Kérdé rdések
A szilárd testek szerkezete Reá Reális kristá kristályok, kristá kristályhibá lyhibák
• Milyen rend szerint épülnek fel a kristályok? • Milyen hatással van a kristályszerkezet az anyag makroszkópikus tulajdonságaira? • Melyek a fontosabb szerkezetfüggı tulajdonságok? • Mi a kristályhibák szerepe? •http://csthttp://cst-www.nrl.navy.mil/lattice/index.html
Rácsot összetartó sszetartó erı erık termé természete
Reá Reális kristá kristályok • Aszimmetrikus erık, • Anharmonikus rezgés, • Kvantummechanikai rendszer ⇒ – Kvantált rezgési állapotok – Uo nem a potenciálgödör alján – Rácsenergia: 0 - Uo – Olvadáspont arányos a potenciálgödör mélységével
• A rácspontokban levı atomok, ionok, molekulák között rugalmas erık • Ideális rugó: harmonikus oszcillátor • F ~ r, Epot ~ r2 F
F
r
Következmé vetkezmények • Hıtágulás: a potenciálgödör aszimetriájának fv.-e • Mély pot.g. ~ nagy op. ~ kis hıtágulás
•Rugalmasság: függ az F(r) görbe ro körüli meredekségétıl ~ pot.gödör mélységével ~ olvadásponttal
Különbözı anyagtípusok olvadáspontja és hıtágulása közötti kapcsolat
Fémek rugalmassági modulusa és olvadáspontja közötti öszefüggés
1
Kistá Kistályrá lyrács típusok 1. Fémrács: • Rácspontokban fémionok • Összetartó: fémes kötés • Nem irányított ⇒ – legszorosabb illeszkedés – nagy koordinációs szám – jó hidegalakíthatóság – jó térkitöltés, nagy sőrőség • Ált. azonos atomok vagy hasonló méretőek
Egyszerő Egyszerő köbös, SC
simple cubic
Alaptípusok: • Egyszerő köbös (sc) • Lapcentrált köbös (fcc) • Tércentrált köbös (bcc) • Hexagonális szoros illeszkedéső (hcp)
Térkitöltés
Csak a Po Koordinációs szám: 6 Térkitöltés: 0,52
Lapcentrá Lapcentrált kö köbös FCC face-centered cubic
atomok térfogata az elemi cellában elemi cella térfogata
(atom szilárd gömbként)
(mind azonos atomok, a különbözı szín csak a kiemelés miatt)
• Pl.: Al Cu, Ag, Au, Ni • Koordinációs szám: 12
Tércentrált köbös BCC
Hexagonális,
body-centered cubic
legszorosabb
Térkitöltés: 0,74
illeszkedéső, HCP hexagonal close-packed • Pl.: Cd, Ti(α α), Zn • Koordináció: 12 • Térkitöltés: 0,74 • Pl.: Fe(α α), Cr, Mo, W • Koordinációs szám: 8 • Térkihasználás: 0,68
2
3. Atomrács
2. Ionrá Ionrács
• Az egész kristályban kovalens kötések térhálója • Kötött vegyértékszög • Kis koordinációs szám • Rossz térkihasználás, kis sőrőség • Pl: gyémánt, SiO2, ZnS • Ha különbözı az EN, a kötés és a rácstípus átmeneti (pl: Al2O3 →ionos, FeS→ → fémes, → molekula CdI2, csillám→ /rétegrács)
• Rácspontoban + és töltéső ionok • Anion/kation arány a töltésarány szerint • Koordinációs szám a méretarány és a töltésarány szerint • Általában rkation < ranion NaCl kristály
Fulleré Fullerének • Kétdimenziós szén atomrács, szabályos hatszögek: grafén • „behajtva” csı, labda forma • Szén nanocsı (CNT): d ~ nm, l ~ µm, → mm • Young modulus ~ 1 TPa • Szakítószilárdság > 60 GPa • Félvezetı vagy fémes vezetı tulajdonság
Rácstí cstípusok áttekinté ttekintése
4. Molekulará Molekularács • Rácspontokban molekulák • Kristályt összetartó erı: másodlagos kötés • Nem irányított erı, az elrendezést a geometriai viszonyok szabják meg • Pl.: víz, CO2, NH3, szerves vegyületek, polimerek, O2, nemesgázok
Rácstípus
Kötés
Atom
Kovalens Ionos
Példa
Gyémánt Ion NaCl, CaF2 Fém Fémes Na, Cu, Ti, Ag Mole- Másod H2, kula -lagos CH4
Kötési en. (eV)
Op.
3-7
nagy
kicsi nagy Szig
2-5
nagy
kicsi nagy Szig
1 -5
nagy
kicsi nagy Vez
közep
közep
kicsi
nagy kicsi Szig
0,01 –0,5
Hıtág.
Rug.
Villtul.
közep
3
Kristá Kristályszerkezet geometriai
Kristályszerkezet geometriai
leí leírása
leírása
Elemi cella, élhossz Periodicitás, irányok, síkok Atomátmérı Koordinációs szám Elemi cellát alkotó atomok száma • Térkitöltési tényezı • Elemi cellába illeszthetı legnagyobb gömb • Legsőrőbb illeszkedéső sík és irány
• Elemi cella:
A kristályrács legkisebb egysége, amit 3 transzlációs vektor határoz meg, és tartalmazza a kristály minden (szerkezeti) jellemzıjét
• • • • •
• Bravais rács: – 7 kristályosztály, 14 elemi cella
• Miller index: vörösréz
– Kristálysíkok jellemzésére
• Brillouin zónák: – Un. reciprok rács, segítségével jól leírhatók a rácsban terjedı elektromágneses és elektronhullámok
Bravais cellá cellák
Miller index • A kristálysíkok helyzetének jelölésére szolgáló számok vagy betők, • A lap térkoordinátáit (tengelymetszetét) kifejezı paraméterek reciprok értéke • Ha a lap az (a) tengelyt egységnyi távolságra metszi, akkor a paramétere 1 és az indexe is 1. • Ha párhuzamos vele, akkor a paramétere ∞, az indexe pedig 0.
Az egységnyi mérető kocka csúcsainak koordinátái
Néhány sík Miller-indexe
4
Kristályhibák
Brillouin-zónák A rácstávolságot az „egyszerő” cm helyett a rácsban terjedı hullám hullámszámával (k) fejezi ki.
k = 2π π/λ λ
A rácssíkra merıleges hullám interferenciájának feltétele:
d = nλ λ/2
behelyettesítve:
k = nπ π/d
ha: n = 1, elsı zóna határa π/d, ilyen k-jú hullám nem terjedhet Kristálykoordináták a k térben
bcc rács Brillouin-zónás ábrázolása
Kristályhibák felosztása kiterjedés szerint:
Pontszerő hibák: • Néhány atom és szők környezete • Létük termodinamikailag szükségszerő • Az egyensúlyi hibahelykoncentráció:
• Pontszerő hibák – 0 dimenziós • Vonalszerő hibák – diszlokációk • Felületszerő hibák • Térfogati hibák zárványok
n = N ⋅e
−
• Nagy eltérés a számított és a mért mechanikai tulajdonságok között (húzó-, szakítószilárdság, alakíthatóság, folyáshatár) • Ok: a mőszaki anyagok nem tökéletes egykristályok, hanem: – Krisztallit szerkezetőek – Kristályhibákat tartalmaznak • Mechanikai mellett villamos, optikai és kémiai tulajdonságokat is módosítja
• Schottky hiba: Egy rácspont üresen marad (vakancia)
• Frenkel hiba: egy vakancia és egy intersticiális atom vagy ion
W RT
Callister
• Vándorolnak
Vakancia keletkezése
Szennyezı atom mozgása
H. Föll
Ponthibák összefoglalása
a) Szennyezı atom intersticiális helyen, b) éldiszlokáció, c) saját atom intersticiális helyen, d) vacancia, e) idegen atomok zárványa, f) vacancia típusú diszlokációs ív, g) intersticiális típusú diszlokációs ív , h) szennyezı atom helyettesítéses pozícióban (H. Föll)
5
Diszlokációk • Keletkezés: mechanikai hatás, képlékeny alakítás
• Megszüntetés: hıkezeléssel (lehet teljesen diszlokációmentes kristály) Pt felület STM felvétele
Diszlokáció kialakulása nyíróerı hatására
• Alaptípusok: – Éldiszlokáció – Csavardiszlokáció
• Éldiszlokáció
A csavardiszlokáció és Burgers-vektora
•Burgers-vektor:
minden irányba azonos lépés, ha nem zárt hurok keletkezik, diszlokációt járt körbe. A kezdı- és végpontot összekötı vektor: b
Plasztikus deformáció hatására kialakult diszlokációk TiAl ötvözetben. Kiválások, ponthibák tartják rögzítve a diszlokációkat. Néhány pontnál, pl. „1”, „2” a diszlokáció akadályba ütközik és ezért tesz kerülıt
A diszlokáció segítségével könnyebb egy atomréteget (szınyeget) elmozdítani, ⇒ kisebb erı kell a fémek képlékeny alakításához.
GaAs-ben kialakult diszlokációk plasztikus deformáció hatására
D. Appel
6
Felü Felületszerő letszerő hibá hibák
KBr kristályra gızölt Ag atomok rendezıdése a csavardiszlokáció mentén
Gızfázisból növesztett SiC kristály csiszolata
Alaptípusok: • Szemcsehatár: Különbözı orientációjú kristályszemcsék összenövése • Ikersík: a határfelületen ugyanazon kristályforma tükörképi változatai találkoznak • A kristály felülete
Nemkristá Nemkristályos szilá szilárd anyagok
Krisztallit szerkezet • Sok összenıtt apró kristály • Szabálytalan orientáció
Rendezetlenség mértéke:
(kristálytani tengelyek iránya) • Mérete: µm – cm • Következmények: – Izotrópia (!) – Szemcsehatáron gyengébb erık, elmozdulás, szakadás, korrózió itt kezdıdik
Síkbeli vetület
Szerkezetvizsgá Szerkezetvizsgálat Optikai mikroszkóp: • Nagyítás: ~ 1000X • Felbontás: ~ 1µm • Alkalmas: szemcseszerkezet, kristályfázisok, diszlokációk vizsgálatára • Felületkezelés: csiszolás, polírozás, kémiai marás
• Teljes: amorf anyagok • Néhány atomnyi távolságon túl rendezetlen: pl.: üvegek, polimerek
Ezüst vékonyréteg krisztallitszerkezete
RTGdiffrakció, elektron diffrakció • • • •
Kristályrács ~ 3 dimenziós optikai rács Rácsállandó (d) ≈ RTG, (elektron) hullámhossz Interferencia, útkülönbség: BC + CD = 2 d sinΘ Bragg feltétel: n λ = 2 d sinΘ erısítés
7
Atomi méretek vizsgálata Atomi Erı Mikroszkóp AFM (Atomic Force M.) • Nagyon könnyő és hegyes tő (r ≈ 20 – 40 nm) • Alatta a minta mozog • A minta atomi mérető domborzata mozgatja „z” irányban a tőt • Optikai → elektronikus erısítés → képfeldolgozás
Az AFM alapelve Reichardt András
Pásztá sztázó Alagú Alagúthatá thatású Mikroszkó Mikroszkóp STM (Scanning (Scanning Tunneling M.) • Elrendezés hasonló az AFM-hez • A minta felszíne és a tő közötti alagútáramot méri, ez arányos az atomi mérető domborzattal • Sokféle további változat • Az eszköz alkalmas atomok mozgatására, adatok írására, olvasására
Az STM tő elvi rajza és egy valódi tő képe
Szilícium (1,1,1)rácssik STM felvétele
Grafit STM képe
Szénmonoxid molekulák Pt felületen
8