DAFTAR PUSTAKA Adinugroho WC. 2002. Model penaksiran biomassa pohon mahoni (Swietenia macrophylla) di kesatuan pemangkuan hutan Cianjur PT. Perhutani Unit III Jawa Barat [Skripsi]. Bogor: Jurusan Manajemen Hutan Fakultas Kehutanan. Institut Pertanian Bogor. Albrecht A, Kandji ST. 2003. Review carbon sequestration in tropical agroforestry systems. Agriculture, Ecosystems and Environment 99: 15–27. Andayani W. 2002. Analisis finansial potensi sengon rakyat pola agroforestry di Kabupaten Wonosobo. Jurnal Hutan Rakyat Vol. IV. No. 2:1-23. Anderson JM, Spencer T. 1991. Carbon, Nutrient and Water Balances of Tropical Rain Forest Ecosystems Subject to Disturbance: Management Implications and Research Proposals. MAB Digest 7. Paris: UNESCO. Appels D. 2001. Forest rotation lengths under carbon sequestration payments. Paper presented to the Conference of Economists University of Western Australia, Perth 24-26 September 2001. Beer J et al. 1990. Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliadora) or poro (Erythrina poeppigiana) in Costa Rica. V. Productivity indices, organic material models and sustainability over ten years. Agroforestry System 12: 229-249. Bloomfield J, Pearson HL. 2000. Land use, land-use change, forestry, and agricultural activities in the Clean Development Mechanism: estimates of greenhouse gas offset potential. Mitigation and Adaptation Strategies for Global Change 5: 9-24. Boer R, Wasrin UR, Masripatin N, Ridwan M. Kehutanan. Vol. 2 No. 1:6 hal.
2004.
Bulletin Karbon
Boscolo M, Powell M, Delaney M, Brown S, Faris R. 2000. The cost of inventorying and monitoring carbon: lesson from the Noel Kempff Climate Action Project. Journal of Forestry. September 2000 : 24-31. Brown P. 1998. Climate, Biodiversity, and Forests. Issues and Opportunities Emerging from the Kyoto Protocol. Washington, DC: World Resources Institute. Brown S, Lugo AE. 1992. Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia 17:8-18. Brown S. 1997. Estimating Biomass and Biomass Change of Tropical Forests: a Primer. Rome, Italy: FAO Forestry Paper 134. Brown S. 1999a. Guidelines for Inventorying and Monitoring Carbon Offsets in Forest-Based Projects. Winrock International, Arlington, VA. http://srmwww.gov.bc.ca/tib/carbonmon/guidelines%20for%20inventorying% 20%20monitoring%20carbon%20offsets.pdf. [22 Juni 2002]. Brown S. 1999b. Opportunities for Mitigating Carbon Emissions through Forestry Activities. Arlington, VA: Winrock International.
128
Brown S, Gillespie AJR, Lugo AE. 1989. Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science 35(4):881-902. Brown S, Sathaye J, Cannell M, Kauppi P. 1996. Management of forests for mitigation of greenhouse gas emissions. Di dalam: Watson RT, Zinyowera MC, Moss RH, editor. Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press. Chapter 24. Butcher PN, Howard JM, Regetz JS, Semmens BX, Vincent MA. Evaluating The Carbon Sequestration Potential of Tropical Forests. http://www.esm.ucsb.edu/research/Finaldocs/1998/CQuest%20Final.pdf. [22 Oktober 2003]. Cairns MA, Brown S, Helmer EH, Baumgardner GA. 1997. Root biomass allocation in the world’s upland forests. Oecologia 111:1-11. Cacho OJ, Marshall GR, Milne M. 2003. Smallholder Agroforestry Projects: Potential for Carbon Sequestration and Poverty Alleviation. ESA Working Paper No. 03-06, Agriculture and Economic Development Analysis Division, FAO-UN. http://www.fao.org/WAICENT/FAOINFO/ECONOMIC/ESA/wp/ESAWP03 _06.pdf. [2Oktober 2003]. Cacho OJ, Hean R, Wise R. 2002. Carbon-accounting methods and reforestation incentives. Working paper CC04. ACIAR project ASEM 1999/093. http://www.une.edu.au/febl/Econ/carbon/. [22 Juli 2002]. Cacho OJ, Wise R, MacDicken K. 2002. Carbon monitoring costs and their effect on incentives to sequester carbon through forestry. Di dalam: Lin K, Lin J, editor. Proceedings international symposium on forest carbon sequestration and monitoring; Taipei, 11-15 Nov 2002. Taiwan: Taiwan Forestry Research Institute. Chan YH. 1982. Storage and release of organic carbon in Peninsular Malaysia. International Journal of Environmental Studies 18: 211-222. Chatterjee K. 2004. CoP9: An overview. http://www.devalt.org/newsletter/feb04/of_2.htm. [8 April 2004]. CIFOR [Center of International Forestry Research]. 2003. Capturing the value of forest carbon for local livelihoods. http://www.cifor.cgiar.org/publications/pdf_files/Carbon.pdf. [22 Oktober 2003]. Clutter JL, Fortson JC, Pienaar LV, Brister GH, Bailey RL. 1983. Timber Management: A Quantitative Approach. New York: John Wiley & Sons. Davis LS, Johnson KN, Bettinger PS, Howard TE. 2001. Forest Management: To Sustain Ecological, Economic, and Social Value. Fourth Edition. Boston: Mc Graw Hill.
129
De Jong BHJ. 2000. Uncertainties in estimating the potential for carbon mitigation of forest management. Forest Ecology and Management 154: 85104. Dixon RK. 1995. Agroforestry systems: sources or sinks of greenhouse gases? Agroforestry Systems 31: 99-116. Dixon RK, Schroeder PE, Winjun J, editor. 1991. Assessment of promising forest management practices and technologies for enhancing the conservation and sequestration of atmospheric carbon and their costs at the site level. Report of the US Environmental Protection Agency No. EPA/600/3-91/067. Corvallis, Oregon: Environmental Research Laboratory. Draper N, Smith H. 1991. Applied Regression Analysis. Second Edition. New York: John Wiley and Sons. Dutschke M. 2004a. Afforestation is Clean Development: The Milan climate conference cleared the way for CDM forest development, now is the time to get going. BioCarbon.Net Climate, Land Use and Bioenergy. http://www.biocarbon.net/. [8 April 2004]. Dutschke M. 2004b. Growing trees for climate: The Milan climate conference paves the way for forestry projects in developing countries. BioCarbon.Net Climate, Land Use and Bioenergy. http://www.biocarbon.net/. [8 April 2004]. Fay C, DeForeta H, Sirait M, Tomich TP. 1998. A policy breakthrough for Indonesian farmers in the Krui dammar agroforesters. Agroforestry Today 10(2): 25-26. Fearnside PM, Lashof DA, Moura-Costa P. 2000. Accounting for time in mitigating global warming. Mitigation and Adaptation Strategies for Global Change. in press. [FAO] Food and Agriculture Organisation. 2001. State of The World’s Forests. Rome: FAO. Ginoga K, Wulan YC, Djaenudin D. 2002. Potential of Indonesian Smallholder Agroforestry in The CDM: A Case Study in The Upper Citanduy Watershed Area. Working Paper CC12, 2004. ACIAR Project ASEM 2002/066. http://www.une.edu.au/febl/Economics/carbon/. [12 Februari 2005]. Gittinger JP. 1986. Analisa Ekonomi Proyek-proyek Pertanian. Sutomo S, Mangiri K, penerjemah. Edisi Kedua. Jakarta:UI-Press. Terjemahan dari Economic Analysis of Agriculture Project. Grainger A. 1997. Compensating for opportunity cost in forest-based global climate change mitigation. Di dalam : Sedjo RA, Sampson RN, Wisniewski J. 1997. Economic of Carbon Sequestration in Forestry. Boca Raton: CRC Press. Hairiah K. 1997. Final Report: Carbon Stock in Various Land-Use Systems in Lampung and Jambi. Bogor, Indonesia: ICRAF. Hairiah K, van Noordwijk M, Palm CA. 1999. Methods for sampling above and below ground organic pools. Di dalam: Murdiyarso D, Noordwijk Mv, Suyamto DA, editor. Modelling Global Change Impact on The Soil Environment. Bogor, Indonesia: ICRAF.
130
Hairiah K, Sitompul SM, van Noordwijk M, Palm CA. 2001a. Methods for sampling carbon stocks above and below ground. Bogor. Indonesia: ICRAF. Hairiah K, Sitompul SM, van Noordwijk M, Palm CA. 2001b. Carbon stocks of tropical land use systems as part of the global C balance: effects of forest conversion and options for clean development activities. Bogor. Indonesia: ICRAF. Hamburg SP. 2000. Simple rules for measuring changes in ecosystem carbon in forestry-offset projects. Mitigation and Adaptation Strategies for Global Change 5: 25-37. Hamburg SP. 2002. Simple rules for measuring changes in ecosystem carbon in forestry-offset projects. Di dalam: Lin K, Lin J, editor. Proceedings international symposium on forest carbon sequestration and monitoring; Taipei, 11-15 Nov 2002. Taiwan: Taiwan Forestry Research Institute. Hendra S. 2002. Model pendugaan biomassa pohon pinus (Pinus merkusii Jungh et de Vriese) di Kesatuan Pemangkuan Hutan Cianjur, PT Perhutani Unit III Jawa Barat [skripsi]. Bogor: Jurusan Manajemen Hutan Fakultas Kehutanan, Institut Pertanian Bogor. Hendri. 2001. Analisis emisi dan penyerapan gas rumah kaca (baseline) dan evaluasi teknologi mitigasi karbon di wilayah Perum Perhutani [tesis]. Bogor: Program Pascasarjana, Institut Pertanian Bogor. Hoover, CM, Birdsey RA, Heath LS, Stout SL. 2000. How to estimate carbon sequestration on small forest tracts. Journal of Forestry Sept. 2000 : 13-19. Husch B, Beers TW, Kershaw JA. 2003. Forest Mensuration. Fourth Edition. New Jersey: John Wiley & Sons. [IPCC] International Panel on Climate Change. 1996. Revised 1996 Guidelines for National Greenhouse Gas Inventories. Houghton JT et al., editor. IPCC/OECD/IEA. [IPCC]. 2000. Intergovernmental Panel on Climate Change Special Report on Land Use, Land Use Change and Forestry. Cambridge University Press. NY. [IPCC]. 2001. Climate Change 2001: Mitigation, A Special Report of The Intergovermental Panel on Climate Change. NY: Cambridge University Press. [IPCC]. 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Penman J. et al., editor. IPCC National Greenhouse Gas Inventories Programme. [IPCC]. 2005. Simplified Baseline and Monitoring Methodologies for Selected Small-Scale Afforestation and Reforestation (A/R) CDM Project Activity Categories. http://cdm.unfccc.int/methodologies/SSCmethodologies. [12 Desember 2005]. Jensen M. 1993. Soil conditions, vegetation structure and biomass of a Javanese homegarden. Agroforestry System 24:171-186.
131
[JIFPRO] Japan International Forestry Promotion and Cooperation Center. 2001. Manual of Biomass Measurements, in plantation and regenerate vegetation. Japan International Forestry Promotion and Cooperation Center & Japan Overseas Plantation Center for Pulpwood. Ketterings QM, Coe R, van Noordwijk M, Ambagau Y, Palm CA. 2001. Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecology and Management 146: 199-209. Kürsten E, Burschel P. 1993. CO2-mitigation by agroforestry. Water Air Soil Pollution. 70:533–544. Kumar BM, George SJ, Jamaludheen K, Suresh TK. 1998. Comparison of biomass production, tree allometry and nutrient use efficiency of multipurpose trees grown in woodlot and silvipastoral experiments in Kerala. India. Forest Ecology and Management. 112: 145–163. Long AJ and Nair PK. 1999. Trees outside forests: agro, community, and urban forestry. New Forest 17:145-174. MacDicken K. 1997. A Guide to Monitoring Carbon Storage in Forestry and Agroforestry Projects. Winrock International, 1611 N. Kent St., Suite 600, Arlington, VA 22209, USA. Magcale-Macandog DB and Delgado MEM. 2002. Regression equation calibration to estimate aboveground biomass of tropical tree species in the Philippines. Di dalam: Lin K, Lin J, editor. Proceedings international symposium on forest carbon sequestration and monitoring; Taipei, 11-15 Nov 2002. Taiwan: Taiwan Forestry Research Institute. Martawijaya A,Kartasjana I, Madang YI, Prawira SA, Kadir K. 1989. Atlas Kayu Indonesia. Jilid II. Jakarta: Departemen Kehutanan. Masera OR. 1995. Carbon mitigation scenarios for Mexican Forests: methodological considerations and results. Intercincia 20: 388-395. Meinshausen M and Hare B. 2003. Sinks in the CDM: After the climate, biodiversity goes down the drain. An analysis of the CDM sinks agreement at CoP-9. http://holabirds.com/multimedia/download/1/373078/0/GP_CDMSinks_analy sis_v6final.pdf. [8 April 2004] Milne M. 1999. Transaction Cost of Forest Carbon Projects. Center of International Forestry Research (CIFOR). Bogor, Indonesia. [MoE] Ministry of Environment Republic of Indonesia. 2003. National Strategy Study on CDM in Forestry Sector, Final Report. Jakarta. Moura-Costa P. 1996. Tropical forestry practices for carbon sequestration. Di dalam: Schulte A, Schone D, editor. Dipterocarp Forest Ecosystems – Toward sustainable management. Singapore: World Scientific. p.308-334. Moura-Costa P. 2000. Carbon Accounting Methods. Ecosecurities, Ltd. http://www.foresttrends.org/keytrends/pdf/forest_carbon/Carbon%20Accounti ng%20Methods.pdf. [27 Januari 2004].
132
Moura-Costa P, Stuart MD. 1998. Forestry-based Greenhouse Gas Mitigation: a short story of market evolution. Commonwealth Forestry Review 77: 191-202. Moura-Costa P, Stuart MD, Trines E. 1997. SGS Forestry’s carbon offset verification service. Di dalam: Riermer PWF, Smith AY, Thambimuthu KV. Editor: Greenhouse gas mitigation. Technologies for activities implemented jointly. Proceedings of Technologies for AIJ Conference. May 1997. Vancouver: Elsevier, Oxford. p. 409-414. Moura-Costa P, Wilson C. 2000. An equivalence factor between CO2 avoided emissions and sequestration – description and applications in forestry. Mitigation and Adaptation Strategies for Global Change 5: 51-60. Murdiyarso D. 2003. CDM: Mekanisme Pembangunan Bersih. Jakarta: Penerbit Buku Kompas. Murdiyarso D, Herawati H, editor. 2005. Carbon Forestry: Who will benefit? Proceeding of Workshop on Carbon Sequestration and Sustainable Livelihoods. Bogor, Indonesia: CIFOR. Nabuurs GJ, Sikkema R. 1998. The Role of Harvested Wood Products in National Carbon Balances- an Evaluation of Alternatives for IPCC Guidelines. The Netherlands IBN-Research Report 98/3. Wageningen: Institute for Forestry and Nature Research. 25 pp. Nair PKR. 1985. Classification of agroforestry systems. Agroforestry Systems 3:97-128. Nair PKR, editor. 1989. Agroforestry Systems in the Tropics. Dordrecht, The Netherlands: Kluwer Academic Publishers, 245 p. Nair, PKR, Latt CR, Muschler R, Huettl R. editor. 1995. Agroforestry in Industrialized Nations. Agroforestry Systems. Special Issue, 31: 97-198. Nair PKR, Nair DV. 2002. Carbon sequestration in agroforestry systems. http://www.ldd.go.th/Wcss2002/papers/0989.pdf. [4Maret 2004]. Pagiola S, Bishop J, Landell-Mills N. 2002. Introduction. Di dalam: Pagiola S, Bishop J, Landell-Mills N. editor. Selling Forest Environmental Services: Market-based Mechanisms for Conservation and Development. London, UK: Earthscan. Palm CA et al. 1999. Carbon sequestering and trace gas emissions in slash and burn alternative land uses in the humid tropic: ASB Climate Change Working Group Report. Final Report Phase II. Nairobi, Kenya: ICRAF. Pandey DN. 2002. Carbon sequestration in agroforestry systems. Climate Policy 2:367-377. Pedroni L, Locatelli B. 2003. Non-permanence, carbon accounting, and project scale. First Brazilian Symposium on Carbon Sequestration in Agricultural and Forest Systems. Londrina (PR, Brazil), 21-24 October, 2003. Tropical Agricultural Research and Higher Education Center. http://webbeta.catie.ac.cr/bancoconocimiento/C/CambioGlobalISimposioBrasi lenno/modele%20pla-saf%2015%20oct03.pdf. [16 Januari 2004].
133
Pinard MA, Putz FE. 1996. Retaining forest biomass by reduced impact logging damage. Biotropica 28:278-295. Pirard R. 2005. Pulpwood Plantation as Carbon Sinks in Indonesia: Methodological challenge and impact on livelihoods. Di Dalam: Murdiyarso D, Herawati H, editor. 2005. Carbon Forestry: Who will benefit? Proceeding of Workshop on Carbon Sequestration and Sustainable Livelihoods. Bogor, Indonesia: CIFOR. Post WM, Izaurralde RC, Mann LK, Bliss N. 1999. Monitoring and verification of soil organic carbon sequestration. Di dalam: Symposium Carbon sequestration in soils science, monitoring and beyond, December 3-5, St. Michaels, MD. Robertson N, Wunder S. 2005. Fresh Tracks in The Forest: Asessing Incipient Payments for Environmental Services Initiatives in Bolivia. Bogor, Indonesia: CIFOR. Roshetko JM, Delaney M, Hairiah K, Purnomosidhi P. 2001. Carbon stocks in Indonesian homegarden systems: Can smallholder systems be targeted for increased carbon storage? American Journal of Alternative Agriculture 17(2):1-11. Ruark GA, Schoeneberger MM, Nair PKR. 2003. Roles for agroforestry in helping to achieve sustainable forest management. http://www.maf.govt.nz/mafnet/unff-planted-forestry-meeting/conferencepaper/ roles-for_agroforestry.pdf. [8 Juli 2003]. Sanchez PA. 1995. Science in agroforestry. Agroforestry Systems 30:5-55. [SANREM] Sustainable Agriculture & Natural Resource Management. 2003. Assesing the prospects for carbon sequestration in The Manupali Watershed, Philippines. Collaborative Research Support Program. 2003 No. 13. http://www.sanrem.uga.edu/sanrem/database/pdf/ShivelyBrief.pdf. [22 Oktober 2003] Sathaye J, Makundi W, Goldberg B, Jepma CJ, Pinard MA. 1997. International workshop on sustainable forestry management: monitoring and verification of greenhouse gases. Summary statement. Mitigation and Adaptation Strategies for Global Change 2: 91-99. Scherr SJ, Smith J, Robledo CA. 2000. Promoting positive local livelihood impacts through land use, land use change and forestry projects under the Clean Development Mechanism. http://www.forest-trends.org/keytrends/pdf/ forest_carbon/Livelihood%20Impacts.pdf. [27 Januari 2004].
Schroeder P. 1992. Carbon storage potential of short rotation tropical tree plantations. Forest Ecology and Management 50: 31-41. Schroeder P. 1993. Agroforestry systems: integrated land use to store and conserve carbon. Climate Research 3:53-60. Schroeder P, Dixon RK, Winjum JK. 1993. Forest management and agroforestry to sequester and conserve atmospheric carbon dioxide. Unasyla 44: 52-60.
134
Seber GAF and Wild CJ. 2003. Nonlinear Regression. New Jersey: John Wiley & Sons, Inc. Smith J, Mulongoy K, Persson R, Sayer J. 2000. Harnessing carbon markets for tropical forest conservation: toward a more realistic assesment. Environmental Conservation 273(3): 300-311. Snowdon P et al. 2002. Protocol for Sampling Tree and Stand Biomass. National Carbon Accounting System. Technical Report No. 31. Australian Greenhouse Office. http://www.greenhouse.gov.au/ncas. Specht A, West PW. 2003. Estimation of biomass and sequestered carbon on farm forest plantations in northern New South Wales, Australia. Biomass and Bioenergy 25: 363-379. Suharlan A, Sumarna K, Sudiono Y. 1975. Tabel Tegakan Sepuluh Jenis Kayu Industri. Bogor: Lembaga Penelitian Hutan. Tiepolo G, Calmon M, Feretti AR. 2002. Measuring and monitoring carbon stock at the Guaraquecaba climate action project, Parana, Brazil. Di dalam: Lin K, Lin J, editor. Proceedings international symposium on forest carbon sequestration and monitoring; Taipei, 11-15 Nov 2002. Taiwan: Taiwan Forestry Research Institute. Tipper R. xxxx. Counting carbon for offset purposes. ECCU technical document TD2. http://www.eccm.uk.com/counting.htmTipper R, De Jong BH. 1998. Quantification and regulation of carbon offsets from forestry: comparison of alternative methodologies, with special reference to Chiapas, Mexico. Commonwealth Forestry Review 77(3): 219-228. Trexler MC and Haugen C. 1994. Keeping it Green: Evaluating Tropical Forestry Strategies to Mitigate Global Warming. Washington, DC: World Resources Institute. Turner DP, Koerper GJ, Harmon M, Lee JJ. 1995. Carbon sequestration by forests of the United States: Current status and projections to the Year 2040. Tellus 41B: 232-239. [UNFCCC] United Nations Framework Convention on Climate Change. 2000. Expiring CERs. A proposal to addressing the permanence issue Paper No. 5: Colombia. LUCF Project in The CDM. Subsidiary Body for Scientific and Technological advice. Thirteenth session. Lyon, 11-15 September 2000. www.forest-trends.org/keytrends/pdf/durability/landuse_columbia.pdf. [27 Januari 2004]. Vanclay JK. 1994. Modelling Forest Growth and Yield: Applications to Mixed Tropical Forests. Wallingford, UK: CAB International. 280p. van Laar A, Akca A. 1997. Forest Mensuration. Gottingen: Cuvillier Verlag. van Laar A. 1991. Forest Biometry. Sappi Forest. van Noordwijk M et al. 2002. Carbon stock assessment for a forest to coffee conversion landscape in Sumber Jaya (Lampung Indonesia): From Allometric Equatian to Land Use Change Analysis. Science In China 45:75-86.
135
van Noordwijk M, Widayati A, Lusiana B, Hairiah K, Arifin B. 2005. What Can a Clean Mechanism Do to Enhance Trees in the Landscape? Experience with Rubber, Coffee and Timber-based Agroforestry Systems in Indonesia. Di Dalam: Murdiyarso D, Herawati H, editor. 2005. Carbon Forestry: Who will benefit? Proceeding of Workshop on Carbon Sequestration and Sustainable Livelihoods. Bogor, Indonesia: CIFOR. Vine E, Sathaye J, Makundi W. 1999. Guidelines for the Monitoring, Evaluation, Reporting, Verification, and Certification of Forestry Projects for Climate Change Mitigation. USA: Energy Analysis Department Environmental Energy, Technologies Division Lawrence Berkeley National Laboratory. Watson RT et. al. 2000. Land-use, Land-use Change and Forestry, IPCC Special Report. Cambridge: Cambridge University Press, 388p. Winjum JK, Brown S, Schlamadinger B. 1998. Forest harvests and wood products: sources and sinks of atmospheric carbon dioxide. Forest Science 44: 272-284. Zianis D, Menccucini M. 2004. On simplifying allometric analyses of forest biomass. Forest Ecology and Management 187: 311–332.
136
LAMPIRAN
136
Lampiran 1. Identitas pemilik lahan dan keterangan kondisi lokasi agroforestri yang menjadi contoh penelitian 1 Desa Pecekelan Lahan milik 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Nama Sastro Silento Kasdi Ibu Dibyo Makhful Ruswanto Cokro Hartono Sucito H. Ami Sucito H. Djalal H. Djalal Mukhotib Warnanto Martojito Hadi Bilan Pak Eko Kartono H. Djalal Mukhotib H Djalal
Luas (m2) 3300 900 400 1800 1100 1400 800 2000 1700 1400 1400 1300 1500 1100 900 600 1100 800 1700 900 500
Tempat Lokasi Gedangan Tanggulasi Gedangan Tanggulasi Gedangan Tanggulasi Gedangan Tanggulasi Gedangan Tanggulasi Pundung-Tanggulasi Gedangan Tanggulasi Koplak-Patean Simanis-Patean Simanis-Patean Koplak-Patean Koplak-Patean Cikal-Patean Kalilusi-Patean Cikal-Patean Sabrang-Tangg Sabrang-Tangg Sabrang-Tangg Kalilusi-Patean Kalilusi-Patean Kalilusi-Patean
Umur 1-2 th 3-4 th 1-2 th 5-6 th 5-6 th 7-8 th 1-2 th 5-6 th 5-6 th 3-4 th 7-8 th 9-10 th 3-4 th 11-12 th 5-6 th 11-12 th 5-6 th 3-4 th 7-8 th 3-4 th 1-2 th
Tanaman kehutanan sengon, suren, pete, kopi sengon, suren, nangka, kopi sengon, waru, cengkeh, kopi sengon, suren, kopi, secang sengon, suren, nangka, kopi sengon, waru, secang, kopi sengon, waru, secang, kopi sengon, waru, secang, kopi sengon, nangka, kopi, secang Sengon, nangka, mahoni, kopi sengon, mahoni, nangka, kopi sengon, mahoni, nangka, kopi sengon, mahoni, nangka, kopi sengon, mahoni, nangka, kopi sengon, mahoni, nangka, kopi sengon, mahoni, nangka, kopi sengon, mahoni, kelapa, kopi sengon, mahoni, kelapa, kopi Sengon, jenitri, mahoni, kopi Sengon, suren, sungkai, kopi sengon, mahoni, jenitri, kopi
Tanaman pertanian
Tanaman kehutanan Sengon, Mahoni, Huru, Calik Angin Sengon, Mahoni, Afrika, Huru, Pocol, Puspa Sengon Sengon, Balsa, Puspa, Mahoni Sengon, Mahoni Mahoni, Sengon, Afrika Sengon, Mahoni, Afrika, Puspa Sengon, Puspa, Mahoni Sengon, Suren, Mahoni, Afrika Sengon, Afrika, Mahoni, Kapuk Randu, Puspa, Akasia Sengon, Mahoni, Afrika Sengon, Mahoni, Afrika, Puspa Mahoni, Sengon, Puspa Sengon, Mahoni, Ramanten, Afrika, Puspa Sengon, Afrika, Puspa, Akasia, Mahoni, Sampang Afrika, Sengon, Akasia, Waru, Puspa, Huru, Mahoni Sengon, Puspa, Huru, Mahoni, Afrika, Sampang Sengon, Afrika, Mahoni, Kapuk Randu, Puspa, Akasia Sengon, Afrika, Mahoni, Puspa, Huru, Calik Angin Sengon, Afrika, Huru, Mahoni
Tanaman pertanian Kopi, Salak, Bambu, Nangka, Nenas, Rambutan Kapulaga, Kopi, Nangka, Pala, Enau, Cengkeh, Mangga, Nenas Kopi, Pisang, Kapulaga Kopi, Nangka, Aren, Rambutan, Petai, Cengkeh, Pisang Nangka, Pisang, Tebu, Kapulaga, Singkong Nenas, Kopi, Enau, Nangka Kopi, Petai, Alpukat, Cengkeh, Jengkol Nenas, Kopi, Cengkeh Kopi, Nangka, Nenas, Manggis, Durian, Alpukat, Tangkil Nenas, Kelapa, Pisang, Jengkol, Alpukat Kopi, Jengkol, Nangka Kopi, Pisang, Nangka Kapulaga, Pisang, Kopi, Limus, Kelapa, Alpukat, Jengkol Kopi, Pepaya, Alpukat, Nangka, Rambutan, Petai Kopi, Jambu Semarang, Cengkeh, Limus, Nangka, Ramanten Enau, Harendong, Cengkeh, Petai, The, Kopi, Nangka, Jengkol Nenas, Kopi, Nangka, Kapulaga, Petai, Manggis, Jengkol Nenas, Kelapa, Pisang, Jengkol, Alpukat Kopi, Nangka, Rambutan, Alpukat, Jengkol, Petai, Nenas Alpukat, Nangka, Kopi
Keterangan tapak Arah jalur Alt (mdpl) lereng (%) Aspek B-T 815 15 U/T U-S 850 35 U/T U-S 820 15 U U-S 790 20 U/T U-S 810 20 U/T U-S 765 15 T U-S 800 30 S U-S 820 28 S/B B-T 840 35 S/B U-S 830 35 T/S U-S 830 20 S/B U-S 800 30 T/S U-S 830 20 S U-S 830 35 U/T U-S 870 40 B B-T 800 15 T U-S 800 15 U/T U-S 820 20 U U-S 850 15 U/B B-T 840 30 U/T U-S 890 25 T/S
Posisi lereng lereng lereng lereng lereng lereng lereng lereng lembah punggung lereng lereng lereng punggung lembah lembah lereng lereng punggung lereng lereng
Keterangan tapak Arah jalur Alt (mdpl) lereng (%) Aspek B-T 810 30 B U-S 825 35 T/S U-S 850 30 S/B U-S 840 35 S B-T 825 40 S/B U-S 830 30 S U-S 860 45 S U-S 855 35 S/B B-T 890 40 S/B B-T 910 25 B B-T 810 35 B B-T 850 30 S B-T 860 15 T U-S 880 30 U/T S-B 900 50 S/B B-T 810 35 S B-T 800 28 T B-T 910 25 B B-T 820 40 T B-T 870 35 S/B
Posisi Lembah Lereng Lereng Lereng Lereng Lereng Lereng Punggung Punggung Lereng Lembah Lereng Punggung Lereng Lereng Lereng Lereng Lereng Lereng Punggung
2 Desa Kertayasa Lahan milik 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Nama Hamidin Sutardi dan Sukmana Suryana Rohman Sadili Bin Suhanta Usup Supriyadi Komarudin Sudinta Yasir Sutisna Rosadi Sarju Engkos Supriyadi Sukarna Sopandi Sudinta Igud Sutisna Pandi Eman
Luas (m2) 600 600 600 1000 800 600 600 800 1500 700 1200 700 400 400 600 700 600 700 600 600
Tempat Lokasi Umur Ci Calung ( Sukaraja ) 3-4 th Sukaraja 5-6 th Sukaraja 5-6 th Ci Guluma ( Padungdungan ) 3-4 th Padungdungan 7-8 th Ci Pesing ( Padungdungan ) 5-6 th Ci Pesing ( Padungdungan ) 7-8 th Padungdungan 1-2 th Padungdungan 3-4 th Padungdungan 1-2 th Ci Calung ( Sukaraja ) 11-12 th Ci Calung ( Sukaraja ) 3-4 th Sukaraja 11-12 th Sukaraja 11-12 th Ci Carenang 5-6 th Ngawitan 7-8 th Leles 9-10 th Padungdungan 1-2 th Leles 3-4 th Palasiang 3-4 th
137
Lampiran 2.
Lokasi Contoh PN U-1 PN U-2 PN U-3 PN U-4 PN U-8 PN U-9 PN U-11 PN U-16 PN U-17 Rataan Std
Lokasi Contoh PC U-1 PC U-2 PC U-4 PC U-6 PC U-7 PC U-8 PC U-9 PC U-10 PC U-12 PC U-14 PC U-19 Rataan Std Ket:
Hasil analisis ciri-ciri fisik dan kimia tanah di lokasi penelitian Desa Pecekelan (Wonosobo) dan Desa Kertayasa (Ciamis)
Kadar Air (%) A B 39% 40% 44% 46% 50% 44% 40% 35% 41% 38% 39% 46% 45% 40% 44% 42% 50% 48% 44% 42% 4% 4%
Bulk Density (g/cm3) A B 1.16 0.98 0.94 0.89 0.78 0.73 1.00 1.11 0.91 0.89 0.96 0.96 1.06 0.96 0.96 0.92 0.84 0.80 0.96 0.92 0.11 0.11
Bulk Density Kadar Air (%) (g/cm3) A B A B 53% 60% 0.66 0.65 61% 59% 0.62 0.71 63% 57% 0.69 0.66 38% 63% 0.90 0.68 58% 58% 0.70 0.68 59% 60% 0.71 0.69 56% 58% 0.81 0.75 66% 60% 0.64 0.69 59% 56% 0.75 0.70 66% 53% 0.56 0.58 58% 58% 0.70 0.68 58% 58% 0.70 0.68 8% 3% 0.09 0.04 A = Kedalaman 0 - 10 cm B = Kedalaman 10 - 20 cm
pH H2O A 4.08 4.67 4.39 4.40 4.89 4.46 4.81 4.40 4.37 4.50 0.25
B 4.69 4.33 4.43 4.37 4.66 4.34 4.66 4.55 4.26 4.48 0.17
pH H2O A 4.82 4.84 5.16 4.96 5.02 5.12 5.16 4.94 4.88 4.81 4.41 4.92 0.21
B 5.11 4.99 5.20 5.26 5.32 5.09 5.30 5.22 5.23 4.63 4.37 5.07 0.30
B 3.52 3.64 3.59 3.49 3.81 3.60 3.71 3.35 3.31 3.56 0.16
C-org (%) A B 2.42 2.19 2.62 2.08 3.23 2.15 1.92 1.50 2.35 1.85 1.96 1.65 1.62 1.27 3.12 2.03 2.75 1.99 2.44 1.86 0.55 0.32
N-total (%) A B 0.23 0.20 0.26 0.38 0.23 0.20 0.20 0.15 0.24 0.19 0.20 0.15 0.16 0.10 0.29 0.20 0.26 0.20 0.23 0.20 0.04 0.08
K-total (ppm) A B 0.40 0.40 0.26 0.15 0.15 0.13 0.10 0.08 0.18 0.09 0.11 0.12 0.10 0.08 0.21 0.10 1.28 0.95 0.31 0.23 0.38 0.29
P-tersedia (Bray1)(ppm) A B 2.8 3.0 3.3 3.5 8.4 3.1 2.8 2.8 4.9 3.0 4.4 3.1 3.6 4.4 3.3 3.6 3.3 3.3 4.1 3.3 1.8 0.5
B 4.27 4.17 4.05 4.30 4.28 4.13 4.23 4.42 4.43 3.77 3.48 4.14 0.29
C-org (%) A B 3.81 2.65 2.92 1.77 2.77 2.27 3.42 2.92 2.35 1.50 3.04 2.50 2.88 2.42 3.73 2.73 3.15 2.65 4.69 3.08 5.92 2.38 3.52 2.44 1.02 0.47
N-total (%) A B 0.28 0.25 0.27 0.17 0.28 0.23 0.22 0.26 0.24 0.17 0.29 0.26 0.24 0.27 0.32 0.26 0.30 0.24 0.44 0.29 0.36 0.22 0.29 0.24 0.06 0.04
K-total (ppm) A B 0.13 0.23 0.77 0.71 0.72 0.26 0.31 0.21 0.74 0.69 0.90 0.62 0.70 0.43 0.31 0.15 0.42 0.45 0.33 0.27 0.62 0.27 0.54 0.39 0.25 0.20
P-tersedia (Bray1)(ppm) A B 8.0 6.4 8.8 7.6 9.2 9.0 9.7 4.3 8.5 8.4 7.2 7.9 8.4 7.6 5.9 5.8 5.9 5.8 6.6 5.3 6.2 7.2 7.7 6.8 1.4 1.4
pH KCl A 3.76 3.63 3.27 3.63 3.93 3.59 3.96 3.53 3.46 3.64 0.22
pH KCl A 4.05 3.78 4.23 3.78 3.96 4.27 4.09 3.78 3.90 3.72 3.55 3.92 0.22
138
Lampiran 2. Lokasi Contoh PN U-1 PN U-2 PN U-3 PN U-4 PN U-8 PN U-9 PN U-11 PN U-16 PN U-17 Rataan Std
Lokasi Contoh PC U-1 PC U-2 PC U-4 PC U-6 PC U-7 PC U-8 PC U-9 PC U-10 PC U-12 PC U-14 PC U-19 Rataan Std Ket:
(Lanjutan)
KTK (me/100g) A B 28.30 25.98 30.10 28.15 21.82 16.22 14.84 12.66 17.46 15.49 16.36 14.18 15.27 14.84 19.64 15.27 23.56 18.33 20.82 17.90 5.59 5.44
Pasir (%) A B 7.49 4.79 3.95 3.53 6.39 2.73 7.54 8.42 11.96 3.04 4.10 2.75 3.38 2.84 4.93 4.36 3.69 3.50 5.94 4.00 2.77 1.81
Debu (%) A B 30.89 28.52 17.19 22.85 17.69 55.08 35.84 33.58 39.46 13.70 33.59 30.72 25.57 28.14 17.20 21.86 19.20 26.45 26.29 28.99 8.87 11.37
KTK (me/100g) Pasir (%) A B A B 26.62 15.10 40.83 45.62 16.28 21.60 34.86 11.98 25.75 22.03 43.10 40.07 25.09 20.15 25.67 25.67 26.98 26.62 17.59 28.10 22.69 22.26 32.55 36.42 25.31 25.75 18.65 25.35 31.86 24.00 27.91 18.50 16.10 18.30 34.22 32.45 31.64 24.22 24.71 25.29 25.13 22.47 28.24 29.70 24.86 22.05 29.85 29.01 5.09 3.31 8.21 9.51 A = Kedalaman 0 - 10 cm B = Kedalaman 10 - 20 cm
Debu (%) A B 27.28 43.72 54.38 68.35 38.32 40.40 48.19 51.98 42.11 43.76 38.71 45.03 45.42 45.56 51.70 54.08 53.29 49.64 41.42 51.32 38.19 43.24 43.55 48.83 8.09 7.78
Liat (%) A 61.62 78.86 75.92 56.62 48.58 62.31 71.05 77.87 77.11 67.77 10.90
B 66.69 73.62 42.19 58.00 83.26 66.53 69.02 73.78 70.05 67.02 11.53
Liat (%) A 31.89 10.76 18.58 26.14 40.30 28.74 35.93 20.39 12.49 33.87 33.57 26.61 9.81
B 10.66 19.67 19.53 22.35 28.14 18.55 29.09 27.42 17.91 23.39 27.06 22.16 5.60
C/N rasio A B 10.52 10.95 10.08 5.47 14.04 10.75 9.60 10.00 9.79 9.74 9.80 11.00 10.13 12.70 10.76 10.15 10.58 9.95 10.59 10.08 1.35 1.95
C-content (ton/ha) A B 56.3 42.9 49.2 37.1 50.2 31.3 38.4 33.4 42.7 32.9 37.6 31.8 34.2 24.3 59.6 37.2 46.2 31.9 46.0 33.7 8.6 5.1
C/N rasio A B 13.61 10.60 10.81 10.41 9.89 9.87 15.55 11.23 9.79 8.82 10.48 9.62 12.00 8.96 11.66 10.50 10.50 11.04 10.66 10.62 16.44 10.82 11.94 10.23 2.28 0.81
C-content (ton/ha) A B 50.1 34.7 36.2 25.2 38.3 30.1 61.6 39.5 33.1 20.4 43.1 34.4 46.4 36.3 47.7 37.7 47.0 37.2 52.8 35.8 83.3 32.3 49.1 33.0 13.9 5.8
139
Lampiran 3.
Daftar peubah untuk penyusunan model alometrik pendugaan biomassa pohon sengon
Dimensi Pohon Contoh Bobot Basah (kg) No.Phn diameter Ttot Tbc Ltajuk Batang Cabang Ranting Tunggak (cm) (m) (m) (m2) 1 18.0 17.0 8.5 20.82 99.93 17.09 12.00 4.50 2 15.5 13.5 9.0 25.50 78.00 9.19 8.00 4.50 3 18.4 13.3 7.8 20.42 84.00 16.50 11.50 6.00 4 15.0 14.5 8.0 21.64 85.00 10.50 10.50 3.00 5 14.0 10.6 7.8 25.73 83.50 13.10 11.00 1.50 6 18.0 17.0 8.5 20.82 99.93 17.09 12.00 0.00 7 16.2 14.5 7.0 34.19 77.50 11.26 10.25 2.50 8 14.8 11.5 7.8 32.76 66.50 12.78 9.00 10.50 9 15.6 14.8 7.8 45.64 82.50 9.35 7.50 0.99 10 9.5 9.5 7.0 11.28 22.50 2.55 1.50 1.00 11 9.5 9.5 6.5 11.49 22.50 1.85 1.75 3.00 12 12.0 14.5 8.5 25.64 38.10 3.53 2.75 0.00 13 27.8 23.0 18.0 121.68 288.50 85.58 36.50 11.25 14 29.0 27.0 14.5 83.28 504.50 81.00 54.50 13.75 15 34.8 27.5 8.8 82.88 580.49 144.50 57.00 22.71 16 22.3 19.3 11.3 61.83 177.43 43.25 18.00 6.50 17 43.8 26.5 13.0 143.07 915.00 162.60 81.00 18.80 18 21.2 15.3 8.3 54.73 136.88 26.75 16.50 0.00 19 28.1 30.5 12.0 96.72 382.50 77.18 33.25 8.78 20 22.6 26.5 10.5 67.89 201.50 40.03 20.50 2.79 21 24.0 19.0 11.5 44.16 197.50 26.65 20.00 4.25 22 22.6 24.0 14.3 58.06 248.50 31.75 26.50 6.41 23 21.4 22.0 11.3 82.07 237.00 44.70 20.00 4.00 24 21.5 20.0 8.0 40.08 168.50 23.15 18.00 3.50 25 24.0 23.0 7.0 65.72 200.00 34.50 24.50 4.90 26 19.0 20.0 11.5 11.64 131.00 12.23 9.50 3.60 27 29.4 22.0 6.3 95.85 391.00 127.25 59.00 15.32 28 6.2 9.5 5.5 8.29 16.23 1.13 1.08 0.33 29 28.5 23.5 9.3 127.61 466.50 126.00 31.00 7.50 30 13.2 15.3 10.5 29.21 48.00 7.98 7.50 0.68
Daun 17.00 10.00 11.50 9.50 7.00 17.00 9.50 11.25 7.50 3.50 3.00 4.00 39.50 38.00 36.00 25.50 74.00 20.25 34.00 26.50 27.00 19.50 19.00 25.00 20.50 10.00 24.00 1.98 42.00 6.00
Total 150.51 109.69 129.50 118.50 116.10 146.01 111.01 110.03 107.84 31.05 32.10 48.38 461.33 691.75 840.70 270.68 1251.40 200.38 535.71 291.32 275.40 332.66 324.70 238.15 284.40 166.33 616.57 20.73 673.00 70.15
Batang 60.44 49.02 51.64 48.56 54.49 63.83 45.44 40.31 55.12 14.10 15.50 24.63 182.20 314.50 377.14 115.24 619.23 82.64 243.52 129.31 119.27 153.58 144.63 106.88 130.64 84.64 241.73 9.96 297.83 30.80
Bobot Kering (kg) Cabang Ranting Tunggak Daun 10.04 5.31 8.67 6.51 7.53 10.12 5.80 8.18 5.91 1.54 0.95 2.03 46.33 49.98 84.11 25.26 104.98 16.56 43.33 24.46 15.24 18.88 26.68 13.94 20.99 7.54 73.90 0.70 71.35 4.06
5.81 3.78 5.35 5.03 5.26 5.92 4.68 4.11 3.66 0.64 0.76 1.31 16.55 26.35 27.63 7.47 41.05 7.56 15.02 8.78 9.16 11.25 7.98 8.44 10.74 4.81 30.75 0.58 16.82 3.33
2.72 2.83 3.69 1.71 0.98 0.00 1.47 6.36 0.66 0.63 2.07 0.00 7.10 8.57 14.76 4.22 12.72 0.00 5.59 1.79 2.57 3.96 2.44 2.22 3.20 2.33 9.47 0.20 4.79 0.43
6.18 4.13 4.26 3.63 2.75 5.49 3.19 3.87 2.76 1.30 1.03 1.53 15.54 13.57 13.12 9.07 27.60 7.03 12.25 10.36 10.31 6.61 6.38 9.46 7.80 3.76 8.89 0.82 15.29 2.04
Total 85.20 65.07 73.62 65.45 71.01 85.36 60.57 62.84 68.11 18.20 20.31 29.49 267.73 412.97 516.75 161.26 805.59 113.79 319.71 174.71 156.55 194.28 188.11 140.94 173.37 103.08 364.75 12.25 406.07 40.67
Btg&tung 63.16 51.85 55.32 50.28 55.47 63.83 46.90 46.67 55.78 14.73 17.57 24.63 189.31 323.08 391.90 119.46 631.95 82.64 249.11 131.11 121.84 157.54 147.07 109.10 133.84 86.97 251.20 10.16 302.62 31.23
136
Lampiran 4.
Daftar peubah untuk penyusunan model hubungan persediaan karbon tegakan dengan struktur tegakan agroforestri
1. AGROFORESTRI DS PECEKELAN
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
k 932 1,749 13,170 2,045 6,389 1,361 7,377 2,248 5,180 814 558 334 3,868 315 6,031 368 3,123 9,441 223 3,652 4,485
a 0.222 0.171 0.268 0.155 0.242 0.123 0.273 0.179 0.211 0.128 0.109 0.074 0.212 0.051 0.219 0.061 0.179 0.266 0.044 0.202 0.245
CtotAG Cstandkop 11.06 9.26 27.76 25.89 44.41 42.87 30.53 29.44 28.69 26.23 46.91 42.61 27.27 26.65 31.35 28.24 37.83 35.18 35.47 32.25 29.20 27.76 59.99 53.69 26.77 24.57 76.68 72.82 36.87 34.69 85.37 81.15 49.21 46.24 29.76 25.82 71.99 69.24 38.26 34.75 26.78 23.80
Cstand 3.87 19.69 34.40 27.74 22.85 34.79 20.05 23.03 25.70 28.07 22.05 45.29 19.92 63.43 31.33 71.00 42.41 25.28 54.45 26.55 14.71
Chidup 9.30 26.70 43.59 29.74 26.96 42.68 26.73 29.13 35.70 33.34 27.85 53.72 24.77 73.14 35.29 81.15 46.87 27.16 69.26 34.75 23.80
Cstand 26.51 32.95 49.26 19.13 25.99 25.66 38.30 23.61 27.16 8.49 51.31 25.69 54.78 31.32 44.12 31.39 70.79 51.47 23.34 28.36
Chidup 28.70 40.82 54.87 19.73 27.64 30.32 47.17 25.68 31.49 8.53 58.12 28.94 56.12 40.19 45.10 33.04 83.67 52.19 28.37 29.57
2. AGROFORESTRI DS KERTAYASA
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k 4,917 2,108 3,863 3,976 8,600 8,437 4,047 2,547 9,703 2,675 2,099 6,249 6,619 888 13,317 9,532 1,341 7,186 4,673 7,665
a 0.246 0.14 0.185 0.22 0.236 0.228 0.194 0.219 0.254 0.226 0.132 0.249 0.18 0.107 0.243 0.234 0.111 0.207 0.252 0.259
CtotAG Cstandkop 31.22 28.41 42.78 40.62 57.52 54.24 20.79 19.70 31.85 26.82 32.15 29.61 50.49 46.66 27.76 25.41 33.19 31.36 9.10 8.49 60.63 57.95 30.60 28.65 58.77 55.78 42.08 40.01 47.19 44.86 35.03 32.39 86.95 83.64 56.17 51.87 28.18 28.08 32.41 28.63
137
Lampiran 5.
Daftar peubah untuk penyusunan model hubungan persediaan karbon tegakan dengan dimensi tegakan agroforestri
1. AGROFORESTRI DS PECEKELAN
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
CtotAG Cstandkop Cstand 11.06 9.26 3.87 27.76 25.89 19.69 44.41 42.87 34.40 30.53 29.44 27.74 28.69 26.23 22.85 46.91 42.61 34.79 27.27 26.65 20.05 31.35 28.24 23.03 37.83 35.18 25.70 35.47 32.25 28.07 29.20 27.76 22.05 59.99 53.69 45.29 26.77 24.57 19.92 76.68 72.82 63.43 36.87 34.69 31.33 85.37 81.15 71.00 49.21 46.24 42.41 29.76 25.82 25.28 71.99 69.24 54.45 38.26 34.75 26.55 26.78 23.80 14.71
Clive 9.30 26.70 43.59 29.74 26.96 42.68 26.73 29.13 35.70 33.34 27.85 53.72 24.77 73.14 35.29 81.15 46.87 27.16 69.26 34.75 23.80
Age 1.5 3.5 5.5 5.5 5.5 7.5 3.5 5.5 5.5 5.5 7.5 9.5 3.5 11.5 5.5 11.5 7.5 3.5 9.5 3.5 1.5
N
D
488 630 1,800 1,228 919 925 972 811 1,211 690 590 673 935 727 1,178 783 1,197 1,525 722 950 983
8.3 13.5 10.7 10.6 12.2 13.2 9.9 10.5 10.8 14.4 12.5 15.6 10.9 16.9 11.8 17.7 12.6 10.4 16.9 13.0 10.1
BA 2.86 10.51 20.29 14.87 13.01 16.38 11.97 12.31 14.39 14.05 10.17 18.69 11.07 23.52 16.90 27.33 20.23 15.49 22.40 15.67 9.18
Clive 28.70 40.82 54.87 19.73 27.64 30.32 47.17 25.68 31.49 8.53 58.12 28.94 56.12 40.19 45.10 33.04 83.67 52.19 28.37 29.57
Age 3.5 5.5 7.5 3.5 5.5 5.5 7.5 3.5 3.5 1.5 11.5 3.5 9.5 9.5 5.5 7.5 11.5 7.5 3.5 5.5
N 1317 1350 1117 1570 1623 1483 1250 1517 1772 1161 1750 2067 1925 1200 2833 2075 1500 2883 1800 1717
D 10.2 11.5 13.3 9.1 10.0 10.1 11.8 9.4 9.5 7.9 12.2 9.3 12.9 11.2 9.6 9.7 13.1 10.4 8.2 10.2
BA 13.00 17.45 19.23 11.79 14.61 14.75 17.69 12.52 15.74 7.13 25.74 16.08 29.15 15.88 25.26 18.69 30.19 29.47 11.03 17.05
2. AGROFORESTRI DS KERTAYASA
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CtotAG Cstandkop Cstand 31.22 28.41 26.51 42.78 40.62 32.95 57.52 54.24 49.26 20.79 19.70 19.13 31.85 26.82 25.99 32.15 29.61 25.66 50.49 46.66 38.30 27.76 25.41 23.61 33.19 31.36 27.16 9.10 8.49 8.49 60.63 57.95 51.31 30.60 28.65 25.69 58.77 55.78 54.78 42.08 40.01 31.32 47.19 44.86 44.12 35.03 32.39 31.39 86.95 83.64 70.79 56.17 51.87 51.47 28.18 28.08 23.34 32.41 28.63 28.36
138
143
Lampiran 6. Hasil pengolahan data model hubungan persediaan karbon tegakan dengan struktur tegakan agroforestri 1. AGROFORESTRI DS PECEKELAN
Descriptive Statistics: k, a, CtotAG, Cstandkop, Cstand, Chidup Variable k a CtotAG Cstandko Cstand Chidup
N 21 21 21 21 21 21
Mean 3508 -0.1730 40.58 37.77 31.27 38.17
Median 2248 -0.1790 35.47 32.25 26.55 33.34
TrMean 3172 -0.1746 39.78 36.99 30.62 37.43
Variable k a CtotAG Cstandko Cstand Chidup
Minimum 223 -0.2730 11.06 9.26 3.87 9.30
Maximum 13170 -0.0440 85.37 81.15 71.00 81.15
Q1 686 -0.2320 28.23 26.06 21.05 26.85
Q3 5606 -0.1160 48.06 44.56 38.60 45.23
StDev 3444 0.0738 18.74 18.05 16.19 17.95
SE Mean 751 0.0161 4.09 3.94 3.53 3.92
Correlations: k, a, CtotAG, Cstandkop, Cstand, Chidup k a CtotAG Cstandko -0.810 0.000 CtotAG -0.318 0.747 0.159 0.000 Cstandko -0.307 0.741 0.998 0.176 0.000 0.000 Cstand -0.288 0.727 0.987 0.987 0.206 0.000 0.000 0.000 Chidup -0.299 0.738 0.998 1.000 0.188 0.000 0.000 0.000 Cell Contents: Pearson correlation P-Value
Cstand
a
0.989 0.000
Regression Analysis: CtotAG versus k, a The regression equation is CtotAG = 87.2 + 0.00453 k + 361 a Predictor Coef SE Coef T P VIF Constant 87.179 5.866 14.86 0.000 k 0.0045306 0.0009837 4.61 0.000 2.9 a 361.13 45.92 7.86 0.000 2.9 S = 8.890 R-Sq = 79.7% R-Sq(adj) = 77.5% PRESS = 1958.16 R-Sq(pred) = 72.12% Analysis of Variance Source DF SS MS F P Regression 2 5600.3 2800.1 35.43 0.000 Residual Error 18 1422.7 79.0 Total 20 7023.0 Source DF Seq SS k 1 712.3 a 1 4887.9 Unusual Observations Obs k CtotAG Fit SE Fit Residual 3 13170 44.41 50.06 6.78 -5.65 11 558 29.20 50.34 2.65 -21.14 16 368 85.37 66.82 3.75 18.55 R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.
St Resid -0.98 X -2.49R 2.30R
144
Regression Analysis: Cstandkop versus k, a The regression equation is Cstandkop = 82.7 + 0.00446 k + 350 a Predictor Constant k a
Coef 82.685 0.0044617 350.00
SE Coef 5.628 0.0009437 44.05
T 14.69 4.73 7.94
P 0.000 0.000 0.000
VIF 2.9 2.9
S = 8.529 R-Sq = 79.9% R-Sq(adj) = 77.7% PRESS = 1790.52 R-Sq(pred) = 72.51% Analysis of Variance Source DF SS MS F P Regression 2 5205.2 2602.6 35.78 0.000 Residual Error 18 1309.3 72.7 Total 20 6514.5 Source DF Seq SS k 1 613.9 a 1 4591.3 Unusual Observations Obs k Cstandko Fit SE Fit Residual St Resid 3 13170 42.87 47.65 6.51 -4.78 -0.87 X 11 558 27.76 47.02 2.54 -19.26 -2.37R 16 368 81.15 62.98 3.59 18.17 2.35R R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.
Regression Analysis: Cstand versus k, a The regression equation is Cstand = 71.4 + 0.00411 k + 315 a Predictor Constant k a
Coef 71.376 0.0041147 315.18
SE Coef 5.124 0.0008592 40.11
T 13.93 4.79 7.86
P 0.000 0.000 0.000
VIF 2.9 2.9
S = 7.766 R-Sq = 79.3% R-Sq(adj) = 77.0% PRESS = 1602.93 R-Sq(pred) = 69.42% Analysis of Variance Source DF SS MS F P Regression 2 4156.9 2078.5 34.47 0.000 Residual Error 18 1085.5 60.3 Total 20 5242.4 Source DF Seq SS k 1 433.6 a 1 3723.4 Unusual Observations Obs k Cstand Fit SE Fit Residual St Resid 3 13170 34.40 41.10 5.92 -6.70 -1.33 X 11 558 22.05 39.32 2.31 -17.27 -2.33R 16 368 71.00 53.66 3.27 17.34 2.46R R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.
Regression Analysis: Chidup versus k, a The regression equation is Chidup = 82.9 + 0.00451 k + 350 a Predictor Coef SE Coef T P VIF Constant 82.910 5.553 14.93 0.000 k 0.0045116 0.0009311 4.85 0.000 2.9 a 349.98 43.47 8.05 0.000 2.9 S = 8.415 R-Sq = 80.2% R-Sq(adj) = 78.0% PRESS = 1750.08 R-Sq(pred) = 72.83%
145
Analysis of Variance Source DF SS Regression 2 5166.9 Residual Error 18 1274.6 Total 20 6441.5 Source DF Seq SS k 1 576.2 a 1 4590.8
MS 2583.5 70.8
F 36.48
P 0.000
Unusual Observations Obs k Chidup Fit SE Fit Residual St Resid 3 13170 43.59 48.53 6.42 -4.94 -0.91 X 11 558 27.85 47.28 2.51 -19.43 -2.42R 16 368 81.15 63.22 3.55 17.93 2.35R R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.
2. AGROFORESTRI DS KERTAYASA
Descriptive Statistics: k, a, CtotAG, Cstand&kopi, Cstand, Clive Variable k a CtotAG Cstand&k Cstand Clive Variable k a CtotAG Cstand&k Cstand Clive
N 20 20 20 20 20 20 Minimum 888 -0.2590 9.10 8.49 8.49 8.53
Mean 5522 -0.2061 40.74 38.16 34.48 38.51 Maximum 13317 -0.1070 86.95 83.64 70.79 83.67
Median 4795 -0.2230 34.11 31.88 29.84 32.27 Q1 2579 -0.2453 30.76 28.16 25.67 28.45
TrMean 5347 -0.2087 39.93 37.28 33.91 37.67 Q3 8244 -0.1813 54.75 50.57 47.97 50.94
StDev 3317 0.0486 17.39 16.84 14.84 16.81
Correlations: k, a, CtotAG, Cstand&kopi, Cstand, Clive k a CtotAG Cstand&k -0.680 0.001 CtotAG -0.162 0.666 0.496 0.001 Cstand&k -0.182 0.680 0.998 0.443 0.001 0.000 Cstand -0.068 0.590 0.985 0.982 0.774 0.006 0.000 0.000 Clive -0.175 0.675 0.999 1.000 0.460 0.001 0.000 0.000 Cell Contents: Pearson correlation P-Value
Cstand
a
0.983 0.000
Regression Analysis: CtotAG versus k, a The regression equation is CtotAG = 101 + 0.00284 k + 370 a Predictor Coef SE Coef T P Constant 101.36 12.39 8.18 0.000 k 0.002841 0.001094 2.60 0.019 a 370.24 74.63 4.96 0.000 S = 11.60 R-Sq = 60.2% R-Sq(adj) = 55.5% Analysis of Variance Source DF SS MS F Regression 2 3461.5 1730.8 12.86 Residual Error 17 2287.4 134.6 Total 19 5748.9
P 0.000
SE Mean 742 0.0109 3.89 3.76 3.32 3.76
146
Source DF Seq SS k 1 150.0 a 1 3311.6 Unusual Observations Obs k CtotAG Fit SE Fit Residual 14 888 42.08 64.27 6.01 -22.19 17 1341 86.95 64.08 5.82 22.87 R denotes an observation with a large standardized residual
St Resid -2.24R 2.28R
Regression Analysis: Cstand&kopi versus k, a The regression equation is Cstand&kopi = 97.3 + 0.00264 k + 358 a Predictor Constant k a S = 11.15
Coef SE Coef T P 97.33 11.91 8.17 0.000 0.002641 0.001051 2.51 0.022 357.87 71.75 4.99 0.000 R-Sq = 60.7% R-Sq(adj) = 56.1%
Analysis of Variance Source DF SS Regression 2 3272.2 Residual Error 17 2114.2 Total 19 5386.5 Source DF Seq SS k 1 178.2 a 1 3094.0
MS 1636.1 124.4
F 13.16
P 0.000
Unusual Observations Obs k Cstand&k Fit SE Fit Residual 14 888 40.01 61.38 5.78 -21.37 17 1341 83.64 61.15 5.60 22.49 R denotes an observation with a large standardized residual
St Resid -2.24R 2.33R
Regression Analysis: Cstand versus k, a The regression equation is Cstand = 82.8 + 0.00277 k + 308 a Predictor Coef Constant 82.77 k 0.0027653 a 308.38 S = 10.48 PRESS = 2827.04
SE Coef T P 11.20 7.39 0.000 0.0009884 2.80 0.012 67.45 4.57 0.000 R-Sq = 55.4% R-Sq(adj) = 50.1% R-Sq(pred) = 32.45%
Analysis of Variance Source DF SS Regression 2 2317.0 Residual Error 17 1868.3 Total 19 4185.3 Source DF Seq SS k 1 19.6 a 1 2297.4
MS 1158.5 109.9
F 10.54
P 0.001
Unusual Observations Obs k Cstand Fit SE Fit Residual 14 888 31.32 52.23 5.43 -20.91 17 1341 70.79 52.25 5.26 18.54 R denotes an observation with a large standardized residual
Regression Analysis: Cstand versus k, a The regression equation is Cstand = 82.8 + 0.00277 k + 308 a
St Resid -2.33R 2.05R
147
Predictor Coef Constant 82.77 k 0.0027653 a 308.38 S = 10.48 PRESS = 2827.04
SE Coef T P 11.20 7.39 0.000 0.0009884 2.80 0.012 67.45 4.57 0.000 R-Sq = 55.4% R-Sq(adj) = 50.1% R-Sq(pred) = 32.45%
Analysis of Variance Source DF SS Regression 2 2317.0 Residual Error 17 1868.3 Total 19 4185.3 Source DF Seq SS k 1 19.6 a 1 2297.4
MS 1158.5 109.9
F 10.54
P 0.001
Unusual Observations Obs k Cstand Fit SE Fit Residual 14 888 31.32 52.23 5.43 -20.91 17 1341 70.79 52.25 5.26 18.54 R denotes an observation with a large standardized residual
St Resid -2.33R 2.05R
Regression Analysis: Clive versus k, a The regression equation is Clive = 97.4 + 0.00267 k + 357 a Predictor Coef SE Coef T P Constant 97.38 11.93 8.16 0.000 k 0.002669 0.001053 2.54 0.021 a 357.15 71.85 4.97 0.000 S = 11.17 R-Sq = 60.5% R-Sq(adj) = 55.8% PRESS = 3265.06 R-Sq(pred) = 39.16% Analysis of Variance Source DF SS MS F P Regression 2 3246.5 1623.3 13.02 0.000 Residual Error 17 2120.0 124.7 Total 19 5366.6 Source DF Seq SS k 1 165.0 a 1 3081.6 Unusual Observations Obs k Clive Fit SE Fit Residual 14 888 40.19 61.54 5.79 -21.35 17 1341 83.67 61.32 5.60 22.35 R denotes an observation with a large standardized residual
St Resid -2.24R 2.31R
148
Lampiran 7 Plot peluang normal sisaan dari persamaan matematik pendugaan potensi persediaan karbon dengan peubah struktur tegakan, (a) Tegakan murni, (b) Tegakan campuran
(a)
(b) (a)
(b)
149
Lampiran 8 Plot tebaran nilai sisaan baku dari persamaan matematik pendugaan potensi persediaan karbon dengan peubah struktur tegakan, (a) Tegakan murni, (b) Tegakan campuran
(a)
(b)
150
Lampiran 9.
Hasil pengolahan data model hubungan persediaan karbon tegakan dengan dimensi tegakan agroforestri
1. AGROFORESTRI DS PECEKELAN
Descriptive Statistics: CtotAG, Cstandkop, Cstand, Clive, Age, N, D, BA Variable CtotAG Cstandko Cstand Clive Age N D BA
N 21 21 21 21 21 21 21 21
Mean 40.58 37.77 31.27 38.17 5.881 949.4 12.500 15.30
Median 35.47 32.25 26.55 33.34 5.500 925.0 12.200 14.87
TrMean 39.78 36.99 30.62 37.43 5.816 928.9 12.447 15.32
Variable CtotAG Cstandko Cstand Clive Age N D BA
Minimum 11.06 9.26 3.87 9.30 1.500 488.0 8.300 2.86
Maximum 85.37 81.15 71.00 81.15 11.500 1800.0 17.700 27.33
Q1 28.23 26.06 21.05 26.85 3.500 706.0 10.550 11.52
Q3 48.06 44.56 38.60 45.23 7.500 1187.5 13.950 19.46
StDev 18.74 18.05 16.19 17.95 2.872 320.4 2.571 5.54
SE Mean 4.09 3.94 3.53 3.92 0.627 69.9 0.561 1.21
Correlations: CtotAG, Cstandkop, Cstand, Clive, Age, N, D, BA CtotAG Cstandko Cstand 0.998 0.000 Cstand 0.987 0.987 0.000 0.000 Clive 0.998 1.000 0.989 0.000 0.000 0.000 Age 0.906 0.906 0.921 0.000 0.000 0.000 N -0.076 -0.067 -0.021 0.743 0.774 0.927 D 0.882 0.875 0.867 0.000 0.000 0.000 BA 0.927 0.930 0.953 0.000 0.000 0.000 Cell Contents: Pearson correlation P-Value
Clive
Age
N
D
0.907 0.000 -0.058 0.804 0.876 0.000 0.934 0.000
-0.187 0.417 0.848 0.000 0.826 0.000
-0.381 0.089 0.250 0.275
0.757 0.000
Cstandko
Best Subsets Regression: CtotAG versus Age, N, D, BA Response is CtotAG
Vars
R-Sq
R-Sq(adj)
C-p
S
1 1 2 2 3 3 4
86.0 82.1 96.1 93.6 96.2 96.1 96.2
85.2 81.2 95.6 92.9 95.5 95.5 95.2
42.0 58.3 1.5 12.0 3.2 3.3 5.0
7.1993 8.1346 3.9092 5.0009 3.9825 3.9947 4.0849
A g B e N D A X X X
X X X X X X X X X X X X X
151
Regression Analysis: CtotAG versus Age, N, D, BA The regression equation is CtotAG = 11.1 + 0.418 Age - 0.0201 N - 0.50 D + 3.42 BA Predictor Constant Age N D BA
Coef 11.10 0.4178 -0.020075 -0.502 3.4219
S = 4.085 PRESS = 441.908 Analysis of Variance Source DF Regression 4 Residual Error 16 Total 20
SE Coef 14.22 0.8234 0.007840 1.259 0.7277
T 0.78 0.51 -2.56 -0.40 4.70
R-Sq = 96.2% R-Sq(pred) = 93.71%
SS 6756.0 267.0 7023.0
P 0.446 0.619 0.021 0.695 0.000
VIF 6.7 7.6 12.6 19.5
R-Sq(adj) = 95.2%
MS 1689.0 16.7
F 101.22
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS Age 1 5765.7 N 1 63.2 D 1 558.1 BA 1 369.0 Unusual Observations Obs Age CtotAG Fit SE Fit Residual 21 1.5 26.780 18.338 1.773 8.442 R denotes an observation with a large standardized residual
St Resid 2.29R
Regression Analysis: CtotAG versus Age, N, BA The regression equation is CtotAG = 5.64 + 0.466 Age - 0.0174 N + 3.19 BA Predictor Constant Age N BA
Coef 5.641 0.4655 -0.017449 3.1874
S = 3.983 PRESS = 408.496 Analysis of Variance Source DF Regression 3 Residual Error 17 Total 20
SE Coef 3.724 0.7943 0.004142 0.4175
T 1.51 0.59 -4.21 7.63
R-Sq = 96.2% R-Sq(pred) = 94.18%
SS 6753.3 269.6 7023.0
P 0.148 0.565 0.001 0.000
VIF 6.6 2.2 6.8
R-Sq(adj) = 95.5%
MS 2251.1 15.9
F 141.93
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS Age 1 5765.7 N 1 63.2 BA 1 924.4 Unusual Observations Obs Age CtotAG Fit SE Fit Residual 21 1.5 26.780 18.447 1.707 8.333 R denotes an observation with a large standardized residual
Regression Analysis: CtotAG versus N, BA The regression equation is CtotAG = 6.60 - 0.0192 N + 3.41 BA
St Resid 2.32R
152
Predictor Constant N BA
Coef 6.605 -0.019199 3.4120
S = 3.909 PRESS = 374.921 Analysis of Variance Source DF Regression 2 Residual Error 18 Total 20
SE Coef 3.280 0.002817 0.1629
T 2.01 -6.81 20.95
R-Sq = 96.1% R-Sq(pred) = 94.66%
SS 6747.9 275.1 7023.0
P 0.059 0.000 0.000
VIF 1.1 1.1
R-Sq(adj) = 95.6%
MS 3373.9 15.3
F 220.78
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS N 1 40.7 BA 1 6707.2 Unusual Observations Obs N CtotAG Fit SE Fit Residual 21 983 26.780 19.054 1.333 7.726 R denotes an observation with a large standardized residual
St Resid 2.10R
Regression Analysis: CtotAG versus BA The regression equation is CtotAG = - 7.38 + 3.13 BA Predictor Coef Constant -7.380 BA 3.1347 S = 7.199 PRESS = 1293.85 Analysis of Variance Source DF Regression 1 Residual Error 19 Total 20
SE Coef T P 4.713 -1.57 0.134 0.2904 10.79 0.000 R-Sq = 86.0% R-Sq(adj) = 85.2% R-Sq(pred) = 81.58% SS 6038.2 984.8 7023.0
MS 6038.2 51.8
F 116.50
P 0.000
No replicates. Cannot do pure error test. Unusual Observations Obs BA CtotAG Fit SE Fit Residual St Resid 1 2.9 11.06 1.59 3.94 9.47 1.57 X X denotes an observation whose X value gives it large influence.
Regression Analysis: CtotAG versus Age The regression equation is CtotAG = 5.81 + 5.91 Age Predictor Coef SE Coef T P Constant 5.810 4.126 1.41 0.175 Age 5.9122 0.6334 9.33 0.000 S = 8.135 R-Sq = 82.1% R-Sq(adj) = 81.2% PRESS = 1579.31 R-Sq(pred) = 77.51% Analysis of Variance Source DF SS MS F P Regression 1 5765.7 5765.7 87.13 0.000 Residual Error 19 1257.2 66.2 Lack of Fit 4 519.6 129.9 2.64 0.075 Pure Error 15 737.7 49.2 Total 20 7023.0 Unusual Observations Obs Age CtotAG Fit SE Fit Residual 11 7.5 29.20 50.15 2.05 -20.95 R denotes an observation with a large standardized residual
St Resid -2.66R
153
Best Subsets Regression: Cstandkop versus Age, N, D, BA Response is Cstandko
Vars
R-Sq
R-Sq(adj)
C-p
S
1 1 2 2 3 3 4
86.5 82.1 96.0 93.4 96.1 96.1 96.2
85.8 81.1 95.6 92.6 95.5 95.4 95.3
40.1 58.7 1.8 13.0 3.3 3.4 5.0
6.8108 7.8442 3.7996 4.9031 3.8472 3.8624 3.9304
A g B e N D A X X X
X X X X X X X X X X X X X
Regression Analysis: Cstandkop versus Age, N, D, BA The regression equation is Cstandkop = 12.0 + 0.425 Age - 0.0202 N - 0.78 D + 3.41 BA Predictor Constant Age N D BA
Coef 12.00 0.4245 -0.020181 -0.782 3.4117
S = 3.930 PRESS = 419.225 Analysis of Variance Source DF Regression 4 Residual Error 16 Total 20
SE Coef 13.68 0.7923 0.007544 1.212 0.7002
T 0.88 0.54 -2.68 -0.65 4.87
R-Sq = 96.2% R-Sq(pred) = 93.56%
SS 6267.3 247.2 6514.5
P 0.393 0.599 0.017 0.528 0.000
VIF 6.7 7.6 12.6 19.5
R-Sq(adj) = 95.3%
MS 1566.8 15.4
F 101.42
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS Age 1 5345.4 N 1 71.0 D 1 484.2 BA 1 366.8 Unusual Observations Obs Age Cstandko Fit SE Fit Residual 21 1.5 23.800 16.228 1.706 7.572 R denotes an observation with a large standardized residual
Regression Analysis: Cstandkop versus Age, N, BA The regression equation is Cstandkop = 3.50 + 0.499 Age - 0.0161 N + 3.05 BA Predictor Constant Age N BA
Coef 3.500 0.4989 -0.016091 3.0466
S = 3.862 PRESS = 395.651 Analysis of Variance Source DF Regression 3 Residual Error 17 Total 20
SE Coef 3.612 0.7703 0.004017 0.4049
T 0.97 0.65 -4.01 7.52
R-Sq = 96.1% R-Sq(pred) = 93.93%
SS 6260.9 253.6 6514.5
P 0.346 0.526 0.001 0.000
VIF 6.6 2.2 6.8
R-Sq(adj) = 95.4%
MS 2087.0 14.9
F 139.90
P 0.000
St Resid 2.14R
154
No replicates. Cannot do pure error test. Source DF Seq SS Age 1 5345.4 N 1 71.0 BA 1 844.5 Unusual Observations Obs Age Cstandko Fit SE Fit Residual 21 1.5 23.800 16.399 1.656 7.401 R denotes an observation with a large standardized residual
St Resid 2.12R
Regression Analysis: Cstandkop versus N, BA The regression equation is Cstandkop = 4.53 - 0.0180 N + 3.29 BA Predictor Coef Constant 4.533 N -0.017966 BA 3.2872 S = 3.800 PRESS = 370.438 Analysis of Variance Source DF Regression 2 Residual Error 18 Total 20
SE Coef T P VIF 3.188 1.42 0.172 0.002738 -6.56 0.000 1.1 0.1583 20.77 0.000 1.1 R-Sq = 96.0% R-Sq(adj) = 95.6% R-Sq(pred) = 94.31%
SS 6254.6 259.9 6514.5
MS 3127.3 14.4
F 216.62
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS N 1 29.0 BA 1 6225.6
Regression Analysis: Cstandkop versus BA The regression equation is Cstandkop = - 8.55 + 3.03 BA Predictor Coef SE Coef Constant -8.553 4.459 BA 3.0277 0.2747 S = 6.811 PRESS = 1168.00 Analysis of Variance Source DF Regression 1 Residual Error 19 Total 20
T -1.92 11.02
R-Sq = 86.5% R-Sq(pred) = 82.07% SS 5633.1 881.3 6514.5
R-Sq(adj) = 85.8%
MS 5633.1 46.4
No replicates. Cannot do pure error test. Unusual Observations Obs BA Cstandko Fit 1 2.9 9.26 0.11
P 0.070 0.000
F 121.44
SE Fit 3.73
P 0.000
Residual 9.15
X denotes an observation whose X value gives it large influence.
Regression Analysis: Cstandkop versus Age The regression equation is Cstandkop = 4.29 + 5.69 Age Predictor Constant Age
Coef 4.291 5.6926
S = 7.844 PRESS = 1474.38
SE Coef 3.979 0.6108
T 1.08 9.32
R-Sq = 82.1% R-Sq(pred) = 77.37%
P 0.294 0.000
R-Sq(adj) = 81.1%
St Resid 1.61 X
155
Analysis of Variance Source DF Regression 1 Residual Error 19 Lack of Fit 4 Pure Error 15 Total 20
SS 5345.4 1169.1 462.7 706.4 6514.5
MS 5345.4 61.5 115.7 47.1
F 86.87
P 0.000
2.46
0.091
Unusual Observations Obs Age Cstandko Fit SE Fit Residual 11 7.5 27.76 46.99 1.98 -19.23 R denotes an observation with a large standardized residual
Regression Analysis: Cstandkop versus Age, BA The regression equation is Cstandkop = - 6.73 + 2.72 Age + 1.86 BA Predictor Constant Age BA
Coef -6.734 2.7236 1.8619
S = 5.233 PRESS = 735.970 Analysis of Variance Source DF Regression 2 Residual Error 18 Total 20
SE Coef 3.460 0.7233 0.3747
T -1.95 3.77 4.97
R-Sq = 92.4% R-Sq(pred) = 88.70%
SS 6021.5 493.0 6514.5
P 0.067 0.001 0.000
VIF 3.2 3.2
R-Sq(adj) = 91.6%
MS 3010.8 27.4
F 109.93
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS Age 1 5345.4 BA 1 676.1
Regression Analysis: Cstand versus Age, N, D, BA The regression equation is Cstand = 5.31 + 0.843 Age - 0.0146 N - 0.767 D + 2.90 BA Predictor Coef Constant 5.311 Age 0.8433 N -0.014557 D -0.7673 BA 2.9026 S = 2.172 PRESS = 144.921
SE Coef T P VIF 7.561 0.70 0.493 0.4378 1.93 0.072 6.7 0.004168 -3.49 0.003 7.6 0.6695 -1.15 0.269 12.6 0.3869 7.50 0.000 19.5 R-Sq = 98.6% R-Sq(adj) = 98.2% R-Sq(pred) = 97.24%
Analysis of Variance Source DF SS MS Regression 4 5166.9 1291.7 Residual Error 16 75.5 4.7 Total 20 5242.4 No replicates. Cannot do pure error test. Source DF Seq SS Age 1 4448.4 N 1 123.4 D 1 329.6 BA 1 265.5
F 273.89
Regression Analysis: Cstand versus Age, N, BA The regression equation is Cstand = - 3.04 + 0.916 Age - 0.0105 N + 2.54 BA
P 0.000
St Resid -2.53R
156
Predictor Constant Age N BA
Coef -3.037 0.9163 -0.010542 2.5441
S = 2.192 PRESS = 144.955 Analysis of Variance Source DF Regression 3 Residual Error 17 Total 20
SE Coef 2.050 0.4371 0.002279 0.2298
T -1.48 2.10 -4.63 11.07
R-Sq = 98.4% R-Sq(pred) = 97.23%
SS 5160.7 81.7 5242.4
P 0.157 0.051 0.000 0.000
VIF 6.6 2.2 6.8
R-Sq(adj) = 98.2%
MS 1720.2 4.8
F 358.14
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS Age 1 4448.4 N 1 123.4 BA 1 588.9
Regression Analysis: Cstand versus N, BA The regression equation is Cstand = - 1.14 - 0.0140 N + 2.99 BA Predictor Constant N BA
Coef -1.140 -0.013986 2.98607
S = 2.389 PRESS = 144.827 Analysis of Variance Source DF Regression 2 Residual Error 18 Total 20
SE Coef 2.005 0.001722 0.09955
T -0.57 -8.12 30.00
R-Sq = 98.0% R-Sq(pred) = 97.24%
SS 5139.6 102.8 5242.4
P 0.577 0.000 0.000
VIF 1.1 1.1
R-Sq(adj) = 97.8%
MS 2569.8 5.7
F 450.12
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS N 1 2.4 BA 1 5137.2 Unusual Observations Obs N Cstand Fit SE Fit Residual 14 727 63.430 58.924 1.116 4.506 20 950 26.550 32.365 0.523 -5.815 R denotes an observation with a large standardized residual
Regression Analysis: Cstand versus BA The regression equation is Cstand = - 11.3 + 2.78 BA Predictor Coef Constant -11.327 BA 2.7840 S = 5.023 PRESS = 655.988 Analysis of Variance Source DF Regression 1 Residual Error 19 Total 20
SE Coef T P 3.288 -3.44 0.003 0.2026 13.74 0.000 R-Sq = 90.9% R-Sq(adj) = 90.4% R-Sq(pred) = 87.49%
SS 4763.0 479.4 5242.4
MS 4763.0 25.2
F 188.77
P 0.000
St Resid 2.13R -2.49R
157
No replicates. Cannot do pure error test. Unusual Observations Obs BA Cstand Fit SE Fit Residual St Resid 1 2.9 3.87 -3.37 2.75 7.24 1.72 X 3 20.3 34.40 45.16 1.49 -10.76 -2.24R 14 23.5 63.43 54.15 1.99 9.28 2.01R R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.
Regression Analysis: Cstand versus Age The regression equation is Cstand = 0.73 + 5.19 Age Predictor Constant Age
Coef 0.727 5.1930
S = 6.465 PRESS = 1000.74 Analysis of Variance Source DF Regression 1 Residual Error 19 Lack of Fit 4 Pure Error 15 Total 20
SE Coef 3.279 0.5033
T 0.22 10.32
R-Sq = 84.9% R-Sq(pred) = 80.91%
SS 4448.4 794.0 301.1 492.9 5242.4
P 0.827 0.000
R-Sq(adj) = 84.1%
MS 4448.4 41.8 75.3 32.9
F 106.44
P 0.000
2.29
0.108
Unusual Observations Obs Age Cstand Fit SE Fit Residual 11 7.5 22.05 39.67 1.63 -17.62 R denotes an observation with a large standardized residual
St Resid -2.82R
Regression Analysis: Clive versus N, D, BA, Age The regression equation is Clive = 10.2 - 0.0187 N - 0.62 D + 3.32 BA + 0.446 Age Predictor Coef SE Coef T P Constant 10.23 13.01 0.79 0.443 N -0.018733 0.007173 -2.61 0.019 D -0.617 1.152 -0.54 0.599 BA 3.3218 0.6658 4.99 0.000 Age 0.4460 0.7534 0.59 0.562 S = 3.737 PRESS = 381.845 Analysis of Variance Source DF Regression 4 Residual Error 16 Total 20
R-Sq = 96.5% R-Sq(pred) = 94.07% SS 6218.1 223.5 6441.5
VIF 7.6 12.6 19.5 6.7
R-Sq(adj) = 95.7%
MS 1554.5 14.0
F 111.29
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS N 1 21.5 D 1 5489.8 BA 1 701.9 Age 1 4.9 Unusual Observations Obs N Clive Fit SE Fit Residual 21 983 23.800 16.743 1.622 7.057 R denotes an observation with a large standardized residual
Regression Analysis: Clive versus Age, N, BA The regression equation is Clive = 3.51 + 0.505 Age - 0.0155 N + 3.03 BA
St Resid 2.10R
158
Predictor Constant Age N BA
Coef 3.513 0.5047 -0.015501 3.0333
S = 3.658 PRESS = 359.627 Analysis of Variance Source DF Regression 3 Residual Error 17 Total 20
SE Coef 3.421 0.7296 0.003804 0.3835
T 1.03 0.69 -4.07 7.91
R-Sq = 96.5% R-Sq(pred) = 94.42%
SS 6214.0 227.5 6441.5
P 0.319 0.498 0.001 0.000
VIF 6.6 2.2 6.8
R-Sq(adj) = 95.8%
MS 2071.3 13.4
F 154.78
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS Age 1 5293.7 N 1 83.1 BA 1 837.2 Unusual Observations Obs Age Clive Fit SE Fit Residual 21 1.5 23.800 16.878 1.568 6.922 R denotes an observation with a large standardized residual
Regression Analysis: Clive versus N, BA The regression equation is Clive = 4.56 - 0.0174 N + 3.28 BA Predictor Constant N BA
Coef 4.558 -0.017399 3.2768
S = 3.605 PRESS = 334.018 Analysis of Variance Source DF Regression 2 Residual Error 18 Total 20
SE Coef 3.025 0.002598 0.1502
T 1.51 -6.70 21.82
R-Sq = 96.4% R-Sq(pred) = 94.81%
SS 6207.6 233.9 6441.5
P 0.149 0.000 0.000
VIF 1.1 1.1
R-Sq(adj) = 96.0%
MS 3103.8 13.0
F 238.85
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS N 1 21.5 BA 1 6186.1
Regression Analysis: Clive versus BA The regression equation is Clive = - 8.12 + 3.03 BA Predictor Constant BA
Coef -8.115 3.0254
S = 6.556 PRESS = 1082.04 Analysis of Variance Source DF Regression 1 Residual Error 19 Total 20
SE Coef 4.292 0.2645
T -1.89 11.44
R-Sq = 87.3% R-Sq(pred) = 83.20%
SS 5624.8 816.8 6441.5
P 0.074 0.000
R-Sq(adj) = 86.7%
MS 5624.8 43.0
F 130.85
P 0.000
St Resid 2.09R
159
No replicates. Cannot do pure error test. Unusual Observations Obs BA Clive Fit SE Fit Residual St Resid 1 2.9 9.30 0.54 3.59 8.76 1.60 X X denotes an observation whose X value gives it large influence.
Regression Analysis: Clive versus Age The regression equation is Clive = 4.86 + 5.67 Age Predictor Constant Age
Coef 4.857 5.6650
S = 7.773 PRESS = 1444.40 Analysis of Variance Source DF Regression 1 Residual Error 19 Lack of Fit 4 Pure Error 15 Total 20
SE Coef 3.943 0.6052
T 1.23 9.36
R-Sq = 82.2% R-Sq(pred) = 77.58%
SS 5293.7 1147.8 444.3 703.5 6441.5
P 0.233 0.000
R-Sq(adj) = 81.2%
MS 5293.7 60.4 111.1 46.9
F 87.63
P 0.000
2.37
0.099
Unusual Observations Obs Age Clive Fit SE Fit Residual 11 7.5 27.85 47.34 1.96 -19.49 R denotes an observation with a large standardized residual
St Resid -2.59R
160
2. AGROFORESTRI DS KERTAYASA
Descriptive Statistics: CtotAG, Cstand&kop, Cstand, Clive, U, N, D, BA Variable CtotAG Cstand&k Cstand Clive U N D BA
N 20 20 20 20 20 20 20 20
Mean 40.74 38.16 34.48 38.51 6.100 1696 10.480 18.12
Median 34.11 31.88 29.84 32.27 5.500 1597 10.150 16.56
TrMean 39.93 37.28 33.91 37.67 6.056 1662 10.467 18.06
Variable CtotAG Cstand&k Cstand Clive U N D BA
Minimum 9.10 8.49 8.49 8.53 1.500 1117 7.900 7.13
Maximum 86.95 83.64 70.79 83.67 11.500 2883 13.300 30.19
Q1 30.76 28.16 25.67 28.45 3.500 1325 9.425 13.40
Q3 54.75 50.57 47.97 50.94 7.500 1894 11.725 23.75
StDev 17.39 16.84 14.84 16.81 2.836 488 1.558 6.55
SE Mean 3.89 3.76 3.32 3.76 0.634 109 0.348 1.47
Correlations: CtotAG, Cstand&kop, Cstand, Clive, U, N, D, BA CtotAG Cstand&k Cstand 0.998 0.000 Cstand 0.985 0.982 0.000 0.000 Clive 0.999 1.000 0.983 0.000 0.000 0.000 U 0.873 0.869 0.849 0.000 0.000 0.000 N 0.163 0.157 0.279 0.493 0.508 0.233 D 0.861 0.852 0.826 0.000 0.000 0.000 BA 0.890 0.884 0.941 0.000 0.000 0.000 Cell Contents: Pearson correlation P-Value
Clive
U
N
D
0.871 0.000 0.158 0.507 0.854 0.000 0.885 0.000
0.060 0.802 0.832 0.000 0.792 0.000
-0.206 0.384 0.530 0.016
0.685 0.001
Cstand&k
Best Subsets Regression: CtotAG versus U, N, D, BA Response is CtotAG Vars
R-Sq
R-Sq(adj)
C-p
S
1 1 2 2 3 3 4
79.3 76.3 92.6 91.2 92.7 92.6 92.7
78.1 74.9 91.7 90.2 91.3 91.2 90.8
26.6 32.9 1.3 4.1 3.1 3.2 5.0
8.1322 8.7065 5.0170 5.4579 5.1366 5.1484 5.2838
B U N D A X X X
X X X X X X X X X X X X X
Regression Analysis: CtotAG versus U, N, D, BA The regression equation is CtotAG = 2.3 + 0.425 U - 0.0117 N + 0.95 D + 2.53 BA Predictor Coef SE Coef T P Constant 2.30 27.56 0.08 0.935 U 0.4249 0.9728 0.44 0.668 N -0.011689 0.007857 -1.49 0.158 D 0.945 2.716 0.35 0.733 BA 2.5254 0.8506 2.97 0.010
VIF 5.2 10.0 12.2 21.1
161
S = 5.284 R-Sq = 92.7% R-Sq(adj) = 90.8% PRESS = 1341.02 R-Sq(pred) = 76.67% Analysis of Variance Source DF SS MS F P Regression 4 5330.2 1332.5 47.73 0.000 Residual Error 15 418.8 27.9 Total 19 5748.9 No replicates. Cannot do pure error test. Source DF Seq SS U 1 4384.5 N 1 70.3 D 1 629.3 BA 1 246.1 Unusual Observations Obs U CtotAG 13 9.5 58.77 17 11.5 86.95 19 3.5 28.18 R denotes an observation with a
Fit SE Fit Residual 69.64 2.63 -10.87 78.27 4.30 8.68 18.35 2.33 9.83 large standardized residual
St Resid -2.37R 2.82R 2.07R
Regression Analysis: CtotAG versus U, N, BA The regression equation is CtotAG = 11.7 + 0.441 U - 0.0140 N + 2.77 BA Predictor Constant U N BA
Coef 11.712 0.4405 -0.014029 2.7661
S = 5.137 PRESS = 738.612 Analysis of Variance Source DF Regression 3 Residual Error 16 Total 19
SE Coef 5.142 0.9447 0.003954 0.4812
T 2.28 0.47 -3.55 5.75
R-Sq = 92.7% R-Sq(pred) = 87.15%
SS 5326.8 422.2 5748.9
P 0.037 0.647 0.003 0.000
VIF 5.2 2.7 7.2
R-Sq(adj) = 91.3%
MS 1775.6 26.4
F 67.30
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS U 1 4384.5 N 1 70.3 BA 1 872.0 Unusual Observations Obs U CtotAG Fit SE Fit Residual 13 9.5 58.77 69.52 2.54 -10.75 19 3.5 28.18 18.51 2.22 9.67 R denotes an observation with a large standardized residual
Regression Analysis: CtotAG versus N, BA The regression equation is CtotAG = 12.9 - 0.0153 N + 2.97 BA Predictor Constant N BA
Coef 12.919 -0.015308 2.9675
S = 5.017 PRESS = 689.123
SE Coef 4.340 0.002781 0.2071
T 2.98 -5.50 14.33
R-Sq = 92.6% R-Sq(pred) = 88.01%
P 0.008 0.000 0.000
VIF 1.4 1.4
R-Sq(adj) = 91.7%
St Resid -2.41R 2.09R
162
Analysis of Variance Source DF Regression 2 Residual Error 17 Total 19
SS 5321.0 427.9 5748.9
MS 2660.5 25.2
F 105.70
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS N 1 152.1 BA 1 5168.9 Unusual Observations Obs N CtotAG Fit SE Fit Residual 13 1925 58.77 69.95 2.31 -11.18 19 1800 28.18 18.10 1.99 10.08 R denotes an observation with a large standardized residual
St Resid -2.51R 2.19R
Regression Analysis: CtotAG versus BA The regression equation is CtotAG = - 2.10 + 2.36 BA Predictor Coef Constant -2.097 BA 2.3639 S = 8.132 PRESS = 1631.00 Analysis of Variance Source DF Regression 1 Residual Error 18 Total 19
SE Coef T P 5.471 -0.38 0.706 0.2847 8.30 0.000 R-Sq = 79.3% R-Sq(adj) = 78.1% R-Sq(pred) = 71.63%
SS 4558.6 1190.4 5748.9
MS 4558.6 66.1
F 68.93
P 0.000
No replicates. Cannot do pure error test. Unusual Observations Obs BA CtotAG Fit SE Fit Residual 17 30.2 86.95 69.27 3.89 17.68 R denotes an observation with a large standardized residual
St Resid 2.48R
Regression Analysis: CtotAG versus U The regression equation is CtotAG = 8.07 + 5.36 U Predictor Constant U
Coef 8.067 5.3567
S = 8.706 PRESS = 1851.21
SE Coef 4.717 0.7043
T 1.71 7.61
R-Sq = 76.3% R-Sq(pred) = 67.80%
P 0.104 0.000
R-Sq(adj) = 74.9%
Analysis of Variance Source Regression Residual Error Lack of Fit Pure Error Total
DF 1 18 4 14 19
SS 4384.5 1364.4 258.2 1106.2 5748.9
MS 4384.5 75.8 64.6 79.0
F 57.84
P 0.000
0.82
0.535
1 rows with no replicates Unusual Observations Obs U CtotAG Fit SE Fit Residual 14 9.5 42.08 58.96 3.09 -16.88 17 11.5 86.95 69.67 4.27 17.28 R denotes an observation with a large standardized residual
St Resid -2.07R 2.28R
163
Best Subsets Regression: Cstand&kop versus U, N, D, BA Response is Cstand&k Vars
R-Sq
R-Sq(adj)
C-p
S
1 1 2 2 3 3 4
78.1 75.4 91.5 89.6 91.6 91.5 91.6
76.9 74.1 90.5 88.3 90.1 90.0 89.4
23.2 28.1 1.2 4.7 3.0 3.2 5.0
8.0914 8.5746 5.1764 5.7514 5.3063 5.3353 5.4802
B U N D A X X X
X X X X X X X X X X X X X
Regression Analysis: Cstand&kop versus U, N, D, BA The regression equation is Cstand&kop = 9.7 + 0.41 U - 0.0135 N + 0.08 D + 2.65 BA Predictor Constant U N D BA
Coef 9.69 0.410 -0.013511 0.081 2.6503
S = 5.480 PRESS = 1361.56 Analysis of Variance Source DF Regression 4 Residual Error 15 Total 19
SE Coef 28.58 1.009 0.008150 2.817 0.8822
T 0.34 0.41 -1.66 0.03 3.00
R-Sq = 91.6% R-Sq(pred) = 74.72%
SS 4936.0 450.5 5386.5
P 0.739 0.690 0.118 0.978 0.009
VIF 5.2 10.0 12.2 21.1
R-Sq(adj) = 89.4%
MS 1234.0 30.0
F 41.09
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS U 1 4063.1 N 1 60.0 D 1 541.9 BA 1 271.0 Unusual Observations Obs U Cstand&k 13 9.5 55.78 17 11.5 83.64 19 3.5 28.08 R denotes an observation with a
Fit SE Fit Residual 65.87 2.73 -10.09 75.21 4.46 8.43 16.70 2.42 11.38 large standardized residual
Regression Analysis: Cstand&kop versus U, N, BA The regression equation is Cstand&kop = 10.5 + 0.412 U - 0.0137 N + 2.67 BA Predictor Constant U N BA
Coef 10.493 0.4116 -0.013711 2.6708
S = 5.306 PRESS = 782.797 Analysis of Variance Source DF Regression 3 Residual Error 16 Total 19
SE Coef 5.311 0.9760 0.004085 0.4971
T 1.98 0.42 -3.36 5.37
R-Sq = 91.6% R-Sq(pred) = 85.47%
SS 4936.0 450.5 5386.5
P 0.066 0.679 0.004 0.000
VIF 5.2 2.7 7.2
R-Sq(adj) = 90.1%
MS 1645.3 28.2
F 58.43
P 0.000
St Resid -2.12R 2.64R 2.31R
164
No replicates. Cannot do pure error test. Source DF Seq SS U 1 4063.1 N 1 60.0 BA 1 812.9 Unusual Observations Obs U Cstand&k Fit 13 9.5 55.78 65.86 17 11.5 83.64 75.29 19 3.5 28.08 16.71
SE Fit 2.62 3.28 2.30
Residual -10.08 8.35 11.37
St Resid -2.19R 2.00R 2.38R
R denotes an observation with a large standardized residual
Regression Analysis: Cstand&kop versus N, BA The regression equation is Cstand&kop = 11.6 - 0.0149 N + 2.86 BA Predictor Constant N BA
Coef 11.620 -0.014906 2.8590
S = 5.176 PRESS = 733.881
SE Coef 4.478 0.002870 0.2137
T 2.60 -5.19 13.38
R-Sq = 91.5% R-Sq(pred) = 86.38%
Analysis of Variance Source DF Regression 2 Residual Error 17 Total 19
SS 4931.0 455.5 5386.5
P 0.019 0.000 0.000
VIF 1.4 1.4
R-Sq(adj) = 90.5%
MS 2465.5 26.8
F 92.01
P 0.000
No replicates. Cannot do pure error test. Source N BA
DF 1 1
Seq SS 133.3 4797.6
Unusual Observations Obs N Cstand&k Fit SE Fit Residual 13 1925 55.78 66.27 2.38 -10.49 19 1800 28.08 16.32 2.05 11.76 R denotes an observation with a large standardized residual
St Resid -2.28R 2.47R
Regression Analysis: Cstand&kop versus BA The regression equation is Cstand&kop = - 3.00 + 2.27 BA Predictor Constant BA
Coef -3.001 2.2712
S = 8.091 PRESS = 1624.31 Analysis of Variance Source DF Regression 1 Residual Error 18 Total 19
SE Coef 5.444 0.2833
T -0.55 8.02
R-Sq = 78.1% R-Sq(pred) = 69.84%
SS 4208.0 1178.5 5386.5
P 0.588 0.000
R-Sq(adj) = 76.9%
MS 4208.0 65.5
F 64.27
P 0.000
No replicates. Cannot do pure error test. Unusual Observations Obs BA Cstand&k Fit SE Fit Residual 17 30.2 83.64 65.57 3.87 18.07 R denotes an observation with a large standardized residual
St Resid 2.54R
165
Regression Analysis: Cstand&kop versus U The regression equation is Cstand&kop = 6.70 + 5.16 U Predictor Constant U
Coef 6.704 5.1566
S = 8.575 PRESS = 1788.29
SE Coef 4.645 0.6937
T 1.44 7.43
R-Sq = 75.4% R-Sq(pred) = 66.80%
Analysis of Variance Source DF Regression 1 Residual Error 18 Lack of Fit 4 Pure Error 14 Total 19
SS 4063.1 1323.4 239.4 1084.1 5386.5
P 0.166 0.000
R-Sq(adj) = 74.1%
MS 4063.1 73.5 59.8 77.4
F 55.26
P 0.000
0.77
0.561
1 rows with no replicates Unusual Observations Obs U Cstand&k Fit SE Fit Residual 17 11.5 83.64 66.00 4.21 17.64 R denotes an observation with a large standardized residual
Best Subsets Regression: Cstand versus U, N, D, BA Response is Cstand Vars 1 1 2 2 3 3 4
R-Sq 88.5 72.1 95.1 94.7 95.2 95.1 95.3
R-Sq(adj) 87.8 70.6 94.6 94.1 94.3 94.2 94.0
C-p 20.4 72.0 1.4 2.7 3.0 3.3 5.0
S 5.1756 8.0487 3.4612 3.6052 3.5296 3.5634 3.6395
B U N D A X X X X X X X X X X X X X X X X
Regression Analysis: Cstand versus U, N, D, BA The regression equation is Cstand = - 5.5 - 0.147 U - 0.00693 N + 1.09 D + 2.28 BA Predictor Constant U N D BA
Coef -5.53 -0.1469 -0.006934 1.088 2.2773
S = 3.639 PRESS = 613.785
SE Coef 18.98 0.6701 0.005412 1.870 0.5859
T -0.29 -0.22 -1.28 0.58 3.89
R-Sq = 95.3% R-Sq(pred) = 85.33%
P 0.775 0.829 0.220 0.570 0.001
VIF 5.2 10.0 12.2 21.1
R-Sq(adj) = 94.0%
Analysis of Variance Source DF SS MS Regression 4 3986.62 996.66 Residual Error 15 198.69 13.25 Total 19 4185.31 No replicates. Cannot do pure error test. Source DF Seq SS U 1 3019.26 N 1 219.30 D 1 547.95 BA 1 200.11
F 75.24
P 0.000
St Resid 2.36R
166
Unusual Observations Obs U Cstand Fit SE Fit Residual 3 7.5 49.260 43.876 2.576 5.384 17 11.5 70.790 65.375 2.960 5.415 19 3.5 23.340 15.507 1.607 7.833 R denotes an observation with a large standardized residual
St Resid 2.09R 2.56R 2.40R
Regression Analysis: Cstand versus U, N, BA The regression equation is Cstand = 5.30 - 0.129 U - 0.00963 N + 2.55 BA Predictor Coef SE Coef T Constant 5.298 3.567 1.49 U -0.1289 0.6554 -0.20 N -0.009626 0.002743 -3.51 BA 2.5544 0.3338 7.65 S = 3.563 PRESS = 339.074
R-Sq = 95.1% R-Sq(pred) = 91.90%
Analysis of Variance Source DF Regression 3 Residual Error 16 Total 19
SS 3982.1 203.2 4185.3
P 0.157 0.847 0.003 0.000
VIF 5.2 2.7 7.2
R-Sq(adj) = 94.2%
MS 1327.4 12.7
F 104.54
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS U 1 3019.3 N 1 219.3 BA 1 743.6 Unusual Observations Obs U Cstand Fit SE Fit Residual 3 7.5 49.260 42.699 1.559 6.561 19 3.5 23.340 15.694 1.542 7.646 R denotes an observation with a large standardized residual
St Resid 2.05R 2.38R
Regression Analysis: Cstand versus N, BA The regression equation is Cstand = 4.94 - 0.00925 N + 2.50 BA Predictor Constant N BA
Coef 4.944 -0.009252 2.4954
S = 3.461 PRESS = 313.010
SE Coef 2.994 0.001919 0.1429
T 1.65 -4.82 17.47
R-Sq = 95.1% R-Sq(pred) = 92.52%
Analysis of Variance Source DF Regression 2 Residual Error 17 Total 19
SS 3981.7 203.7 4185.3
P 0.117 0.000 0.000
VIF 1.4 1.4
R-Sq(adj) = 94.6%
MS 1990.8 12.0
F 166.18
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS N 1 326.6 BA 1 3655.0 Unusual Observations Obs N Cstand 3 1117 49.260 19 1800 23.340
Fit 42.597 15.816
SE Fit 1.429 1.372
Residual 6.663 7.524
St Resid 2.11R 2.37R
167
R denotes an observation with a large standardized residual
Regression Analysis: Cstand versus BA The regression equation is Cstand = - 4.13 + 2.13 BA Predictor Coef Constant -4.131 BA 2.1306 S = 5.176 PRESS = 641.064 Analysis of Variance Source DF Regression 1 Residual Error 18 Total 19
SE Coef T P 3.482 -1.19 0.251 0.1812 11.76 0.000 R-Sq = 88.5% R-Sq(adj) = 87.8% R-Sq(pred) = 84.68% SS 3703.1 482.2 4185.3
MS 3703.1 26.8
F 138.24
P 0.000
No replicates. Cannot do pure error test. Unusual Observations Obs BA Cstand Fit SE Fit Residual 3 19.2 49.26 36.84 1.17 12.42 17 30.2 70.79 60.19 2.47 10.60 R denotes an observation with a large standardized residual
St Resid 2.46R 2.33R
Regression Analysis: Cstand versus U The regression equation is Cstand = 7.37 + 4.45 U Predictor Constant U
Coef 7.366 4.4452
S = 8.049 PRESS = 1519.90
SE Coef 4.361 0.6511
T 1.69 6.83
R-Sq = 72.1% R-Sq(pred) = 63.68%
Analysis of Variance Source DF Regression 1 Residual Error 18 Lack of Fit 4 Pure Error 14 Total 19
SS 3019.3 1166.1 155.2 1010.9 4185.3
P 0.108 0.000
R-Sq(adj) = 70.6%
MS 3019.3 64.8 38.8 72.2
F 46.61
P 0.000
0.54
0.711
1 rows with no replicates Unusual Observations Obs U Cstand Fit SE Fit Residual 14 9.5 31.32 49.60 2.85 -18.28 R denotes an observation with a large standardized residual
Best Subsets Regression: Clive versus U, N, D, BA Response is Clive Vars
R-Sq
R-Sq(adj)
C-p
S
1 1 2 2 3 3 4
78.3 75.8 91.7 89.9 91.8 91.7 91.8
77.1 74.5 90.7 88.7 90.3 90.1 89.6
23.8 28.3 1.2 4.5 3.0 3.2 5.0
8.0511 8.4932 5.1227 5.6415 5.2438 5.2761 5.4124
B U N D A X X X
X X X X X X X X X X X X X
St Resid -2.43R
168
Regression Analysis: Clive versus U, N, D, BA The regression equation is Clive = 7.0 + 0.451 U - 0.0126 N + 0.38 D + 2.55 BA Predictor Constant U N D BA
Coef 6.97 0.4506 -0.012619 0.378 2.5506
S = 5.412 PRESS = 1353.93 Analysis of Variance Source DF Regression 4 Residual Error 15 Total 19
SE Coef 28.23 0.9965 0.008049 2.782 0.8713
T 0.25 0.45 -1.57 0.14 2.93
R-Sq = 91.8% R-Sq(pred) = 74.77%
SS 4927.1 439.4 5366.6
P 0.808 0.658 0.138 0.894 0.010
VIF 5.2 10.0 12.2 21.1
R-Sq(adj) = 89.6%
MS 1231.8 29.3
F 42.05
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS U 1 4068.1 N 1 60.0 D 1 548.0 BA 1 251.0 Unusual Observations Obs U Clive 13 9.5 56.12 17 11.5 83.67 19 3.5 28.37 R denotes an observation with a
Fit SE Fit Residual 66.19 2.70 -10.07 75.18 4.40 8.49 17.07 2.39 11.30 large standardized residual
St Resid -2.15R 2.70R 2.33R
Regression Analysis: Clive versus U, N, BA The regression equation is Clive = 10.7 + 0.457 U - 0.0136 N + 2.65 BA Predictor Coef Constant 10.740 U 0.4568 N -0.013556 BA 2.6470 S = 5.244 PRESS = 766.272
SE Coef T P VIF 5.249 2.05 0.058 0.9645 0.47 0.642 5.2 0.004037 -3.36 0.004 2.7 0.4912 5.39 0.000 7.2 R-Sq = 91.8% R-Sq(adj) = 90.3% R-Sq(pred) = 85.72%
Analysis of Variance Source DF SS MS F P Regression 3 4926.6 1642.2 59.72 0.000 Residual Error 16 440.0 27.5 Total 19 5366.6 No replicates. Cannot do pure error test. Source DF Seq SS U 1 4068.1 N 1 60.0 BA 1 798.5 Unusual Observations Obs U Clive Fit SE Fit Residual 13 9.5 56.12 66.14 2.59 -10.02 19 3.5 28.37 17.14 2.27 11.23 R denotes an observation with a large standardized residual
Regression Analysis: Clive versus N, BA The regression equation is Clive = 12.0 - 0.0149 N + 2.86 BA
St Resid -2.20R 2.38R
169
Predictor Constant N BA
Coef 11.991 -0.014882 2.8558
S = 5.123 PRESS = 718.681 Analysis of Variance Source DF Regression 2 Residual Error 17 Total 19
SE Coef 4.431 0.002840 0.2114
T 2.71 -5.24 13.51
R-Sq = 91.7% R-Sq(pred) = 86.61% SS 4920.4 446.1 5366.6
P 0.015 0.000 0.000
VIF 1.4 1.4
R-Sq(adj) = 90.7%
MS 2460.2 26.2
F 93.75
P 0.000
No replicates. Cannot do pure error test. Source DF Seq SS N 1 133.4 BA 1 4787.0 Unusual Observations Obs N Clive Fit SE Fit Residual 13 1925 56.12 66.59 2.36 -10.47 19 1800 28.37 16.70 2.03 11.67 R denotes an observation with a large standardized residual
St Resid -2.30R 2.48R
Regression Analysis: Clive versus BA The regression equation is Clive = - 2.61 + 2.27 BA Predictor Constant BA
Coef -2.607 2.2690
SE Coef 5.416 0.2819
T -0.48 8.05
P 0.636 0.000
S = 8.051 R-Sq = 78.3% R-Sq(adj) = 77.1% PRESS = 1606.95 R-Sq(pred) = 70.06% Analysis of Variance Source DF SS MS F P Regression 1 4199.8 4199.8 64.79 0.000 Residual Error 18 1166.8 64.8 Total 19 5366.6 No replicates. Cannot do pure error test. Unusual Observations Obs BA Clive Fit SE Fit Residual 17 30.2 83.67 65.89 3.85 17.78 R denotes an observation with a large standardized residual
St Resid 2.51R
Regression Analysis: Clive versus U The regression equation is Clive = 7.04 + 5.16 U Predictor Coef SE Coef T P Constant 7.038 4.601 1.53 0.144 U 5.1598 0.6871 7.51 0.000 S = 8.493 R-Sq = 75.8% R-Sq(adj) = 74.5% PRESS = 1757.54 R-Sq(pred) = 67.25% Analysis of Variance Source DF SS MS F P Regression 1 4068.1 4068.1 56.40 0.000 Residual Error 18 1298.4 72.1 Lack of Fit 4 237.4 59.3 0.78 0.555 Pure Error 14 1061.0 75.8 Total 19 5366.6 1 rows with no replicates Unusual Observations Obs U Clive Fit SE Fit Residual 17 11.5 83.67 66.38 4.17 17.29 R denotes an observation with a large standardized residual
St Resid 2.34R
170
Lampiran 10 Plot peluang normal untuk sisaan dari persamaan matematik pendugaan potensi persediaan karbon dengan peubah tegakan, menggunakan peubah luas bidang dasar dan kerapatan tegakan, (a) Tegakan murni, (b) Tegakan campuran
(a)
(b)
171
Lampiran 11 Plot tebaran nilai sisaan baku dari persamaan matematik pendugaan potensi persediaan karbon dengan peubah tegakan, menggunakan peubah luas bidang dasar dan kerapatan tegakan, (a) Tegakan murni, (b) Tegakan campuran
(a)
(b)
172
Lampiran 12. Hasil pengolahan data model hubungan persediaan karbon tegakan dengan pendekatan fungsi pertumbuhan tegakan agroforestri 1. AGROFORESTRI DS PECEKELAN Model is:CtotAG=b0/(1+b1*exp(-b2*Age)) Dependent variable: CtotAG Independent variables: 1 Loss function: least squares Final value: 661.88554994 R =.95171715 Proportion of variance accounted for: .90576554
Model is: CtotAG=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_pacek Dep. Var. : CtotAG Level of confidence: 95.0% ( alpha=0.050) Estimate Standard t-value p-level Lo. Conf Up. Conf error df = 18 Limit Limit b0 120.8309 28.75442 4.202169 0.000536 60.42013 181.2417 b1 8.0128 1.40634 5.697637 0.000021 5.05820 10.9674 b2 0.2326 0.05049 4.607786 0.000218 0.12657 0.3387
Effect Regression Residual Total Corrected Total Regression vs.Corrected Total
Model is: CtotAG=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_pacek1 Dep. Var. : CtotAG 1 2 3 4 5 Sum of Sqares DF Mean Squares F-value p-value 40941.48 3.00000 13647.16 371.1349 0.000000 661.89 18.00000 36.77 41603.36 21.00000 7023.82 20.00000 40941.48 3.00000 13647.16 38.8597 0.000000
Model is:Cstankp=b0/(1+b1*exp(-b2*Age)) Dependent variable: Cstankp Independent variables: 1 Loss function: least squares Final value: 607.27499943 Proportion of variance accounted for: .90678493 R =.95225255
Model is: Cstandkop=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_pa Dep. Var. : Cstandkop Level of confidence: 95.0% ( alpha=0.050) Estimate Standard t-value p-level Lo. Conf Up. Conf error df = 18 Limit Limit b0 114.1398 26.63614 4.285150 0.000446 58.17939 170.1003 b1 8.5343 1.47467 5.787276 0.000017 5.43616 11.6325 b2 0.2389 0.05095 4.688691 0.000183 0.13186 0.3460
Effect Regression Residual Total Corrected Total Regression vs.Corrected Total
Model is: Cstandkop=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_pa Dep. Var. : Cstandkop 1 2 3 4 5 Sum of Sqares DF Mean Squares F-value p-value 35863.88 3.00000 11954.63 354.3424 0.000000 607.27 18.00000 33.74 36471.16 21.00000 6514.77 20.00000 35863.88 3.00000 11954.63 36.7001 0.000000
173
Model is:Cstand=b0/(1+b1*exp(-b2*Age)) Dependent variable: Cstand Independent variables: 1 Loss function: least squares Final value: 375.08782983 Proportion of variance accounted for: .92844743 R =.96355977
Model is: Cstand=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_pacek Dep. Var. : Cstand Level of confidence: 95.0% ( alpha=0.050) Estimate Standard t-value p-level Lo. Conf Up. Conf error df = 18 Limit Limit b0 92.88910 16.20475 5.732216 0.000020 58.84419 126.9340 b1 9.85634 1.48118 6.654386 0.000003 6.74450 12.9682 b2 0.26748 0.04723 5.663970 0.000023 0.16827 0.3667
Effect Regression Residual Total Corrected Total Regression vs.Corrected Total
Model is: Cstand=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_pacek1 Dep. Var. : Cstand 1 2 3 4 5 Sum of Sqares DF Mean Squares F-value p-value 25396.62 3.00000 8465.539 406.2507 0.000000 375.09 18.00000 20.838 25771.70 21.00000 5242.13 20.00000 25396.62 3.00000 8465.539 32.2981 0.000000
Model is:Clive=b0/(1+b1*exp(-b2*Age)) Dependent variable: Clive Independent variables: 1 Loss function: least squares Final value: 598.2758456 Proportion of variance accounted for: .90715148 R =.952445
Model is: Clive=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_pacek10 Dep. Var. : Clive Level of confidence: 95.0% ( alpha=0.050) Estimate Standard t-value p-level Lo. Conf Up. Conf error df = 18 Limit Limit b0 113.8722 26.46297 4.303078 0.000428 58.27559 169.4689 b1 8.2353 1.41888 5.804074 0.000017 5.25431 11.2162 b2 0.2367 0.05062 4.675644 0.000188 0.13034 0.3431
Effect Regression Residual Total Corrected Total Regression vs.Corrected Total
Model is: Clive=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_pacek10Dep. Var. : Clive 1 2 3 4 5 Sum of Sqares DF Mean Squares F-value p-value 36443.13 3.00000 12147.71 365.4815 0.000000 598.28 18.00000 33.24 37041.40 21.00000 6443.57 20.00000 36443.13 3.00000 12147.71 37.7049 0.000000
174
2. AGROFORESTRI DS KERTAYASA Model is:CtotAG=b0/(1+b1*exp(-b2*Agestand)) Dependent variable: CtotAG Independent variables: 1 Loss function: least squares Final value: 848.32798334 Proportion of variance accounted for: .85242811 R =.92327033
Effect Regression Residual Total Corrected Total Regression vs.Corrected Total
Model is: CtotAG=b0/(1+b1*exp(-b2*Agestand)) (mod_ageyield_pa Dep. Var. : CtotAG 1 2 3 4 5 Sum of Sqares DF Mean Squares F-value p-value 38100.41 3.00000 12700.14 254.5034 0.000000 848.33 17.00000 49.90 38948.74 20.00000 5748.57 19.00000 38100.41 3.00000 12700.14 41.9761 0.000000
Model is: CtotAG=b0/(1+b1*exp(-b2*Agestand)) (mod_ageyield_ Dep. Var. : CtotAG Level of confidence: 95.0% ( alpha=0.050) Estimate Standard t-value p-level Lo. Conf Up. Conf error df = 17 Limit Limit b0 140.9511 88.32140 1.595888 0.128935 -45.3908 327.2929 b1 7.6179 4.01320 1.898216 0.074780 -0.8492 16.0850 b2 0.1746 0.06611 2.640686 0.017170 0.0351 0.3141 Model is:Cstankp=b0/(1+b1*exp(-b2*Age)) Dependent variable: Cstankp Independent variables: 1 Loss function: least squares Final value: 829.30020857 Proportion of variance accounted for: .84603587 R =.91980208
Model is: Cstankp=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_pan Dep. Var. : Cstankp Level of confidence: 95.0% ( alpha=0.050) Estimate Standard t-value p-level Lo. Conf Up. Conf Limit Limit error df = 17 b0 169.9326 168.1670 1.010499 0.326424 -184.869 524.7339 9.8490 8.8360 1.114650 0.280511 -8.793 28.4913 b1 0.1597 0.0669 2.388861 0.028767 0.019 0.3008 b2
Effect Regression Residual Total Corrected Total Regression vs.Corrected Total
Model is: Cstankp=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_pana Dep. Var. : Cstankp 1 2 3 4 5 Sum of Sqares DF Mean Squares F-value p-value 33679.43 3.00000 11226.48 230.1339 0.000000 829.30 17.00000 48.78 34508.73 20.00000 5386.32 19.00000 33679.43 3.00000 11226.48 39.6009 0.000000
Model is:Cstand=b0/(1+b1*exp(-b2*Age)) Dependent variable: Cstand Loss function: least squares Final value: 692.11590224
Independent variables: 1
175
Proportion of variance accounted for: .83462599
R =.91357867
Model is: Cstand=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_panaw Dep. Var. : Cstand Level of confidence: 95.0% ( alpha=0.050) Estimate Standard t-value p-level Lo. Conf Up. Conf error df = 17 Limit Limit b0 97.12680 41.35652 2.348524 0.031202 9.872169 184.3814 b1 6.55069 2.08423 3.142985 0.005932 2.153360 10.9480 b2 0.20081 0.07280 2.758204 0.013435 0.047206 0.3544
Effect Regression Residual Total Corrected Total Regression vs.Corrected Total
Model is: Cstand=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_panaw1 Dep. Var. : Cstand 1 2 3 4 5 Sum of Sqares Mean Squares F-value p-value DF 27273.29 3.00000 9091.097 223.2988 0.000000 692.12 17.00000 40.713 27965.41 20.00000 4185.16 19.00000 27273.29 3.00000 9091.097 41.2723 0.000000
Model is:Clive=b0/(1+b1*exp(-b2*Age)) Dependent variable: Clive Independent variables: 1 Loss function: least squares Final value: 819.83985342 Proportion of variance accounted for: .84721581 R =.92044327
Model is: Clive=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_panaw1 Dep. Var. : Clive Level of confidence: 95.0% ( alpha=0.050) Estimate Standard t-value p-level Lo. Conf Up. Conf error df = 17 Limit Limit b0 156.5041 133.0458 1.176317 0.255678 -124.198 437.2063 b1 8.9576 6.7559 1.325895 0.202416 -5.296 23.2113 b2 0.1642 0.0668 2.458087 0.024998 0.023 0.3052
Effect Regression Residual Total Corrected Total Regression vs.Corrected Total
Model is: Clive=b0/(1+b1*exp(-b2*Age)) (mod_ageyield_panaw1 Dep. Var. : Clive 1 2 3 4 5 Sum of Sqares DF Mean Squares F-value p-value 34210.45 3.00000 11403.48 236.4598 0.000000 819.84 17.00000 48.23 35030.29 20.00000 5366.00 19.00000 34210.45 3.00000 11403.48 40.3776 0.000000
176
Lampiran 13. Hasil pengolahan data pengujian perbandingan penentuan biomassa karbon tegakan dengan menggunakan persamaan alometrik biomassa dan persamaan Ketterings AF Kebun Murni (AF Pecekelan) Regression Analysis: B phnKetr versus Bpohon Allow The regression equation is B phnKetr = - 7.64 + 1.26 Bpohon Allow Predictor Constant Bpohon A S = 5.489
Coef SE Coef T P -7.640 1.261 -6.06 0.000 1.26051 0.01824 69.10 0.000 R-Sq = 98.5% R-Sq(adj) = 98.5%
Analysis of Variance Source DF Regression 1 Residual Error 74 Total 75
SS 143851 2229 146080
MS 143851 30
F 4775.01
P 0.000
Unusual Observations Bpohon A B phnKet Fit SE Fit Residual St Resid Obs 88 91.520 103.159 0.811 -11.639 -2.14R 13 33 49.060 33.352 0.804 15.708 2.89R 20 42 32.520 45.692 0.707 -13.172 -2.42R 21 158 206.390 191.130 1.892 15.260 2.96RX 59 85 88.720 100.033 0.783 -11.313 -2.08R 62 150 191.470 180.920 1.753 10.550 2.03RX 70 R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.
Paired T-Test and CI: B phnKetr, Bpohon Allom Paired T for B phnKetr - Bpohon Allow
B phnKetr Bpohon Allow Difference
N 76 76 76
Mean 67.85 59.89 7.96
StDev 44.13 34.74 10.57
SE Mean 5.06 3.99 1.21
95% CI for mean difference: (5.55, 10.38) T-Test of mean difference = 0 (vs not = 0): T-Value = 6.57
AF Kebun Campuran (AF Kertayasa) Regression Analysis: BKetrr versus BAllom The regression equation is BKetrr = - 6.13 + 1.17 BAllom Predictor Constant BAllom S = 5.735
Coef SE Coef T P -6.127 1.869 -3.28 0.002 1.17114 0.02328 50.32 0.000 R-Sq = 98.3% R-Sq(adj) = 98.3%
P-Value = 0.000
177
Analysis of Variance Source DF Regression 1 Residual Error 44 Total 45
SS 83259 1447 84706
MS 83259 33
F 2531.79
P 0.000
Unusual Observations Obs BAllom BKetrr Fit SE Fit Residual St Resid 5 135 137.200 151.578 1.694 -14.378 -2.62R 33 146 184.699 164.870 1.927 19.829 3.67R 39 162 196.143 184.135 2.278 12.008 2.28RX 43 130 131.089 146.308 1.604 -15.219 -2.76R R denotes an observation with a large standardized residual X denotes an observation whose X value gives it large influence.
Paired T-Test and CI: BKetrr, BAllom Paired T for BKetrr - BAllom
BKetrr BAllom Difference
N 46 46 46
Mean 77.72 71.59 6.12
StDev 43.39 36.73 8.47
SE Mean 6.40 5.42 1.25
95% CI for mean difference: (3.61, 8.64) T-Test of mean difference = 0 (vs not = 0): T-Value = 4.91
P-Value = 0.000
Lampiran 14. Contoh hasil analisis biaya dan manfaat pengelolaan agroforestri dengan dan tanpa skema perdagangan karbon, dengan pendekatan laju rata-rata persediaan karbon Maksimum Produksi CER Luas lahan agroforestri
Biaya satuan PENDAPATAN Penjualan kayu & hasil pertanian Penerimaan hasil penjarangan Penerimaan hasil tebang habis Penjualan hasil pertanian (kopi) Penjualan CER dari karbon Total Pendapatan Tanpa CER Dengan CER BIAYA PEMB. AGROFORESTRI Penyiapan lahan Pembelian bibit & Penanaman Pemeliharaan tanaman Pemeliharaan & perlindungan Pemupukan Pengelolaan & operasi tahunan Pajak tanah Total Pembangunan Agroforestri BIAYA SKEMA KARBON Biaya desain, pendaftaran & validasi Biaya monitoring Biaya verifikasi & sertifikasi Total Biaya Skema Karbon BIAYA TOTAL Tanpa CER Dengan CER Selisih Pendapatan - Biaya Tanpa CER Dengan CER Pendapatan Total (Terdiskonto) Tanpa CER
Harga CER Suku bunga Biaya transaksi
8,051 ton CO2/thn 450 ha
Satuan
1
15 USD/tonC 10% per Tahun Tetap
2
3
4
591,300,960 3,000 Rp/ha 139,500 Rp/ton C
5
-
6
886,951,440
7
-
326,430,000
326,430,000
326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
326,430,000
326,430,000
326,430,000
1,266,300,960 1,592,730,960
675,000,000 1,001,430,000
1,561,951,440 1,888,381,440
675,000,000 1,001,430,000
Rp/ha Rp/ha Rp/ha Rp/ha Rp/ha Rp/ha/tahun Rp/ha/tahun
840,000,000 1,106,250,000 360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 3,057,750,000
360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 1,111,500,000
360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 1,111,500,000
94,500,000
94,500,000
94,500,000
94,500,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
200,000,000 Rp/30 tahun 200,000,000 Rp/tahun 200,000,000 Rp/5tahun
200,000,000 200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000 200,000,000 400,000,000
200,000,000
200,000,000
3,057,750,000 3,257,750,000
1,111,500,000 1,311,500,000
1,111,500,000 1,311,500,000
477,000,000 677,000,000
477,000,000 877,000,000
477,000,000 677,000,000
477,000,000 677,000,000
789,300,960 915,730,960
198,000,000 124,430,000
1,084,951,440 1,211,381,440
198,000,000 324,430,000
864,900,594
419,121,893
881,680,868
346,381,730
1,866,667 2,458,333 800,000 210,000 610,000 750,000 100,000
(3,057,750,000) (1,111,500,000) (1,111,500,000) (2,931,320,000) (985,070,000) (985,070,000) -
-
-
Lampiran 14. Contoh hasil analisis biaya dan manfaat pengelolaan agroforestri dengan dan tanpa skema perdagangan karbon, dengan pendekatan laju rata-rata persediaan karbon Maksimum Produksi CER Luas lahan agroforestri
Biaya satuan
Satuan
1 296,754,545
Dengan CER Biaya Total (Terdiskonto) Tanpa CER Dengan CER NPV Tanpa CER Dengan CER B/C Ratio Tanpa CER Dengan CER Tabel bantu perhitungan: Produksi kayu Volume Penjarangan Volume Tebang habis diameter 20-30 cm up diameter 30 cm up Produksi pertanian Hasil agroforestri kopi Produksi CER (80% dari total) Nilai Penjualan Produksi kayu diameter 20-30 cm up diameter 30 cm up Kopi Harga CER BAHAN SIMULASI Harga CER
Suku Bunga
Biaya Transaksi
Harga CER Suku bunga Biaya transaksi
8,051 ton CO2/thn 450 ha
2,779,772,727 2,961,590,909
Satuan
Nilai/satuan
15 USD/tonC 10% per Tahun Tetap
2 269,776,860 918,595,041 1,083,884,298
3 4 245,251,690 1,087,856,677
5 6 621,809,241 1,065,942,093
7 513,891,934
835,086,401 985,349,361
325,797,418 462,400,109
296,179,471 544,548,000
269,254,065 382,148,851
244,776,422 347,408,046
539,103,176 625,456,567
122,942,422 77,261,240
612,426,804 683,793,242
101,605,307 166,483,888
(2,779,772,727) (2,664,836,364)
(918,595,041) (814,107,438)
(835,086,401) (740,097,671)
1
2
3
4
m3/ha m3/ha
5
7.73
kg/ha tonC/ha
500 6.50
Rp/m3 Rp/m3 Rp/ha Rp/ton C
100,000 170,000 3,000 139,500
5.20
725,400
5.20
725,400
5.20
500 5.20
725,400
1,314,002 1,500,000 725,400
CER 15 18 21 10 12 14 100
USD/tonC USD/tonC USD/tonC % % % %
4.1 USD/tonCO2 4.9 USD/tonCO2 5.7 USD/tonCO2
15.00 USD/tonC
6
7
11.59
500 5.20
1,500,000 725,400
500 5.20
1,971,003 1,500,000 725,400
500 5.20
1,500,000 725,400
Lampiran 14. Contoh hasil analisis biaya dan manfaat pengelolaan agroforestri dengan dan tanpa skema perdagangan karbon, dengan pendekatan laju rata-rata persediaan karbon Maksimum Produksi CER Luas lahan agroforestri
Harga CER Suku bunga Biaya transaksi
8,051 ton CO2/thn 450 ha
Biaya satuan Satuan 80 % 120 %
1
15 USD/tonC 10% per Tahun Tetap
2
3
4
5
6
7
Lampiran 14. Contoh hasil ana dengan pendekat Maksimum Produksi CER Luas lahan agroforestri Tahun Ke8 PENDAPATAN Penjualan kayu & hasil pertanian Penerimaan hasil penjarangan Penerimaan hasil tebang habis Penjualan hasil pertanian (kopi) Penjualan CER dari karbon Total Pendapatan Tanpa CER Dengan CER BIAYA PEMB. AGROFORESTRI Penyiapan lahan Pembelian bibit & Penanaman Pemeliharaan tanaman Pemeliharaan & perlindungan Pemupukan Pengelolaan & operasi tahunan Pajak tanah Total Pembangunan Agroforestri BIAYA SKEMA KARBON Biaya desain, pendaftaran & validasi Biaya monitoring Biaya verifikasi & sertifikasi Total Biaya Skema Karbon BIAYA TOTAL Tanpa CER Dengan CER Selisih Pendapatan - Biaya Tanpa CER Dengan CER Pendapatan Total (Terdiskonto) Tanpa CER
886,951,440
9
-
10
1,108,689,301
11
-
12
1,108,689,301
13
-
14
15
-
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
1,561,951,440 1,888,381,440
675,000,000 1,001,430,000
1,783,689,301 2,110,119,301
675,000,000 1,001,430,000
1,783,689,301 2,110,119,301
675,000,000 1,001,430,000
675,000,000 1,001,430,000
16
11,865,263,974 675,000,000
12,540,263,974 12,540,263,974
675,000,000 326,430,000 675,000,000 1,001,430,000
840,000,000 1,106,250,000 360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 3,057,750,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000 200,000,000 400,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000 200,000,000 400,000,000
200,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 877,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 877,000,000
3,057,750,000 3,257,750,000
1,084,951,440 1,211,381,440
198,000,000 324,430,000
1,306,689,301 1,233,119,301
198,000,000 324,430,000
1,306,689,301 1,433,119,301
198,000,000 324,430,000
198,000,000 324,430,000
12,063,263,974 11,663,263,974
728,661,875
286,265,892
687,689,440
236,583,382
568,338,380
195,523,456
177,748,597
3,002,039,492
200,000,000
(2,382,750,000) (2,256,320,000) 146,899,667
Lampiran 14. Contoh hasil ana dengan pendekat Maksimum Produksi CER Luas lahan agroforestri Tahun KeDengan CER Biaya Total (Terdiskonto) Tanpa CER Dengan CER NPV Tanpa CER Dengan CER B/C Ratio Tanpa CER Dengan CER Tabel bantu perhitungan: Produksi kayu Volume Penjarangan Volume Tebang habis diameter 20-30 cm up diameter 30 cm up Produksi pertanian Hasil agroforestri kopi Produksi CER (80% dari total) Nilai Penjualan Produksi kayu diameter 20-30 cm up diameter 30 cm up Kopi Harga CER BAHAN SIMULASI Harga CER
Suku Bunga
Biaya Transaksi
8 880,943,879
9 424,704,078
10 813,542,336
11 350,995,106
12 672,349,038
13 290,078,600
14 263,707,818
15 3,002,039,492
16 217,940,345
222,524,020 315,825,496
202,294,564 287,114,088
183,904,149 338,121,465
167,185,590 237,284,370
151,986,900 215,713,064
138,169,909 196,102,785
125,609,008 178,275,259
114,190,008 209,946,827
665,455,490 708,981,317
506,137,854 565,118,382
83,971,328 137,589,990
503,785,291 475,420,871
69,397,792 113,710,736
416,351,480 456,635,975
57,353,547 93,975,815
52,139,588 85,432,559
2,887,849,485 2,792,092,665
8
9
11.59
10
11
14.49
12
13
14
15
(518,555,823) (491,040,972)
16
14.49 95.73 98.79
500 5.20
1,971,003 1,500,000 725,400
500 5.20
1,500,000 725,400
500 5.20
2,463,754 1,500,000 725,400
500 5.20
1,500,000 725,400
500 5.20
2,463,754 1,500,000 725,400
500 5.20
1,500,000 725,400
500 5.20
1,500,000 725,400
500 5.20
9,572,615 16,794,638 1,500,000 725,400
500 5.20
1,500,000 725,400
Lampiran 14. Contoh hasil ana dengan pendekat Maksimum Produksi CER Luas lahan agroforestri Tahun Ke8
9
10
11
12
13
14
15
16
Lampiran 14. Contoh hasil ana dengan pendekat Maksimum Produksi CER Luas lahan agroforestri
17
18
19
20
21
22
23
24
PENDAPATAN Penjualan kayu & hasil pertanian Penerimaan hasil penjarangan Penerimaan hasil tebang habis Penjualan hasil pertanian (kopi) Penjualan CER dari karbon Total Pendapatan Tanpa CER Dengan CER
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 1,001,430,000
675,000,000 1,001,430,000
1,266,300,960 1,592,730,960
675,000,000 1,001,430,000
1,561,951,440 1,888,381,440
675,000,000 1,001,430,000
1,561,951,440 1,888,381,440
675,000,000 1,001,430,000
BIAYA PEMB. AGROFORESTRI Penyiapan lahan Pembelian bibit & Penanaman Pemeliharaan tanaman Pemeliharaan & perlindungan Pemupukan Pengelolaan & operasi tahunan Pajak tanah Total Pembangunan Agroforestri
360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 1,111,500,000
360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 1,111,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000 200,000,000 400,000,000
200,000,000
200,000,000
200,000,000
200,000,000
1,111,500,000 1,311,500,000
1,111,500,000 1,311,500,000
477,000,000 677,000,000
477,000,000 877,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
BIAYA SKEMA KARBON Biaya desain, pendaftaran & validasi Biaya monitoring Biaya verifikasi & sertifikasi Total Biaya Skema Karbon BIAYA TOTAL Tanpa CER Dengan CER Selisih Pendapatan - Biaya Tanpa CER Dengan CER Pendapatan Total (Terdiskonto) Tanpa CER
-
-
591,300,960
-
886,951,440
-
886,951,440
-
(436,500,000) (310,070,000)
(436,500,000) (310,070,000)
(436,500,000) (310,070,000)
789,300,960 915,730,960
198,000,000 124,430,000
1,084,951,440 1,211,381,440
198,000,000 324,430,000
1,084,951,440 1,211,381,440
133,545,152
121,404,683
207,050,326
100,334,449
211,067,390
82,921,032
174,435,859
68,529,779
Lampiran 14. Contoh hasil ana dengan pendekat Maksimum Produksi CER Luas lahan agroforestri
Dengan CER Biaya Total (Terdiskonto) Tanpa CER Dengan CER NPV Tanpa CER Dengan CER B/C Ratio Tanpa CER Dengan CER Tabel bantu perhitungan: Produksi kayu Volume Penjarangan Volume Tebang habis diameter 20-30 cm up diameter 30 cm up Produksi pertanian Hasil agroforestri kopi Produksi CER (80% dari total) Nilai Penjualan Produksi kayu diameter 20-30 cm up diameter 30 cm up Kopi Harga CER BAHAN SIMULASI Harga CER
Suku Bunga
Biaya Transaksi
17 198,127,587
18 180,115,988
19 260,424,239
20 148,856,188
21 255,178,062
22 123,021,643
23 210,890,960
24 101,670,780
219,904,349 259,473,283
199,913,045 235,884,803
77,993,312 110,694,910
70,903,011 130,360,462
64,457,282 91,483,397
58,597,529 83,166,724
53,270,481 75,606,113
48,427,710 68,732,830
(86,359,198) (61,345,696)
(78,508,362) (55,768,815)
129,057,014 149,729,329
29,431,438 18,495,727
146,610,108 163,694,666
24,323,503 39,854,919
121,165,378 135,284,848
20,102,068 32,937,950
17
18
19
20
7.73
500 5.20
1,500,000 725,400
500 5.20
1,500,000 725,400
500 5.20
1,314,002 1,500,000 725,400
21
22
11.59
500 5.20
1,500,000 725,400
500 5.20
1,971,003 1,500,000 725,400
23
24
11.59
500 5.20
1,500,000 725,400
500 5.20
1,971,003 1,500,000 725,400
500 5.20
1,500,000 725,400
Lampiran 14. Contoh hasil ana dengan pendekat Maksimum Produksi CER Luas lahan agroforestri
17
18
19
20
21
22
23
24
Lampiran 14. Contoh hasil ana dengan pendekat Maksimum Produksi CER Luas lahan agroforestri
25 PENDAPATAN Penjualan kayu & hasil pertanian Penerimaan hasil penjarangan Penerimaan hasil tebang habis Penjualan hasil pertanian (kopi) Penjualan CER dari karbon Total Pendapatan Tanpa CER Dengan CER
1,108,689,301
26
-
27
1,108,689,301
28
-
29
30
-
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
675,000,000 326,430,000
1,783,689,301 2,110,119,301
675,000,000 1,001,430,000
1,783,689,301 2,110,119,301
675,000,000 1,001,430,000
675,000,000 1,001,430,000
Total
11,865,263,974 675,000,000
9,165,164,885 23,730,527,947 18,225,000,000 9,140,040,000
678,901 1,757,817 1,350,000 677,040
12,540,263,974 12,540,263,974
51,120,692,832 60,260,732,832
3,786,718 4,463,758
1,680,000,000 2,212,500,000 2,160,000,000 2,835,000,000 1,647,000,000 10,125,000,000 1,350,000,000 22,009,500,000
124,444 163,889 160,000 210,000 122,000 750,000 100,000 1,630,333
14,815 429,630 74,074 518,519
1,630,333 2,148,852
BIAYA PEMB. AGROFORESTRI Penyiapan lahan Pembelian bibit & Penanaman Pemeliharaan tanaman Pemeliharaan & perlindungan Pemupukan Pengelolaan & operasi tahunan Pajak tanah Total Pembangunan Agroforestri
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
BIAYA SKEMA KARBON Biaya desain, pendaftaran & validasi Biaya monitoring Biaya verifikasi & sertifikasi Total Biaya Skema Karbon
200,000,000 200,000,000 400,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000 5,800,000,000 1,000,000,000 7,000,000,000
477,000,000 877,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
22,009,500,000 29,009,500,000
198,000,000 324,430,000
1,306,689,301 1,233,119,301
198,000,000 324,430,000
1,306,689,301 1,433,119,301
198,000,000 324,430,000
198,000,000 324,430,000
16,611,428,858 19,077,898,858
164,627,384
56,636,181
136,055,690
46,806,761
42,551,601
718,664,386
10,806,465,939
BIAYA TOTAL Tanpa CER Dengan CER Selisih Pendapatan - Biaya Tanpa CER Dengan CER Pendapatan Total (Terdiskonto) Tanpa CER
Rataan/ha/th
Lampiran 14. Contoh hasil ana dengan pendekat Maksimum Produksi CER Luas lahan agroforestri
Dengan CER Biaya Total (Terdiskonto) Tanpa CER Dengan CER NPV Tanpa CER Dengan CER B/C Ratio Tanpa CER Dengan CER Tabel bantu perhitungan: Produksi kayu Volume Penjarangan Volume Tebang habis diameter 20-30 cm up diameter 30 cm up Produksi pertanian Hasil agroforestri kopi Produksi CER (80% dari total) Nilai Penjualan Produksi kayu diameter 20-30 cm up diameter 30 cm up Kopi Harga CER BAHAN SIMULASI Harga CER
Suku Bunga
Biaya Transaksi
25 194,755,567
26 84,025,438
27 160,955,014
28 69,442,510
29 63,129,555
30 718,664,386
Rataan/ha/th Total 13,786,841,651
44,025,191 80,943,590
40,022,901 56,803,992
36,384,455 51,639,992
33,076,778 46,945,448
30,069,798 42,677,680
27,336,180 38,797,891
8,645,163,208 10,827,905,359
120,602,193 113,811,977
16,613,280 27,221,446
99,671,234 109,315,022
13,729,983 22,497,063
12,481,803 20,451,875
691,328,206 679,866,496
2,161,302,732 2,958,936,293 1.250 1.273
25
26
14.49
27
28
29
30
14.49 95.73 98.79
500 5.20
2,463,754 1,500,000 725,400
500 5.20
1,500,000 725,400
500 5.20
2,463,754 1,500,000 725,400
500 5.20
1,500,000 725,400
500 5.20
1,500,000 725,400
500 5.20
9,572,615 16,794,638 1,500,000 725,400
70200
4,802,895 6,575,414
Lampiran 14. Contoh hasil ana dengan pendekat Maksimum Produksi CER Luas lahan agroforestri
25
26
27
28
29
30
Total
Rataan/ha/th
Lampiran 15. Contoh hasil analisis biaya dan manfaat pengelolaan agroforestri dengan dan tanpa skema perdagangan karbon menggunakan pendekatan tdengan pendekatan t-CER Maksimum Produksi CER Luas lahan agroforestri
Harga t-CER Suku bunga Biaya transaksi
8,424 ton CO2/thn 450 ha Biaya satuan Satuan
PENDAPATAN Penjualan kayu & hasil pertanian Penerimaan hasil penjarangan Penerimaan hasil tebang habis Penjualan hasil pertanian (kopi) Penjualan CER dari karbon Total Pendapatan Tanpa CER Dengan CER BIAYA PEMB. AGROFORESTRI Penyiapan lahan Pembelian bibit & Penanaman Pemeliharaan tanaman Pemeliharaan & perlindungan Pemupukan Pengelolaan & operasi tahunan Pajak tanah Total Pembangunan Agroforestri BIAYA SKEMA KARBON Biaya desain, pendaftaran & validasi Biaya monitoring Biaya verifikasi & sertifikasi Total Biaya Skema Karbon BIAYA TOTAL Tanpa CER Dengan CER Selisih Pendapatan - Biaya Tanpa CER Dengan CER Pendapatan Total (Terdiskonto) Tanpa CER Dengan CER
1
3.79 USD/tonC 10% per Tahun Tetap 2
3
4
591,300,960 3,000 Rp/ha 35,257 Rp/ton C
1,866,667 2,458,333 800,000 210,000 610,000 750,000 100,000
5
-
6
886,951,440
7
-
-
-
-
675,000,000 -
675,000,000 437,897,962
675,000,000 -
675,000,000 -
-
-
-
1,266,300,960 1,266,300,960
675,000,000 1,112,897,962
1,561,951,440 1,561,951,440
675,000,000 675,000,000
Rp/ha Rp/ha Rp/ha Rp/ha Rp/ha Rp/ha/tahun Rp/ha/tahun
840,000,000 1,106,250,000 360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 3,057,750,000
200,000,000 Rp/30 tahun 200,000,000 Rp/tahun 200,000,000 Rp/5tahun
200,000,000
360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 1,111,500,000
360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 1,111,500,000
94,500,000
94,500,000
94,500,000
94,500,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000 200,000,000 400,000,000
200,000,000
200,000,000
3,057,750,000 3,257,750,000
1,111,500,000 1,311,500,000
1,111,500,000 1,311,500,000
477,000,000 677,000,000
477,000,000 877,000,000
477,000,000 677,000,000
477,000,000 677,000,000
789,300,960 589,300,960
198,000,000 235,897,962
1,084,951,440 884,951,440
864,900,594 864,900,594
419,121,893 691,022,075
881,680,868 881,680,868
(3,057,750,000) (1,111,500,000) (1,111,500,000) (3,257,750,000) (1,311,500,000) (1,311,500,000) -
-
-
198,000,000 (2,000,000) 346,381,730 346,381,730
Lampiran 15. Contoh hasil analisis biaya dan manfaat pengelolaan agroforestri dengan dan tanpa skema perdagangan karbon menggunakan pendekatan tdengan pendekatan t-CER Maksimum Produksi CER Luas lahan agroforestri
Harga t-CER Suku bunga Biaya transaksi
8,424 ton CO2/thn 450 ha Biaya satuan Satuan
1
Biaya Total (Terdiskonto) Tanpa CER Dengan CER NPV Tanpa CER Dengan CER B/C Ratio Tanpa CER Dengan CER Tabel bantu perhitungan: Produksi kayu Volume Penjarangan Volume Tebang habis diameter 20-30 cm up diameter 30 cm up Produksi pertanian Hasil agroforestri kopi Produksi CER (80% dari total) Nilai Penjualan Produksi kayu diameter 20-30 cm up diameter 30 cm up Kopi Harga t-CER BAHAN SIMULASI Harga CER
Suku Bunga
Biaya Transaksi
2,779,772,727 2,961,590,909
3.79 USD/tonC 10% per Tahun Tetap 2
918,595,041 1,083,884,298
(2,779,772,727) (918,595,041) (2,961,590,909) (1,083,884,298)
Satuan
Nilai/satuan
1
3
4
5
325,797,418 462,400,109
296,179,471 544,548,000
269,254,065 382,148,851
244,776,422 347,408,046
(835,086,401) (985,349,361)
539,103,176 402,500,485
122,942,422 146,474,075
612,426,804 499,532,018
101,605,307 (1,026,316)
2
3
4
5
7.73
500 6.50
Rp/m3 Rp/m3 Rp/ha Rp/ton C
100,000 170,000 3,000 35,257
500
-
-
-
1,314,002 1,500,000 -
t-CER 15 18 21 10 12 14 100 80 120
USD/tonC USD/tonC USD/tonC % % % % % %
4.1 USD/tonCO2 4.9 USD/tonCO2 5.7 USD/tonCO2
7
835,086,401 985,349,361
m3/ha m3/ha
kg/ha tonC/ha
6
3.79 USD/tonC
6
7
11.59
500 27.6
1,500,000 973,107
500
1,971,003 1,500,000 -
500
1,500,000 -
Lampiran 15. Contoh hasil analCER dengan pendekatan Maksimum Produksi CER Luas lahan agroforestri Tahun Ke8 PENDAPATAN Penjualan kayu & hasil pertanian Penerimaan hasil penjarangan Penerimaan hasil tebang habis Penjualan hasil pertanian (kopi) Penjualan CER dari karbon Total Pendapatan Tanpa CER Dengan CER BIAYA PEMB. AGROFORESTRI Penyiapan lahan Pembelian bibit & Penanaman Pemeliharaan tanaman Pemeliharaan & perlindungan Pemupukan Pengelolaan & operasi tahunan Pajak tanah Total Pembangunan Agroforestri BIAYA SKEMA KARBON Biaya desain, pendaftaran & validasi Biaya monitoring Biaya verifikasi & sertifikasi Total Biaya Skema Karbon BIAYA TOTAL Tanpa CER Dengan CER Selisih Pendapatan - Biaya Tanpa CER Dengan CER Pendapatan Total (Terdiskonto) Tanpa CER Dengan CER
886,951,440
9
-
10
1,108,689,301
11
-
12
1,108,689,301
13
-
14
15
-
675,000,000 -
675,000,000 -
675,000,000 860,564,691
675,000,000 -
675,000,000 -
675,000,000 -
675,000,000 -
1,561,951,440 1,561,951,440
675,000,000 675,000,000
1,783,689,301 2,644,253,992
675,000,000 675,000,000
1,783,689,301 1,783,689,301
675,000,000 675,000,000
675,000,000 675,000,000
16
11,865,263,974 675,000,000
12,540,263,974 12,540,263,974
675,000,000 675,000,000 675,000,000
840,000,000 1,106,250,000 360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 3,057,750,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000 200,000,000 400,000,000
200,000,000
200,000,000
200,000,000 200,000,000 400,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 877,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 877,000,000
3,057,750,000 3,257,750,000
198,000,000 (2,000,000)
198,000,000 (2,000,000)
12,063,263,974 11,663,263,974
195,523,456 195,523,456
177,748,597 177,748,597
3,002,039,492 3,002,039,492
1,084,951,440 884,951,440 728,661,875 728,661,875
198,000,000 (2,000,000)
1,306,689,301 1,767,253,992
198,000,000 (2,000,000)
286,265,892 286,265,892
687,689,440 1,019,474,382
236,583,382 236,583,382
1,306,689,301 1,106,689,301 568,338,380 568,338,380
200,000,000
(2,382,750,000) (2,582,750,000) 146,899,667 146,899,667
Lampiran 15. Contoh hasil analCER dengan pendekatan Maksimum Produksi CER Luas lahan agroforestri Tahun Ke8 Biaya Total (Terdiskonto) Tanpa CER Dengan CER NPV Tanpa CER Dengan CER B/C Ratio Tanpa CER Dengan CER Tabel bantu perhitungan: Produksi kayu Volume Penjarangan Volume Tebang habis diameter 20-30 cm up diameter 30 cm up Produksi pertanian Hasil agroforestri kopi Produksi CER (80% dari total) Nilai Penjualan Produksi kayu diameter 20-30 cm up diameter 30 cm up Kopi Harga t-CER BAHAN SIMULASI Harga CER
Suku Bunga
Biaya Transaksi
222,524,020 315,825,496 506,137,854 412,836,378
8
9 202,294,564 287,114,088 83,971,328 (848,195)
9
11.59
10 183,904,149 338,121,465 503,785,291 681,352,917
10
11 167,185,590 237,284,370 69,397,792 (700,988)
11
14.49
12 151,986,900 215,713,064 416,351,480 352,625,317
12
13 138,169,909 196,102,785
14 125,609,008 178,275,259
57,353,547 (579,329)
52,139,588 (526,663)
13
14
15 114,190,008 209,946,827 2,887,849,485 2,792,092,665
15
16 665,455,490 708,981,317 (518,555,823) (562,081,650)
16
14.49 95.73 98.79
500
1,971,003 1,500,000 -
500
1,500,000 -
500 54.24
2,463,754 1,500,000 1,912,366
500
1,500,000 -
500
2,463,754 1,500,000 -
500
1,500,000 -
500
1,500,000 -
500
9,572,615 16,794,638 1,500,000 -
500
1,500,000 -
Lampiran 15. Contoh hasil anal dengan pendekatan Maksimum Produksi CER Luas lahan agroforestri 17 PENDAPATAN Penjualan kayu & hasil pertanian Penerimaan hasil penjarangan Penerimaan hasil tebang habis Penjualan hasil pertanian (kopi) Penjualan CER dari karbon Total Pendapatan Tanpa CER Dengan CER BIAYA PEMB. AGROFORESTRI Penyiapan lahan Pembelian bibit & Penanaman Pemeliharaan tanaman Pemeliharaan & perlindungan Pemupukan Pengelolaan & operasi tahunan Pajak tanah Total Pembangunan Agroforestri BIAYA SKEMA KARBON Biaya desain, pendaftaran & validasi Biaya monitoring Biaya verifikasi & sertifikasi Total Biaya Skema Karbon BIAYA TOTAL Tanpa CER Dengan CER Selisih Pendapatan - Biaya Tanpa CER Dengan CER Pendapatan Total (Terdiskonto) Tanpa CER Dengan CER
-
18
-
19
591,300,960
20
-
21
886,951,440
22
-
23
886,951,440
24
-
675,000,000 -
675,000,000 -
675,000,000 -
675,000,000 437,897,962
675,000,000 -
675,000,000 -
675,000,000 -
675,000,000 -
675,000,000 675,000,000
675,000,000 675,000,000
1,266,300,960 1,266,300,960
675,000,000 1,112,897,962
1,561,951,440 1,561,951,440
675,000,000 675,000,000
1,561,951,440 1,561,951,440
675,000,000 675,000,000
360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 1,111,500,000
360,000,000 94,500,000 274,500,000 337,500,000 45,000,000 1,111,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000 200,000,000 400,000,000
200,000,000
200,000,000
200,000,000
200,000,000
1,111,500,000 1,311,500,000
1,111,500,000 1,311,500,000
477,000,000 677,000,000
477,000,000 877,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
(436,500,000) (636,500,000)
(436,500,000) (636,500,000)
(436,500,000) (636,500,000)
789,300,960 589,300,960
198,000,000 235,897,962
1,084,951,440 884,951,440
133,545,152 133,545,152
121,404,683 121,404,683
207,050,326 207,050,326
100,334,449 165,425,191
211,067,390 211,067,390
82,921,032 82,921,032
198,000,000 (2,000,000) 174,435,859 174,435,859
1,084,951,440 884,951,440 68,529,779 68,529,779
Lampiran 15. Contoh hasil anal dengan pendekatan Maksimum Produksi CER Luas lahan agroforestri 17 Biaya Total (Terdiskonto) Tanpa CER Dengan CER NPV Tanpa CER Dengan CER B/C Ratio Tanpa CER Dengan CER Tabel bantu perhitungan: Produksi kayu Volume Penjarangan Volume Tebang habis diameter 20-30 cm up diameter 30 cm up Produksi pertanian Hasil agroforestri kopi Produksi CER (80% dari total) Nilai Penjualan Produksi kayu diameter 20-30 cm up diameter 30 cm up Kopi Harga t-CER BAHAN SIMULASI Harga CER
Suku Bunga
Biaya Transaksi
18
19
20
21
22
23
24
219,904,349 259,473,283
199,913,045 235,884,803
77,993,312 110,694,910
70,903,011 130,360,462
64,457,282 91,483,397
58,597,529 83,166,724
53,270,481 75,606,113
48,427,710 68,732,830
(86,359,198) (125,928,132)
(78,508,362) (114,480,120)
129,057,014 96,355,416
29,431,438 35,064,729
146,610,108 119,583,993
24,323,503 (245,692)
121,165,378 98,829,747
20,102,068 (203,051)
17
18
19
20
7.73
500
1,500,000 -
500
1,500,000 -
500
1,314,002 1,500,000 -
21
22
11.59
500 27.6
1,500,000 973,107
500
1,971,003 1,500,000 -
23
24
11.59
500
1,500,000 -
500
1,971,003 1,500,000 -
500
1,500,000 -
Lampiran 15. Contoh hasil anal dengan pendekatan Maksimum Produksi CER Luas lahan agroforestri 25 PENDAPATAN Penjualan kayu & hasil pertanian Penerimaan hasil penjarangan Penerimaan hasil tebang habis Penjualan hasil pertanian (kopi) Penjualan CER dari karbon Total Pendapatan Tanpa CER Dengan CER
1,108,689,301
26
-
27
1,108,689,301
28
-
29
30
-
675,000,000 860,564,691
675,000,000 -
675,000,000 -
675,000,000 -
675,000,000 -
1,783,689,301 2,644,253,992
675,000,000 675,000,000
1,783,689,301 1,783,689,301
675,000,000 675,000,000
675,000,000 675,000,000
Total
11,865,263,974 675,000,000
9,165,164,885 23,730,527,947 18,225,000,000 2,596,925,307
678,901 1,757,817 1,350,000 192,365
12,540,263,974 12,540,263,974
51,120,692,832 53,717,618,139
3,786,718 3,979,083
1,680,000,000 2,212,500,000 2,160,000,000 2,835,000,000 1,647,000,000 10,125,000,000 1,350,000,000 22,009,500,000
124,444 163,889 160,000 210,000 122,000 750,000 100,000 1,630,333
14,815 429,630 74,074 518,519
1,630,333 2,148,852
BIAYA PEMB. AGROFORESTRI Penyiapan lahan Pembelian bibit & Penanaman Pemeliharaan tanaman Pemeliharaan & perlindungan Pemupukan Pengelolaan & operasi tahunan Pajak tanah Total Pembangunan Agroforestri
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
94,500,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
337,500,000 45,000,000 477,000,000
BIAYA SKEMA KARBON Biaya desain, pendaftaran & validasi Biaya monitoring Biaya verifikasi & sertifikasi Total Biaya Skema Karbon
200,000,000 200,000,000 400,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000
200,000,000 5,800,000,000 1,000,000,000 7,000,000,000
477,000,000 877,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
477,000,000 677,000,000
22,009,500,000 29,009,500,000
198,000,000 (2,000,000)
198,000,000 (2,000,000)
16,611,428,858 12,208,354,165
42,551,601 42,551,601
718,664,386 718,664,386
10,806,465,939 11,554,668,482
BIAYA TOTAL Tanpa CER Dengan CER Selisih Pendapatan - Biaya Tanpa CER Dengan CER Pendapatan Total (Terdiskonto) Tanpa CER Dengan CER
198,000,000 (2,000,000) 164,627,384 244,054,062
1,306,689,301 1,767,253,992 56,636,181 56,636,181
198,000,000 (2,000,000) 136,055,690 136,055,690
1,306,689,301 1,106,689,301 46,806,761 46,806,761
Rataan/ha/th
Lampiran 15. Contoh hasil anal dengan pendekatan Maksimum Produksi CER Luas lahan agroforestri 25 Biaya Total (Terdiskonto) Tanpa CER Dengan CER NPV Tanpa CER Dengan CER B/C Ratio Tanpa CER Dengan CER Tabel bantu perhitungan: Produksi kayu Volume Penjarangan Volume Tebang habis diameter 20-30 cm up diameter 30 cm up Produksi pertanian Hasil agroforestri kopi Produksi CER (80% dari total) Nilai Penjualan Produksi kayu diameter 20-30 cm up diameter 30 cm up Kopi Harga t-CER BAHAN SIMULASI Harga CER
Suku Bunga
Biaya Transaksi
26
27
28
29
30
Total
Rataan/ha/th
44,025,191 80,943,590
40,022,901 56,803,992
36,384,455 51,639,992
33,076,778 46,945,448
30,069,798 42,677,680
27,336,180 38,797,891
8,645,163,208 10,827,905,359
120,602,193 163,110,471
16,613,280 (167,811)
99,671,234 84,415,697
13,729,983 (138,687)
12,481,803 (126,079)
691,328,206 679,866,496
2,161,302,732 726,763,124 1.250 1.067
25
26
14.49
27
28
29
30
14.49 95.73 98.79
500 54.24
2,463,754 1,500,000 1,912,366
500
500
500
500
500 73656
1,500,000 -
2,463,754 1,500,000 -
1,500,000 -
1,500,000 -
9,572,615 16,794,638 1,500,000 -
4,802,895 1,615,029