Marine & Offshore Technology 'Schip en W e rf is het officiële orgaan van de Ne derlandse Vereniging van Technici op Scheepvaartgebied, Het Maritiem Research Instituut Nederland MARIN, De Vereniging Nederlandse Scheepsbouw Industrie VNSI en de Afdeling Maritieme Techniek van het K lvL
M a r in e & O ffs h o r e T e c h n o lo g y
Verschijnt maandelijks
S
C
H
I
P
EN
W
E
R
F
Redactie P. A. Luikenaar, Dr. ir. P. van Oossanen, Dr. ir. K. J. Saurwalt, Ing. C. Dam en j. M. Veltman Redactie-assistentie: Mevr. S. van Driel-Naudé, Redactie-adres Mathenesserlaan 185 3014 H A Rotterdam telefoon 010-4361042 fax 010-4364980
1 988JAAR VAN HERSTEL
Voor advertenties, abonnementen en losse num m ers Uitgevers W yt & Zonen b.v. Pieter de Hoochweg 11 I 3024 BG Rotterdam Postbus 268, 3000 A G Rotterdam telefoon 010-4762566* telefax 010-4762315 telex 21403 postgiro 58458 Abonnem enten 1989 Jaarabonnement ƒ 80buiten Nederland ƒ 127losse nummers ƒ 8,50 (alle prijzen ind. B TW ) Bij correspondentie inzake abonnementen s.v.p. het 8-cijferige abonnementsnummer vermelden. (Zie adreswikkel.) Vorm geving en druk Drukkerij W yt & Zonen b.v. ISSN 0 0 3 6 -6 0 9 9
Y7
^HOWjvük
Reprorecht O vernam e van artikelen is toegestaan m e t bron verm elding en na overleg m et de uitgever. V o o r het kopiëren van artikelen u it d it blad is re p ro re cht verschuldigd aan de uitgever. V o o r nadere inlichtingen w ende men zich to t de Stichting R eprorecht. Joop Eijlstraat I I , 1063 EM A m sterdam.
Inhoud 1988 Jaar van herstel
291
Development of Merchant Ship propulsion machinery
293
Heavy Fuel
308
Prospects in Shipbuilding
31 1
Vloeibaargas tanker 'Prins Johan Willem Friso’
317
Literature
322
Nieuwsberichten
324
Verenigingsnieuws
325
De ordergolf afkomstig van Nederlandse opdrachtgevers voor de zeescheepsnieuwbouw gaf ultimo 1987 reeds aanlei ding tot de veronderstelling, dat het dieptepunt voor de nationale scheeps bouw achter de rug leek. Het jaar 1988 heeft aangetoond dat dit juist was. De V e r eniging Nederlandse scheepsbouwindustrie (VN SI) constateert in haar jaarover zicht, dat het jaar 1988 voor de middelgro te en grotere scheepsnieuwbouw zonder meer kan worden gekenschetst als het jaar van herstel. Na de lange reeks jaren van neergang is dit een tot verheuging stem mende uitspraak. Niettemin maakt de VN SI hierbij de kant tekening, dat bij de uitspraak eind 1987 toen nog enkele voorbehouden moesten worden gemaakt met betrekking to t de onevenredige verdeling van de opdrachten over de werven. Bovendien was het nog maar de vraag, of de ordergolf niet veeleer een consequentie was van de verande ringen die de overheid had aangebracht in het steunregime, dan wel of er sprake was van een w érkelijke verbetering van de nieuwbouwmarkt. O o k w erd er met na druk op gewezen, dat het exportaandeel in het orderpakket een verdere achteruit gang vertoonde. Het is met een zekere opluchting dat het jaarbericht 1988 thans constateert dat het nu w el duidelijk is, dat de internationale economische opleving één van de voor naamste oorzaken van de belangrijk verbe terde positie van de scheepsbouw is ge weest. A l moge het tijdstip van orderplaatsing in vele gevallen dan ook een gevolg zijn van de verbeterde financiële steunre geling, het zicht op betere tijden voor de scheepsbouwindustrie heeft in vele geval len de doorslag gegeven bij het plaatsen van opdrachten. Een aantal nieuwbouwcontracten is, zo w ordt geconsta teerd, lang ’in de pipeline’ gebleven. Dit was een gevolg van het feit, dat het resul SenW 56STE jA A R G A N G N R 9
taat van de herziening van het sedert fe bruari 1988 tijdelijk opgeschorte steunre gime lang op zich heeft laten wachten. Na dat ten slotte eerst eind oktober 1988 de beleidsvoornemens m.b.t. het generieke steunregime bekend werden gemaakt, kon de Nederlandse scheepsbouwwereld zich redelijk tevreden tonen. De herziening kwam e r op neer, dat de steunpercentages voor de bouw van zee schepen met een contractwaarde van meer dan f 14 miljoen w eer op het ve r hoogde peil werden gebracht, en dit bete kende dat de w erven enigermate op een redelijk vergelijkbaar niveau kwamen met hun Europese concurrenten, als gevolg waarvan het aantrekkelijker werd om in Nederland schepen te bestellen. De extra verhogingen die voor contractbedragen, dus onder de f 14 miljoen, van kracht w e r den hebben inmiddels, zo blijkt uit het jaar bericht, ook de bouwers van het kleinere zeeschip de gelegenheid geboden om o r ders uit de markt te nemen. Een en ander had tot gevolg dat de Nederlandse zeescheepsnieuwbouw eind 1988 - gemeten naar het jaarlijkse totaal van de per jaar ge boekte opdrachten, - w e e r teruggeko men was op het niveau 1985. D e VNSI te kent hierbij evenwel aan, dat dit niet geldt voor het exportaandeel, en dat dit daarom een zaak van zorg en aandacht is gebleven. D it aandeel bedroeg in 1985 nog 38 pet tegen thans 26 pet van het totale contract bedrag. Al met al zijn de w erven die zee schepen bouwen vandaag de dag gemid deld genomen to t in de tweede helft van het volgend jaar van w erk voorzien. Ruim schoots voor die tijd zal, zo zegt het ve r slag, waarschijnlijk wel duidelijk zijn of de marktverbetering inderdaad een vrij lang durig karakter zal hebben. De VN SI waarschuwt dat de betrokken werven ervoor moeten waken om de vas te nieuwbouwcapaciteit w eer te gaan uit breiden. Immers, daarmee zou het resul291
taat van de strategische terugtocht van de afgelopen jaren w eer ongedaan worden gemaakt. Toch w ordt, door maatregelen die de doelmatigheid verbeteren en door middel van het benutten van eikaars tijde lijke capaciteitsreserves op specifieke ge bieden, gezocht naar oplossingen om de bijverschijnselen van (te) veel w erk in de hand te kunnen houden als de nood aan de man komt. Is dus de stemming ten opzichte van de zeescheepsnieuwbouw optimistischer van toon dan sedert jaren het geval is geweest, uitgesproken minder optimistisch is die bij de w erven die kleinere zeegaande vissers schepen bouwen. De Europese Commissie heeft in 1988 het standpunt ingenomen, dat het verstrekken van generieke finan ciële middelen voor de bouw van dit soort schepen voor de vloot van de EG onvere nigbaar geacht w ordt met de gemeen schappelijke markt. D it standpunt steunt op de zogenaamde 6de Richtlijn van de Raad. H et is duidelijk dat dit zonder meer betekent, dat door de bij dit marktseg ment betrokken werven de situatie aan zienlijk moeilijker is geworden. Het gevolg daarvan is geweest, dat zij zich in toene mende mate zijn gaan concentreren op de exportm arkt buiten de EG. H et verslag te kent hierbij echter aan, dat voor zover het verkoopapparaat op deze nieuwe gedrags lijn is afgestemd de toestand vooralsnog nog moeilijk zal blijven. De VNSI constateert, dat het generieke steunsysteem in de praktijk goed blijkt te werken. D it komt duidelijk naar voren uit de grote aanspraak die daarop reeds w eer is gedaan. Toch is er vandaag de dag op nieuw sprake van een zekere discrepantie tussen het steunniveau per contract en het gelimiteerde totale budget. In de praktijk blijkt dat de methode 'wie het eerst komt, het eerst maalt’ alléén succesvol kan zijn als er sprake is van een bedachtzame en te vens gedisciplineerde aanpak, en niet in de laatste plaats bij de werven. D it w ordt met enige nadruk geconstateerd. D o o r de VNSI w ordt in ieder geval alles w at moge lijk is gedaan, om te komen tot een gang van zaken die voor alle betrokken partijen aanvaardbaar is. H et is duidelijk, aldus de VN SI, dat de medewerking van de werven daarbij onontbeerlijk is. Als een ander positief aspect van het vorig jaar gerealiseerde steunbeleid van de over heid noemt het verslag de voor de RenteOverbruggings-Regeling voor de scheeps bouw in de plaats gestelde toegang tot het zogenaamde Matching-Fonds, waarop eveneens reeds qua omvang een groot be roep werd gedaan. De VNSI onderstreept, dat dit een onontbeerlijk instrument lijkt voor de zo noodzakelijke vergroting van exportopdrachten.
Scheepsreparatie In tegenstelling tot de scheepsnieuwbouw hadden de zeescheepsreparatiewerven in 292
1988 een moeilijk jaar, ook al was het aan zienlijk minder moeilijk dan het welhaast rampzalige jaar 1987. In het afgelopen jaar werd het personeelsbestand van deze werven opnieuw met zo ’n 15 pet verm in derd en liep de omzet met ongeveer 10 pet terug. De VNSI heeft bij herhaling ge tracht op grote verbouwingsprojecten ge nerieke steun te verkrijgen. O nder de 6de Richtlijn van de Europese Commissie is dat namelijk mogelijk. Tevens werd verzocht om algemene financieringsfaciliteiten en deelneming in het leeglooprisico. De over heid heeft echter binnen het bestaande steunregime in dit verband geen enkele voorziening kunen treffen. Voor de reparatiewerven was dit vorig jaar aanleiding to t het onderzoeken van de mogelijkhe den voor nieuwe formules en nieuwe markten. H et is verheugend te kunnen constateren, dat de activiteiten in dit ver band inmiddels met succes lijken te kunnen worden bekroond. De twaalf reparatiewerven behaalden in het afgelopen jaar een totale omzet van 350 miljoen gulden, waarvan voor export 260 miljoen of 66 pet. In 1987 waren deze cijfers respectievelijk 395 en 280 miljoen, merkwaardigerwijs eveneens 66 pet voor export. Een derde sector, die van de kleinere w e r ven voor de bouw van kleine zeeschepen, dienstvaartuigen, binnenvaartschepen en de reparatie daarvan, heeft in het afgelo pen jaar geen verbetering kunnen berei ken van de toestand zoals die in 1986 was, en toen reeds als moeilijk doch redelijk moest worden gekenschetst. De scheeps nieuwbouw in deze sector komt overigens slechts voor een deel in aanmerking voor generieke steun, namelijk alleen in die ge vallen waar het gaat om de bouw van zee schepen met een contractwaarde vanaf vier miljoen gulden. De w erven in deze sector van de nieuwbouw slaagden er in om in het afgelopen jaar voor een bedrag van 155 miljoen gulden aan nieuwbouworders binnen te halen vergeleken met 170 miljoen in 1987, waarvan respectievelijk 113 en 75 miljoen voor export. Het ver slag w ijst er op, dat de binnenvaartwerven zwaar gehinderd werden door de concur rentie van Oostblok en noemt daarbij spe ciaal Polen en Joegoslavië. In deze landen werden voor rekening van Nederlandse opdrachtgevers enige tientallen casco’s van verschillende scheepstypen geplaatst. Een en ander had to t gevolg, dat het alge mene beeld in deze sector van de scheeps bouw veel minder rooskleurig was dan in de grotere en middelgrote scheepsbouw. Het verslag maakt hierbij de notitie, dat het overigens niet onmogelijk lijkt, mede door een afnemende penetratie van de grotere w erven in het specifieke markt segment van de kleinere w erven dat dit beeld, uiteraard op termijn gezien, zich zal gaan verbeteren. Gesteld mag worden dat het jaaroverzicht
van de VNSI gekenmerkt w ordt door een optimistische toonzetting, en daar is dan ook alle reden toe. Immers, de hausse in de scheepsnieuwbouw waarvan in het verslag sprake is, heeft zich in 1989 voortgezet. H et zware w eer lijkt voorbij. De internati onale economische opleving, waarin zich de gang van zaken in de scheepsbouw weerspiegelt, heeft dit bewerkstelligd. Niettemin blijft, ondanks de huidige voor spoed, voorzichtigheid geboden. Dus geen al te uitbundig optimisme. De VNSI waar schuwt ook: geen expansie van de nieuwbouwcapaciteit. H et is onmogelijk te voorspellen hoe lang de thans bestaande si tuatie zich nog zal voortzetten. W ij herin neren in dit verband aan een uitspraak in het jaarverslag van Conoship (zie het au gustus nummer) dat niet zomaar voet stoots mag worden aangenomen, dat de scheepsbouwmarkt zijn verraderlijke cy clische karakter heeft verloren. Met ande re woorden: een omslag blijft altijd moge lijk. De hausse zal hoogst waarschijnlijk tóch w eer worden gevolgd door een zw a re en w ellicht langdurige depressie. Dat klinkt de scheepsbouwwereld niet prettig in de oren, maar het is de naakte w erkelijk heid waarmee toch in verschillend opzicht rekening moet worden gehouden. Evenals de reders hebben de scheepsbouwers met een zekere regelmaat tot hun nadeel erva ren dat het ’L’histoire se répète’ niet zó maar een zegswijze is maar wel degelijk op de ervaring is gebaseerd. H et tekort aan personeel in de Nederland se scheepsbouwindustrie in geen op zich zelf staand geval, noch in Europa, noch in de wereld buiten ons werelddeel. Z o lazen wij in het te Antw erpen verschijnende Dagblad De Lloyd dat de reparatiewerven in Singapore het plan hebben opgevat om arbeidsintensieve reparatieklussen in het buitenland te laten verrichten. E r is zelfs één w e rf die overweegt een reparatiecentrum te vestigen in Viëtnam. Conditie daarbij is echter, dat de nieuwe vestigings plaatsen gemakkelijk bereikbaar zijn en dat e r geschoolde arbeidskrachten te r be schikking staan. Belangrijke voorwaarde is dat er in het land van vestiging politieke stabiliteit moet zijn. De situatie in Singapo re is thans zo, dat een aantal w erven zich genoodzaakt zag de reparatieopdrachten te weigeren omdat e r onvoldoende perso neel te r beschikking stond. De situatie w erd nog moeilijker toen begin 1989 de reparatietarieven met 10 pet werden ve r hoogd om de stijging van de loonkosten voor een deel te kunnen compenseren. Deze stijging bedroeg 13 pet. De werven in Singapore danken hun voorspoed gro tendeels aan de iets lagere prijzen die zij voor reparatieopdrachten noteren. Daar om w ordt er thans ernstig overwogen om arbeidsintensieve contracten in landen met lage lonen te laten uitvoeren.. vH k
SenW 56STE jA A R G A N G N R 9
DEVELOPMENT OF M ERCHANT SHIP PROPULSION MACHINERY OVER TH E PAST 25 YEARS* A. F. Horrold, B.Sc., F.I.M ar.E., F.R.I.N.A., F .C .M .S * * IN T R O D U C T IO N It is o f course a privilege to be asked to deliver the second Presidential Address in my 2 year term o f office although I have to say that the selection o f subject does not come easier the second time around. At the same time you as an audience face the problem o f listening to me a second time and as to that I can only undertake to use my best endeavours to make it as painless as possible. This is in fact the last Presidential Address to be delivered in the first 100 years o f our Institute and it occurred to me therefore that it was time for certain reflection. Your Presidents are in fact allowed a great deal o f latitude in the choise o f subject for their dissertation and looking back it will be seen that a very wide range of subjects have been chosen reflecting the broad range o f interests o f marine engineers. For my part, I have decided that the time was appropriate for an address in engineering development as we can see it over the last 25 years in the marine field and in deference to the ladies present I will seek to develop my theme in terms which are technologically comprehensible. I have chosen a period o f 25 years because it is conveniently a quarter o f a century and earlier periods have already been well documented. Additionally however the era I have chosen begins in 1963 and covers the working lives o f most o f us - it is interesting therefore to look back from our perspective o f today to consider the very remarkable changes that have taken place, few o f which would have been predicted 25 years ago. In 1963 there was everything to play for - a wide choice o f propulsion machinery types and designs - and the possibility emerging o f completely new machinery forms being developed. Some o f these have not materialized, others have disappeared into obscurity, and after years o f intense competition and extensive development a dominant pattern o f choice has emerged in recent years. It is the fascinating pattern o f these years that I will seek to reflect in my address.
T H E M A R IN E S T EA M T U R B IN E A P O G E E , D E C L IN E A N D F A L L Immediately before the period we are considering Daniel Ludwig astonished the shipping world in 1960 by building the Uni verse Daphne - a tanker of 115,000 tons deadweight and 25,000 horsepower which was almost tw ice the size of the largest tankers in general service at the time, thus inaugurating the era of very large bu'k car riers. * Presidental Address I I okt. 1988 ** President, The Institute of Marine Engineers (1987-1989).
Fig. I
SenW 56STE jA A R G A N G N R 9
The growth in size of oil tankers over the ensuing 20 years has been tabulated by Professor Jung1 and was followed closely by combination dry bulk carriers, ore/bulk/ oil and ore/oil carriers as the economies of scale led to larger and larger ships. Fig. I shows the progressive growth in tanker size over a period of 15 years between 1965 and 1980 from 150,000 tons dead weight to 560,000 tons deadweight. By 1980 as a result of the second O P E C oil crisis the party was over. In response to the trebling of crude oil prices in 1973 the oil market pressed on with the develop ment of oil fields closer to the centres of
consumption, notably the North Sea, and consumers concentrated on economies in oil consumption, both factors producing a drastic reduction in the requirement for large tankers. 1980 saw the end of the U ltra Large Crude C a rrie r (U L C C ) phenomenon and by 1985 one-third of the world tanker fleet was in lay-up. W hile this pattern persisted the marine steam turbine enjoyed it’s heyday. The in creasing power demand from 30,000 to 50,000 horsepower on one propeller fre quently overreached the capacity of diesel engines then available (see Fig. 2). Pow er
Fig. 2
293
(VOOR 190-194 g/ldltf-h) INCL. POMPEN Natuurlijk gaat 't hier om de modernste en machtigste scheepsdiesels van Caterpillar, de 3600-serie. Technisch signalement: 6 -en 8-cilinderin lijn, of 12- en 16-cilinder in V (50°). Inhoud 18,5 liter Caterpillar, Cat en zijn handels merken van Caterpillar Inc. per cilinder. Vermogen 1270 tot 5000 kW. Boring/slag: 2 8 0 / 300 mm. Toerenrange: 700-1000 rpm.
CAT
Ekonomisch signalement: brandstofverbruik 190-194 g/kW-h volgens ISO 3046/1. Inbegre pen zijn de bedrijfszekerheid en de lange levensduur van een Caterpillar. Ondersteund door de solide service van Gevekeen een wereldwijd Caterpillar-dealernetwerk. Geveke informeert u met alle plezier nader.Telefonisch: 078-15 05 55. Schriftelijk: , Antwoordnummer 8, y c v c rv c 3350 VB Papendrecht. motoren
CATERPILLAR. DE MOTOR MET LIFETIME BONUS
availability was therefore the fundamental controlling factor. H ow ever, at least one well-known Norwegian shipowner timed his progress in the large tanker field to the availability of the diesel engine and he not only survived the ensuing shipping crisis but remains a successful shipowner to this day. This remarkable era for the steam turbine spanned no more than 15 years and as Fig. 3 shows significant ascendence was effec tively limited to a period of 10 years, the
ween the fuel economy of a steam turbine installation and a diesel engine. O f couse the steam turbine had one advan tage in that fuel economy improved with increased power, mainly due to the fact that the blade clearances remained the same as engine size increased. The fuel economy of the diesel engine remains more o r less constant over a broad range of power requirement. For this reason alone the french Shell ship Batillus and the Ludwig Universe Irelander
•o v u v _> ■o (A U U
c
*a■> c !£ u 3
zo Fig. 3 rate of decline after 1974 was much more precipitous than the rate of growth prior to that fateful year. O f course application of the steam turbine had been widely adopted in smaller tank ers prior to the period w e are considering, particularly by some of the international oil majors. H ow ever that was largely attribut able to the influence of the U .S.A . where the ubiquitous and highly successful T2 tanker was developed during W orld W ar II in the absence of a low-speed diesel man ufacturing industry and added to powerful prejudices against the less attractive en vironmental features of earlier diesel en gines - high noise, gas and oil leakages and a high manual maintenance load. Nevertheless during that earlier period most independent tanker owners had con sistently built m otor tankers to their great commercial advantage. H ow ever there was a short 4 year period between 1968 en 1972 when the number of steamships on order actually exceeded the number of motor ships in ships of all classes exceeding 20,000 tons deadweight. Although the steam turbine had an open field for a period of some 15 years it did not rest upon its laurels. Professor Jung1 has recorded a fascinating account of the developments in steam turbine installa tions over that period - compelled by the unrelenting gap of more than 20% bet SenW 56STE jA A R G A N G N R 9
Year w ere ill-conceived aberrations - there could be no justification o r requirement to design these vessels for twin-screw prop ulsion. Universe Irelander's length/beam ratio was comprised to suit the IHI building dock and her canted twin rudders gave problems. Batillus was built when her poss ible market had already disappeared and the low propulsion and fuel efficiency aris ing from her twin screws did not help. Both ships traded disappointingly and de
monstrated that twin screws for this class of ship was the wrong route to take. The battle between the steam turbine and the diesel engine was nevertheless en joined and for the steam turbine it was waged in the form of higher steam condi tions leading ultimately to the adoption of reheat cycles and of improved gearing ar rangements permitting higher reduction ratios and hence low er propeller speeds and giving increasing propulsion efficiency. Increase in steam temperatures w ere modest - ranging from 450° to 525°C. The incremental advantage of increased superheat was a law of diminishing returns and eventually came up against the barrier of using austenitic steel which was inhibitive due to high cost and the adverse co r rosive effects of low-grade marine fuel. Steam pressures, on the other hand, more than doubled from 42 bar to 104 bar lead ing to a remarkable reduction in the physi cal size of the H P turbine, shorter blade lengths and the adoption of supercritical rotors. H P ro to r speeds increased to 6,700 rev./min - a far cry from the 1500 rev./min typical of the Parsons reaction turbine. The adoption of single-plane gearing, in cluding the use of planetary gears in the first reduction, improved compactness and facilitated the adoption of axial flow to the condenser, thereby reducing kinetic e x haust losses. G enerator and feed pump drives w ere incorporated in the gearbox. A remarkable 30% reduction in machinery weight was also achieved (Figs. 4 and 5). Finally the reheat cycle which had been pioneered by Canadian Pacific and Fairfields in 1956 with the Empress ships, and had for long been standard practice in the land power generating industry, was suc cessfully adapted to marine use. The prob lem of reheat on board ship had always been associated with the requirements of manoeuvring and astern operation, when the reheater was starved of steam and
Fig. 4
295
Fig. 5 therefore liable to burn out. The increased steam inertia in the system also presented problems of turbine steam control in the event of sudden loss of load. These pro blems w ere however overcome by the adoption of gas by-pass reheaters in the main boiler and additional emergency overspeed trip valves immediately after the reheater. Notwithstanding all these efforts there re mained in 1980 a gap of almost 20% in thermal efficiency between the marine steam turbine and the diesel engine - a gap which would be ever greater today and is unlikely to be closed. O ther types of ship had little impact on the scene. The only steam passenger ship of note built during the period was QE2 in 1969 - that was not an engineering success and has recently been re-engined. The fast container ships of the Boy class and Sealand are shown in Fig. 2. They w ere high pow ered but commercially ill-conceived and have mostly been re-engined with diesel engines. This brilliant era of marine steam turbine propulsion in merchant vessels was short lived, spanning an effective period of only 15 years. It did how ever rise to some re markable and inspired design and produc tion technology. Inevitably however when the diesel engine was developed to cover the higher-power ranges and had demons trated its ability to operate on low-grade fuel, predictably the laws of thermody namics w ere not to be defied and steam propulsion came to an abrupt end.
HP/h). Both these installations incorpo rated gas/air regenerators and w ere based on derivatives of industrial gas turbines. They w ere not economical, the problems with burning residual fuels w ere not re solved, and neither ship traded continu ously. This appeared to be the end of the line for the maritime application of indust rial-type gas turbines. The navies of the world, in the meantime, proceeded with the marinization of air craft-type gas turbines running on distillate fuel and in various combinations these have now become standard in naval surface ves sels.
In 1967 the Admiral Callaghan ran trials in the U .S.A. fitted with tw o Pratt & W h it ney aircraft-type gas turbines developing 20.000 HP and giving a fuel rate of 230 g/ HP/h, running on distillate fuel and w ithout a gas/air regenerator. This performance, however, was no better than the John Sergeant, 12 years earlier. The Pratt & W hitney machinery was later replaced by General Electric gas turbines which could operate on vanadium-free heavy distillate fuel or carefully controlled specification at a price some 50% above that for heavy fuel oil. In 1970 Pratt & W hitney returned to the fray with their FT4- A units for the 30 knots 60,000 horsepower Euroliner con tainer ships. These units w ere similar to those fitted in the Admiral Callaghan, and again without gas/air regenerator, al though the fuel rate had now been re duced to 220 /HP/h and some further progress had been made in fuel treatment. H ow ever, the ships w ere hopelessly un economic and all four vessels w ere subse quently re-engined with diesel engines. The scene shifted to the Antipodes when the Broken Hill Proprietary C o . built to 15.000 tons deadweight Ro-Ro vessels Iron Monarch and Iron Duke in 1973. N o w the adapted industrial-type gas turbine made a reappearance with the installation of tw o General Electric MS5000 gas turbines hav ing a relatively modest power of 17,500 SHP (Fig. 6). The power turbines of these tw o shaft units drove C P propellers (C PP) through single input, single output locked train double reduction gears, and a large gas/air regenerator was fitted between the compressor and power turbines.
Fig. 6. Sectional view o f MS 5000 gas turbine
T H E G A STU RBU N EB R IE F A P P E A R A N C E Application of the gas turbine to merchant ship propulsion had been ushered in during the 1950s with the Shell Ship Auris (350 g/ HP/h) and Marad’s John Sergeant (230 g/ 296
SenW 56STE |A A R G A N G N R 9
in fact the gas/air regenerators (which inci dentally weighed 100 tons) proved to be the most troublesome features of these in stallations due to repeated crack forma tion in the tube bank assembly caused by frequent thermal recycling. Repair of these cracks in situ was immensely difficult and the regenerators w ere eventually by-pas sed resulting in a 30% deterioration in fuel economy. Residual fuel was used in these ships by a system of dual washing treatment with Tre to lite but the treatment varied on the basis of fuel analysis of each batch of fuel both on shore and on board to determine the sodium, potassium and vanadium con tent. The process was therefore onerous and precluded the admixture of different batches of bunkers. In 1974 the Union Steamship Company en tered the scene with tw o 5,000 tons RoRo vessels on 10,500 SHP powered by G EM 53002R gas turbines driving twin fixed-pitch propellers through A C /D C electric drive (Fig. 7). Then in 1976 Union Steamship C o . built tw o trans-Tasman vessel of 27,500 SHP powered by G EM S5002RB gas turbines driving twin screw C P P through A C elec tric drive. Finally on 1977 tw o 45,000 ton dead weight bulk carriers w ere built by BHP with similar machinery but with epicyclic drive to twin screw C P P (Table I ). None of these ships w ere a commercial success and all w ere eventually re-engined with diesel propulsion - an expensive misjudgment indeed because if e rro r is made in the choice of propulsion machinery re quiring re-engining then it follows that a high proportion of the original ship invest ment has to be w ritten off and re-financed. The reasons for the misjudgment are of course clear. Restrictive crew practices militating against on-going maintenance and repair, and restricted trades allied to the false al lure of controlled fuel specifications at reasonable cost. The apparent simplicity of purely rotating machinery seemed irresist ible.
But the theory of C arnot and past experi ence w ere not to be denied. Troubles with gas/air regenerators are re flective of similar endless troubles with gas/air heaters in boilers in the 1950s which led to the adoption of steam/air hea ters. Gas-cooled nuclear reactors have e x perienced similar problems. Even with trouble-free regenerators the efficiency of the gas turbine cycle cannot be brought to acceptable limits until the maximum combustion temperature can be raised to levels which are still unattainable w ith metal blades when burning residual fuel oil.
stalled incurred tip erosion and hot c orro sion in the first-stage blades and nozzle cracking, reducing the life of these compo nents to 10,000 hours o r less depending on fuel quality. it is true that the price of bunkers changes dramatically between the inception and the service life of these installations. But that alone does not account for the failure - fuel has always been a predominant cost in ship operation. Failure was in fact en demic due to technical considerations which inhibited high efficiency and sus tained reliability. The experiment was brave. H ow ever the
Fig. 7. Cutaway o f Seaway Princess Ash deposition on nozzles and blading in evitably reduces the output and efficiency of a gas turbine. Sodium sulphate attacks silicate and alumina in refractories. Va nadium, particularly when sodium is pre sent, attacks high-temperature-resistant nickel alloys. None of these phenomena are new - they have been known throughout my working lifetime and predictably the gas turbines in
conclusion must be that gas turbines will not play a significant role in merchant ships as prime movers until either: a. a whole new technology develops based on the application of ceramics and/or sintered materials or; b. clean fuels become available at accept able cost. N either of these developments is present ly in sight.
Table I. Specifications o f GT-powered vessels Year
V essel
1973
Iron Monarch Iron Duke
1974
Owner
Type
Power
Engine
Drive
Propeller
BH P BH P
15000 tons Ro-Ro
17500
M
G EM S5000 M
G eared t*
CP “
S e a w a y Prince S e a w a y P rin ce ss
Union Union
5000 tons Ro-Ro
10500 *
G EM S53002R u
Geared A C /D C electric
Twin Fixed pitch
1976
Union Rotorua Union Rotoiti
Union Union
trans Tasm an
27,5000 *»
G EM S5002RB M
AC Electric
Twin CP
1977
Iron Carpentaria Iron Curtis
BH P BH P
45000 tons Bulk
10500 ♦t
G EM 3002R M
Epicyclic Epicyclic
Twin CP
SenW 56STE jA A R G A N G N R 9
297
IS YOURS? POWER RANGE
T h re e v ery d iffe re n t sized vessels. Each w ith its ow n in d ivid u al p o w e r dem ands. W e now cover those dem ands th ro u g h
an
even w id e r
o u tp u t range. W ith W a rts ila Vasa m ed iu m speed diesel engines fro m S 8 0— 1 6 2 9 0 k W w e can supply y o u r o u tp u t needs fro m th e sm allest fishing b o at up to th e larg est c o n ta in e r vessel. kW E ncm o e n g in e
type
W A R T S IL A 2
ÏL
O y W ä r t s llä A b , M a r in e E n g in e s P.O.Box 244, SF-65101 Vaasa, Finland Tel. +358-61-242 I! I , Tlx. 74250 wva sf. Telecopier +358-61-111 906
A 2
W A R T S IL A DIESEL B.V. P.O. Box 2043, 2930AA K rim p e n aan de Lek S tre e t address: Zaag 31. 2931 LD K rim p e n aan de Lek. Tel. 01807 18211. T lx . 22439 w a rtd nl. Telecopier 01807-19505
«w m a
«unau y iu
22 32
nutbu
U A tl
46
T H E 2 -S T R O K E O P P O S E D P IS T O N E N G IN E - E N D O F A STO RY The remarkable development of the Harland & W olff B & W opposed-piston en gine under the guidance of C . C . Pounder has been well documented by Professor Crossland2. This development peaked in the early years of the period we are con sidering with a turbocharged engine of 750 mm bore and 230 mm total stroke, deliv ering 2,500 horsepower/cylinder up to a maximum of 25,000 horsepower. C . C . Pounder retired in 1964 and thereafter development of the B & W engine was e x clusively to the poppet valve uniflow de sign. In 1965 P. Jackson unveiled the Doxford ’J’ engine having a bore of 760 mm and 2 180 mm total stroke delivering 2,360 horse power/cylinder up to a maximum of Fig. 8. Sections o f a
21,000 horsepower at 115 rev./min (Fig. 8). In an earlier period of development of the Doxford engine as powers increased seri ous problems had been experienced with crankshaft fractures. These had been o ver come by redesign and in the new engine a determined attempt was made to stiffen and shorten the crankshaft by utilizing the side crank webs as bearing journals, thus dispensing with the spherical bearings which had been a distinguishing feature of Doxford engines. As a result the cylinder centres w ere reduced to 2.28 m. Nevertheless the 9-cylinder engine was still some 12 m in length and the crankshaft weighed in at I 32 tons. The engine was pulse-charged with oilcooled low er piston and water-cooled up per piston and retained the common rail fuel system at an injection pressure of 460
kg/cm2. The scavenge pressure was 0.6 kg/ cm 2 and at an MIP of 9 kg/cm2 the fuel con sumption was 166 g/HP/h. The Doxford engine was always a lowcompression engine with a compression pressure of 42 kg/cm2 and P max was in this case limited to 62 kg/cm2. The values w ere significantly low er than comtemporary en gines at the time and resulted in a fuel con sumption some 7 % higher than the com petition (Table 2). In fact the engine con figuration did not permit development to even higher ratings - imagine the scantlings for the 'J’ type crankshaft and side rods if the maximum cylinder pressure was to be doubled to today’s levels. Regrettably the ’J’ engine did not attract sales and the D o x ford engine was therefore excluded from the higher powers which w ere beginning to dominate the market. Concentration was thereafter directed to-
series engine
Telescopic pipes
T ra n sv e rse b ea m U pper p isto n r o d E x h a u st b e lt E xhaust
Side ro d Combustion belt
Timmy valve F u e l valve
C en tre Teles copie p ip e s
St (ft c ro ssh ead
y /a n d C tn tr t conn, r o d S/de conn, r o d F oe! pum p
S c a /e
SenW 56STE jA A R G A N G N R 9
299
Bore (mm) Stroke (mm) No. of cylinders H orsepow er Rev./m in p m.» (kg/cm2 ) P comc (kg/cm2 ) (kg/cm2 ) S ca v e n g e ata. Fu e l consumption (g/HP/h)
‘J ’ engine
Contem porary engine
760 2180 9 21,000 115 62 42 9.1 0 .6 166
900 1500 9 20,7 00 115 75 60 9 .7 0 .8 155
Table 2. Engine particulars wards the development of low er power units with the concept o f the Seahorse en gine emerging in 1972. The engine was de signed to operate at 300 rev./min, a choice apparently not unconnected with its unique suitability to develop electric pow er at both 50 and 60 cycles (a characteristic incidentally shared with the mediumspeed engine running at 600 rev./min). It was also decided to limit the design to a bore of 580 mm for all powers to minimize production cost (Fig. 9). For propulsion purposes the concept re quired geared drive and the engine was en visaged with 4,5,6 o r 7 cylinders develop ing from 10,000 to 17,500 horsepower. The challenge was therefore to be directdrive low-speed engine, at that time still limited to propeller speeds in excess of 110 rev./min and to the medium-speed 4stroke engine running at 600 rev./min with its greater multiplicity of cylinders and working parts. H istory has shown of course that this apparent gap was only transitory - the long-stroke direct -cou pled engine now covers propeller speeds down to 60 rev./min while the medium speed 4-stroke engine has been progres sively uprated and its ability to burn heavy fuel has been established. The development of the Seahorse engine was never completed due primarily to un solved difficulties with the piston ring pack. Nevertheless many of the Seahorse design features w ere incorporated in a 3-cylinder version of the ’J' engine developed in 1976 and intended to be offered in bore sizes of 7 60,670 and 580 mm (Fig. 10). A 580 mm bore 3-cylinder engine (same bore as the Seahorse) was installed in the container vessel City o f Plymouth in 1978. This engine incorporated constantpressure supercharging, assisted by aux iliary fan, and developed 5,500 BH P and 220 rev./min at a BM EP of 11.42 kg/cm2 and P max of 85 kg/cm2 and a specific fuel consumption of 150 g/HP/h - values re presenting a considerable advance on the original j ’ engine. Nevertheless the competition from both low-speed 2-stroke and medium-speed 4stroke engines was relentless - today a 4300
medium-speed 4-stroke diesel engine run ning at speeds between 450 and 600 rev./ min was making an impact in merchant ves sels. It had of course always dominated the scene in smaller vessels such as tugs, coas ters and ferries when limiting headroom was a governing factor.
Modern engine 800 2300 5 22,140 83 125 115 16.2 3 .0 121
The application of larger vessels offered the following advantages: free choice of propeller speed through gearing; suitability for electrical power take-off; multi-engine flexibility;
Fig. 9. Sections o f a Seahorse engine
2000m m
I
cylinder 500 mm bore low-speed 2-stroke engine can develop 6500 horsepower at exactly half the rev./min of the City o f Ply mouth engine with 20% low er fuel con sumption (122 g/HP/h). Such an engine would be 4.94 m in length - 25% shorter than the 58JS3 engine. The Doxford Engine w orks ceased busi ness in the early 1980s and the era of op posed piston engines for ship propulsion came to an end.
T H E 4 -S T R O K E D IE S E L E N G IN E P E R S IS T E N T C O N T E N D E R Already in 1963 when our story begins the
saving in weight and engine-room length; ease of installation; low er cost per horsepower. The limiting factors w ere: high lubricating oil consumption; limited ability to burn heavy fuel oil; multiple maintenance. A comparison by Neumann & C a rr3 in 1967 of leading engine types is shown in Table 3. The A O and O P engines w ere under de velopment at the time with assistance from the then Ministry of Technology. The A O engine subsequently had a disastrous entry to the market while development of SenW 56STE jA A R G A N G N R 9
duce the number of cylinders required for a given horsepower. It may be noted that the 1967 comparison shows: 1. all engines w ere of the 400 mm bore class; 2. the 40/54 engine had a significantly higher stroke/bore ratio than the other engines ( 1.35 against 1.12); 3. the 40/54 engine had significantly high er BMEP (17.3 kg/cm2); 4. the specific weight of the engines varied from 8.72 to 12.27 kg/HP. O ver the ensuing 20 years great progress was made by all these engine builders to increase the power output/cylinder, to im prove performance on heavy fuel and en hance reliability and overhauling intervals. These improvements were achieved by in creasing the maximum cylinder pressure by 50% to 150 kg/cm2, partly by redesign of combustion chamber components with improved cooling and further develop ment of constant pressure turbocharging, higher fuel injection pressures up to I 300 kg/cm2 giving smaller droplet sizes to 20 pm o r less, and improved lubrication with high T B N lubricants and generally im proved piston running conditions. By 1980 all engine builders w ere claiming an ability to run on fuel of 3500 s. Red wood viscosity, albeit with some difficulty at part-load and the power/cylinder with larger-bore engines had trebled to 1500 HP/cylinder - a most remarkable develop ment! Market penetration by the medium-
Fig. 10. Section o f a ’J 3 ’ engine the O P engine was never completed. It may be noted that these w ere the tw o lightest engines tabulated. The other four engines are still market leaders in improved and uprated forms some 20 years later and larger versions of these engines have been developed to re
speed engine reflected these achieve ments. As so often happens in these matters the goal posts w ere moved! The low-speed 2stroke engine builders had by now de veloped their long-stroke engines, thus robbing the mediumspeed engine of its e x clusive claim to offer low propeller revolu tions. O th er advantages in weight and space saving by the medium-speed engine w ere also now seen to be less significant and the development of constant-speed pow er take-off from the low-speed engine also robbed the medium-speed engine of this advantage. All that was left in favour of the medium-speed engine was therefore multi-engine flexibility and since single-en gine drive has traditionally been found to provide acceptable reliability the use of multi-engines with gearing has limited at traction. As a result during the 1980s the market penetration of the medium-speed engine has probably halved. Nevertheless, in applications involving very high electri cal load at sea and/or in port the mediumspeed engine offers great advantages and has become more ore less standard in pas senger ships, the re-engining of the QE2 being a prominent example. In recognition of the progress made by the medium-speed 4-stroke engine over 25 years it is interesting to compare a tabula tion of engines currently on offer with those tabulated in 1967 (Tables 3 and 4). The comparison shows that:
Table 3. Leading engine particulars in 1967 R&H AO Bore (mm) Stroke (mm) Stroke/bore ratio HP/cylinder Rev./min Piston speed (m/s) B M E P (kg/cm2 ) pm.x (kg/cm2) Sp ecific weight (kg/HP) Fuel consumption (g/HP/h)
Mirrlees OP
362 470 1.3 500 450 7.06 10.2 102 7.4 154
381 2x381 1.0 1000 600 7.62 10.6 102 7.64 162
Sulzer Z40/80
Pielstick PC2
MAN V40/54
W erkspoor TM 410
400 480 1.2 500 445 7.11 9.7 8.72 162
400 460 1.15 445 500 7.62 14.7 88.4 9 .4 155
400 540 1.35 500 400 7.21 17.3 111.2 11.23 153
410 470 1.12 500 500 7.32 14.0 116.0 12.27 155
Table 4. Configurations o f current medium-speed engines Sulzer Z A 40 S Bore (mm) Stroke (mm) Stroke/bore ratio HP/cylinder HP/litre Rev./min Piston speed (m/s) B M E P (kg/cm2) pn,., (kg/cm2) Fuel consumption (g/HP/h)
SenW 56STE jA A R G A N G N R 9
440 560 1.4 885 12.46 510 9.52 22.07 128
Pielstick PC-4-2E 570 620 1.09 1481 9.34 400 8.3 21.0 189
MAN 58/64 580 640 1.1 1776 10.48 428 9.1 21.9 150 125
W erkspoor TM 620 620 660 1.07 1897 9.43 425 9.4 20.0 128
W artsila V a sa 46 460 580 1.26 1213 12.55 514 9.9 25.0 180 126
301
1. the popular stroke/bore ratio has re mained in the range of I . I - 1.25; 2. output per cylinder has generally trebled; 3. piston speeds have increased by 30%; 4. maximum cylinder pressures have in creased by 50% ; 5. fuel consumption has reduced by al most 20%. The V A SA engine is interesting being the latest engine on the scene and although smaller in bore is developing the highest power/swept volume. It is claimed to be the first engine designed ab initio, for oper ation on the heaviest fuels, and incor porates ’inverse cooling’, pilot injection, ’Sw irlex exhaust’ and reversion to thick pad bearings. Much more will be heard of medium-speed development but the prospect now of it displacing the low-speed engine for the majority of merchant ships seems unlikely in the foreseeable future.
tinue in production for the first 5 years of our period up to 1968 (Fig. 11). The engine was cross-scavenged and pulsesupercharged with under-piston pumping into a divided scavenge trunk to enable op eration over the full load range without in dependent scavenge assistance. The design was characterized by the rotary exhaust valve which performed three functions: 1. closing of the exhaust ports immediate ly after scavenge to permit full super charging of the cylinder prior to com pression; 2. preventing blowback from other cylin ders during scavenging; 3. keeping the exhaust closed throughout the compression stroke thus prevent
T H E 2 -S T R O K E D IE S E L E N G IN E A G E O F SU PREM A CY There w ere seven leading European de signers of low-speed 2-stroke diesel engi nes 25 years ago - each with their own dis tinctive features. Today the names of Doxford, Gotaverken, Stork, Fiat and M AN have gone into the history books as far as this type of engine is concerned and the w orld market is today dominated by what is now M AN -B& W based in Copenhagen and Sulzer based in W interthur, Sw itzer land. The reasons for this remarkable rationali zation are to be found in the weak ship building market which has persisted over the past 15 years, the intense competition in manufacturing costs which has led desig ners to become almost entirely dependent on license income, and the inordinate cost of development and testing the modern low-speed engine. Coincidentally the past 15 years has seen one of the most remarkable periods of en gine development and improvement in performance by the tw o remaining world market leaders. Competition in thin mar kets has been the spur for this develop ment but technically it has been made possible by application of sophisticated methods of theoretical analysis and de tailed design, both of which have been de pendent on modern computer software. The application of such technology has greatly reduced design lead times and has eliminated much of the trial-and-error testing on which advanced engine design form erly depended.
T h e Sulzer story O u r survey starts with the RD engine which had been introduced in 1957 with a rating of 1600 HP/cylinder and was to con 302
not quite historic because Sulzer had actu ally built a single-cylinder test engine with a bore of I m in 1911! Nevertheless in all other respects the R N D engine represented a major step fo r ward. The rotary exhaust valve disap peared, the covering of the exhaust ports during the compression stroke being achieved by a slightly lengthened piston skirt. Under-piston supercharge and loop scavenging w ere retained but with double separation between the under-piston space and crankcase thus minimising cross contamination and also permitting egress to atmosphere for any piston cooling wa te r leakage (Fig. 12). The original R N D engine retained the 2part cylinder head but when the RND-M engine was introduced in 1976 a solid, forged steel, fully bore-cooled cylinder head was adopted. The upper part of the cylinder liner, from which the flame ring was now removed, was also fully borecooled. In 1979 long-stroke RL engines w ere in troduced with a stroke/bore ratio in creased from 1.67 to 2.1 permit lower propeller speeds and further improve ments in specific consumption. Finally in 1982 it became apparent that the limits of development of the cross scavenged engine had been reached and in a dramatic move achieved in a remarkably short design time Sulzer introduced the R T A engine with uniflow scavenge through a single exhaust valve in the head (Fig. I 3). The stroke/bore ratio was fur ther increased to 3.45, there largest en gine having a stroke of no less than 2.0 m. Fig. 12. RND engine section
ing exhaust flow into the below-piston space. The cylinder head was of the familiar twopart form with cast-steel outer ring and cast-iron centre-piece. The piston crown was of ribbed design in cast-steel and w a ter-cooled by telescopic pipes arranged within an enclosure which was entirely separated from the crankcase. The RD engine continued in production over a period of 12 years and was very suc cessful albeit not trouble-free. Early engi nes experienced cracks in the main bearing saddles, rotary exhaust valves w ere prone to seizure and fracture of their drive, cracked cylinder heads w ere not unknown and fuel pump cams and rollers w ere in some cases subject to cracking and spalling. In 1968 it was realized that w ith improved turbocharger performance available con stant pressure supercharging would pro vide the next step forward in engine rat ings. The R N D engine was then introduced with a maximum cylinder bore of 1050 mm, i.e. in excess of I m - this was in fact SenW 56STE jA A R G A N G N R 9
The piston itself was now bore-cooled so that the entire combustion space operated under the most favourable thermal stress conditions and oil cooling was reverted to (Fig. 14). Even higher turbocharger ef ficiencies have permitted elimination of under-piston pumping and more recently have led to the so-called efficiency booster system whereby power generated in a sec ond-stage turbocharger is fed back to the engine crankcase, so reducing specific con sumption by a further 3%. This remarkable development story over a period of 20 years has been made possibly
research undertaken to improve piston running conditions by means of: 1. boron alloyed die cast liners to minimize wear and improve fatigue strength and ductility; 2. control of cylinder wall temperatures at all loads; 3. multi-level cylinder lubrication; 4. improved surface finish of liners and ring surfaces and profiles.
by continuous and determined research to obtain improved performance. Research to optimize the scavenge process has been most thorough, as well as research into the injection and combustion process both to improve fuel economy and to permit the burning of steadily worsening fuels. V ari able injection timing was introduced in 1981. Recent published information also includes Table 5. Engine specifications
Max. bore (mm) Stroke/bore ratio Max. piston speed (m/s) Minimum rev./min M EP (kg/cm2) Max. pressure (kg/cm2) HP/cylinder Sp ecific consumption (g/HP/h)
SenW 56STE jA A R G A N G N R 9
Such developments are now pointing to 2 year overhaul periods for all main compo nents of the engine. The culmination of this development was the construction recently of the w orld’s largest diesel engine, a I2 R T A 8 4 engine developing 57,000 horsepower - no less than 4,750 HP/cylinder - built in Korea (Fig. 15). Power output apart, however, the per formance improvement over all can be seen to have been continuous and dramatic over the entire period of our review (Table 5).
RD 1963
RND 1968
900 1.72 6.3 120 8.65 76 2300 155
1050 1.52 6.48 122 10.6 84 3000 155
T h e Man-B & W story The performance development of the B & W engine over 35 years has been no less dramatic than the story just reviewed, al though it can be related in rather shorter form since it did not involve a fundamental change in engine type but rather continu ous and systematic improvement of the uniflow engine which has been the stan dard B&W form throughout this period. In 1963 the production engine was the V T 2 B F built with bores of 620, 740 and 840 mm, a stroke/bore ratio of 2 .1-2.3 and operating at a BM EP of 8.6 kg/cm2. In 1968 the design was upgraded to form the KEF range with the same bore and stroke but operating at a BM EP of 9.6 kg/cm2. In 1973 the K G F engine was introduced with many design modifications (Fig 16). The crankshaft was now semi-built with cast-steel crank throws, a deep section welded bedplate incorporating cast-iron cross girders; steel-backed shell bearings w ere introduced in the crosshead, a forged steel cylinder head with radial cooling
RN D -M 1976 900 1.67 6.48 122 12.3 94 3400 144
R LB 1979 900 2.11 6.4 90 14.3 118 3940 133
R TA 1982 840 3.45 7.45 56 16.6 125 4750 116
303
head with hard chrome-plated ring grooves. Ring pack reduced from 5 to 4 rings. Phosphatized surface of skirt. Piston rod: Re-designed piston attach ment. Hardened surface of rod. Scraper ring pressure increased to 4 kg/cm2. Crosshead: One-piece bottom bearing shell. Floating guide shoes. Fuel pumps: Variable injection timing. Exhaust valve: Cooling o f valve seat insert. Reversing: Self-locking fuel cam rollers. The remarkable improvement in perfor mance which really took place over a period of 10 years between 197 3 and 1983 is mainly attributable to the development of sophisticated computerized models which have embraced the basic thermody namics of the engine, heat release and combustion processes, system dynamics Fig. 16. Sectional view o f KGF engine
CONGRATULATE'
A P tiS Fig. 15. The world’s largest diesel engine bores was mounted on a forged annular cooled ring and the hydraulically operated exhaust valve was introduced with welded stellite seats. The engine was pulsecharged with an auxiliary fan when re quired. By 1975 a 12KGF90 engine was operating to the parameters shown in Table 6. A very different engine was produced in 1978 designated LG F with 22% increased stroke to give a stroke/bore ratio of 2.4 (Fig. 17). This engine was constantpressure supercharged, again with an aux iliary electric blower, and a supercharge pressure of 3 .1 kg/cm2. Steel-backed white metal-lined bearing shells w ere fitted in the main and bottom end bearings and steel-backed 4 % tin alloy-lined bearing shells w ere fitted in the crosshead bearing.
The power per cylinder increased by al most 50% to 4,575 HP, BM EP increased by 35% to 15 kg/cm2 and specific con sumption reduced by 16 % to 128 g/HP/h certainly a much higher rating and low er fuel consumption than had been achieved up to that time. Finally the super-long-stroke engine emerged in 1982 with the LM C engine having a stroke/bore ratio of 3.82 and a pis ton speed o f 7.6-7.S m/s (Fig. 18). N o w the results of continuous research and de velopment w ere very evident in many features of the engine. Bedplate: W elded cross-girders with caststeel bearing supports. Crankshaft: N arrow gap submerged arc welded. Piston: Chrom e molybdenum cast-steel
Table 6. 12KGF90 engine operating parameters Bore Stroke Stroke/bore ratio Minimum rev./min Horsepower/cylinder Piston speed MEP Specific consumption Weight Length
304
900 mm 1800 mm 2.0 110 3100 6.6 m/s 11.6 kg/cm2 152 g/HP/h 1135 tonnes (30.5 kg/HP) 22.52 m
Table 7. Characteristics o f the I2L90M C engine Bore Stroke Stroke/bore ratio Minimum rev./min Horsepower/cylinder Piston speed Max. pressure BMEP Specific consumption Weight Length
900 mm 2916 mm 3.24 58 5241 7.58 m/s 112 kg/cm2 16.2 kg/cm2 119 g/HP/h 1835 tonnes (32.76 kg/HP) 21.09 m SenW 56STE jA A R G A N G N R 9
parison of currently available 6-cylinder 2stroke and 4-stroke engines in the 300011000 HP range which shows the spread of the low-speed 2-stroke engine into the low er-pow er te rrito ry which was hither to exclusively occupied by 4-stroke en gines. It really is now a question of whether a designer can accommodate I -2 m more headroom - 3 otherwise a medium-speed engine w ith gearbox will have to be fitted. The most recent aspect of this trend was the introduction in 1987 of the so-called mini-bore S26M C engine offered over a speed of 188-250 rev./min. (Fig. 21). This 260 mm (10.24 inch) bore engine is de signed in 4 to 8 cylinders developing 490 horsepower/cylinder at the same specific consumption as the latest medium-speed engines but with conceivably a w ider range
higher installed cost and weight and lower overall efficiency which otherwise applied. Thus vessels requiring high torque o r low revolutions such as icebreakers and cable layers have been natural candidates. Q uiet ness is an attractive feature in research vessels and passenger ships and ships having a high power requirement when stopped such as self-positioning support and heavy lift crane ships can utilize electrically gen erated power for both propulsion and working loads. Passenger cruise ships with a very high hotel load and requirements of passenger comfort, free of noise and vibration, derive perhaps the most obvious benefits from electrical propulsion and, not surprisingly with present day fuel costs, it is the diesel electric installation which attracts atten-
Fig. 17. LGF engine cross-section
and the fundamental design of engine com ponents. These techniques have given rise to increased power output, improved fuel consumption, reduced manufacturing cost and greater reliability, while the specific weight of the largest engine remains in the 33 kg/HP range, notwithstanding the adoption of the very long stroke. Latest published characteristics of the 12L90MC engine are given in Table 7, The general development of the lowspeed 2-stroke engine can be seen in Fig. 19 and adds up to 75% increase in power per cylinder and 25% reduction in specific fuel consumption. In our review of this progress we have tended to concentrate on the ever-increasing horsepower availa bility. H ow ever an equally fascinating de velopment of the low-speed 2-stroke en gine has been in the smaller engine sizes and power ranges. Fig. 20 shows a comFig. 18. LMC engine cross-section
Fig. 19. Development o f 2-stroke engines over 20 years o f fuel digestability and certainly low er lubricating oil consumption. The end of the story has not of course yet been w ritten - but already the shipowner enjoys a full freedom of choice.
Electrical propulsion - a revised role Electrical propulsion of merchant vessels has a long pedigree but with few excep tions, of which the wartime-built T 2 tank er was the most remarkable, application has been restricted to particular types of vessels where the genre offered advan tages which could override the penalties of SenW 56STE jA A R G A N G N R 9
tion, special installation precautions being taken to minimize noise and machinery-in duced vibration by means of resilient mountings. T w o recent designs are of particular inter est and have been widely discussed. The recent re-engining of Cunard’s Q£24 w ith nine 9-cylinder medium-speed en gines developing 120,000 horsepower on tw o controllable-pitch propellers repre sents the highest power installed for elec trical propulsion to date with a 10 kV, 44 M W synchronous motor driving each shaft (Fig. 22). T w o propeller speeds of 144 and 72 rev./min. are achieved by means of a 305
Fig. 20. A comparison o f 2and -4-stroke engines
S26 M CE (260 mm) R TA 38 (380 mm) -**-
L42 m c e (420 mm)
«-
L50 M CE 500 mm R T A 58 (580 mm)
-O -
L 60 m c e (600 mm) RTA 62 (620 mm)
Rev./min
1300 tons deadweight are fitted with ten containerized generating sets of 275 kW each to supply the four thrusters which propel the ship in either direction. High speed engines burning diesel oil are used and it is difficult to see how such an ap proach could be attractive to other than small short-range vessels of this type. For the future superconductive electrical machines are now undergoing intensive development and may succeed in bridging . J . . . . ■ , , the efficiency gap which is currently inherent 'n electrical propulsion. From Japan also we hear excited noises about the ap plication of linear motor technology to ship propulsion, Electrical propulsion may indeed still have some surprises in store.
synchro-converter, the engines running at a constant speed of 400 rev./min. to pro vide 60 H z at the busbars and ship speed and reversal being effected by variation of propeller pitch. The large ship service load is provided through 11 M VA transformers. The performance of this propulsion system will be followed with considerable in terest. A quite different solution has been adopted for the lower-powered Sitmar cruise vessels soon to join the P&O fleet. Fixed-pitch propellers have been prefer red, each driven by a 6.6 kV, 12 MW motor, the speed and direction of which are controlled by thyristor synchro-con-
Yerters, Four 8-cylinder medium-speed diesel engines run at a constant speed of 400 rev./min. to provide 60 Hz at the busFig. 2 /. S26A4C engine cross-section
Fig. 22. QE2 propulsion motor bars. Although very much smaller than the QE2 installation the flexibility, reliability and overall efficiency of this propulsion system will also excite interest. The cruise ship and large fe rry markets are the most buoyant section of the shipping business today and w eek by w eek w e hear of dramatic proposals for newbuifdings. Electrical propulsion will be a strong con tender for many of these ships and further variations on the method of speed control and reversal w ill no doubt emerge. A recent design of unusual form was adopted for the illfated contract for socalled Superflex car/passenger ferries. These very simple double-ended ferries of 306
A G LIM P S E A T T H E F U T U R E It is not the purpose of this paper to look specifically at the future - that task must be left to others. H ow ever, a review of the past 25 years does appear to provide some insight into the direction of future de velopment. Certainly the availability, quality and cost of fuel will continue to be a controlling fac to r as indeed it always has been. Availabili ty of fuel oil does now seem to be assured for the next 25 years. Quality seems guaranteed to get steadily worse. As for price, it will always seem expensive and the overriding need for economy will not disappear. SenW 56STE jA A R G A N G N R 9
It is, I suppose, just possible that exploita tion of the enormous reserves of natural gas worldwide may lead to its further de ployment in liquefied form in which case the gas turbine may indeed make a re-ap pearance. Coal is plentiful enough but highly inconve nient and the worldwide infrastructure for coal bunkering no longer exists and is un likely to reappear in the foreseeable fu ture. Nuclear power has made no impact on the merchant scene in the past 25 years and seems unlikely to do so in the next 25 years. It was the conventional wisdom that high oil cost would enable nuclear power to overcome its high installed cost and weight penalty; however tw o oil crises have not borne that out. Environmental resistance to nuclear-propelled merchant ships is a formidable barrier and economic uncertainties seen to militate against com
mercial decisions having a long time-scale which the high cost of a nuclear installation imposes. The advantage of the diesel engine as by far the most efficient thermodynamic machine known would seem to ensure its supremacy far into the future. W e cannot expect to see a repetition of the amazing thermal efficiency gains of the past 10 years, but step by step improvements will emerge particularly in conjunction with compound turbocharging. The other field for development will un doubtedly lie in systems design. Space has not permitted treatment of this subject in this paper which has concentrated on prime movers but great scope still remains for rationalizing the approach to auxiliary power generation and utilization on board. The accurate matching and regulation of auxiliary services on board can contribute greatly to simplification, improved reliabil
Flaproeren
- Sectie bouw
Visstaart roeren
- Masten bouw
A lle andere typen roeren
- Z w a ar gecompliceerd constructiew erk
Kom pleet inbouwklare hennekoker secties
- Achtersteven secties
ity, reduced maintenance and overall effi ciency. Members of this Institute have played a leading role in all the fields of development which we have been able to review over the past 25 years. A new generation of marine engineers w ill enjoy a similarly e x citing and fruitful field for their endeavours into the next century and our Institute will undoubtedly be there to offer them full support. W e wish them well in years ahead. References 1. Professor I. Jung, The Marine Turbine (3 volumes). N ational 1986).
M aritim e
Museum
Trustees
( 1982-
2. Professor B. Crossland. Trans. I. Mar. £., vol. 98, paper no. 19 (1986). 3. J. Neumann &
j. C arr, Trans. I. Mar. £., vol. 79,
paper no. S ( 1967). 4
IMAS 88, Trans. I. Mar. £. (C ), vol. 100, conference I , papers 16-20 ( 1988).
Vraag vrijblijvend inlichtingen Van N eckstraat 5
m achinefabriek b..v. A lm éér dan 60 jaar sterk in zw aarw erk
SenW 56STE jA A R G A N G N R 9
9601 G W H O O G E Z A N D tele foon (05980) 92253 fax
(05980) 99659
307
HEAVY FUEL 40,000 Running hours on heavy fuel The Ro-Ro ship Saint Roch, form er the Hoegh Belle, was originally built by the Polish shipyard Stoczniaim Komyny, G dy nia, and was delivered to the shipowner Leif Hoegh & C o A/S N orw ay in 1980. The initial power production system consisted of four medium speed generating sets of 960 k W each burning M D O , while the main engine system burned IFO 380 cSt/ 50°C heavy fuel oil. A t a very early stage the owner considered a one-fuel ship; the generating set equipment would have burned the same heavy fuel as the main en gine machinery.
WÀRTSILÂ VASA 32
co-operation with W artsila Diesel person nel. The schedule was very tight and instal lation and start-up of the diesel generating system was accomplished in one week. The new power production system thus consisted of one W artsila Vasa 4R32 generating set with an output of 1,335 kW running on IFO 380 heavy fuel oil and four M DO generating sets of 960 kW each. The Vasa 32 engine has produced most of the auxiliary energy, while the smaller M DO generating sets have been used only as stand-by engines and during routine over hauls of the Vasa 32.
Modification of the Vasa 4R32 Re-engining with Vasa 4R32 A fte r extensive studies of the engines in 19 8 1 the owners decided to re-engine the Hoegh Belle and her sister ships the Hoegh Banniere and Hoegh Biscay with one W artsila Vasa 4R32 diesel engine in each ship. The sister ships w ere also originally equipped with four medium speed generating sets burning M DO. By installing a Vasa 32 real heavy fuel en gine, as an auxiliary, the ship was converted for one-fuel use with the same fuel treat ment system for both main and auxiliary machinery. The Vasa 4R32 engine for the Hoegh Belle was delivered in early November 19 8 1, In stallation was carried out by the Gotaverken C ity yard in Gothenburg, Sweden in
In early May 1987 the Vasa 32 engine had recorded 4 1,272 hours of disturbance free running, and ensured excellent operational reliability for the power plant. A t that time the present ow ner of the ship, Société Navale de L ’Ouest, had decided in co-op eration with W artsila Diesel to upgrade the Vasa 4R32 engine according to W ârtsilà Diesel’s continuous development programme, which had been undertaken since delivery of the engine in 19 8 1. The modification w o rk was carried out in Dunkerque, France in May 1987 by W a rt sila Diesel. Together with the upgrading w o rk a complete 40,000 hour overhaul of the engine was performed. During upgrading and overhaul the main
components w ere measured and other components w ere controlled visually. The results of investigations performed can be reported as follows:
w ere almost clean and w ere covered by a thin layer of soot only. The valves and seats w ere cleaned and ground slightly before remounting. In gen eral the valves and seats of the Vasa 32 function very well and lifetimes of 24,00032,000 running hours are often achieved.
Crankshaft with bearings Piston and rings The pistons on the M/S Saint Roch are of the nodular cast iron type, equipped with tw o chromium plated compression rings, one combined oil scraper and compression ring and one chromium plated oil scraper ring. Furtherm ore, the pistons are equip ped with a patented pressurized cooling and lubricating oil system, which ensures controlled lubrication of the skirt and liner during full load as well as low load opera tion. Measured piston ring groove w ear was very moderate, with values between 0.005-0.007 mm/1000 hours, the average being 0.006 mm/1000 hours. (Fig 2).
Big end bearing The connecting rods w ere all remounted and the big end bearings w ere replaced with new thin-antimony-based bearings, although the old lead-based ones w ere in very good condition.
According to the content of the modifica tion package the main bearings and the thrust bearing w ere replaced with new thin-antimony-based ones. The old bearing shells w ere in very good shape and could have been reused. The crankshaft bearing journals w ere also in excellent condition. RUN NIN G TIM E (hours)
Cam shaft with drive Fig. 2. M/S Saint Roch, top piston ring groove wear.
system, this type of cooling ensures excel lent working conditions in the combustion space during full load as well as low load operation. The cylinder liners w ere in very good condition and since measured wear was in the region of 0.006-0.008 mm/1000 hours, the liners w ere only honed and new pistons w ith rings w ere mounted. (Fig 3).
The camshaft and tappet rollers w ere in very good condition. The cams showed no cracks or other beginning defects. The
WARTSILA VASA 32 Wear
M E A S U R E D C Y LIN D ER LIN ER W EAR AT T O P PISTO N RING TDC
(mm)
0.20
w ere overhauled according to the instruc tion book.
Conclusion
Cylinder head and valves Cylinder liner The cylinder liner of the Vasa 32 diesel en gine is equipped with w ater cooling bores in the upper part of the liner. Together with the load dependent cooling w ater
Fig. I. The Hoegh Biscay, the sister ship o f M/S Saint Roch, is equipped with one Wartsila Vasa 4R32 diesel engine.
The cylinder head of the Vasa 32 is equip ped with tw o inlet and tw o exhaust valves. The seats for exhaust valves as well as the centre of the cylinder head are w ater cooled. The load dependent cooling sys tem regulates the temperature of the cy linder head with valves. The cylinder heads
Fig. 4. Wartsila Diesel designed load depen dent cooling system with increased water, air and lubricating oil temperature at low loads.
—I------- 1-------- 15.000
10.000
15,000
20,000
RUNNING TIME (houri)
Fig. 3. M IS Saint Roch, cylinder liner ex pected lifetime approx. 120,000 hours. wheels of the camshaft driving gear were as good as new. The camshaft bearings w ere replaced with thin-antimony-based white metal ones, since the old lead-based white metal bearings showed beginning corrosion of the lead with over 40,000 running hours.
Injection equipment Injection pumps and injection valves w ere completely overhauled according to W artsila D iesel’s instructions. The interval between overhauls for injection nozzles is 4.000 hours and lifetimes often reached 8.000 hours.
O th er inspections performed The four-cylinder Vasa 32 engine is equip ped with a balancing shaft for balancing of the free forces. The drive of this balancing shaft and one bearing was inspected. Ev erything was found to be in excellent con dition. The turbocharger, cooling water pumps, lubricating oil pump, and the pneumatic and mechanical over speed trips
The experience gained from over 40,000 running hours with the Vasa 32 diesel en gine on the Ro-Ro ship Saint Roch of Société Navale de L’Ouest has confirmed that the W artsila Diesel real heavy fuel en gine design has been successful. The Vasa 32 engine ran 41,272 hours from November 1981 to May 1987, with an overall utilization of 86.6% . The engine ran exclusively on heavy fuel from start to stop. The design features of the Vasa 32 diesel engine, which in numerous both marine and stationary installations have contributed to disturbance free running and excellent operational reliability, are as follows: • Optimized fuel injection equipment with high injection pressure. • Nodular cast iron piston with high mechanical strength and low thermal e x pansion. • Pressurized piston skirt lubrication fed from inside the piston. • Pulse type turbocharging system with axial type exhaust gas turbine. • Efficient exhaust valve cooling. • Load dependent cooling system with in creased w ater, air and lubricating oil tem peratures at low loads. (Fig. 4). The Vasa 32 diesel engine on the M/S Saint Roch is now after modification heading for another 5 year period with 40,000 hours of almost continuous running on heavy fuel.
309
B.V. Scheepswerf en Machinefabriek
”DE BIESBOSCH - DORDRECHT” Voor onze afdeling Verkoop zoeken wij een
ecotec resource
b.v.
BEGRO TER-VERKO PER-W en een
B EG RO TER-VERKO PER-SEcotec Resource BV is een adviesbureau op het gebied van de internationale samenwerking. Voor een project in Oost Afrika wil Ecotec in contact komen met een
All Round Scheepsbouw kundig Manager M/V
Onze gedachten gaan uit naar een energiek commercieel technische man. Naast de noodzakelijke kontaktuele eigenschappen, die wij voor deze funktie onontbeerlijk achten, verwachten wij van de juiste kandidaat; - opleiding H .T .S ., of, een door ervaring verkregen gelijkwaardig niveau; - leeftijd: niet ouder dan 40 jaar, - goede beheersing van de moderne talen; Schriftelijke sollicitatie, voorzien van een curriculum vitae, kunt u richten aan het Hoofd Personeelszaken, van:
die voor een periode van 2 jaar zal worden aange steld als Assistant Manager bij een kleine scheeps werf (ong. 50 werknemers). De werf bouwt stalen schepen (10 tot 75 GRT) voor goederen- en personenvervoer en voor gebruik in de visserij. Eventueel kan het contract worden verlengd met nog een periode van 2 jaar.
De werkzaamheden bestaan uit ondersteunende activiteiten om de voorbereiding, bouw en afwerking van de produkten optimaal te doen verlopen: advisering omtrent aan te schaffen materiaal, machines, onderdelen en scheepsinstallaties. assistentie bij bouwtekeningen, werkvoorbereiding en coördinatie van dagelijkse uitvoerende werkzaam heden. advisering bij selectie en opleiding van lokaal personeel.
"D E B IE S B O S C H - D O R D R E C H T ” Postbus 96, 3300 AB Dordrecht DE DORDTSE KIL HOLDING B.V.
HOLLAND
ROERPROPELLER
voor optimale manoeuvreer baarheid.
Wordt succesvol toegepast voor o.a.:
m t so »m?
«■Tv
Voor deze functie zijn vereist
veerponten passagiersschepen binnenschepen kraanschepen drijvende bokken sleep- en duwboten Fv.niy.uyu.uuivuiyuM
^SÊ
patrouillevaartuigen
relevante opleiding op HTS-niveau of gelijkwaardig. 10 jaar praktijkervaring ais produktiemanager op een kleine tot middelgrote scheepswerf, ervaring op een buitenlandse werf, liefst in de derde wereld, strekt tot aanbeveling, beheersing van de Engelse taal en de bereidheid om een cursus Swahili te volgen.
Degenen, die belangstelling hebben, wordt verzocht binnen twee weken na verschijning van dit blad een brief met curriculum vitae te richten aan de Directie van Ecotec Resource BV, Schotersingel 137, 2023 AC Haarlem. Voor inlichtingen over de functie kunt U telefoneren met Drs. E. Dijkstra, tel. 023-251860.
Standaard leverbaar tot 1600 pk. Speciale uitvoeringen en grotere vermogens, aangepast aan uw wensen en bedrijfsomstandigheden, kunnen geleverd worden. V ra a g p n js en u itv o e rig e d o k u m e n ta tie bij
HOLLAND n n rn n U
C
jo h a n I I - DANE BV
PROPELLER A3
Zaag 27, Postbus 2020 2930 AA Krimpen a/d Lek Telefoon 01807-19988 Telefax 01807-19256 Telex 24157
S*
PROSPECTS IN TH E SHIPBUILDERS ARE FACING A VERY M O M EN TO U S DECISION
by Ing. P. CATALDO** Sum m ary The shipbuilding industry is still far from being automated or robotized. To attain that stage o f development, two elements are required: the rationalization o f the construction processes in the shipyard by the use o f up-to-date technological innovations, such as automated systems and robots; and the design o f new structures which allow the most profitable use o f these advanced systems. The use o f robots in shipbuilding as well as new structural solutions are discussed in the paper. The main directions o f the research work currently being undertaken in the Italian shipbuilding industry are described.
I. Introduction Today shipbuilding is still far from a highly automated and robotized integrated in dustry. This considerable delay in comparison with industries characterized by production in series, such as the car and electronic indus tries cannot be ascribed only to a lack of willingness to invest in the technology of this sector, but especially to the following specific factors: - Production of single or seldom repeatable pieces; - Large dimensions and weights of the structures which are difficult to handle; - Insufficient capacity of the robots to self-adapt to several different working conditions; - The lack of a suitable context for a ra tional and efficient use of the robotized systems. These systems must be included in a ra tional organization of the production pro cesses, which are already based on a wide utilization of automatic production ma chines and C A D /C A M systems needed to supply the back-up information. The necessary basis, in term s of know how, now exists to achieve a highly com puterized, automated and robotized inte grated system of design, engineering, pro duction and production control. H ow ever, the problem to conceptually define an ade quate organization of the production and its control still remains as does the prob lem of redesigning the production system. The evaluation of the advantage of invest ing, in relation to the market situation, ob tainable reductions of production costs and its influence on product competitivity, is the only element which might affect the introduction of such systems. Product com petitivity is basically linked to production costs which, in the national shipyards, are high as they are conditioned by labour costs which today absorb 35* Paper presented at the U.N , Seminar 'Ship building 2000’ Gdansk. 5-9 Sep. 1988. * * Fincantieri I, Cantieri Navali Italiani S.p.A. Trieste.
SenW 56STE jA A R G A N G N R 9
40% of the ship’s total cost compared to 8 -15% in the car and electronic industries. Under these circumstances, it is obvious that the gap between national labour costs and labour costs in developing countries is such as to hinder the recovery of market sectors by relying only on product quality. Every effort to develop and experiment with methods to reduce the labour inci dence on the ship’s total cost is justified. In this connection, automation/robotization undoubtedly plays a decisive role. The use of dedicated automation systems is to be extended to the various phases of the production process, from movement and handling of the materials and semi-man ufactured materials, to surface treatment, cutting, welding, manufacturing of outfit ting components, etc. H ow ever, it is necessary to make a careful analysis of the present type of ship’s struc tures (overall structure and detail) in o r der to ascertain whether it is advisable, in view of such a radical modification of the production techniques, to think of struc tures which take better advantage of this innovation, thus allowing a more beneficial use of these techniques. In the shipbuilding world, the most suitable characteristics of the various components of an integrated automatic production sys tem are being evaluated on the one hand, and, on the other, the w o rk is focused on finding the most suitable new ship struc tures.
2. Organization and production methods in the modern shipbuilding industry Quite a number of leading shipyards in Europe and in Japan are using organized production methods for production lines based on the 'group technology’ method. The production lines consist of a series of fixed workstations equipped to produce sub-subassemblies, subassemblies and blocks ( I ) . The fabrication of such units is carried out according to an established manufacturing sequence, organized on the basis of several production stages or levels involving the various workstations and production lines,
in accordance with a predetermined logic. Starting from the first workstation, the production evolves in terms of complexity and size until it reaches completion of the assembly cycle (production of blocks). The various production lines process similar or equal elements irrespective of their final function in the ship system. There are, for example, production lines for subassemblies consisting only of plane plates, for subassemblies containing bent plates o r for more geometrically complex subassemblies. The subassembly produc tion lines converge onto a block fabrica tion line. A feasibility study for the introduction of production lines in a U SA shipyard, o r ganized in a traditional way, has predicted a reduction of the hull labour costs by about 21% (2). The concept of ’group technology’ is ap plicable not only to the production of the hull but also to the outfitting. Another important concept of the organi zational philosophy of modern shipbuilding yards is the ’outfitting by zones’. There are three outfitting zones involving hull struc tures: ’block-zones’, 'assembly unit zones’ (zones where some assembled blocks are outfitted) and 'on-board zones’. The main aim of this process is to outfit completely a zone, irrespective of the functional systems the outfitting compo nents belong to. A number of outfitting stages or levels which define a logical se quence of the working process corres pond to the zones as defined above. The outfitting can be made by using either sing le manufactured pieces of preassembled manufactured pieces. The outfitting preassembly is performed in ’outfitting units/outfitting modules' during a working phase which forms the first stage of the outfitting sequence according to a 'group technology’ approach. A ccord ing to an estimate made by tw o Japanese shipyards (3), the outfitting transfer from the ’on-board zone’ to the ’assembly unit zone’ and 'block zones’ involves about a 30% reduction in labour hours. Preassem bly of the outfitting components into out fitting units/outfitting modules w orksta
tions entails, again according to the esti mate of the aforesaid shipyards, about a 70% reduction in labour hours if com pared with the same w o rk carried out on board. The evolution of production processes for the most advanced shipyards involves new production lines characterized by inte grated hull construction, outfitting and painting. From the point of view of high productivi ty, one of the most interesting features of these advanced shipyards, should be the application of analytical managerial tech niques, in particular statistical analyses, for the control of the production process. These techniques can only be adopted by shipyards using the ’group technology’ concept since, following this approach, the various working levels are defined, the common and repeatable elements in the construction of the ship are identified and the different sequences of the process and subassembly are clearly defined. This conception of the production process encourages standardization. The repetitivity of the processes and the consequent standardization allow a valid application of the quality control techniques based on statistical analysis criteria to be made. This rational approach to the production processes and production control favours the application of advanced technology systems in which C A D /C A M , numerical control machines, and robots are inte grated. The use of robots which are not integrated in the real w orld of design, en gineering and production, typical of the advanced shipyards mentioned above, would not be effective. It is necessary to use highly self-adaptable robots in produc tion processes both characterized by a suf ficient repeatitivity of the operations and highly controlled. The development of new, non-conventional hull structural types could charac terize the production processes by a grea te r repeatitivity of the working sequences and then be more suitable for robots. Furtherm ore, the choice of the most ap propriate robots could enable maximum efficiency in the production process to be achieved.
3. Robots in shipbuilding The most advanced shipbuilding yards throughout the world are trying to intro duce flexible automation even if shipbuild ing requires specific developments and much of the existing flexible automation used today in manufacturing is not directly applicable in shipbuilding. Flexible automation is defined as any auto mated o r semi-automated process which is able to adapt or be rearranged to some degree to accommodate changing job con figuration, sizes, times o r other important conditions. Flexible automation is different from fixed automation, which usually is 312
built specifically to be very efficient for do ing a job automatically the same way again and again. T w o classes of flexibility can be distinguished. They are: gross and fine. G ross flexibility allows adaptation to new sizes or shapes of parts, for example, and is usually accomplished in software by load ing a new control program into the machine. Fine flexibility allows the machine to accommodate minor variations in real time, such as a varying weld seam dimension and direction, and is usually ac complished with sensors and real time control. The challenge to flexible automation is to make jobs similar enough so that they can be accomplished economically by a piece of flexible automation, utilizing its fine flexibility. To meet this challenge, desig ners and engineers need to know how to encourage similarity between jobs. It is true that few if any shipyard jobs are iden tical in the usual manufacturing sense. Therefore, one must be prepared to rede sign, to seek similarity, and to combine job steps now done manually and separately until a whole is created which is similar to others. This will require a cooperative ef fort between planners, detail designers, and automation engineers. The philosophy of product-oriented shipbuilding is the key to this effort. Designers must recognize the interim product types that are easiest to build, and must design the ship’s modules and as semblies {structure, pipe, vent, founda tions, etc.) to fit these types. Detail de signers must optimize less and standard ize more. Automation engineers must rec ognize the interim product types and their requirements and design equipment to handle a range of similar jobs comprising a type of interim product. They must also recognize technical blockages to automa tion and suggest design changes. In this light the w o rk accuracy is momentous fac tor, for it allows ’similar’ pieces to turn into ’nearly equal' pieces by more re stricted allowances. W o rk accuracy thus reduces a lot of prob lems relevant to automation. Furtherm ore, accuracy saves costs. In fact much time is often lost if unfinished w o rk is passed to the next w o rk area where its e r rors must be discovered and corrected. This distorts the concepts of ’w o rk sta tion’, ’completion’, ’w o rk content’ and 'time to do the w o rk ’ concepts which are fundamental to efficient production. Inabil ity to predict w ork output in shape, size, time o r cost seriously inhibits automation. Today the most advanced shipbuilding yards throughout the world are getting ready to make the largest possible use of robots in production, the final goal being the automation/robotization of the whole production process through the use of the CIM S (Com puter Integrated Manufactur ing Systems).
To attain this ambitious objective, re search and experiments are being carried out: - T o select the most suitable instruments (dynamic simulators) and software to support the design of new productions lines o r the modification of the existing ones as well as management of the pro duction; - To find on the market the most suitable robots to carry out the different types of w ork; - To try out the most reliable sensors to guide the robots; - T o integrate the robot’s information flow with that of the design and produc tion information flow. Simulation is particularly advantageous as a support instrument for the optimization of the production process and for its control. In this light, the use of expert systems can be of considerable help due to the large number o f alternatives characterizing the problem. The choice of the most suitable robot de pends on the particular type of w o rk for which it will be used. Kalogerakis in (4) describes an interesting plan of correlation of the various robotizable processes in shipbuilding with the dif ferent types of robots and comments on their degree of application with regard to these processes, as shown in Figs I and 2. O f all the possible robotizable processes, researchers have concentrated on welding for tw o reasons: first, because it repre sents 40-60% of the labour hours required for the fabrication of a ship’s hull and, sec ondly, because manual and semi-automatic weldings form about 70-90% of the total number of welding hours. There are still some problems with regard to the use of robots in the welding field and these are the subject of research and e x perimentation. The need to carry out vertical weldings (5) involves a particular form of oscillation which is essential to obtain a welding seam that conforms to the rules of acceptability. H ow ever, this type of oscillation is diffe rent, when using T .T .A . (through the arc) sensors, from that used for joint tracking and, therefore, suitable software needs to be developed. Considerable efforts are now being made by the robot manufactur ers to develop reliable sensors which, in joint tracking, can absorb the dimensional differences always present in heavy steel w ork products between the actual and the design dimensions (5). The infrequent repeativity of the prod ucts in shipbuilding as well as the scope of maximizing the robot’s working time (arc time for the welding robot) have induced researchers to abandon on-line program ming and to aim at experimenting with off line programming. This methodology eliminates the robot’s dependence on the SenW 56STE jA A R G A N G N R 9
teaching stage as this takes place in a previ ous stage. The choice of off-line programming in volves both the identification and testing of the graphic simulator and the use of modelling and simulating softwares. The simulator’s task is to simulate the robot’s movements during the working cycle. Considerable help in reaching this aim can be given by integrating the geometrical data of the ship’s 3 D model with the weld ing parameters or by integrating the w o rk ing sequences with the geometrical data of both the w o rk cell and the robot (5).
-
-
-
-
4. New structural types A t present, the general tendency is to look for new structural solutions which will be used to advantage the integrated automa tic and robotized production systems. The new structural solutions should be such as to allow: - Simplification of the structures and blocks, designed, as fas as possible, in a uniform and unidirectional way; - Reduction and standardization of the components; - Similarity of components and, as far as possible, uniformity of size; - Improvement of access during both the intermediate working and final assembly phases of the structures. This makes
Fig. I . Type o f shipbuilding robots
SenW 56STE IA A R G A N G N R 9
movement and positioning of the ac tuators and robots for the welding and surface treatment easier; Optimization of the movement of the pieces, and minimization of the need for structures to fix and support them; The use of high productivity automatic welding systems and multiple actuators with several welding torches on the same system; Minimization of the idle run time and of the number of arc-on/arc-off, the w eld ing paths being, as fas as possible, con tinuous and straight; Elimination of any possible sources of robot-structures interference so as to guarantee the actuator arm freedom of movement.
In this light, the optimization of the struc ture is to be conceptually defined mainly in terms of production costs rather than in terms of weight saving. The increase in weight, besides being a possible consequence of a highly auto mated robotized ship production design, is also determined by tw o further important factors which allow the competitivity of a ship placed on the market today to be in creased (6): - Operative flexibility; - Reduction of the maintenance costs.
In some advanced European and extraEuropean shipyards, ships of different ty pes have been designed, characterized by some new structural solutions, particularly interesting with regard to the entire hull or parts thereof. The most impoitant common characteris tic of these structures is a great reduction of the stiffeners, which cross the main strengthening structures. Although most attention is given to an es sentially longitudinal main structure type in these new solutions, there are examples of ships with mainly transverse structures and ships for which the mainly mono-direc tional structures are restricted to single components (double bottom, side shells, decks and bulkheads). Most ship designs with new structures re fer to Production C arrie rs as this ship type is most suited to this sort of innovation. Various designs exist for this type of ship with a double hull and a longitudinal strengthening structure (7), (8), (see Fig. 3). The longitudinal strength is ensured by the bottom girders, the side girders and the double hull, whereas the transverse strength is only ensured by the double skin transverse bulkheads which are connected to the hull by means of strong stiffening rings. A ship with a double hull has also
Fig. 2. Possible shipyard uses for the different categories o f robots
|
MOST L IK E L Y
|§ ]
P O S S IB LY
□
U N L IK E L Y
313
- Possibility to install a pump system for each tank, to be situated within the rein forced bulkhead rings; - Reduction of the risk of pollution be tween the tanks as a result o f the trans verse sandwich bulkheads.
Fig. 3. Double skin longitudinal hull struc ture o f a product carrier been designed with only transverse stiffen ing elements (9). W hile structures of this kind can guarantee adequate transversal strength, achieved through strong transversal frames and co r rugated bulkheads, there could be some doubt about the longitudinal strength which is entirely ensured by the double hull and a corrugated bulkhead situated on the centerline. Although the design is high ly unconventional due to the complete absence of longitudinal strengthening ele ments, building permission has been ac quired by European, South American, Chinese, Japanese and the Republic of Korea shipyards. In particular, the Burmeister & W ain shipyards are building a number of these ships, some of which have already been completed and are in service (9) (see Fig. 4). Product carriers with a non-conventional double hull structure enable a reduction of production costs to be combined with the following advantages in term s of perfor mance and operational costs: - Easy cleaning of the cargo tanks due to their smooth surfaces; - Reduction of the painting and mainte nance costs, which are particularly high for ships carrying either chemical or food products; - Improved thermal insulation essential fo r the transport of materials at a con stant temperature; - Ship, cargo and environmental safety in the event of a collision or grounding; - Use of the hull cofferdams for the segre gated ballast;
Fig. 4. Double skin transverse hull structure o f a product carrier fc
J
0 °
0 0
à 6
V
m 1
o
IF
314
o
o r vy K- A0 !
\
0 0 y ij
v At*
Ja \
\
op
oo
The ship designs which have been discus sed in this chapter more o r less meet the requirements of an 'integrated automatic robotized ship production’. The structures are both simple and repetitive, therefore it is possible to obtain single pieces similar to each other or of the same size. They allow easy handling, automation of the position ing, assembly, welding and welding inspec tion, thus ensuring a high standard of w ork. The concept usually adopted of structural disuniformity or rather strength uniformi ty, taken to extrem es, can allow a high op timization of the structures in terms of weight, but create single o r non-repetitive structural elements. This clashes with the automated or robotized production systems.
5. Italian shipbuilding experience 6 o
L A t’L L ''
0 ... •
The concept of mainly longitudinal ship structures is also extended to other ship types. The design of these new types of structure has however led to a weight in crease varying from 7% for naval vessels to 10 - 15% for product carriers. Their advan tages relate both to the aspects of produc tion and to those of operation and mainte nance. On the other hand there are some other problems connected with discontinuities among the various structural components (bottom, sides, etc.) and therefore par ticular care is needed with regard to the scantling so as to ensure a low level o f both static and fatigue stresses ( 10).
oo
p
op
op
0
00 000J
Fincanctieri is carrying out a research pro gram which aims, on the one hand, to study a 'high degree flexible automation inte grated production system’ and, on the other, to design new structural types suit able for a more efficient use of this ad vanced system. The research concerning the new produc tion system has been planned according to
the phases shown in Fig. 5. The feasibility study of the single phases has been accom plished. The following phases are under development: - Trials of a robotized welding cell; - Off-line programming system; - Production lines schedules using an e x pert system; - Production line malfunction diagnosis using an exp ert system; - N ew production line design using an e x pert system. The encouraging results of the feasibility studies have led to a parallel development of a first hypothesis of robotized produc tion lines shown in Figs. 6 and 7. A s far as the subassembly production line is concerned, in which small-size, light weight and repeatable pieces are handled, automation and robotization are more widely extended and manual w o rk is not utilized. Automation and robotization
Fig. 5. Research program for the develop ment o f robotized systems concern not only welding, but also han dling and assembly. The result of the study shows that a pro ductivity gain of 60-70% is possible. A line of this nature will introduce and effective quality and dimensional control that will produce considerable savings in subse quent assembly operations. O n the panel-line and block-line, auto mated welding is more widely extended than robotized welding because multiple dedicated welding plants in a w o rk station are more productive than a single robot or a small number of robots. Besides they do not need programs. On these last production lines, only the light-weight piece handling is robotized and manual w o rk is more widely extended. It was found that on these lines savings in the manhour consumption in the order of up to 40 to 60% could be achieved de pending on the accuracy that can be at tained in fabrication and subassembly as well as the type of ships to be built. O n the basis of present experiences and studies carried out, one can assert that, SenW 56STE jA A R G A N G N R 9
FFO N S H F H O P L A T tS CUMHA ANA N U A K IM A STA TIO N
'0 '*A&T/OHOL WG*47V« j u js
it
H o v tsn o
F )
N M A S SLM B U lS F IN IS M IN B
® © ©
S U B A S £ C H a ilE S A SSEM B LIH B STATION (TRAD ITIO N AL M O W UNO OF S T IF F C N C R S AMO S V B S u A A S S C M & lltS )
WORM
U N S F IC D IH C
STATION
S IIB A S S S M S L IL S W C LO m i STATION ( 2 * * ST E P ) (F IN IS M IN B tO BOTIZCO w i l d i n b s t a t i o n )
MOON TINS AMO W U C H S S TA T IO N ( l " S T S p ) (hOONTIHS AHA t o t o r n t s WIlDIMO OF F A R A U IL S T IF F tM C U )
FINISCHINO AMO CONTROL STATION ( t r a d it io n a l s y s t e m s )
LO AD O U T S TA T IO N
Fig. 6. Sub-subassembly and subassembly line
Fig. 7. Panel/block line owing to the product characteristics, the production lines in shipbuilding can be thought of as mixed lines {manual, auto mated and robotized) in which robotization can play an ever more important role depending on sensor and software de velopment.
6. Conclusions From what has been discussed in this pa per, it seems that production methods will move, more and more in the near future, towards automated and robotized systems integrated with C A D /C A M systems. The author believes that the future of the shipbuilding industry is linked to the pro gress of these innovatory systems as, by using them, it is possible to considerably reduce labour costs. These are, at present, particularly high and are a determining fac to r when comparing production costs in the European shipbuilding industry with those in developing countries. SenW 56STE JA A R G A N G N R 9
The achievement of such a result, together with the certainty of being able to supply a highly desirable product from a technolog ical point of view, can determine the re covery of the national shipbuilding indus try ’s competitivity. The design of non-conventional struc tures, conceived in relation to these inno vations, can render more efficient the use of these systems.
( 5)
( 6)
( 7)
References ( I ) Weiers, B. T.: T h e Productivity Problem in U.S. Shipbuilding’ Journal of Ship Pro duction, February 1985 ( 2) Price, R. A .: ’Process Lanes Feasibility Study’ Maritime Administration, June 1980 ( 3) IIT Research Institute: 'Japanese Technol ogy that Could Improve U.S. Productivi ty’ Maritime Administration, June 1980 ( 4) Kalogerakis, J. M.: ’Robotics and FAST (Flexible Automation in Shipbuilding Technology)* North East Coast Institu
( 8)
( 9)
(10)
tion of Engineers and Shipbuilders, Vol. 102 No. 3, Newcastle, February 1986 Cataldo, P.: 'Welding Robots in Shipbuilding-Experience and Future Implementa tions in Italian Shipyards’ Joint ESPRIT CIM-Europe Workshop, Bilbao, June 1987 Skaar, K. T . : ’How low can steel weight go with safety and economy?’ Third PRADS International Symposium, Trondheim, June 1987 Okamoto, T. et Al.: ’Strength Evaluation of Novel Unidirectional-Girder System Product Oil Carrier by Reliability Analy sis’ SNAME Annual Meeting, New York, 1985 laccarino, R. - Porcari, R.: ’Double Hull Product C arrier Design’ C E T E N A Re port to be published Burmeister & Wain: ’W orld’s Best Pro duction Tanker’ Marine Engineers Re view, January 1986 Camisetti, C. - Cataldo, P. et A l.: ’New Structural Ship Types for a More Effective Use of Robotics in Ship Production'
315
MariChem89 RAI Congress Centre Amsterdam D ecem ber 6-8, 1989
W ednesday, D ecem ber 6 Session 1 LEG ISLA TIO N A N D R EG U LA TIO N
New safety legislation and port safety D r. D.S. A ld w in ckle , Principal Surveyor, Lloyd's Register of Shipping, UK
C hairm an: P. Bergm eijer, Head of M arine Environm ent ana Cargo D ivision, Directorate G eneral of Shipping and M aritim e Affairs, R ijsw ijk, The Netherlands
Session 3 TANK C O N TA IN ER S AND R O A D TANKERS (1)
Key factors affecting the distribution of bulk chem icals in the nineties, P R. C ooke, D irector, Cooke and Associates, Farnham , UK M A R P O l 73/78 - fulfilm ent of expectations or disappointm ent. Experience gained in the fe d e ra l Republic of G erm any, P. Ehfers, President, Germ an Hydrographic Institute, Ham burg, G erm any FR The legislative and regulatory im plications of vapour control from tankships, R .T. M atthews, President, M atthews Consulting and C o nstruction, In c., Frederick, M D , USA and Technical Secretary, C h em ical Carriers A ssociation, Paramus, N |, USA The im plem entation of optional A nnex III of M A R P O L 73/78 with Am endm ent No. 25-89 through the International M aritim e Danger ous Goods (IM D G ) C o d e, Captain H. W ardelm ann, Head, Cargoes Section, IM O . London Deja vu ... again: carriers confront another com prehensive liability schem e with an HNS C o nven tio n, A .P . O ln e y, Partner, Le Boeuf, Lamb, Leiby & M cR ae, Washington D .C . An overview of the US Coast G uard ’ s efforts to update its m arine term inal regulations, K J.S z ig e ty , Project M gr, W aterfront Facility Project, US Coast G uard , Washington D .C .
Thursday, D ecem ber 7 Session 2 O P ER A TIO N S A N D SAFETY (1) C hairm an: R .|. Lakey, President, Robert J. Lakey & Associates, In c., Houston, Texas, USA Concentrations of chem icals in the North Sea due to discharges from chem ical tankers, N. H urford, Principal Scientific O ffice r, W arren Spring Laboratory, Stevenage, UK Cargo tank washing tinder M A R P O L A nnex II - opportunities ana lim itations, |.B . Riksheim , D irector, D e l norske Veritas, O slo , Norway The practical im plications of the carriage of an A nnex II Category ‘A ’ cargo for the ship o w n e r, operator and ports in volved , Capt. N.J. Snow den, D irector, Snowden M cLeod & Associates Ltd., W inchester, UK Tan ker cleaning in the w o rld ’s biggest inland harbour - m odern techniques for slop treatm ent, L.W , Klub escheid t, M anager, IUG Innovative U m w elttechn ik G m b H , Essen, G erm any FR C hem ical lankship design in the light of cu rren t regulatory requirem ents, Capt. N. Christiansen, O perations M anager, C hem ical Tankers of A m erica, In c., and R.J. Lakey, President, R o b e rt). Lakey & Associates, Inc., Houston, Texas, USA
Chairm an: Lt. C d r. P .C .O Ie n ik , Regulatory O ffice r, US Coast G uard, Washington D C Dom estic tank container activity in the United States, M .S. Kostolich, Union Pacific Railroad, O m aha, USA C hem ical distribution in the post-1992 European Co m m un ity: new opportunities for the efficient road tanker operator, M .J. Boddington, D irector, Tankfreight Lim ited, Harrogate, UK A form ula for growth - the need for increased international cooperation on tank container standards, W . Freson, M anager, BLC & Dry Cargo Procurem ent, Exxon Chem ical International In c., Belgium G ro u p discussion on the pa pers, m od erated by M . C o rk h ill, E dito r, Hazardous Cargo B u lletin ', Lo n d o n .
Session 4 EM ISSIO N /V A P O U R C O N T R O L Chairm an: R.J. Lakey, President, Robert J. Lakey & Associates, In c., Houston, USA V O C control strategy in the N etherlands, R .A . H ulscher, Engineer, M inistry V R O M , Leidschendam , The Netherlands Emission - an econom ic and legal crossroads, F.B ra cke, Research and D evelopm ent M anager, SGS Depauw & Stokoe n .v., Zelzate, Belgium New developm ents in vapour-handling systems, |.W . U ijlen b ro ek, Senior Process Engineer, Badger B .V ., The Hague, The Netherlands Vapor C o n tro l: technological and regulatory developm ent in the United States, C d r. R .W . Tanner, C h ie f, Hazardous M aterials Branch, US Coast Guard, W ashington D C G ro u p discussion on the papers
Friday, D ecem ber 8 Session 5 TANK C O N TA IN ER S AND R O A D TANKERS (2) Chairm an: J. H ookham , M anager, Hazardous Cargo Services, Freight Transport Association, Tunbridge W ells, England U nited States regulations on portable tanks: m ajor revisions to harm onise with international standards, Ll. C d r. P.C . O le n ik, Regulatory O ffice r, US Coast Guard, W ashington D C Daily problem s encountered in the Port of Rotterdam w ith chem ical tank containers and road tankers: what shippers and operators must do to red uce hazards. Speaker to be announced
-O N F ER E N C E PRO GRAM M E
V
Applying restrictions to the carriage of dangerous goods on certain roads with special reference to tunnels, I.A .M y h re , Transport Specialist, Statens Vegvesen V egdirektoralet, O slo, Norway Swop tanks - transportation and safety considerations, H. G erh ard , M anaging D irector, W esterw alder Eisenw erke Gerhard G m bH , W eitfeld/Seig, Germ any FR Tank cleaning and wastewater treatm ent - a matter of cleanness and environm ental protection, P. Sump, G ro up Co ord inator, Environm ental Services, Hoyer G m bH , Ham burg, G erm any FR To licence m anufacturers or not to licence m anufacturers? P .H .B efl, M anaging Director, Consani Engineering (Ply) Ltd., Elsies River, Republic o f South Africa G ro u p discu ssion on the papers
Session 6 O P ER A TIO N S A N D SAFETY (2) Chairm an: G . M cG u ire , D irector, The C entre for Advanced M aritim e Studies, University of Strathclyde, Edinburgh, Scotland D evelopm ent of inform ation systems for supporting decisions on em ergency response to chem ical spillages, I. H eideb rink, Systems Engineer, TN O - Departm ent of Industrial Safety, A peldoorn, The Netherlands The curren t and future effect of ISO 9000 on chem ical shippers, V.N . Lucas, M anager, Q uality Assurance D iv., Caleb Brett Services Ltd., Chelm sfo rd, U K G ro u p discu ssion on the papers
Session 7 T EC H N IC A L DEVELOPM ENTS Chairm an: T .R . Farrell, Lloyd’s Register of Shipping, London Submerged pumps for chem ical carriers latest designs for future requirem ents, T . M ohn, M anaging D irector, Frank M ohn A /S, Nesstun, Norway A com prehensive answer to d ifficu lt tankcleaning, |. Langhorn, M anaging D irector, Kirlan Engineering ApS, R odovre, Denm ark Tank coatings - the latest technology, D r. Ir. Th .R e in ts Bok, Sigma Coatings B.V., M arine Division, U itho orn , The Netherlands The factors in flu encing ventilation and drying of epoxy coated cargo tanks, O .B . Sorensen, Engineer, T ech . Service D ep t., ).C . Hem pel Holding A /S, Copenhagen, Denm ark New cladding materials for the transportation of aggressive m edia, H .E n o ck l, H .O rn ig , R .P Iesh ko and R .Sch im b o ck, V o e st-A lp in e Stahl G m bH , Linz, Austria D uplex stainless steels in chem ical tankers: properties and practical e xp erie n ce, B. Leffler, Head, Product Developm ent Departm ent, Avesta A B, Degerfors, Sweden M aterial properties of a new high-strength austenitic stainless steel for chem ical tank vessels, D r.ln g . W . H eim ann, Stainless Steel D ept., Thyssen Edehlstahlw erke A G , Krefeld, Germ any FR
■REGISTRATION* We wish to m ake C o n fe re n ce Registration(s) f o r delegate(s) and enclose our cheque f o r .................................... made payable to Gastech Ltd. C o nferen ce fee; before A u g u st7, 1989: £350.00 (D fl.1300.001, after August 7, 1989: £380.00 (D fl.1400.00), or equivalent in otner cu rren cies; includes C o nferen ce Papers, 2 lunches, 2 evening receptions and full C o nferen ce.do cum en tatio n. Delegates w ho w ill attend (please prin t): Name
................................................................................
Title ..................................................................................... Name
A 4
O fficial C a rrie r: KLM ... Address ..................................................................................... .........................................................................................................
................................................................................
Title .....................................................................................
Te l:
Com pany ........................................................................
Fax .
.T lx
...............................
Please com plete and return with you r cheque made payable to Gastech Lim ited to: M ariChem Secretariat 2 Station Road Rickm answorth Herts W D 31Q P U K T e l: R ickm answ orth (0923)776363 Fax:(0923)777206 Te le x: 924312
SEW
VLOEIBAARCAS TANKER ’PRINS JOHAN WILLEM FRISO’ door D. van der W erf Op 23 mei 1989 vond na een geslaagde proeftocht de overdracht plaats van vloeibaargas/chemicaliën tanker PRINS JOHAN W ILLEM FRISO. Deze tanker is eigendom van rederij ANTHONY VEDER te Rotterdam en werd gebouwd door scheepswerf BARKMEIJER STROOBOS B V. Dit was het eerste nieuwbouw schip dat bij de buitendijkse assemblage w e rf'FRISIAN SHIPYARD’ te Harlingen werd gebouwd. De PRINS JOHAN W ILLEM FRISO is de 5-de vloeibaargas tanker in de vloot van deze rederij. Het schip wordt bevracht door UNIGAS b.v. te Rotterdam. UNIGAS is een pool van reders welke vloeibaargas-transporten verzorgt
SCHEEPSW ERF BARKMEIJER STROOBOS B.V. is een kleine scheepswerf in het Noorden des lands. Deze werf laat zien hoe groot een klein bedrijf kan zijn. Toen alom de scheepvaart en scheepsbouwindustrie zich op een dieptepunt bevonden, nam de w erf het initiatief voor de bouw van een grote buitendijkse assemblagehal te Harlingen, welk ini tiatief is gerealiseerd in samenwer king met twee collegawerven. Na voltooiing van deze werkplaats bleek dat deze ogenschijnlijk riskante onderneming maar al te juist haar rechtvaardiging vond. De mogelijk heid om ingewikkelde grote schepen in een overdekte bouwplaats te kun nen assembleren, beantwoordde aan een behoefte. Op 16 januari 1988 verwierf SCH EEPSW ERF BARKMEIJER de op dracht voor de bouw van een zeer spe ciale gastanker, de PRINS JOHAN W ILLEM FRISO, voor rederij ANTHONY VEDER GAS CARRIERS B.V. te Rotterdam.
A LG EM EEN
snelheid 14 knoop, Hoofdmotor 3960 kW
M A C H IN E -IN S T A L L A T IE
De gastanker PRINS JO H A N W ILLEM FRISO is een enkel schroef motorschip met een totale tankinhoud van 4219 m .
T an k inhouden:
In het achterschip is de machinekamer geïnstalleerd en als volgt ingericht:
Het schip kan ladingen vervoeren met een temperatuur tot — 104°C en een maxi mum druk van 4,5 bar. Er is accommodatie voor 14 personen waarvan 3 reserve ver blijven. H et schip is in Nederland geregi streerd en voldoet geheel aan de voor schriften van de Nederlandse Scheepvaart Inspectie.
Hoofdafmetingen: Lengte o.a. 97,39 m. Lengte l.l. 91,40 m, Breedte op de spanten 15,80 m, Holte tot het bovendek 9,00 m Diepgang maximum (V .C .M .) 6,60 m, Draagvermogen (onge veer) 4650 mt, Tonnage 4000 gt, Dienst SenW 56STE jA A R G A N G N R 9
Ladingtanks 100% (I x 2020m 3 + I x 2 199m 3) Brandstof M D O Brandstof H FO W aterballast D rinkw ater Gasolie Smeerolie
4 2 l9 m 3 161 m3 441 m3 I 2 l7 m 3 Il7 m 3 I2 m 3 15 m3
Classificatie: H et vaartuig is gebouwd volgens de regels en onder toezicht van B U R E A U V ER ITA S + 3/3 E Liquid Gas Tanker - 104°C, type II, Iceclass IB, A U T , MS en de Nederlandse Scheepvaart Inspectie O + wachtbezetting, onbeperkte vaart. O o k voldoet het schip aan de U S C G & IMO regels.
Voortstuwingsinstallatie: De voortstuwingsinstallatie bestaat o.a. uit een niet omkeerbare hoofdmotor, fabri kaat S U L Z E R type 6ZA40S met een maxi mum vermogen van 3960 k W bij 510 omw./min; het is een 4-tact m otor in L uit voering, met een cilinderboring van 400 mm en een slag van 480 mm. De turbooplader is van het fabrikaat A B B type VTR454, de regelateur is een hydraulische, fa brikaat W oodward type PG A 58. De mo to r is met een elastische koppeling ver bonden met een tandwielreductie, deze is van het fabrikaat Tacke type HSU - 850 D, met een vertraging van 3 ,4 :1. Deze tand wielreductie is gekoppeld aan een verstel317
thermostatische regelaar. In de smeerolietoevoerleiding is een automatisch terugspoelfilter en een tell-tale filter ge plaatst fabrikaat Boll & Kirch. V oor het rei nigen van de smeerolie zijn er 2 Alfa-Laval separatoren geïnstalleerd, I voor de hoofdmotor type W H P X 407 en I voor de hulpmotoren type W H P X 303. De tandwielreductie tussen de hoofdmotor en de
fig. I. Hulpmotor bare schroef fabrikaat Lips. Het schroeftoerental is 150 per minuut, en de diame te r is 3900 mm. Voor de schroef zijn boven hart as, nozzles aan de scheepshuid gelast.
Hulpmotoren: In de machinekamer zijn 2 S U LZ E R hulp motoren geïnstalleerd van het type 6-S-20 met een vermogen van 780 kW bij 900 omw./min. Op het hoofddek aan BB zijde is de nooddynamokamer geïnstalleerd, de motor is een Volvo-Penta met een verm o gen van 122 k W bij 1800 omw/min.
verstelbare schroef heeft een aangebouw de smeeroliepomp, e r is als reserve een elektrisch gedreven stand-by pomp.
Brandstofsysteem:
Overige werktuigen:
H et brandstofsysteem voor de hoofd- en hulpmotoren in de machinekamer is ont worpen voor het verstoken van brandstof tot IF 380. Er zijn 2 H FO dieptanken mid scheeps en 2 M DO dieptanken voor. De H F O dagtank en de H FO settling/overvloeitank zijn op het tussendek aan BB zij de vrij van de scheepshuid geïnstalleerd, de inhoud van elke tank is 17,3 m 3. Er zijn 2 brandstof trimpompen, elk met een capa citeit van 8,4 m3 per uur met een opvoerhoogte van 30 m. Een voor H FO en een voor M D O , beide pompen zijn reserve voor elkaar, de pompen zijn van het fabri kaat IMO type A CG -045. V oo r het separeren van de brandstof zijn er 2 Alfa-Laval separatoren geplaatst, I FO PX -605 Alcap en I W H P X -4 05 , als stand-by is er een automatisch brandstoffilte r van Boll & Kirch voorzien. Het toevoer brandstofsysteem is met 2 circulatiepompen en 2 boosterpompen uitgevoerd, de circulatiepompen hebben elk een cap. van 3,6 m 3 bij een druk van 6 bar, elke boosterpomp heeft een cap. van 4,5 m per uur bij een druk van 6 bar. In het brandstoftoevoersysteem is een automatisch brandstoffïiter geplaatst van het fabrikaat Boll & Kirch. In het brandstofboostersysteem is een viscorator fabrikaat Elva type EVM-2 geïnstalleerd. E r is een IT T -V A F verbruiksmeter typ e j 5025.
Er zijn 3 algemene dienstpompen elk met een cap. van 120 m3 per uur bij 50 m opvoerhoogte. Deze pompen doen ook dienst als brandbluspompen. A ls noodbrandbluspomp is e r een pomp met een cap. van 40 m per uur met een opvoerhoogte van 40 m. E r zijn 2 hoofdzeekoelwaterpompen elk met een cap. van I 30 m 3 per uur met een opvoerhoogte van 25 m. A ls haven-zeekoelwaterpomp is er een pomp met een cap. van 80 m3 per uur met een opvoerhoogte van 25 m. Vervolgens zijn er 4 zoetkoelwaterpompen, 2 lage temperatuur- en 2 hoge temperatuur, elk met een cap. van 90 m 3 per uur met een opvoerhoogte van 40 m. O o k zijn e r 2 startlucht compressoren en 2 startlucht
fig. 2. Separatoren
vaten, elke compressor heeft een cap. van 47 m3 vrij aangezogen lucht per uur met een einddruk van 30 bar, de startluchtvaten hebben elk een cap. van 7 10 liter. De compressoren zijn van het fabrikaat Sperre. V oor werklucht/stuurlucht is er een Atlas-Copco compressor met een cap. van 50 cub.m. vrij aangezogen lucht met een einddruk van 7 bar. De luchtdroger en waterafscheider zijn ook door Atlas-Copco geleverd. E r is een oliegestookte thermi sche olieketel met een cap. van 400.000 k.cal. per uur en een afvoergassenketel met dezelfde cap. De thermischeolie w ordt gecirculeerd door 2 A lw eiler pom pen elk met een capaciteit van 20 m3 per uur en een opvoerhoogte van 70 m. De thermischeolie ketels zijn van het fabrikaat Konus type KV-0.315 en AKV-04/4 voor de afvoergassen ketel. De olie/water separator heeft een cap. van 1000 liter/uur en is van het fabrikaat Fram type CPS-5. O o k is e r in de machinekamer een sewage plant voor de W C - en wastafelafvoeren geplaatst. Vervolgens zijn in de machinekamer 2 zeewaterpompen geïn stalleerd voor het verwarmen van de la ding, dit in verband met de tankinstallatie aan de wal. V oor het produceren van inertgas is e r een Smit-Ovens installatie met een cap. van 360 m3 gas per uur. V oor het comprimeren van het inertgas is e r een verticale Ingersoll-Rand compressor opgefig. 3. Werkluchtcompressor
fig. 5. Ladingtanks bij inbouw
Sm eeroliesysteem : V o o r de voortstuwingsmotor zijn er 2 smeeroliepompen elk met een cap. van 60 m3/uur met een druk van 6 bar, I van de pompen is automatisch stand-by. De smeerolie w ordt gekoeld door een zee w ater gekoelde pijpenkoeler waarbij de temperatuur geregeld w ordt door een 318
SenW 56STE jA A R G A N G N R 9
fig. 4. Stuurmachine steld met een druk van 5 bar. E r is een zoetw ater hydrofoor installatie en een warm watervat voor w ater naar de kom buis, de wasplaatsen en de toiletruimten. De machinekamer is geïnstalleerd door de firma W olfard & Wessels.
geplaatst. Deze lieren worden elektrisch/ hydraulisch aangedreven en op het ach terdek zijn 2 verhaallieren. Als verhaallieren is de trekkracht 5 ton bij 10 m per min. inhaalsnelheid. De lieren zijn door Ten Horn geleverd. Bij het laadstation zijn aan SB en BB een slangenkraan met een hijs vermogen van 1, 5 1. aangebracht, deze zijn geleverd door Marlift. Op het achterdek aan SB zijde is een kraan geplaatst met een hijsvermogen van 4 ton geleverd door Verhoef. In de voorpiek is een boegschroef gemon teerd met een vermogen van 275 kW , de
D E K W E R K T U IG E N EN S T U U R M A C H IN E : Op het voordek zijn 2 anker/verhaallieren fig. 6. Ladingpomp-aandrijving
OH, siViOKiNG
In het voorste ruim is een cilindrischetank geplaatst met een inhoud van 2020 m3, in het ruim daar achter is een be-lobed tank geplaatst, dit is een tank bestaande uit 2 cilindrische tanken tegenelkaar gelast met een versterkt vlakschot in de lengte van de 2 tanken, deze tweelingtank heeft een to tale inhoud van 2 199 m .
fig. 7. Ladingpomp schroefdiameter is 990 mm. De stuurma chine is van het fabrikaat Frydenbo type HS 90 - 02, gekoppeld aan een flaproer ont w erp Heinz-Hinze en in licentie vervaar digd door de firma Rekab Groningen BV.
A C C O M M O D A T IE : De accommodatie is ondergebracht in 3 deklagen en is als volgt ingedeeld. O p het onderbrugdek zijn de verblijven van de gezagvoerder, de H W T K , de Ist stuurman, de 2de W T K en het scheepskantoor. Op het boventussendek zijn de ver blijven voor de 2de stuurman, de 3de W T K , drie I persoonshutten, I reservehut en de mess-room voor de officieren. O p het hoofddek is het verblijf van de kok, I reserve hut, de kombuis, de proviandruimten, de mess-room bemanning, de la ding controlekamer en de wasserij. In het stuurhuis is een hut naast de radiokamer voor de loods en eventueel de radio offi cier. Elke hut is voorzien van een toilet ruimte met daarin een W C , een wastafel en een douche. De accommodatie is vo o r zien van airconditioning en de toiletruim ten van afzuigventilatie.
L A D IN G IN S T A L L A T IE : Algemeen De installatie is ontworpen voor het ver voeren van de volgende produkten met een verzadigde druk tussen I en 5,5 bar, de verzadigde temperatuur is tussen + 46°C en - 104°C. Vloeibare gassen: ethylene, ethane, propaSenW 56STE jA A R G A N G N R 9
Ladingtanken:
In de voorste tank zijn 2 elektrisch gedre ven ladingpompen langsscheeps geplaatst, in de achterste ladingtank is I pomp aan SB-zijde en I pomp aan BB-zijde gemon teerd. Elke pomp heeft een capaciteit van 150 m3 per uur bij een opvoerhoogte van 120 m. Om het mogelijk te maken warm gas te verpompen is er een boosterpomp met een capaciteit van 240 m3 per uur met een opvoerhoogte van 120 m. E r is een
E L E K T R IS C H E IN S T A L L A T IE : De elektrische installatie w ordt gevoed door 3 dieselgedreven generatoren en I P T O generator: 2 draaistroomgeneratoren cap. elk 910 kV A 3 ph.440 V.60 hz.900 omw. per min. I draaistroomgenerator aangedreven door de voortstuwingsmotor via een P T O aan de Reductiekast met een vermogen van 1500 kVA .3 ph. 440 V.60 Hz. 1200 omw. per min. I draaistroomgenerator (nooddynamo) cap. 152 kVA 3 ph.440 V.60 Hz. bij 1800 omw. per min. Er is een 2 en 3 ph.systeem 440 V.60 Hz voor krachtstroom en een 220 V.60 Hz systeem voor verlichting en kleine moto ren, vervolgens is er een 24 V. ge lijkstroom systeem voor navigatie, nood verlichting en alarmsysteem.
ne, butane, propane/butane mengsel, am monia, propylene, butadiene, butylene en VCM . Chemicaliën: propylene oxide, isoprene monomer, acetaldehyde, diethyl ether, dimethylamine, isopropylamine, monoethylamine en vinyl ethyl ether. E r is I ladingcross-over op het laadstation.
fig. 8. Gascompressor laadstation ongeveer midscheeps met aan sluitingen aan SB enBB zijde, de vloeistof aansluiting is 0 200 mm en de gasretour aansluiting is 0 150 mm. De ladingtanken zijn ontworpen voor ladingen met een maximum s.g. van 0,97 ton/m3. Bij het laadstation is aan beide zijden een slangenkraan met een hijsvermogen van 1,5 ton SW L.
Lading reliquefaction: Voor het opnieuw vloeibaar maken van 3 Ï9
het afgekookte gas is e r midscheeps een gasdekhuis gesitueerd waarin de volgende installatie is ondergebracht. Er zijn 2 Sulzer type 2 K I6 0 -2 H olievrije gascompressoren elk met een vermogen van 260 kW bij 590 omw./min. en er zijn 2 freon R22 schroef compressoren geïnstalleerd van het fabri kaat Mycom type F250 M G-HE elk met een vermogen van 263 k W bij 3560 om w ./ min. V erder zijn e r 2 freon R22 condensers 2surgedrum s, I LP G /N H 3 condenseren I ethylene condenser.
centrifugaalpompen in de machinekamer zijn van het fabrikaat Svanehoj.
dek. De brandblusmiddelen zijn geleverd door de firma van Rijn.
BR A N D BLU S & R E D D IN G S M ID D E L E N :
N A U T IS C H E & N A V IG A T IE U IT R U S T IN G :
H et schip is uitgerust met een gesloten vrijeval reddingsboot voor 18 personen.
In het stuurhuis zijn de volgende instru menten geïnstalleerd: Racal-Decca ARPA-S 2690 BT. Racal-Decca RM 2070/6BT. Sait EB Saturn 3S Satcom. O K I type O F 3 telefax. Sait T X / R X TR P 8400S radio station. Racal Decca Navtex 2 telex ontvanger. Skipper/Simsad ED 161 echolood. Racal Decca EM - I log. M K 5 A P navigator. Magnavox M X 4102 satellite navi gator. Koden Loran C -L R 7 7 1 navigator. Skanti R 6020 watch receiver. Skanti 3000/C V H F (2x). Koden KS 525 direction finder. Sperry SR 220 gyro compass. Racal Decca DP 550 G autopilot. Simrad/Taiyo T F 733 w eather fax.
De installatie is zo ontworpen dat het mo gelijk is een volle lading ethylene van — 98' C in 24 uur naar — 102°C aftekoelen.
Diversen: Elke tank is voorzien van een dome waar de diverse pijpdoorvoeringen in zijn aan gebracht. O p de dome is een toegangsluik naar de tank, 2 gestuurde veiligheden, deze veiligheden kunnen afgesteld worden op
fig. 10. Tankdome Voor het blussen van brand in de machine kamer en de gascompressorkamer is een Halon 1301 installatie geïnstalleerd. Op het hoofddek t.p.v. het lading gedeelte is een poederbrandblusinstallatie en een watersproei installatie gemonteerd, evenals op het frontschot van de accommodatie; ook zijn e r de nodige handblussers en brandslangaansluitingen zowel in de machi nekamer als in de accommodatie en aan
Tegen het stuurhuis frontschot is de con sole geplaatst voor de besturing en de be diening van de voortstuwing, aan SB achter is de kaartentafel, daarachter de radiohut, De nautische installatie is geleverd door IN A. fig. I I . Druk- en temperatuurmeters
fig. 12. Besturingsconsole
fig. 9. Freon 22 compressor de volgende tankdrukken, 4.5 alt 3.2 alt. 0,5 bar. Per tank is er een peilinrichting ge monteerd voor lokale en afstand aflezing, de meeste leidingen op de dome zijn vo o r zien van 2 afsluiters, I lokaal bedienbareen I hydraulische op afstand bedienbaar, de persafsiuiters aan de pompen alsook de af sluiters aan het laadstation zijn op afstand bedienbaar. O p het hoofddek is per tank de druk in de tank en de temperatuur afleesbaar dit is ook mogelijk in de lading controlekamer. O o k is in de ladingcontrolekamer een gas detector installatie opgesteld. Terplaatse van het laadstation is op het gasdek een warmtewisselaar geplaatst om o.a. LPG en N H 3 eventueel te verwarmen of te ver dampen. De ladinginstallatie is ontworpen door LG A , de ladingpompen en de meeste 320
SenW 56STE |A A R G A N G N R 9
£MQ
LITERATURE SW89-09-03 Verzorgd door het MIC/CMO. Ko pieën van de hier vermelde artikelen zijn tegen betaling verkrijgbaar bij: Nederlands Maritiem Informatie CentrumfCMO Postbus 2 1873 3001 A W ROTTERDAM Tel. 0 10-4130960, tst. 33
SW 89-09-01
Decommissioning and rem oval of offshore structures: a state of the art Ebdon, R. W .; Ellinas, C . P. Intern. Offshore Mechanics and A rctic En gineering (76225), 8903, I, pr-215, nrpg17, drw-4, ph-l, EN G Removal of structures from the North Sea is expected to become a reality in the 1990s. The total market for decommis sioning these structures has been esti mated at between 2.7 billion for toppling and 4.9 billion pound for complete rem ov al. Costs for removing individual large steel platforms have been estimated to be be tween 25 and 150 million pounds. The aim of this paper is to review the literature on offshore platform decommissioning cover ing areas from cutting methods through legal aspects and safety to environmental effects and lifting/removal considerations. 0620116
development of the commercial A rctic submarine from immediately after W orld W ar T w o to the present time. It presents arguments for why the various concepts proposed should be reexamined by all gov ernments and industries who are pursuing or plan to pursue development fo energy sources throughout the A rctic and ulti mately the A ntarctic regions. 0 1 12 10 1 SW89-09-06
Semisubm ersible ballast system s: a practical evaluation method
Dino, G. M.
Liles, E. G .; Tein. D .; Dai, R. Ship Technology and Research (S T A R ) Symp. (78260), 8904, pg-651, nrpg-14, gr7, tab-4, drw-4, E N G A method of analysis has been developed to cope with the new regulatory require ments, prompted by tw o major casualties: the sinking of the ’Alexander L. Kieliand’ and the ’Ocean Ranger’ semisubmersibles. Previously, ballast systems only had to meet bare minimum sizing specifications. N o w the entire system must be reviewed for purpose, redundancy, efficiency, and effectiveness. Also, the modern ballast sys tem must be able to cope with a multiplici
drag coefficient selection is presented by
Oil & Gas Jrnl (02387), 8908,87/32, p g -7 1,
ty of operational scenarios. 0630210;
reference to model tests and numerical analysis results. The design tools available for flexible riser sytems design are re viewed and the importance of the correct implementation of riser bending and axial stiffness properties is illustrated by refer ence to riser analysis within the Riflex program. 0630326
nrpg-5, gr-2, tab-2, drw -1, EN G C u rren t international design trends offshore are towards bigger topsides facilities, deeper w ater gravity support structures, cheaper facility and structure construction technology, and safer plat form equipment/module layouts and pro cess design. There are international e x amples that typify these four design trends. Offshore oil and gas development has grown steadily in size, w ater depth, cost, complexity, and technology since the first offshore field out o f sight of land was found in 1947 in the Gulf of Mexico. Design trends in the offshore industry have also evolved to meet the technological challenges of the day. 0630200
0161150
An assessment of flexible riser behaviour Kenison, R. C .; Farrand, A , J. Intern. Offshore Mechanics and A rctic En gineering (76225), 8903, I, pg-493, nrpg10, gr-20, tab-3, drw-3, EN G An application for flexible risers linking a turret moored tanker to subsea comple tions in the Central North Sea is pre sented. The scheme is characterised by shallow water, severe environment and high imposed riser top end motions. A ri ser system design study is outlined and the importance of flexible pipe properties and
SW89-09-02
Decommissioning and rem oval of offshore platform s and pipelines, engineering options Penney, P. W . Intern. Offshore Mechanics and A rctic En gineering (76225), 8903, I, pg-269, nrpg6, drw-3, EN G As oil and gas recources become e x hausted, associated field platform installa tions will be decommissioned and con sidered for removal in some measure to comply with impending IMO regulations and local standards. Some platforms may be allowed to remain in place while others have to be either totally o r partially re moved. Options are discussed for removal and subsequent disposal of topsides and their jacket structures as well as pipelines. Location and environment, perhaps in an ice-infested region, have important effects in determining an agreed level for de construction. N ew production schemes should incorporate feasibility of ultimate removal. 06201 16 322
SW89-09-04
Low er oil prices, safety influence offshore design trends
SW89-09-05
Les possibilités com m erciales des sous-marins en Arctique McLaren, A.S. Rev. Techn. de Navig. (02740), 8907, 37/ 147, pg-378, nrpg-14, tab-2, drw-4, p h-l, EN G The need to continue exploration for, and development of further energy resources such as petroleum, particularly within the polar regions, continues. A t the same time, it has become critically important to de velop environmentally and economically acceptable solutions for the ultimate trans port of such resources as petroleum. This paper traces the history of concepts in the
SW89-09-07
N K K T L P (Tension Leg Platform ) Sato, M.; N atsum e.T.; Kodan, N .; Ishikawa, K; Ito, S.; Tono, K. N K K Technical Review (02276), 8904,/55, pg-103, nrpg-12, gr-12, tab-3, drw-4, ph-1, EN G N K K studied T L P based on the technology gained by the experience on building of ships and offshore structures and steel making. Numerical analysis programs to evaluate T L P motion and response of structures w ere newly developed and con firmed by tank test. The motion and struc ture response of long tendon was also in vestigated. Furtherm ore N K K developed total engineering of T L P and carried out preliminary design of hull, tendon and foundation template. N K K also developed welded and threaded connector of tendon pipe. 0630213 SW89-09-08
jack-up behaviour in elevated condition: model test and com puter simulation Bennett, W . T .; Patel, R. K. Ship Technology and Research (S T A R ) Symp. (78260), 8904, pg-131, nrpg-15. gr13, tab-2, drw-6, EN G An effort was made to correlate the re sponse of a jack-up unit by computer simu SenW 56STE jA A R G A N G N R 9
lation and model test in the elevation (node. A sound correlation is established petween the computer time integration inethod and the model test results for the deterministic regular waves, and thereby giving credence to the computer inethodes utilized. Dynamic Amplification factors (D A F ) w ere evaluated for two sets of regular wave heights with varying wave periods. The D A F variation with wave periods was found to be similar to that of a classical (sharped peak at reso nance) S D O F (Single Degree of Freedom) system. The D A F values for the random waves (representing the regular waves used) w ere one-half that of the regular waves. Further, the D A F values decreased with increased significant wave heights. The interaction of wave and current as re lated to the jack-up wave dynamics is ad dressed. The importance of total damping, as well as its components, of a jack-up unit in elevated mode is pointed out and re sponse is suggested. Additionally, a simplis tic method of dynamic analysis is pre sented. 0630219
SW 89-09-09
Technical developments in explosive cutting underw ater Al-Hassani, S. T . S.; Burley, S. J.; Kishimoto, K.
Decommissioning and Removal of North Sea Structures (70695), 8904,/10, pg-l, nrpg-43, gr-6, drw-1 3, ph-1 I , EN G This paper presents a discussion on explo sive cutting for offshore applications, in particular platform removal. The results are mainly from research by the authors at UM IST. The use of linear shaped charges is highlighted and reference is made to new alternative techniques presently under consideration for the task. 0320421; 0620116 SW 89-09-I0
Design and abandonment, a designer’s view Smith, M. T .; Holmes. I. G. Decommissioning and Removal of North Sea Structures (70695), 8904,/6, pg-l, nrpg-16, gr-1, tab-1, drw-7, EN G This paper reviews the design aspects as
sociated with the removal of fixed steel offshore oil and gas platform substructures (jackets). The paper outlines the design re quirements and constraints placed on the designer at the pre-fabrication and pre abandonment phases of a jacket’s life. It e x plains why, historically, abandonment has not specifically been designed for at the ini tial design stage; and suggests ways that de signs can and should be modified at nominal cost to minimise future removal costs. 0620116
B ij bestelling van artikelen dient u het nummer van het abstract op te geven. Het eerste nummer tussen haakjes in de bronvermelding verwijst naar het door MIC/CMO gehanteerde publica tie code systeem. De bibliotheek van het Nederlands Maritiem Informatie Centrum is geopend op werkdagen van 11.00 tot 16.00 uur. Het adres is Blaak 16, Rotterdam.
t,
u M
ANCHORS & CHAINCABLES
'
24 H O U R S A D A Y - 7 D A Y S A W E E K
POSEIDON ANCHORS-CHAINS B.V. 13 NIEUWE WATERWEGSTRAAT, 3115 HE SCHIEDAM, P.O. BOX 71, 3100 AB SCHIEDAM - PHONE (0)10-4734733 FAX (0)10-4734040 - TELEX 27269 POSAC NL
Twenty-four hours a day, seven days a week, we take care of your fire-safety ^ ^ SCH M
S p e c ia liz e d in fire -e x tin g u ish in g - a n d sa fe ty e q u ip m e n t fo r m a ritim e u se . A ll b ra n d s a v a ila b le . S tric k le d e w e g 2 3 , 3 1 2 5 A T S c h ie d a m
SenW 56STE jA A R G A N G N R 9
a n
r ijn
Fee extinguishing- satei, equipment
te le p h o n e 0 1 0 - 4 6 2 6 0 7 7 , te le fa x 0 1 0 - 4 6 2 5 7 5 4 te le x 2 2 6 8 6 tb rijn n l te le g ra m R ijn m a y d a y R o tte rd a m .
323
De voordrachten op deze dag zullen w o r den verzorgd door Nederlandse experts op de betreffende gebieden. Aan de deel nemers worden de gebundelde voor drachten te r beschikking gesteld. Voor meer informatie: 070-658900
Four-day course
Tewaterlatingen Launchings
tected W aters Service, + LM C, UMS. The C A M B E C K is expected to enter ser vice in Novem ber 1989.
Trailing dredger Cam beck In August 1988, Civil and Marine Ltd., the Greenhithe-based marine aggregate mi ning company, placed an order with IH C Holland for the trailing dredger C A M B E C K . The vessel was lauched at IH C ’s Kinderdijk yard 10 July. The launching ceremony was performed by Mrs. Mau reen R. Hockliffe, wife of the Engineering D irecto r of Civil and Marine, Mr. R. J. Hockliffe. The C A M B E C K is a twin-screw trailingsuction hopper dredger with a hopper capacity of 2,700 m3. She has been specially designed for dredg ing sand and gravel from the seabed. Marine aggregate mining companies like Civil and Marine are experiencing a boom, and the C A M B E C K will contribute sig nificantly to the enlargement of the re nowned company’s fleet. The vessel is equipped with a single suction pipe, mounted on the port side. The pump is situated in the fore part and is powered by electric motors. The dredged material wili be delivered to the hopper via tw o revolving screen to w ers, permitting either sand or gravel to be loaded, or a m ixture of the two. There are tw o methods of discharge: by a wheel excavator which travels over the length of the hopper, o r via a pump-out system using the dredgepump. An emergency discharge system, comprising six hydraulically-operated valves in the hopper bottom, is also provided. The principal particulars are: Length, o.a. 99.63 m; Length, b.p. 92.85 m; Beam 16.60 m; Depth 7.30 m; Hopper capacity 2.700 m 3; Load capacity 5.636 tonnes; Suction pipe diameter 850 mm; Maximum dredging depth 32 m; Propul sive power 2x 1.558 k W ; Pow er on dredgepump (electr.) 2x i .230 k W ; Bow thruster 340 k W ; Speed 12.7 knots; A c commodation for 15 persons. The C A M B E C K supervision, and Lloyds Register 100 A I Hopper 324
is being built under the to the requirements, of of Shipping for Class "b Dredger, Extended Pro
Noise Reduction o f Machinery Installations by Vibration Isolation 23-27 O ctober 1989, Noordwijkerhout, The Netherlands. Information: Mrs. M. Zegers, T P D , P.O . Box 155, 2600 A D Delft, The N ether lands, telefax (31) 15 782811, telephone (31) 15 78 70 86.
Middag-symposium
Agenda Lasvoorlichting Het N IL organiseert op 26 september 1989 in het Congrescentrum ’De Ree horst te Ede een voorlichtingsdag over het Lassen van kunststoffen. O p de voorlichtingsdag zal worden inge gaan op de algemene problematiek van het lassen van kunststoffen, de bestaande voorschriften, de opleidingen, destruc tieve- en niet destructieve onderzoeks methoden, de meest voorkomende fouten bij het lassen, enz. O o k zal aandacht w o r den besteed aan een collectief onderzoek dat het N IL op dit moment coördineert. Met name komen de volgende materialen aan de orde: Polyetheen (PE), Polyvinylideenfluoride (P V D F) en Polypropeen (PP).
Rectification The article on the Ganges project, which appeared in the June issue of Schip en W erf, requires some corrections. The first paragraph of the Introduction should read: The project concerns a 400 km long stretch of the river Ganges, be tween the towns of Patna and Allahabad. The Ganges has very large variations in waterlevel. In the w e t season, which lasts about 2 months, the level is some 10 m higher than in the dry season, when in some places the waterdepth is less than
In een door het Nederlands Instituut voor Navigatie te organiseren middag-symposi um zal een aantal sprekers ingaan op de verschillende facetten van het terrein van de moderne brug en de daarbij behorende apparatuur, onder het thema: De brug als operationeel centrum. Op dit symposium zal ook moderne brug apparatuur tentoongesteld worden. H et symposium w ordt gehouden op 27 oktober 1989 in de Kweekschool voor de Zeevaart, Prins Hendrikkade te A m sterdam. Aanvang te 14.00 uur. Nadere inlichtingen bij het Secretariaat van het N IN t.a.v. Mevr. M. G . P. M. Meyer-Janssen Prins Hendrikkade 189 10 I I T D Amsterdam tel. 020-248504
one meter. Dredging is obviously neces sary to make the river navigable in all sea sons. In the dry season the river is meandering through a wide, flat country, large parts of which are flooded in the w et season. W hen the waterlevel falls off again it fre quently happens that the river has changed its course, that new sandbanks and shoals have appeared and that older ones have disappeared completely. In the first sentence under the heading General the words between parentheses have to be deleted. SenW 56STE JA A R G A N G N R 9
VERENIGINGSNIEUWS
Prijsuitreikingen O ok dit jaar heeft de N V TS besloten prij zen uit te reiken voor de beste afstudeer verslagen van afstudeerders van Maritieme opleidingen. Omdat er nogal wat veranderingen in dit onderwijs zijn geweest, moest ten aanzien van de prijstoekenning het een en ander aangepast worden. In 1985 is de opleiding tot Maritiem offi cier van start gegaan waarvan dit jaar in juli de eerste studenten zijn afgestudeerd. T e gelijk werden de opleiding tot Scheepswerktuigkundige (SW ) en Stuurlieden (Nav) afgebouwd. In 1988 werden de laat ste reguliere examens afgenomen voor zo wel SW als Nav. De opleiding tot Maritiem O fficier (M A R O F) is een geïntegreerde opleiding van Scheepswerktuigkundige en Stuurman met in het 4e studiejaar een spe cialisatie Scheepswerktuigkunde of Navi gatie. De eerste 3 studiejaren zijn identiek en in het 4e jaar is het technische deel voor de specialisatie Navigatie nog zeer aan zienlijk. De verwachting is echter dat de specialisatie zal verdwijnen zodat er een homogene opleiding M A RO F overblijft. De verbreding van het w erkterrein van de Vereniging maakt het mogelijk en zelfs wenselijk afstudeerscripties met een navigatieonderwerp ook voor een prijs in aan merking te laten komen. Het aantal instituten dat thans nog oplei dingen verzorgt op het Maritiem, O ff shore- of Baggergebied is nu nog zes en wel: Voor Maritiem Officier: Amsterdam, Afd. Maritieme Techniek van de Algemene Hogeschool Amsterdam, Nieuwe Vaart 5-9, Amsterdam. Terschelling, H .Z.S. ’W illem Barentsz’ van de Noordelijke Hogeschool Leeuwarden, W est-Terschelling. Rotterdam, Hoger Nautisch Onderwijs van de Hogeschool Rotterdam en O m streken, G .J. deJonghweg4-6, Rotterdam. Vlissingen, Maritiem Instituut De Ruyter van de Hogeschool Zeeland, Boulevard Bankert 156, Vlissingen. De school in Vlissingen verzorgt tevens een Algemene Operationele Techniek (AOT)-opleiding met 2 afstudeerrichtin gen t.w . Haventechnologie en Ener gietechnologie. In Den Helder w ordt thans nog uitsluitend opgeleid voor een Offshore functie naast de nieuwe richting Milieutechniek. Vanaf 1986 is in Delfzijl aan de H ZS 'Abel Tas man’ een opleiding voor de Baggerindus trie gevestigd. De eerste prijs kan echter pas het volgend jaar worden verdiend. SenW 56STE jA A R G A N G N R 9
De prijzen die werden toegekend aan de vroegere H Z S ’-en voor Scheepswerktuigkundigen te Amsterdam, U trecht en Rot terdam alsmede de H Z S ’-en te Den H el der en Delfzijl komen met ingang van dit jaar te vervallen. De prijzen die werden uitgereikt aan de afgestudeerden van de studierichting Scheepsbouw van de H TS en T H blijven bestaan met dien verstande dat ook hier diverse benamingen zijn veranderd. Deze opleidingen zijn thans: Technische Universiteit Delft; Faculteit W erktuigbouw en Maritieme Techniek; Hogeschool Haarlem, Sector Techniek; Hoger Technisch Onderwijs van de Poly technische Faculteit van de Hogeschool Rotterdam en Om streken, Oranjelaan, Dordrecht. De prijsuitreikingen hebben als volgt plaatsgevonden: Vrijdag 23 juni Afdeling Maritieme Techniek van de Alge mene Hogeschool Amsterdam. In het In ternaat van de Kweekschool voor de Z e e vaart op de Prins Hendrikkade werd de NVTS-prijs uitgereikt door de voorzitter van de afdeling Amsterdam de heer J. den Arend aan H. C . T . Nienhuis voor zijn af studeerverslag, getiteld: 'Het vervoer van zware lading'. Zaterdag 24 juni Hogere Zeevaartschool ’W illem Barendsz’, W est-Terschelling. De prijs van ƒ 1000,- w erd uitgereikt aan G. J. Eising voor zijn afstudeerverslag dat de titel droeg: ’Dieselelectrische voortstu wing’ door de algemeen secretaris. Maritiem Instituut ’De Ruyter’, Vlissingen. D o o r de voorzitter van de afdeling Z e e land, de heer J. Burlage, w erd de N VTSprijs uitgereikt aan S. P. Boudens voor zijn verslag: ’Verfbehandeling van zeeschepen’. Woensdag 28 juni Hoger Nautisch Onderwijs van de Hoge school Rotterdam en Om streken. A . Gils Hooymans ontving de prijs uit handen van onze oud-voorzitter, ing. C . W . van Cappellen voor zijn scriptie: ’H et afzinken van een Doek Express schip’. Vrijdag 30 juni Hogeschool voor Petroleum- en Gastech nologie 'N oorder Haaks’, Den Helder. De vice-voorzitter van de Vereniging, ir. J. C . Tjebbes, reikte de prijs van ƒ 1000,- uit
aan P. van Lingen voor zijn verslag: 'Friction between tooljoint and borehole w all’. Afdeling Scheepsbouwkunde van de H o geschool Haarlem. De prijs voor de beste scriptie werd hier behaald door T . J. B. Brinkel voor zijn scriptie: ’Het wijzigen van een S-spant zeil jacht in een zeiljacht met ontwikkelbare plaatoppervlakken en het ontwikkelen van een computerprogramma voor het maken van zeilprestatiediagrammen’. De prijs werd uitgereikt door ir. J. W . Brand van het afdelingsbestuur Amsterdam.
Ledenlijst De ledenlijst 1988 is uit. Nu is dit rijkelijk laat vergeleken met die van vorige jaren. E r is echter wel iets bijzonders aan de ma nier waarop deze tot stand is gekomen. Nadat alle gegevens van de leden van het oude kaartsysteem waren overgebracht naar de computer, is e r een apart pro gramma gemaakt waarmee de benodigde gegevens op een schijf konden worden ge zet die bij de drukker meteen in de zetcomputer kon worden gebruikt. Op zich zelf een enorme besparing van w e rk en minder kans op vergissingen. Voordat het echter zover was, is e r heel wat w ater door de Maas gestroomd. Zoals U mis schien al heeft geconstateerd is deze pre mière toch niet vlekkeloos verlopen. To t onze spijt bleek dat er enkele 'blokken’ van leden ontbraken in de nieuwe lijst. Hoe dit mogelijk is, hebben zelfs de deskundigen nog niet kunnen ontdekken. Ik kan U ve r zekeren dat alle ontbrekende namen wel in onze computer zitten. Z o snel mogelijk zullen we aanvullende bladen versturen met de ontbrekende namen om in de nieu we lijst te voegen. Het Algemeen secreta riaat wil zich ten aanzien van de ontbre kende leden oprecht verontschuldigen.
Ledenadm inistratie Om de ledenadministratie zo juist en zo volledig mogelijk te maken en tevens om enkele nadere gegevens te verzamelen die het w e rk van de Vereniging effectiever maken, ook ten behoeve van Schip en W erf, heeft U een vragenformulier thuis gekregen. Met behulp van U w antw oor den kunnen wij onder andere alle onjuist heden in U w gegevens verbeteren. Het is namelijk gebleken dat de gegevens op de oude kaarten niet altijd up-to-date waren omdat niet iedereen deze bij verande ringen heeft doorgegeven. Hierbij dan nogmaals het verzoek de vragenformulie ren volledig in te vullen en ze zo spoedig mogelijk, bij voorkeur voor eind septem ber, te retourneren.
Personalia Econosto De heer D. J. Koppen is teruggetreden als directeur en benoemd to t commissaris van 325
Koppen & Lethem Beheer B.V. te Waddinxveen, een onderneming die sinds vorig jaar deel uitmaakt van de Econosto groep. D e heer L. Duivesteijn is benoemd tot di recteur van Koppen & Lethem Beheer B.V., waarvan deel uitmaken: Koppen & Lethem Aandrijftechniek B.V. te Waddinxveen, Amca Servotechniek B.V. te Ten Post (Groningen) en O telec S.a.r.1. in Parijs.
W ijde Blik 50, l3 l6 K J A Im e re Voorgesteld door T . H. Smits Afdeling: Amsterdam
Elisabethstraat 1 1 ,6067 EA Linne Voorgesteld door D. van N oort Afdeling: Zeeland
Voorgesteld voor het G E W O O N L ID M A A T S C H A P E.J. H. D E C O N IN C K Maritiem officier, W interp ort Tankers Lohengrinlaan 12, 5625 E L Eindhoven Voorgesteld door D. van N o ort Afdeling: Zeeland
H .J. V E R V O O R T Hoofd algemeen vormend onderwijs/ organisatie Technische opleidingen KM Bakkummerstraat 78, 19 0 1 H P Bakkum Voorgesteld door J. Splinter Afdeling: Amsterdam
W . H. KUIJPER Maritiem officier II, Shell Tankers BV Burg. van Heusdenweg 27a, 8881 ED W est-Terschelling Voorgesteld door D. van N o ort Afdeling: Groningen
E .J. V O E T E L IN K 5e W T K Bouwen Ewoutstraat 49, 4381 PP Vlissingen Voorgesteld door D. van N oort Afdeling: Zeeland
R. WTDEN R O O Y E N SW TK Pleinstraat 19, 4126 R T Hei-en-Boeicop Voorgesteld door D. van N oort Afdeling: Amsterdam
Voorgesteld voor het JU N IO R L ID M A A T S C H A P
T . Toonen Bij Cargadoors- en Agenturen kantoren B.V. W ijnne & Barends te Delfzijl is met ingang van I september 1989 benoemd tot directeur van de vennootschap de heer T . Toonen. Na het terugtreden van de heer B. j. H. Kuper zijn de heren: M. C . Nijhoff en T. Toonen samen belast met de leiding van het bedrijf.
Ballotage Voorgesteld voor het C O M B IN A T IE L ID M A A T S C H A P PRO F. D R. IR. G . K U IP ER Wetenschappelijk m edewerker Marin Hoogleraar W eerstand en voortstuwing T U Delft Soetendaalseweg 10. 6721 X B Bennekom Voorgesteld door J. M. Veltman Afdeling: Rotterdam
Voorgesteld voor het BELA N G STELLEN D E L ID M A A T S C H A P A . V A N D U IN E N Firmant Technisch Bureau van Duinen
R. M. V A N RIJK Directeur Lijderdijk 72, 1161 K C Zwanenburg Voorgesteld door J. M. Veltman Afdeling: Amsterdam J. S C H U T Projectleider Ferus Smit BV Spoorstraat Noord 8, 9 6 0 1 A Z Hoogezand Voorgesteld door A . E. Molenaar Afdeling: Groningen E. L. H. SW ETS Maritiem officier
P. V A N D E R K R O F T Student Maritieme bedrijfsvoering, Rot terdam W . van Duivenvoordestraat 10, 4131 Z Z Vianen Voorgesteid door D. van N oort Afdeling: Rotterdam J. N . M U LD ER Student Maritieme Techniek T U Delft W arm oezierstraat 12, 2 6 13 VH Delft Voorgesteld door J. M. Veltman Afdeling: Rotterdam G . P. M. W A G E N A A R Student Maritieme Techniek T U Delft Singelstraat 15/17, 261 3 EM Delft Voorgesteld d o o rj. M. Veltman Afdeling: Rotterdam.
Moderne navigatieapparatuur
NEDERLANDSE VERENIGING VAN TECHNICI OP SCHEEPVAARTGEBIED
t
(Netherlands Society of Marine Technologists) Voorlopig program m a van lezingen en evenem enten in het seizoen 1989/1990
Buitenlucht onafhankelijke energieopwekking
di. 10 okt. Groningen w o. I I okt. Amsterdam do. 12 okt. Rotterdam
Diagnostische meetm ethoden aan dieselmotoren
door D r. Ir. C . A . Prins van de RDM w o. 13 sept. Amsterdam do. 21 sept. Vlissingen
door Prof. D r. Ir. E. v.d. Pol en L T Z T 2 O C K. Visser T .U . Delft do. 19 okt. Vlissingen w o. I 3 dec. Amsterdam
Brandbestrijding aan boord van schepen en de training daarvoor
Toepassing num erieke strom ingsleer
d o o rj. H. Tuitel en A . van Remmerden van Tech. Bureau Van Rijn BV
door D r. Ir. W . van G ent - M ARIN w o. 8 nov. T .U . Delft
326
door H. Aardse van R A D IO -H O L L A N D di. 7 nov. Groningen wo. 8 nov. Amsterdam De lezingen worden gehouden: 1. Bij de T .U . Delft in de Aula, Mekelweg 5, aanvang 20.00 uur. 2. In Rotterdam in de Kriterionzaal van het Groothandelsgebouw, Stations plein 45, aanvang 20.00 uur. 3. In Amsterdam bij het IH T N O ’A m ster dam’, Schipluidenlaan 20, aanvang 19.00 uur. 4. In Groningen in het Stadsparkpaviljoen, Paviljoenlaan 3, aanvang 20.00 uur. 5. In Vlissingen in het Strandhotel, Boul. Evertsen 4, aanvang 19.30 uur. Alle lezingen in Rotterdam en Delft w o r den gehouden in samenwerking met de afd. M arTec van het K.l.v.1. en 'William Froude.’
SenW 56STE jA A R G A N G N R 9