DAFTAR PUSTAKA 1.
Anonim, (2003), Keppres No 73/2003 tentang Perubahan atas Keputusan Presiden Nomor 89 Tahun 2002 tentang Harga jual Tenaga Listrik tahun 2003 yang disediakan oleh Perusahaan Perseroan (Persero) PT Perusahaan Listrik Negara
2.
Anonim, (2002), Petunjuk Teknis PU Pt T-16-2002-C tentang Tata Cara Pengelolaan Limbah Non Kakus (Grey Water), Departemen Pekerjaan, Umum Direktorat Jenderal Cipta Karya
3.
Anonim, (2004), SNI 06-6989.3-2004 Air dan air limbah – Bagian 3: Cara uji padatan tersuspensi total (total Suspended Solid, TSS) secara gravimetri, Badan Standarisasi Nasional
4.
Anonim, (1990), SK SNI M-48-1990-03 Metode Pengujian Kadar Amonium dalam Air dengan Alat Spektrofotometer Serapan Nessler, Departemen Pekerjaan Umum
5.
Anonim, (1990), SK SNI M-11-1990-F Metode Pengujian Oksigen Terlarut Dalam Air dengan Elektrokimia, Departemen Pekerjaan Umum
6.
Anonim, (1990), SK SNI M-70-1990-03 Metode Pengujian Kadar Kebutuhan Oksigen Kimiawi dalam Air dengan Alat Refluks Tertutup, Departemen Pekerjaan Umum
7.
Arkendita, N., & Soewondo, P., (2004), Evaluasi dan Pengembangan Kinerja Pengolahan Air Buangan Domestik dengan Sistem Pemisah”Black Water” dan “Grey Water”: Studi Kasus Biogas Digester dan Anaerobic Baffled Septic Tank di Tangerang Banten, Tugas Akhir ITB, bagian Lampiran
8.
Balai Lingkungan Permukiman, (2005), Modul C2-2: Pengolahan Limbah Rumah Tangga, diunduh dari http://www.pu.go.id/balitbang/puskim/advis_teknik/Modul%20C2%20(Lingk ungan%20Permukiman)/Modul%20C2-2%20Limbah%20Rumah.pdf, Januari 2007
9.
Benefield, L. D., & Randall, C. D., (1980), Biological Process Design for Wastewater Treatment, Prentice Hall Inc., New Jersey, Hal: 401-407
10. Bhisop, P. L, (2007), The Role of Biofilms in Water Reclamation and Reuse, Water Science & Technology Vol. 55 No. 1-2 hal. 19–26 11. Barjenbruch, M., (2007), Benchmarking of BAF plants: operational experience on 40 full-scale installations in Germany, Water Science & Technology Vol. 55 No. 8–9 hal. 91–98
97
12. Braha, A., (1998), Bioverfahren in der Abwasser-Technik: Erstellung reaktiontechniscer Modelle mittels Labor-Bioreaktoren und Scaling-up in der biologischen Abwasserreinigung, Bauverlag GmbH, Wiesbaden, hal. 82-87 13. Carrión M., A. Asaff dan F. Thalasso, (2003), Respiration rate measurement in a submerged fixed bed reactor, Water Science & Technology Vol. 47 No. 5 hal 201–204 14. Clark, T., Stephenson, T., dan Pearce, P. A., (1997), Phosporus Removal by Chemical Precipitation in Biological Aerated Filter, Water Research Vol. 31, No. 10, hal. 2557-2563 15. Constance, J., Flore, L.,Caroline, M., (2003), La biofiltration Les principaux biofiltres brevetes en France, ISIM Sciences et techniques du Languedoc, Université Montpellier II, diakses dari: www.oieau.fr/eaudoc/pdf/Les%20biofiltres.pdf tanggal 6 Nopember 2007 16. Cooper, P. F., (2001), Historical Aspects of Wastewater Treatment, di dalam Decentralised Sanitation and Reuse: Concepts, Systems and Implementation, Edited by P. Lens, G. Zeeman and G. Lettinga, IWA Publishing 17. Crites, R. & Tchobanoglous, G., (1998), Small and Decentrilized Wastewater Managemen Systems, McGraw-Hill, Singapore, Hal: 18. Eckenfelder, W., (1990), Industrial Water Pollution Control, McGraw-Hill, Singapore 19. Farabegoli, G., Chiavola, A., Rolle, E., & Stracquadanio, (2004a), Experimental study on Nitrification in Submerged Aerated Biofilter, Water Science & Technology Vol. 49 No. 11-12 hal. 107-113 20. Farabegoli, G., A. Carucci, G. Gandolfo, E. Rolle dan P. Viotti, (2004b), Experimental study on carbon removal in biological aerated filters, Water Science & Technology Vol 48 No 11 hal. 235–242 21. FDZ-Polanco, F., Mendez, E., Uruena, M. A., Villaverde, S., & Garcia, P. A., (2000), Spatial Distribution of Heterotrophs and Nitrifiers in a Submerged Biofilter for Nitrification, Water Research Vol. 34, No. 16, hal 4081-4089, Elsevier 22. Furumai, & Rittman, B. E., (1994), Interpretation of Bacterial Activities in Nitrification Filters By A Biofilm Model Considering The Kinetics of Soluble Microbial Products, Water Science & Technology Vol. 30 No. 11, hal 147156 23. Galvez, J. M., Gomez, M. A., Hontoria, E., & Gonzalez-Lopez, J., (2003), Influence of Hydraulic Loading and Air Flowrate on Urban Wastewater
98
Nitogen Removal with a Submerged Fixed-Film Reactor, Journal of Hazardous Materials B101 (2003) hal. 219-229 24. Gaulke, L. S., (2004), The History of Johkasou: On-site Wastewater Treatment and Reuses in Japan, Civil and Environmental Engineering, University of Washington 25. Gilmore, K. R., Husovitz, K. J., Holst, T., & Love, N. G., (1999), Influence of Organic and Amonia Loading on Nitrifier Activity and Nitrification Performance for A Two Stage Biological Aerated Filter System, Water Science & Technology Vol. 39, No. 7, hal. 227-234 26. Goncalves, R. F., (2007a), Basic Principles of Aerobic biofilm Reactors, di dalam Biological Wastewater Treatment Series Volume Five Activated Sludge and Aerobic Biofilm Reactors, editor: M. von Sperling, IWA Publishing, London, Hal: 266-267 27. Goncalves, R. F., (2007b), Submerged aerated Biofilters, di dalam Biological Wastewater Treatment Series Volume Five Activated Sludge and Aerobic Biofilm Reactors, editor: M. von Sperling, IWA Publishing, London, Hal: 294-295 28. Grady Jr., C. P. L., Daigger, G. T., Lim, H. C., (1999), Biological Wastewater Treatment, 2nd Edition, Marcel Dekker Inc., New York, Hal 949-981 29. Gray, N. F., (2004), Biology of Wastewater Treatment, 2nd Edition, Imperial College Press, Hal. 450-463 30. Hamoda, M. F., (1989), Kinetic Analysis of Aerated Submerged Fixed-Film (ASFF) Bioreactors, Water Research Vol. 23, No. 9, hal 1147-1154 31. Hamoda, M. F., & Al Ghusain, I. A., (1998), Analysis of Organic Removal Rates in The Aerated Submerged Fixed Film Process, Water Science & Technology Vol. 38, No 8–9, hal. 213-221 32. Hansen, R., Thogersen, T., & Rogalla, F., (2007), Comparing Cost and Processes Performance at Activated Sludge (AS) and Biological Aerated Filters (BAF) Over Ten Years of Full Scale Operation, Water Science & Technology Vol. 55, No 8–9, hal. 99–106 33. Harendranath, C. S., Anuja, K., Singh, A., Gunaseelan, A., Satish, K., & Lala, K., (1996), Immobilization in Fixed Fim Reactors: An Ultrastructural Approach, Water Science & Technology Vol. 33, No 8, hal. 7-15 34. Hao, O. J. dan Chen, J. M., (1994), Factors Affecting Nitrite Buildup in Submerged Filter System, Journal of Environmental Engineering, Vol. 120, No. 5, hal. 1298-1306
99
35. Harris, S. L., Stephenson, T., dan Pearce, P., (1996), Aeration Investigation of Biological Aerated Filters Using Off-Gas Analysis, Water Science and Technology Vol. 34, No. 3-4, hal. 307-314 36. Hendrickx, T. L. G., Meskus, E., & Keiski, R. L., (2002), Influence of The Nutrient Balance on Biofilm Composition in a Fixed Film Process, Water Science and Technology Vol. 46 No. 4-5, hal. 7-12 37. Henze, M., Poul Harrenaes, J. C. Jansen, and E. Arvin, (1997), Wastewater Treatment Biological and chemical processes, 2nd edition, Springer, Berlin, hal: 159-169 38. Henze, M., Ujang, Z., & Soedjono, E., (2006), Wastewater Technology for Developing Countries, di dalam Municipal Wastewater Management in Developing Countries: Principles and Engineering, Edior: Z. Ujang & M. Henze, IWA Publishing. 39. Hu, H. Y., K. Fujie, M. Nozawa, T. Makabe dan K. Urano, (1998), Effects of biodegradable substrates and microbial concentration on the acclimation of microbes to acrylonitrile in aerobic submerged biofilter, Water Science and Technology Vol. 38, No. 7, hal. 81–89 40. Januarti, C., & Dwirianti, D., (2005) Membrane Bioreactor untuk Pengolahan Air Buangan Grey Water, Prosiding Seminar Nasional Teknologi Lingkungan III ITS, Surabaya 41. Jefferson, B., Palmer, A., Jeffrey, P., Stuetz, R., dan Judd, S., (2004), Grey water characterisation and its impact on the selection and operation of technologies for urban reuse, Water Science and Technology Vol 50 No. 2, hal 157-164 42. Lewandowski, Z., Stoodley, P., Altobelli, S., dan Fukushima, E., (1994) Hydrodynamics and Kinetics in Biofilm Systems-Recent advances and New Problems, Water Science & Technology Vol. 29 No 10-11 pp 223-229 43. Lee, J., Kim, J., Lee, C., Yun, Z., & Choi, E., (2005), Biological Phosphorus and Nitrogen Removal with bioogical aerated filter using denitrifying Phosphorus Accumulating Organism, Water Science and Technology Vol. 52 No. 10-11, hal. 569-578 44. Leung, K., (2006), Lecture 1 Advanced Biological Processes; Wastewater Minimization and Disposal Strategies diakses dari ecology.hku.hk/msc/envm8008/file/ENVM7014_partII_lect1_(2006).pdf tanggal 6 Nopember 2007 45. Liu, X., (2001) Drinking Water Biofiltration: Asseing Key Factors and Improving Process Evaluation, Doctoral Thesis University of Waterloo.
100
46. Lorda-de-los-Ríos, I., E. Bécares-Mantecón dan I. Tejero-Monzón, (2002), Population dynamics in an aerobic submerged fixed bed reactor (ASFBR) process, Water Science & Technology Vol. 46, No. 1-2, hal. 257–260, 47. Lu, R., de la Rosa, C., dan Yu, T., (2006), Investigation into oxygen distributions in wastewater biofilms grown on Rotating Biological Contactors using microsensor, diakses dari www.bcca.org, tanggal 7 Oktober 2007. 48. Malisie, A. F., (2000), Kinetika Penghilangan Warna dengan Reaktor Batch Kondisi Anaerob, Tugas Akhir Jurusan ITB 49. Mann, A. T., Mendoza-Espinoza, L., & Stephenson, T., (1999), Performance of Floating and Sunken Media Biological Aerated Filters Under Unsteady State Conditions, Water Research Vol. 33, No.4, hal 1108-1113 50. Mann, A. T., dan Stephenson, T., (1997), Modelling Biological Aerated Filters for wastewater treatment, Water Research Vol. 31, No 10, hal 24432448, Elsevier Ltd. 51. Metcalf & Eddy, revised by Tchobanoglous, G., Burton, F. L., Stensel, H. D., (2003), Wastewater Engineering: Treatment and Reuse, 4th Edition, McGrawHill, New York, Hal: 431, 957-961 52. Moore, R., Quarmby, J., & Stephenson, T., (2001), The Effects of Media Size on The Performance of Biological Aerated Filters, Water Research Vol. 35, No 10, hal 2514-2522, Elsevier Ltd. 53. Moosavi, G.R., A.R. Mesdaghinia, K. Naddafi, A.H. Mahvi dan J. Nouri, (2005), Feasibility of Development and Application of an Up-flow Anaerobic/Aerobic Fixed Bed Combined Reactor to Treat High Strength Wastewaters, Journal of Applied Sciences 5 (1): 169-171, Asian Network for Scientific Information 54. Morel A., & Diener S. (2006). Greywater Management in Low and MiddleIncome Countries, Review of different treatment systems for households or neighbourhoods. Swiss Federal Institute of Aquatic Science and Technology (Eawag). Dübendorf, Switzerland 55. Mueller, J A., Boyle, W. C., dan Popel, H. J., with significant contributions from Wagner, M, Gibson, D. e., Kim, Y., (2002), Aeration : Principles and Practice, CRC Press, Florida 56. Noguera, D. R., Okabe, S., & Picioreanu, C., (1999), Biofilm Modelling: Present Status and Future Directions, Water Science & Technology Vol 39, No 7 hal 273-278
101
57. Ohashi, A., & Harada, H., (1994) Characterization of Detachment mode of Biofilm development in an attached-growth reactor, Water Science and Technology Vol. 30 No 11 pp 35–45 58. Osorio, F., & E. Hontoria, (2002), Wastewater treatment with a double-layer submerged biological aerated filter, using waste materials as biofilm support, Journal of Environmental Management 65, 79-84 59. Osorio, F., & E. Hontoria, (2001), Optimization of Bed Material Height in Submerged Biological Aerated Filter, Journal of Environmental Engineering November 2001, Hal: 974-978 60. Pankratz, T. D., (2000), Environmental Engineering Dictionary and Directory, Lewis Publishers, Florida, Hal: 188 61. Park, T. J., H. Lee K., S. Kim D. dan W. Kim C., (1996), Petrochemical wastewater treatment with aerated submerged fixed-film reactor (ASFFR) under high organic loading rate, Water Science and Technology Vol. 34 No 10 pp 9–16 62. Pedros, P. B., Wang, J. Y., & Metghalchi, (2007), Single Submerged Attached Growth Bioreactor for Simultaneous Removal of Organic and Nitrogen, Journal of Environmental Engineering Vol. 133. No. 2, ASCE 63. Pennsylvania Department of Environmental Protection, (2002), The BIOFOR® Biological Aerated Filtration System: An Innovative Wastewater Treatment Process, diakses tanggal 6 Nopember 2007 dari www.depweb.state.pa.us/watersupply/cwp/view.asp?a=1282&q=449823 64. Picioreanu C, van Loosdrecht MCM, & Heijnen JJ, (2000), Modelling and predicting biofilm structure, dalam: Allison DG, Gilbert P, Lappin-Scott HM, Wilson M Editors, Community structure and co-operation in biofilms, Cambridge University Press 65. Ponda, S., & Yulianto, A., (2007), Evaluasi Sistem Pengelolaan Limbah Domestik Terdesentralisasi Kelurahan Muja-Muju, Umbulharjo Jogjakarta, Tugas Akhir Universitas Islam Indonesia Jogjakarta 66. Rahmani, H., Rols, J. L., Capdeville, B., Cornier, J. C., & Deguin, (1995), Nitrite Removal by A Fixed Culture in A Submerged Granular Biofilter, Water Science and Technology Vol. 29 No. 7, pp 1745–1753 67. Rittmann, B. E., (2007), Where Are We with Biofilms Now? Where Are We Going?, Water Science and Technology Vol. 55 No. 8-9, pp 1-7 68. Rittmann, B. E., & McCarty, P. L., (2001), Environmental Biotechnology: Principles and Applications, McGraw-Hill, Singapore
102
69. Rother, E., Cornel, P., Ante, A., Kleinert, P., & Brambach, R., (2002), Comparison of Combined and Separated Biological Aerated Filter (BAF) Performance for Pre-denitrification/Nitrification of Municipal Wastewater, Water Science & Technology Vol. 46, No 4–5, hal. 149-158 70. Rowan, A. K., Snape, J. S., Fearnside, D., Barer, M. R., Curtis, T. P., & Head, I. M., (2003), Composition and Diversity of Amonia-Oxidising Bacterial Communities in Wastewater Treatment Reactors of Different Design Treating Identical Wastewater, Federation of European Microbiological Societies (FEMS) Microbiology Ecology 43, Hal 195 71. Said, N. I., (2006), Teknologi Pengolahan Limbah Cair Sistem Biakan Melekat (Rumah Sakit, Domestik, Industri), Makalah Pelatihan Teknologi Limbah Cair 25-26 Juli 2006, Pusat Teknologi Lingkungan BPPT, Jakarta, Hal 27 72. Sasse, L. W., (1998), DEWATS Decentralized Wastewater Treatment in Developing Countries, BORDA, hal 7 73. Sawyer, C. N., McCarty, P. L., Parkin, G. F., (2003), Chemistry for Environmental Engineering and Science, 5th Edition, McGraw-Hill, Singapore, Hal. 604 74. Schulz, J., (2001), Submerged Fixed-Bed Reactors, dalam Biotechnology Vol 11a, Environmental Processes I. Edited by H. J. Rehm, G. Reed, A. Pühler, & P. Stadler, WILEY-VCH, Weinheim, Hal 351-359 75. Schlegel, S. & Koeser, H., (2007), Wastewater Treatment with Submerged Fixed Bed Biofilm Reactor Systems – Design Rules, Operating Experiences and Ongoing Developments, Water Science & Technology Vol 55 No 8–9 hal. 83–89 76. Shrout, J., (1998), The Effects of Limited Aeration on Exapnded Bed Biological Wastewater Treatment, Thesis Master of Science, Marquette University 77. Shuler & Kargi, (1992), Bioprocess Engineering: Basic Concepts, Prentice Hall International, Inc 78. Siebel, M. A., (1992), Attached Growth Reactors, di dalam BIOTOL Bioreactor Design and Product Yield, Butterworth Heinemann Ltd, Oxford, Hal: 139-159 79. Soewondo, P. & Anggraini, R., (2007) Penyisihan Organik Limbah Cair Domestik pada Instalasi Pengolahan Dengan Sistem Johkasou Kasus: Rusun Dukuh Semar Cirebon, Jurnal Purifikasi Vol. 8 No. 1, Hal: 37-42
103
80. STOWA, 2006, Biostyr Process, diakses dari www.stowaselectedtechnologies.nl/Sheets/Sheets/biostyr.process.html tanggal 19 September 2007 81. Takacs, I., Bye, C. M., Chapman, K., Dold, P. L., Fairlamb, P. M., & Jones, R. M., (2007), A Biofilm Model for Engineering Design, Water Science and Technology Vol. 55, No. 8-9, pp 329–336 82. Tay, J., Chui, P., & Li, H., (2003), Influence of COD:N:P Ratio on Nitrogen and Phosphorus Removal in Fixed-Bed Filter, Journal of Environmental Engineering Vol. 129, No. 4, ASCE 83. US Environmental Protection Agency (EPA), (2000), Decentralized Systems Technology Fact Sheet Aerobic Treatment, US EPA Office of Water Washington D. C., EPA 832-F-00-031 84. van der Heijden, R. T. J. M., (1992), An Introduction to Process Control, di dalam BIOTOL Bioreactor Design and Product Yield, Butterworth Heinemann Ltd, Oxford, Hal: 163 85. Villaverde, S., FDZ-Polanco, F., dan Garcia, P. M., (2000), Nitrifying Biofilm Acclimation to Free Ammonia in Submerged Biofilters. Start-Up Influence, Water Research Vol. 34, No. 2, hal 602-610 86. von Münch, E., (2004), Biofilm Processes for Wastewater Treatment, Lecturer Notes, UNESCO-IHE, Delft 87. von Sperling, M., (2005), Biological Wastewater Treatment in Warm Regions, IWA Publishing, London, Hal: 77 88. Wagener, C., (2003), Evaluation of Static Low Density Media Filters for Use in Domestic Wastewater Treatment, Thesis pada Louisiana State University 89. Wang, C., Li, J., Wang, B., & Zhang, G., (2006), Development of an empirical Model for Domestic Wastewater Treatment by Biological Aerated Filter, Process Biochemistry 41, hal 778-782 90. Wanner, O., Eberl, H.J., Morgenroth, E., Noguera, D., Picioreanu, C., Rittmann, B.E., & van Loosdrecht, M.C.M., (2006), Mathematical Modeling of Biofilms, Report of The IWA on Biofilm Modeling Task Group, Scientific and Technical Report No.18, IWA Publishing, London 91. WHO, 2006, WHO guidelines for the safe use of wastewater, excreta and greywater, Volume IV Excreta and greywater use in agriculture, Geneva Hal 3 92. Wingender, J., & Flemming, H. C., (2001), Autoaggregation of Microorganisms: Flocs & Biofilm, dalam Biotechnology Vol 11a,
104
Environmental Processes I. Edited by H. J. Rehm, G. Reed, A. Pühler, & P. Stadler, WILEY-VCH, Weinheim, Hal 71-72 93. Xavier, J. B., Picioreanu, C., & van Loosdrecht, M. C. M., (2004), A Modelling Study of The Activity and Structure of Biofilms in Biological Reactors, Biofilms (2004) 1, Cambridge University Press, hal 1-15 94. Yulianto, A. dan Kasam, (2006), Study on Three Decentralized Wastewater Management System Pilot Plants at Yogyakarta, Proceeding on Environmental Technology and Management Conference 2006 September 78, 2006 Bandung, West Java, Indonesia 95. Yulianto, A. dan Brontowiyono, W., (2007), Evaluasi Pengelolaan Air Limbah Domestik Terdesentralisasi (IPAL Komunal) di Jogjakarta, Laporan untuk Dinas Lingkungan Hidup Jogjakarta, Universitas Islam Indonesia, Jogjakarta. Laporan tidak dipublikasikan 96. Yulianto, A. (2004), Perkembangan Sistem Penyaluran dan Pengolahan Air Buangan Kota Jogjakarta 1925-2004, Prosiding Seminar Nasional Teknologi Lingkungan II ITS, Surabaya 97. Zhang, T. C., Fu, Y. C., & Bishop, P. L., (1994), Competition in Biofilm, Water Science & Technology Vol. 29, No. 10-11, hal 263-270 98. Zhang, T. C., & Bishop, P. L, (1994), Experimental Determination of The Dissolved Oxygen Boundary Layer and Mass Transfer Resistance Near The Fluid-Biofilm Interface, Water Science & Technology Vol. 30, No. 11, hal 47-58
105
Lampiran I
Penurunan Persamaan Kinetika untuk Pertumbuhan melekat dengan pendekatan Model Empiris sederhana (Mann, A. T., dan T. Stephenson, 1997, Modelling Biological Aerated Filters for wastewater treatment, Water Resouce Vol. 31, No 10, hal 2443-2448)
Laju Reaksi keseluruhan untuk penurunan substrat dengan menggunakan biofilm dapat dianggap sebagai Orde pertama. Sehingga: … … … … … … … . .1
SCOD
H
dengan S adalah konsentrasi SCOD dan k adalah konstanta laju pada waktu spesifik. Integrasi persamaan 1 didapatkan: … … … … … … … . .2 Variabel t dapat dikaitkan dengan beban volumetrik: … … … … … … … . .3 dengan k’ adalah konstanta biomassa, beban Volumetrik BV dapat ditulis dengan: … … … … … … … . .4
subsitusi Persamaan 3 dengan Persamaan 4: … … … … … … … . .5 Sehingga … … … … … … … . .6 dengan
n adalah konstanta tergantung tipe media … … … … … … . .7
Plotting penyisihan SCOD (S/S0) terhadap ketinggian reaktor (H) memberikan tipikal kurva orde ke-satu. Dengan plotting ln(S/S0) terhadap H, didapatkan nilai slope (-m).
m1 m2
ln S/S0
m3
H
Dengan ploting ln(Qm/A) dengan ln(S0) nilai slope (n) dan intersep y-axis (k*) dapat diperoleh untuk tiap reaktor.
m=n ln (Qm/A)
k* Ln S0
Lampiran II Metode Pengukuran Parameter COD, Amonium, DO dan TSS
Lampiran III Uji statistik dan Perhitungan kinetika Uji Statistika 1. Konsentrasi DO t‐Test: Two‐Sample Assuming Equal Variances DO R1 Mean 4.842 Variance 1.68752 Observations 5 Pooled Variance 1.514085 Hypothesized Mean Difference 0 df 8 t Stat 0.50371 P(T<=t) one‐tail 0.31402 t Critical one‐tail 1.859548 P(T<=t) two‐tail 0.62804 t Critical two‐tail 2.306006
DO R2 4.45 1.34065 5
Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one‐tail t Critical one‐tail P(T<=t) two‐tail t Critical two‐tail
DO R1 4.842 1.68752 5 1.135695 0 8 ‐0.48368 0.320788 1.859548 0.641575 2.306006
DO R3 5.168 0.58387 5
Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one‐tail t Critical one‐tail P(T<=t) two‐tail t Critical two‐tail
DO R2 4.45 1.34065 5 0.96226 0 8 ‐1.15731 0.140266 1.859548 0.280531 2.306006
DO R3 5.168 0.58387 5
2. Konsentrasi Amonium t‐Test: Two‐Sample Assuming Equal Variances Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one‐tail t Critical one‐tail P(T<=t) two‐tail t Critical two‐tail Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one‐tail t Critical one‐tail P(T<=t) two‐tail t Critical two‐tail Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one‐tail t Critical one‐tail P(T<=t) two‐tail t Critical two‐tail
Amonium 1 Amonium 2 0.58662093 1.271012007 0.17084048 0.681792291 11 11 0.42631639 0 20 ‐2.45821392 0.01160462 1.724718 0.02320925 2.08596248 Amonium 1 Amonium 3 0.58662093 1.393653516 0.17084048 0.569332341 11 11 0.37008641 0 20 ‐3.11114927 0.00275195 1.724718 0.0055039 2.08596248 Amonium 2 Amonium 3 1.27101201 1.393653516 0.68179229 0.569332341 11 11 0.62556232 0 20 ‐0.36364996 0.35996757 1.724718 0.71993514 2.08596248
3. Konsentrasi SCOD t‐Test: Two‐Sample Assuming Equal Variances Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one‐tail t Critical one‐tail P(T<=t) two‐tail t Critical two‐tail Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one‐tail t Critical one‐tail P(T<=t) two‐tail t Critical two‐tail Mean Variance Observations Pooled Variance Hypothesized Mean Difference df t Stat P(T<=t) one‐tail t Critical one‐tail P(T<=t) two‐tail t Critical two‐tail
COD R1 58.90909 135.8909 11 279.5545 0 20 ‐1.37714 0.091844 1.724718 0.183687 2.085962
COD R2 68.72727 423.2182 11
COD R1 58.9090909 135.890909 11 102.227273 0 20 3.41601907 0.00136914 1.724718 0.00273828 2.08596248
COD R3 44.18182 68.56364 11
COD R2 68.7272727 423.218182 11 245.890909 0 20 3.67097298 0.00075815 1.724718 0.0015163 2.08596248
COD R3 44.18182 68.56364 11
Perhitungan Kinetika Konsentrasi 300 Port CR1 0 337 30 196 60 85 90 58 m 0.022
CR2 337 217 78 66 0.019
CR3 337 190 84 44 0.017
ln(C/C0R1) ln(C/C0R2) ln(C/C0R3) 0.000 0.000 0.000 ‐0.542 ‐0.440 ‐0.573 ‐1.590 ‐1.673 ‐1.592 ‐1.975 ‐1.845 ‐2.239
Konsentrasi 400 Port CR1 0 414 30 245 60 133 90 76 m 0.019
CR2 414 249 150 84 0.017
CR3 414 222 119 73 0.019
ln(C/C0R1) ln(C/C0R2) ln(C/C0R3) 0.000 0.000 0.000 ‐0.525 ‐0.507 ‐0.623 ‐1.135 ‐1.015 ‐1.247 ‐1.702 ‐1.600 ‐1.737
Konsentrasi 500 Port CR1 0 509 30 315 60 180 90 107 m 0.017
CR2 509 319 200 116 0.016
CR3 509 281 155 101 0.018
ln(C/C0R1) ln(C/C0R2) ln(C/C0R3) 0.206 0.206 0.206 ‐0.275 ‐0.262 ‐0.389 ‐0.834 ‐0.730 ‐0.984 ‐1.354 ‐1.271 ‐1.410
No 1 2 3
Ci Q (kg/m3) A (m2) (m3/hr) 0.337 0.015 0.0432 0.414 0.015 0.0432 0.509 0.015 0.0432
lnCi ‐1.088 ‐0.882 ‐0.675
ln(QmR1/A) ln(QmR2/A) ln(QmR3/A) 2.7589 2.8054 2.6311 2.9055 3.0168 2.9055 3.0168 3.0774 2.9596
mR1 0.022 0.019 0.017
mR2 0.021 0.017 0.016
mR3 0.025 0.019 0.018
Desain Pengudaraan Perhitungan kebutuhan udara atau oksigen untuk reaktor ASFFR pada penelitian ini mengacu pada Said (2006). Kebutuhan oksigen teoritis
= Jumlah BOD yang dihilangkan
Temperatur udara rata‐rata = 25oC Berat udara pada temperatur 25oC = 1,1725 kg/m3 Diasumsikan jumlah oksigen di dalam udara 22% Sehingga jumlah kebutuhan udara teoritis:
kebutuhan udara teoritis = 1 kg/hari 1,1725 kg/m3 x 0,22 gO2/g udara
= 3,88 m3/hari
Dengan memperhitungkan faktor efisiensi alat dan faktor keamanan, maka penggunaan aerator yang mempunyai dengan debit udara 3,5 l/menit diperkirakan telah cukup.
Lampiran IV
Hasil Penelitian dan Perhitungan
Berikut ini adalah hasil pengukuran pada Penelitian yang dilakukan, sebagai urutan adalah: 1. Konsentrasi SCOD dan massa biofilm saat aklimatisasi reaktor 2. Konsentrasi SCOD saat percobaan batch 3. Konsentrasi oksigen terlarut, temperatur, dan pH pada percobaan kontinyu 4. Konsentrasi Amonium saat percobaan kontinyu 5. Konsentrasi TSS saat percobaan kontinyu 6. Konsentrasi SCOD saat percobaan kontinyu pada konsentrasi teoritis 300, 400 dan 500 mg/l Semua pengambilan sampel dilakukan secara duplo kecuali untuk pengukuran konsentrasi oksigen terlarut, temperatur dan pH.
1. Konsentrasi SCOD saat aklimatisasi reaktor a. Konsentrasi SCOD saat aklimatisasi No
Pemeriksaan
1 2 3 4 5 6 7 8 9
a b a b a b a b a b a b a b a b a
Konsentrasi COD (mg/l), Reaktor Inlet 1 2 640 580 600 640 580 540 640 327 387 640 324 380 567 127 133 580 124 130 616 130 107 616 128 100 616 66 68 616 64 60 640 81 82 640 83 82 640 83 72 640 83 72 640 73 83 640 76 85 640 73 80
3 500 568 293 300 120 130 120 128 81 90 82 82 86 88 98 98 98
10
640 640 640
b a b
78 83 83
88 79 79
100 93 88
b. Massa Biofilm saat akhir aklimatisasi
R1
R2
R3
awal (g) akhir (g) n rata2 (g) rata2 (mg) Jumlah Media @ reaktor Volume Reaktor Kons (mg/l)
48.9474 48.3229 10 0.06245 62.45 330 10 2060.85
49.562 48.9605 10 0.06015 60.15 330 10 1984.95
49.547 48.9032 10 0.06438 64.38 330 10 2124.54
2. Konsentrasi SCOD saat percobaan batch a. DO, T dan pH percobaan batch No.
1
Jam
13.00
2
16.00
3
19.00
4
22.00
5
01.00
6
04.00
7
07.00
Reaktor
Kondisi Aerator
T (oC)
DO (mg/l)
pH
R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2
off on on off off on on off on on on on off off on on off on on on
24.3 23.4 23.6 225.1 24.3 24.2 24.3 24.1 24.2 24 24 24 24 24 23.6 23.5 23.3 23.4 23.4 23.5
4.2 5.02 5.88 5.81 4.39 4.76 6.3 4.98 6.3 4.4 5.32 6.1 4.85 6.72 6.58 6.07 4.65 6.68 6.19 6.27
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Keterangan
R3
23.5
on
7
6.17
b. Konsentrasi SCOD No
Konsentrasi COD (mg/l) 1 2 3 300 340 300 300 300 320 210 140 200 200 140 180 80 130 160 87 140 160 58 70 48 60 68 51 42 62 60 42 62 57 40 60 40 44 61 40 28 24 34 28 28 30
Jam ke‐ Pemeriksaan
1 2 3 4 5 6 7
0 3 6 9 12 15 18
a b a b a b a b a b a b a b
3. Konsentrasi oksigen terlarut, temperatur, dan pH
pada percobaan
kontinyu
Jam Ke
Reaktor
DO (mg/l)
T (oC)
pH
1 2 3 4 5 6
Inlet 1 Inlet 2 Inlet 3 Inlet 5 Inlet 6 Inlet 7
2.43 4.85 3.32 3.18 3.33 3.45
23.1 23.5 23.5 23.7 23.7 23.6
7.4 7.4 7.4 7.4 7.4 7.4
Jam Ke
Reaktor
Port
DO (mg/l)
T (oC)
pH
1
R1
1
5.75
22.3
R2
2 3 1
4.94 5.99 4.37
22.3 22.2 22.5
2
4.61
22.4
7.4 7.4 7.4 7.4 7.4
Kondisi
on‐off
off
4.38 6.11
22 22.5
R1
2 3 1
5.96 5.91 4.47
R2
2 3 1
4.69 4.78 4.26
22.4 22.6 22.9 22.9 22.8 22.9
R3
2 3 1
4.48 4.84 4.85
22.9 22.8 22.7
R1
2 3 1
4.91 5.18 4.49
22.7 22.8 23.4
R2
2 3 1
3.67 4.28 4.13
23.4 23.3 23.1
R3
2 3 1
4.75 5.3 4.59
23.1 23.1 23.2
R1
2 3 1
R2
2 3 1
R3
2 3 1
R1
2 3 1
R2
2 3 1
R3
2 3 1
R1
2 3 1
4.76 5.44 3.33 2.55 3.74 1.89 1.92 2.49 3.63 3.62 4.12 5.68 6.57 7.07 5.79 5.55 5.25 5.77 5.96 6.21 3.76 4.47 3.34
23.2 23.3 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.6 23.5 23.7 23.6 23.8 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7 23.7
2
3
4
5
6
R3
3 1
2 3
7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.4
on
on
on
on
off‐on
on
on
off
off
on
on
on
on
on
R2
1
R3
2 3 1
2 3
3.99 4.15 4.37 4.92 4.49 4.89
23.7 23.7 23.4 23.5 23.6 23.6
7.4 7.4 7.4 7.4 7.4 7.4
off
on
4. Konsentrasi Amonium saat percobaan kontinyu
Jam ke‐
Reaktor
1 2
Inlet R1 R2 R3 Inlet R1 R2
Port 1 2 3 1 2 3 1 2 3 1 2 3 1
Pemeriksaan Absorbansi a b a b a b a b a b a b a b a b a b a b a b a b a b a b a
0.175 0.175 0.072 0.073 0.072 0.072 0.029 0.030 0.071 0.069 0.154 0.154 0.039 0.039 0.065 0.066 0.129 0.129 0.184 0.186 0.194 0.194 0.085 0.085 0.101 0.1 0.136 0.137 0.081
Konsentrasi Amm. (mg/l) 1.47 1.47 0.50 0.51 0.50 0.50 0.09 0.10 0.49 0.47 1.27 1.27 0.19 0.19 0.43 0.44 1.04 1.04 1.56 1.58 1.65 1.65 0.62 0.62 0.77 0.76 1.10 1.11 0.58
3
R3 Inlet R1 R2 R3
4
Inlet R1 R2
2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2
b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b
0.081 0.158 0.158 0.115 0.113 0.048 0.048 0.153 0.154 0.142 0.142 0.249 0.25 0.025 0.025 0.088 0.088 0.05 0.05 0.067 0.068 0.118 0.12 0.159 0.159 0.021 0.022 0.013 0.01 0.144 0.144 0.249 0.249 0.066 0.066 0.132 0.133 0.099 0.098 0.109 0.109 0.207 0.207
0.58 1.31 1.31 0.91 0.89 0.27 0.27 1.26 1.27 1.16 1.16 2.17 2.18 0.06 0.06 0.65 0.65 0.29 0.29 0.45 0.46 0.93 0.95 1.32 1.32 0.02 0.03 ‐0.06 ‐0.08 1.18 1.18 2.17 2.17 0.44 0.44 1.07 1.08 0.75 0.75 0.85 0.85 1.77 1.77
5 6
R3 Inlet R1 R2 R3 Inlet R1 R2 R3
3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1
a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a
0.093 0.093 0.054 0.055 0.193 0.194 0.078 0.078 0.309 0.309 0.047 0.046 0.071 0.07 0.029 0.03 0.051 0.051 0.097 0.097 0.316 0.316 0.082 0.083 0.168 0.169 0.307 0.305 0.159 0.159 0.137 0.137 0.124 0.123 0.116 0.118 0.074 0.072 0.062 0.062 0.144 0.144 0.058
0.70 0.70 0.33 0.34 1.64 1.65 0.56 0.56 2.74 2.74 0.26 0.25 0.49 0.48 0.09 0.10 0.30 0.30 0.74 0.74 2.80 2.80 0.59 0.60 1.41 1.42 2.72 2.70 1.32 1.32 1.11 1.11 0.99 0.98 0.92 0.93 0.52 0.50 0.41 0.41 1.18 1.18 0.37
2 3
b a b a b
0.058 0.044 0.045 0.285 0.285
0.37 0.24 0.25 2.51 2.51
5. Konsentrasi TSS saat percobaan kontinyu
Reaktor
ke
R1
1 2 3 4
R2 R3
awal 0.9335 0.9472 0.9413 0.619 0.6804 0.6688 0.9484 0.9457 0.9435 0.7283 0.9229 1.1773 0.8718 0.947 0.9369 0.6619 0.9456 1.1865
5 6 1 2 3 4 5 6 1 2 3 4 5 6
Berat kertas saring (g) Selisih akhir 0.0006 0.9341 0.0052 0.9524 0.0079 0.9492 0.00885 0.7075 0.0114 0.6918 0.0109 0.6797 0.0078 0.9562 0.0094 0.9551 0.0115 0.955 0.0123 0.7406 0.0034 0.9263 0.0106 1.1879 0.0033 0.8751 0.0087 0.9557 0.0076 0.9445 0.0129 0.6748 0.0089 0.9545 0.011 1.1975
mg 0.6 5.2 7.9 8.85 11.4 10.9 7.8 9.4 11.5 12.3 3.4 10.6 3.3 8.7 7.6 12.9 8.9 11
Konsentrasi 24 208 316 354 456 436 312 376 460 492 136 424 132 348 304 516 356 440
6. Konsentrasi SCOD saat percobaan kontinyu pada konsentrasi teoritis 300, 400 dan 500 mg/l a. Reaktor 1 Kons. Teoritis
Jam Ke
Pemeriksaan
300
1 2
a b a
[COD] (mg/l), H (cm) Inlet
30
60
90
345 345 300
210 200 186
98 98 82
40 42 48
3 4 5 6 1 2 3 1 2 3
b a b a b a b a b a b a b a b a b a b a b
Kons. Teoritis
Jam Ke
Pemeriksaan
300 400
1 2 3 4 5 6 1 2
a b a b a b a b a b a b a b a b
400 500
300 330 330 367 360 335 333 346 350 433 430 420 420 390 390 533 533 485 482 510 510
186 190 187 198 196 200 200 198 200 256 258 248 248 231 233 329 330 300 297 315 315
80 87 90 77 77 77 78 86 87 139 139 135 132 125 124 188 188 171 170 180 177
48 73 70 53 52 58 57 73 74 85 85 77 76 71 66 112 116 102 100 107 107
b. Reaktor 2 [COD] (mg/l), H (cm) Inlet
30
60
90
345 345 300 300 330 330 367 360 335 333 346 350 433 430 420 420
205 202 190 190 213 210 230 230 224 226 210 200 261 260 253 253
97 97 87 85 82 82 77 80 57 57 67 65 157 156 152 149
28 30 73 70 48 48 68 69 78 76 98 98 87 85 85 85
500
3 1 2 3
a b a b a b a b
Jam Ke
Pemeriksaan
1 2 3 4 5 6 1 2 3 1 2 3
a b a b a b a b a b a b a b a b a b a b a b a b
390 390 533 533 485 482 510 510
235 233 334 336 304 308 319 316
141 140 209 207 190 200 200 196
79 80 122 120 100 103 116 116
c. Reaktor 3 Kons. Teoritis 300 400 500
[COD] (mg/l), H (cm) Inlet
30
60
90
345 345 300 300 330 330 367 360 335 333 346 350 433 430 420 420 390 390 533 533 485 482 510 510
198 200 180 180 188 190 194 192 190 186 200 200 232 236 225 225 209 210 294 300 267 260 281 275
86 86 87 85 77 76 82 80 77 77 97 98 124 127 121 121 112 100 162 160 147 150 155 154
42 42 40 38 33 35 48 48 44 42 58 58 72 72 74 68 60 62 106 100 92 88 95 97
Lampiran V Foto Alat Penelitian
(b)
(c)
(a)
(e)
(d)
Gambar 1. (a) Reaktor SAB yang digunakan didalam percobaan (b) Inlet air limbah (c) inlet pengudaraan (d) Piringan di dasar reaktor (e) Selang Effluen
(a)
(b)
(c) (d)
Gambar 2. Alat-alat laboratorium yang digunakan di dalam penelitian (a) COD Reaktor (b) Desikator (c) Spektrofotometer (d) Oven
(a)
(b)
(c)
(d)
Gambar 3. Kegiatan Penelitian (a)Pengambilan Sampel (b) Pengukuran debit (c) Pengukuran DO, temperatur dan pH (d) Sediaan Amonium untuk pembuatan kurva standar