from ages t1 a t2 PDF vytvořeno zkušební verzí pdfFactory www.fineprint.cz