The impact of personalities in the research and educational science of heat/caloric and investigative role of thermal analysis
Jaroslav Šesták
New Technology - Research Centre in the Westbohemian Region, West Bohemian University, Universitní 8, CZ-30114 Pilsen, and Division of Solid-State Physics, Institute of Physics of the Academy of Sciences, Cukrovarnicka 10, CZ-16200 Praha 6 Email:
[email protected]
Dedicated to Ivo Proks, Vladimir Satava and Hiroshi Suga, Takeo Ozawa and contributed by a key factor of Sestak’s long lasting cooperation with Japanese science of thermal analysis instigated by his stay invitation coming from the Rector of Tokyo University, Professor H. Kambe, in 1984 and followed by a honorary call for his becoming one of the four cofounding professor of the newly created School of Energy Science of the Kyoto University back in 1996 as well as other invited visits on various occasions.
Cooperative publication
M. Sorai, J. Šesták (eds.) „Transition phenomena in condensed matter“ Special issue of Thermochim. Acta, Vol. 266, Elsevier , Amsterdam 1995 (dedicated to Hiroshi. Suga)
Analýza optická ~ 600 nm (set-up of crystals)
(
Zacharias Janssen (1580-1658); Galileo Galilei (1564-1742)
size
Max von Laue (1879-1960) William Lawrence Bragg (1890-1971) Gustav H.J. Tammann (1861-1938) Nikolaj S. Kurnakov (1860-1941)
Sigmund Freud (1856-1939)
X-ray ~ 0.5 nm (ordering of atoms)
Destrukční !!
History of thermal analysis and calorimetry can be best seen from our previous papers and chapters: J. Šesták, book: Science of Heat and Thermophysical Measurements: A generalized approach to thermal analysis, Elsevier, Amsterdam 2005 Šesták, J., Mackenzie, R.C.: Heat/fire concept and its journey from
prehistoric time into the third millennium,
J. Thermal. Anal. Calor. 64,:129-147 (2001) Šesták J, Mareš JJ: From cloric to statmograph and polarography . J. Thermal Anal. Calor. 88: 763-771 (2007) Lombardi G., Šesták J: Ten years since Robert C. Mackenzie’s death: a tribute to the ICTA founder. J. Thermal. Anal. 105:783–791 (2011).
R.C.Mackezie
Šesták J, Mareš JJ, Hubík P: Historical roots and development of thermal analysis and calorimetry“ chapter 21 in book: “Glassy, amorphous and nano-crystalline materials : Thermal physics, analysis, structure and properties (Šesták J, Mareš JJ, Hubík P, eds.) Springer, Berlin 2011, pp. 347-370 (IBSN 978-90-481-2881-5).
P. Holba, J. Šesták Czechoslovak footprints in the development of methods of thermometry, calorimetry and thermal analysis. Ceramics-Silikáty, 56 (2) 159-167 (2012). J. Šesták Citation records and some forgotten anniversaries in thermal analysis. J. Thermal. Anal. Calor , in print 2012 (DOI 10.1007/s10973-011-1625-3) J. Šesták Distinctive anniversaries, papers and citation records in the topic of glass science accentuating crystallization Sklář a keramik (Prague) 11/12 : 264-269 (2011)
Caloric from Latin “heat” Introduced in “Disquisitioned de Caloris et Frigori” Amsterodam 1659 Inspiration by Italian philosopher
Scott J. Black 1728‐1799
Bernardino Telesius
Czech: Jan. A. Comenius 1592 ‐ 1670
French A.L. Lavoasier 1743 ‐ 1794
Šesták J, Mareš JJ: From cloric to statmograph and polarography . J. Thermal Anal. Calor. 88: 763-771 (2007)
J.A. Komenský Temperature - tempor Teplo: calor, fervor a ardor Zima: frigus a algor
1592-1670
zabýval se i geodezií a kartografií, je autorem mapy Moravy (nejstarší známá kopie mapy je z roku 1627 )
„V knize “Physicae Synopsis”, kterou ukončil 1629 a publikoval nejprve v Leipzig 1633, ukázal význam tepla a chladu (hotness and coldness) u všech přírodních procesů. Teplo (lépe oheň) je uvažován jako příčina všech pohybů a odvozeně i věcí . „All shows therefore that both heat and cold are a motion, which had to be proved." Vysvětlil také funkci thermoscopu (nazývaném ‘vitrum caldarium’)
Clever nature
and its laws and limits
Fermat principle (1662)
The Fermat's principle of least time
Pierre de Fermat (1601 – 1665)
“the Nature acts via the easiest and the most accessible way reached within
the shortest time”.
Maupertuis in 1744 envisaged least action that
"when some change takes place in nature, the quantity of action necessary for the change is the smallest possible. The quantity of action is the product obtained by multiplying the mass of the bodies by their velocity and the distance traveled“….. m
v λ= ђ
J.J. Mareš, J. Stávek, and J. Šesták, „Quantum aspects of self-organized periodic chemical reaction“ J. Chem. Phys. 121 (2004) 1499. J.J. Mareš, J. Šesták. “An attempt at quantum thermal physics” J Thermal Anal Calor. 2005;82:681.
The motive power of heat is independent of the agents set at work to realize it; its quantity is fixed solely by the temperatures of the bodies between which the transfer of the heat is effected
Jean J.B. Fourier 1768 ‐ 1830
Lazare Carnot 1753 ‐ 1821 Fundamental principles of equilibrium and movement
Sadi N.L. Carnot 1796 ‐ 1832
Analytical theory of heat
Šesták, J., Mareš, J.J., Hubík, P., Proks, I.: Contribution by Lazare and Sadi Carnot to the caloric theory of heat and its inspirative role in thermodynamics. J. Thermal Anal. Calor. 97, 679-683 (2009)
T h e r m o d y n a m ic s
T h e r m al p h y si c s
Šesták, J.: Heat, Thermal Analysis and Society. Nucleus, Hradec Králové (2004);
Detailed family tree of thermodynamic branching: THERMOMETRY CALORIMETRY
CONDUCTION OF HEAT
Sadi Carnot Clapeyron
Fourier Duhamel
CARNOT LINE (dissipationless work)
FOURIER LINE (workless dissipation)
Clausius (thermodynamics based on 1st and 2nd laws)
Kelvin (absolute temperature)
Stokes Kelvin
THERMODYNAMICS
DISSIPATION LINE Kirchhoff
THERMOSTATICS (Gibbs)
Clausius-Planck inequality (Planck)
Clausius-Duhem inequality (Duhem)
THERMAL ANALYSIS PRACTICE AND THEORY
de Donder Meixner Prigogine
THERMODYNAMICS OF IRREVERSIBLE PROCESSES
J.W.Gibbs (1839‐1903)
DTA theory ?
Temperature gradient
Holba P, Šesták J., (1976) “Theory and practice of DTA/DSC” Silikáty (Prague) 20: 83 (1976) Quantitative evaluation of thermal effects: theory and practice. Annali di Chimica 67: 73 (1977)
?
Kdo byl první termoanalytik ? Aristoteles 384 - 322 BC, Oheň jako živel – teplo a zima
Newton 1642-1726, Zákon ochlazování těles
Black 1728-1799, Latentní a specifické teplo
Thompson (baron Kelvin), 1824-1907 teplota
Tammann 1861-1938, zavedení metody a názvu TA
Význam tepla v historii
Teplo: calor, fervor a ardor Zima: frigus, algor and ??
tempor
„ Abychom účinky tepla a zimy spatřili světle, sluší se vzíti předmět viditelný i sluší se prošetřovati změn jeho, když se ohřeje i zase ochladí, by se očitě ukázalo, co teplo a zima 1592-1670 dělají smyslům “ ⇒ TA pochopitelné J.A. Komenský
Někteří otcové pokročilého uvažování
Agricola Georgius (Georg Bauer) (1494-1555) Hájek Tadeáš (from Hájků) (1526-1600) ´De cerevisia´ Daniel Stolcius (1600 – 1660) “Virodarium chimicum” Diviš Prokop (Procopius) (1696 - 1765) “Light of the First Day of Creation” Jakub Kresta (1648-1715) „Euclid of the West“ Kryštof Berger (1721-1793) “Chemische Vorsuche und Erfaheungen”
Marcus Marci Jan (from Kronland) Jan Marek (1595 - 1667)
Narozen: 13. června 1595 v Lanškrouně Zemřel: 10. dubna 1667 v Praze Byl lékařem a fyzikem proslavil se fyzikálním pojednáním o rázu pružných těles a o lomu světla ("Thaumantias liber de arcu coelesti...", obsahující mj. výsledky studia vzniku světelného spektra). Za tyto výsledky byl jmenován členem Královské společnosti nauk v Londýně. Z problémů čistě matematických ho upoutala kvadratura kruhu. Té věnoval spis De proportione motus figurarum rectilinearum et circuli quadratura ex motu, který vyšel v Praze v roce 1648. Zabýval též problematikou určování zeměpisné délky na moři v práci “De longitudine seu differentia unter duos meridianos…“ 1650 a fyziologickými předpoklady duševní činnosti ve spisech „Idearum operatricium idea“ (Idea tvořitelských idejí) a „Philosophia vetus restituta“(Obnovení staré filozofie),
Ernest Mach fyzik a filozof se narodil 18. února 1838 v Chrlicích u Brna (+ 1916) od r. 1879 rektor univerzity, Zkoumal šokové vzduchové vlny způsobené rychle letícími projektily (Machovo číslo). Mach se snažil o vybudování oboru zvaného psychofyzika, v roce 1883 Mach vydává knihu Die Mechanik in ihrer Entwicklung (Mechanika ve svém vývoji), ve které kritizuje newtonovské pojetí fyziky. Vydává knihu o teple „Die Principien der Wärmelehre“ Leipzig 1896.) Mach’s „Wärmezustand“ = ‘omnipresent’ thermal state = ever present warmth condition called „hotness manifold“ Ernst Lecher (1856-1926) electromagnetic waves (i.e. ‘Lecher wires’ )
Čeněk Strouhal (1850 – 1922), český experimentální fyzik, profesor a v roce
1903-1904 rektor Univerzity Karlovy. Nazývá se po něm bezrozměrné Strouhalovo číslo, jež určuje frekvenci oscilací, vznikajících při obtékání tělesa (např. telefonních drátů ve větru nebo lopatek turbiny). Zabýval se ale také vážením, Röntgenovým zářením, měřením teplot, Lissajousovými obrazci , význnamně přispěl rozvoji akustiky a termiky
František Záviška (1879-1945), monografie o relativitě „Einsteinův princip relativnosti a teorie gravitační" vynikajicí kniha o thermodynamice a Brdičkou později sepsaná kniha podle zápisků "Kinetická theorie plynů"
Early theoretical basis of termal analysis
Swietoslawski W.: Microcalorimetry, Reinhold, New York 1946 Berg L. G.: Скоростной количественный фазовый анализ; (Rapid Quantitative Phase Analysis), Akad. Nauk, Moscow 1952 Eliáš M., Šťovík M., Zahradník L.: Diferenční termická analýza; (Differential Thermal Analysis), AVČR, Praha 1957 Mackenzie RC. The differential thermal investigation of clays; Mineral. Society, London 1957; Šatava V.: Úvod do fyzikální chemie silikátů; (Introduction to Physical Chemistry of Silicates), SNTL, Praha 1965 Blažek A.: Termická analýza; SNTL, Praha 1972 and: English translation: Thermal Analysis; Van Nostrand-Reinhold, London, 1973. Liptay G., (ed). Atlas of Thermoanalytical Curves: (TG, DTG, DTA curves measured simultaneously); London, New York: Heyden 1971
Josef Burian (1873 – 1942) Ústav skla a keramiky, který je součástí Fakulty chemické technologie VŠCHT, byl založen roku 1909. Zakladatelem a prvním přednostou se stal Prof. Josef Burian (1873-1942), první profesor pro obor skla a keramiky na ČVUT
Rudolf Bárta (1897 – 1985) Rudolf Barta se zabýval chemií a technologií skla, keramiky, žáruvzdorných materiálů a proslavil se studiemi o cementu, prožil nacistický koncentrační tábor a později perzekuován komunisty, podporovatel metod termické analyzy
Strouhal Čeněk (Vincenc) (1850–1922) Wald František (1861‐1930) Regner Albert (1905–1970)
Burian Josef (1873‐1942) Kallauner Ottakar (1886‐1972) Matějka Josef(1892‐1960) Bárta Rudolf (1897–1985) Škramovský Stanislav (1901‐1983)
Jesenak Viktor (1926‐2000) Malinovský Milan (1920‐1999) Šatava Vladimír (1924 ‐) Proks Ivo (1922 ‐)
Ti, kterým vděčíme za moderní přístrojové a teoretické porozumění metod termické analýzy
Kallauner C., Matějka J.: Beitrag zu der rationellen Analyse; Sprechsaal 47, 423 (1914) Matějka J.: Chemical changes of kaolinite on firing. Chem. listy 13, 164 (1919); Thermal analysis as a tool for determination of kaolinite. Chem. Listy 16, 8 (1922)
Některé unikátní metody termické analyzy vnesené do praxe Čecho-Slováky:
I. Proks (Periodic TA), J. Brandštetr (Enthalpiometry), J. Komrska (Permebility TA), A. Bergstein (Dielectric TA), V. Jesenak (Dekryptonation TA) S. Chromý (Photometric TA), V. Šatava (Hydrothermal TA), V. Balek (Emanation TA), M. Vaniš (Accelerated TA). Bergstein A.: Changes during ignition of equimolecular mixtures of barium
carbonate and titanium dioxide, followed by measurement of dielectric properties; Collect. Czech. Chem. Com. 20, 1041 (1955)
5th Congress of Czech natural scientists and physicists, Prague 1914 (already involving some aspects of thermometric studies) 0th Thermography Discussions, Prague 1955 1st Thermography Day, Prague 1956 2nd Conference on Thermography, Prague 1958 3rd Conference on Thermography, 70 Prague 1961 let 4th Conference on DTA, Bratislava 1966 5th Conference on DTA, Smolenice 1970 6th Czechoslovak Conference on TA: TERMANAL, High Tatras 1973 7th , 8th and 9th TERMANALs Foundation of the Czech and Slovak TA societies Continuation: High Tatras 1976, 1979 and 1982 Culmination: 10th TERMANAL and 8th ICTA, Bratislava 1985
Tradice konferencí TERMANAL
Venda Tomková Viktor Jesenak Vladimír Šatava
České TA semináře o teplozpytu: Mezná louka až po Dobřichovice Prof. M. Malinovský a Prof. Gianni Lombardi
40let České skupiny OSTA
Stanislav Škramovský významný anorganický chemik, zabývající se koordinačními sloučeninami Kniha „Základy anorganické chemie“ otec statmographu
1901 – 1983 Škramovský S.: Apparatus for automatic registration of dehydration at rising temperature; Chemické listy 26, 521 (1932)
Ivo Proks (1926 - 2011) Vladimír Šatava (1922 - ) Zakladatelé moderních teorií TA
Ivo Proks
Proks I.: Influence of rate of temperature increase on the quantities important for the evaluation of DTA curves. Silikáty 5, 114 (1961); Proks I., Šiške V.: Low temperature DTA apparatus, Chem Zvesti 15, 309 (1961) Proks I., Eliášová M., Pach L.: Calorimeter for measurements of heats of solution. Chem. Zvesti 21, 908 (1967) Proks I., Zlatkovský J.: Laboratory techniques and methods. periodic thermal analysis. Chem. Zvesti 23, 620 (1969) Proks I.: Effect of quantities controlling DTA on the difference between measured and theoretical temperatures. Silikáty 14, 287 (1970) Proks I., Eliášová M., Zlatkovský I.: High-temperature drop calorimetry in phase analysis. Silikáty 21, 253 (1977) Proks I., Kosa I.: Evaluation of the use of dissolution calorimetry in phase analysis. Silikáty 24, 271 (1980) Mackenzie R., Proks I.: Comenius and Black as progenitors of thermal analysis. Thermochim Acta 92, 3 (1985) Proks, I.: Evaluation of the Knowledge of Phase Equilibria. In: Chvoj, Z., Šesták, J., Tříska, A. (eds.) Kinetic Phase Diagrams. Elsevier, Amsterdam (1991) Šesták, J., Mareš, J.J., Hubík, P., Proks, I.: Contribution by Lazare and Sadi Carnot to the caloric theory of heat and its inspirative role in thermodynamics. J. Thermal Anal. Calor. 97, 679-683 (2009) Proks I, book: Celok je jednoduchší ako jeho časti; (Whole is simpler than its parts), Publ. House of Slovak Academy of Sciences, Bratislava 2012
Vladimír Šatava
Šatava V.: Significance of DTA in industry of cements; Stavivo 31, 15 (1953) Šatava V.: Simple registration thermobalance; Silikáty 1, 188 (1957) Šatava V.: Simple construction of apparatuses for automatic DTA; Silikáty 4, 272 (1960) Šatava V.: Differential thermal analysis; Silikáty 1, 207 (1957) Šatava V: Use of TG methods for studying kinetics. Silikáty 5, 68 (1961) Šatava V., Škvára F.: Mechanism and kinetics of solid-state reactions. J. Am. Ceram. Soc. 52, 591 (1969) Šatava V.: Mechanism and kinetics of crystallization from nonisothermal measurements, Thermochim Acta 2, 423 (1971) Šatava V.: Fundamental principles of kinetic data evaluation from TA curves; J. Thermal Anal. 5, 217 (1973) Šatava V.: Nature of vitreous state and conditions of glass-formation; Czech J Phys A23, 565 (1973) Šatava V.: New method of differential hydrothermal analysis – DHTA; J. Amer. Cer. Soc. 58, 357 (1975) Šatava V, Vepřek O.: Effect of sample thermal conductivity on the calibration constant in DTA. Thermochim. Acta 17, 252 (1977) Šatava V.: Determination of standard enthalpies, Gibbs energies and entropies of formation of hydrated calcium Silikáty 30. 319 (1986) Šatava, V.: Direct determination of standard enthalpies and Gibbs energies of
formation and absolute entropies of hydrated calcium sulphoaluminates and carboaluminates. Thermochim Acta 132, 285 (1988)
Scientific and societal organization of thermal analysis (1965-68) Noteworthy cofounders of thermal analysis and associated confederation ICTAC: Cornelius B.
Murphy (1918-1994), USA; Robert C. Mackenzie (1920-2000), Scotland; Wesley W. Wendlandt (1920-1997), USA; Gustav H.J. Tammann (18611938), Germany; Nikolaj S. Kurnakov (1860-1941), Russia; below: Lev G. Berg (1896-1974), Russia ; Rudolf Bárta (1897-1985), Czechia; ), Bernhard Wunderlich (1931-), USA; Patrick K. Gallagher (1931-), USA USA; Paul D. Garn (1920-1999), USA; below J. Dollimore (1927-2000), England ; Takeo Ozawa (1932-), Japan; Joseph H. Flynn (1922-), USA; Hiroshi Suga (1930-), Japan; Giuseppe Della Gatta (1935-) Italy; Bottom: Ferenc Paulik (19222005), Hungary; Hans G. Wiedemann (1920-), Switzerland; Shmuel Yariv (1934-), Israel;; Jean-Pierre E. Grolier (1936-) France; ; Ole Toft Sǿrensen (1933-), Denmark ;.
Hiroshi Suga
(1930-) H-index = 40 Tot.cit. = 5582 Best cit. = 300 ‘Frozen states’
The photo from 28th conference of the Japanese Society on Calorimetry and Thermal Analysis (JSCTA) in Tokyo (Waseda University, 1992) shows (from left) M. Taniguchi (Japan), late C.J. Keattch (GB), late R. Otsuka (Japan), S.St. J. Warne (Australia, former ICTA president), H. Suga (Japan), J. Šesták Czecho-slovakia) and H. Tanaka (Japan). The regular JSCTA conferences started in Osaka 1964 under the organization of Prof. S. Seki who became the first president when the JSCTA was officially established in 1973. Since then, the JSCTA journal NETSU SOKUTEI has been published periodically.
Most influential personalities famous in the research of glasses, from left:
Gustav H.J. Tammann (1861-1938), Frederik F. H. Zachariasen (1906-1979) , Walter Kauzman (1916-2009), Jakov I. Frenkel (1894-1952), David Turnbull (1915-2007), Miloš B. Volf (1915-1983), Sir Nevill F. Mott (1905-1996) , Jan Tauc (1922-2010), Arnošt Hrubý (1919-), Hywel A. Davies (1941-), Donald R. Uhlmann (1935-), Edgar D. Zanotto (1954-), Hiroshi Suga (1930-), Bernhard Wunderlich (1931-), Charles A. Angell (1933-), Larry L. Hanch (1937-), David L. Pye (1937-) and Cornelius T. Moyniham (1937-)
Suga’s most influential papers Suga, H., Seki, S: Thermodynamic Investigation on Glassy States Pure Simple Compounds. J. of Non-cryst. Solids: 16, 171-194 (1974); Suga, H., Seki, S: Frozen-in States of Orientational and Positional Disorder in Molecular Solids. Faraday Discussion No 69, 221-240 (1980) Suga, H: Frozen-in Disorder and Slow Relaxation in Crystals. J. Chem. Thermodyn. 25, 463-484 (1993); Oguni, M., Suga, H.: Amorphous Materials and Their Elucidation by Adiabatic Calorimetry, in Chemical Thermodynamics, ed. Letcher, T. M. IUPAC Monograph, Blackwell Science, 227-237 (1999) Suga H: Frozen–in Disorder in Condensed Phases, Russian J Phys Chem 77 (2003) s. S7; Suga H: Propects of material science: from crystalline to amorphous solids. J Thermal Anal Calor 60 (2000) s. 957. Suga H. Some essential attributes of glassiness regarding the nature of noncrysrtaline solids. In: Šesták J, Mareš JJ, Hubík P, editors. Glassy, amorphous and nano-crystalline materials. Berlin: Springer 2011. pp. 1-20.
Takeo Ozawa
Takeo Ozawa
(1932-) H-index = 81 Tot.cit. = 38580 Best cit. = 2316 ‘kinetics’
A rare photo of ICTAC members participating at the ICTA’9 in Izrael (1988) recognizing from left the late J.H. Flynn (USA), P.K. Gallagher (USA), S.Sr.J. Warne (Australia) , E. Charsley (UK), V. Balek (Czechoslovakia), T. Ozawa (Japan, former ICTA president), D. Moron (UK), J. Dunn (Australia) and late W. Eysel (Germany)
Significant personalities responsible for the advancement of thermal analysis kinetics
First row: Svante A. Arrhenius, Henry Eyring, Andrey N. Kolmogorov, Robert F. Mehl, Raoul Kopelman, Andrew K. Galwey, Paul D. Garn; below Erwad M.D. Karhanavala, Joseph H. Flynn, David Dollimore, Vladimir V. Boldyrev, Janus Zsako, Boris L. L'vov, Vladimír Šatava; below Eugene Segal, Ari Varschavski, Viktor Jesenák, Delbert D. Day, Cornelius T. Moynihan, Takeo Ozawa, Donald R. Uhlmann; below Julia Sempere, Rosa Nomen, Judith Simon, Barbara Malecka, Andrzej L. Malecki, Alan K. Burnham, Michael E. Brown; below Marek Maciejewski, Zdeněk Kožíšek, Jerzy Czarnecki, Nobuyoshi Koga, Petru Budrugeac, Nae-Lih Wu, Emília Illeková; below Peter Šimon, Jaroslav Šesták, Jiří Málek, Vladimir M. Fokin, José M. Criado, Sergey Vyazovkin, Bertrand Roduit; below John M. Hutchinson, Klaus Heide, Isaac Avramov, Lindsay A. Greer, Kenneth F. Kelton, Edgar D. Zanotto, Takayuki Komatsu; bottom row Živan Živkovič, Jurn W.P. Schmelzer, Pavel Hrma, Pavel Holba, Paul S. Thomas, Pavel Demo, Vladimir A. Logvinenko.
Ozawa’s most influential papers: Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Thermal Anal. 1970;2:301–24. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6. Ozawa T. Kinetics of nonisothermal crystallization. Polymer. 1971;12:150. Ozawa T. A modified method for kinetic analysis of thermoanalytical data. J Thermal Anal. 1976;9:369–73. Ozawa T. Non-isothermal kinetics of diffusion and its application to thermal analysis. J Thermal Anal. 1973;5:563–9. Ozawa T. Kinetics of growth from pre-existing surface nuclei. J Thermal Anal Calorim. 2005;82:687–90. Gallagher PK, Ozawa T, Šesták J (eds) Compendium : Oxide high Tc superconductor. Thermochim Acta (special issue), vol 174 Amsterdam (1991)
ICTA executives at the fifth ICTA which took place in Japan. Kyoto 1977.
The first executives of the International Confederation on Thermal Analysis, ICTAC
Upper row H. R. Oswald, P. K. Gallagher, H. G. McAdie, S. St. J. Warne, J. P. Redfern, R. C. Mackenzie and F. Paulik. Middle row C. B. Murphy, S. Seki, W. D. Emmerich, G. Lombardi and H. Kambe. Lower row P. D. Garn, Mrs. Kambe, Mrs. Lombardi, Mrs. Murphy, Mrs. Warne and Mrs. Gallagher.
It its clear that thermal analysis and associated calorimetry and thermometry were promoted by various personalities including notable Japanese scientists. Besides previously attributed prominent personalities H. Suga and T. Ozawa there are many others, such as thermogravimetry commencer H. Saito Thermobalance Analysis. Gijitsu Shin, Tokyo 1962; or DTA theory set underway by Nagasawa K, Tzusuki Y J.E.S. Nagoya University 1 (1953) 156 or 5 (1957) 153 We have to be appreciative to our of preceding superior contributors safeguarding their scientific message to our followers and for the future generation of youngsters.
Tradition of the ICTAC founders in late sixties and consequent managing officers was always a high scientific performance directed to the promotion of thermal analysis and effective contribution to the progress of scientific and societal life within the open access international and interpersonal relations. From the foremost scientific leaders starting with Lev Berg (Russia), Connie Murphy (USA) or Rudolf Barta (Czechia) all the former presidents were vary productive presenting prolific thermal analysis including the past presidents : Takeo Ozawa or Jean Rouquerol or sci-secretary Shmuel Yariv or Michael Brown Unfortunately the present representatives became certain exclusion from such good manners taking in account their negligible scientific outputs name Total Year Best Total Last H-index citation average cited published published D. Burlett 66 2 18 7 2004 5 E. Cavailero 174 2 17 30 2011 8 in comparison with their unsuccessful competitors for the office back in 2006 G. DellaGatta 918 19 73 38 retired 19 J. Sestak 1957 46 119 230 2012 22 Hopeful for better future with ongoing president J. Malecki 1527 25 162 2012 20
So that we need good luck to our forthcoming thermal analysis business
THANK YOU ありがとう