36
BAB IV DESKRIPSI DAN ANALISIS DATA PENELITIAN
A. Data Penentuan Subjek Penelitian Subjek dalam penelitian ini adalah siswa SD Negeri Mojorejo 1 Modo Lamongan, yang dipilih secara acak. Subjek yang dipilih adalah 6 siswa. Subjek yang terpilih itu adalah: S1, S2, S3, S4, S5 dan S6.
B. Deskripsi dan Analisis Data Sesuai dengan rumusan masalah yang ada, maka hasil penelitian ini adalah strategi siswa dalam memecahkan masalah pembagian pecahan melalui konteks luas persegi panjang. Keenam subjek yang sudah dipilih diberikan masalah pembagian pecahan untuk dikerjakan dan selanjutnya dilakukan tes wawancara pada subjek. Dari tes tulis dan wawancara dapat diketahui strategi siswa dalam memecahkan masalah pembagian pecahan melalui konteks luas persegi panjang. Strategi siswa pada setiap masalah pembagian pecahan akan dijelaskan sebagai berikut. 1. Hasil dan Analisis Data Subjek S1 a. Masalah Matematika No. 1 P : “Assalamualaikum” S11 : “Waalaikumsalam” P : “Dengan adek siapa” S12 : “Yulia Nur Febriana” 36
37
P : “Apakah kamu membaca dengan cermat soal yang diberikan?” S13 : “Iya” P : “Apakah ada informasi diketahui dalam soal?” S14 : “Iya” P : “Sebutkan informasi yang diketahui itu!” S15 : “Sebuah persegi panjang memiliki luas m2 dan lebar m”. P : “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal?” S16 : “Iya” P : “Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” S17 : “Iya” P : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?” S18 : “Iya” P : “Bagaimana penjelasan langkah-langkah cara kamu menyelesaikan soal ini! ” S19 : “Saya gambar dulu persegi panjang, lalu luas dalam persegi panjang, lebarnya
m2 saya taruh di
saya taruh di bawah persegi
panjang. Kedua saya gambar persegi panjang empat jadi lebar,
4 =
4=
luas. Ketiga saya gambar persegi panjang lima,
karena lebarnya , lalu persegi panjang = p persegi panjang adalah
5 = 1 dan l.
=p .
1.
5 = =
. Rumus luas
. Berarti panjangnya
38
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.1 Jawaban no.1 Subjek S1 Pada hasil pekerjaan subjek diatas tampak bahwa subjek berhasil menggunakan konteks luas persegi panjang. Pada S19 subjek menyatakan bahwa telah menggambar dulu persegi panjang pada langkah pertama, luasnya ditaruh dalam dan lebarnya ditaruh bawah. Selanjutnya pada langkah kedua subjek menggambar persegi panjang empat karena pembilang dari lebarnya adalah empat, dan membagi luas dan lebarnya dengan empat. Pada langkah ketiga subjek menggambar persegi panjang lima berdasarkan hasil dari lebar yang sudah dibagi, lalu mengalikan luas
39
dan lebarnya dengan lima. Untuk langkah keempat subjek telah memasukkan kedalam rumus luas persegi panjang. Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a. Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui. b. Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang. c. Siswa melalui langkah ketiga, yaitu membagi persegi panjang lagi sesuai hasil dari lebar. d. Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus. b. Masalah Matematika No. 2 P : “Apakah kamu membaca dengan cermat soal yang diberikan?” S12 : “Iya” P : “Apakah ada informasi diketahui dalam soal?” S13 : “Iya” P : “Sebutkan informasi yang diketahui itu!” S14 : “Sebuah persegi panjang memiliki luas m2 dan lebar m”. P : “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal?” S15 : “Iya” P : “Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” S16 : “Iya” P : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?”
40
S17 : “Iya” P : “Bagaimana penjelasan langkah-langkah cara kamu menyelesaikan soal ini! ” S18 : “Saya gambar dulu persegi panjang, lalu luas dalam persegi panjang, lebarnya
m2 saya taruh di
saya taruh di bawah persegi
panjang. Kedua saya gambar persegi panjang tiga jadi 3=
3 = lebar,
luas. Ketiga saya gambar persegi panjang empat, karena
lebarnya , lalu panjang = p
4 = 1 dan l.
panjang adalah
= p
1.
4 = =
. Rumus luas persegi
. Berarti panjangnya persegi
.
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.2 Jawaban no.2 Subjek S1 Pada hasil pekerjaan subjek diatas tampak bahwa subjek berhasil menggunakan konteks luas persegi panjang. Pada S18 subjek menyatakan bahwa telah menggambar dulu persegi panjang pada langkah pertama,
41
luasnya ditaruh dalam dan lebarnya ditaruh bawah. Selanjutnya pada langkah kedua subjek menggambar persegi panjang empat karena berdasarkan pembilang pada lebar yaitu empat, dan membagi luas dan lebarnya dengan empat. Pada langkah ketiga subjek menggambar persegi panjang lima berdasarkan hasil dari lebar yang sudah dibagi, lalu mengalikan luas dan lebarnya dengan lima. Untuk langkah keempat subjek telah memasukkan kedalam rumus luas persegi panjang. Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a. Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui. b. Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang. c. Siswa melalui langkah ketiga, yaitu membagi persegi panjang lagi sesuai hasil dari lebar. d. Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus. Tahapan strategi siswa dalam memecahkan masalah pembagian pecahan melalui konteks luas persegi panjang dapat dirangkum pada tabel berikut:
42
Tabel 4.1 Analisis Strategi Siswa dengan Kode Subjek S1 No. Soal
Langkah Pertama
Langkah-Langkah Startegi Siswa Langkah Langkah Langkah Kedua Ketiga Keempat
1. 2. Keterangan : : Melalui − : Tidak Melalui 2. Hasil dan Analisis Data Subjek S2 a.
Masalah Matematika No. 1 P : “Dengan adek siapa” S21 : “Putri” P : “Apakah kamu membaca dengan cermat soal yang diberikan?” S22 : “Iya” P : “Apakah ada informasi diketahui dalam soal?” S23 : “Ada” P : “Sebutkan informasi yang diketahui itu!” S24 : “Sebuah persegi panjang memiliki luas m2 dan lebar m”. P : “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal?” S25 : “... Paham” P : “Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” S26 : “Dapat” P : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?” S27 : “Menemukan” P : “Bagaimana penjelasan langkah-langkah cara kamu menyelesaikan soal ini! ” S28 : “Saya gambar dulu persegi panjang, luas
m2 saya taruh di dalam
persegi panjang, lalu lebarnya saya taruh di bawah persegi panjang.
43
Diketahui luas persegi panjang , lebar persegi panjang . Ditanya panjang persegi panjang?. Saya gambar dulu persegi panjang empat jadi yaitu
4 = 3=
lebar, terus lalu saya gambar tiga persegi panjang luas. Lebar
5 = 1. Luas 2
Rumus luas persegi panjang = p
l. Berarti 1
...
2=
.
= . Berarti
panjangnya persegi panjang adalah . Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.3 Jawaban no.1 Subjek S2 Pada hasil pekerjaan subjek diatas tampak bahwa subjek berhasil menggunakan konteks luas persegi panjang. Pada S28 subjek menyatakan bahwa telah menggambar dulu persegi panjang pada langkah pertama, luasnya ditaruh dalam dan lebarnya ditaruh bawah. Selanjutnya pada langkah kedua subjek menggambar persegi panjang empat karena pembilang dari lebarnya adalah empat, dan membagi luas dan lebarnya
44
dengan empat. Pada langkah ketiga subjek menggambar persegi panjang lima berdasarkan hasil dari lebar yang sudah dibagi, lalu mengalikan luas dan lebarnya dengan lima. Untuk langkah keempat subjek telah memasukkan kedalam rumus luas persegi panjang. Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a. Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui. b. Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang. c. Siswa melalui langkah ketiga, yaitu membagi persegi panjang lagi sesuai hasil dari lebar. d. Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus. b. Masalah Matematika No. 2 P : “Apakah kamu membaca dengan cermat soal yang diberikan?” S22 : “iya” P : “Apakah ada informasi diketahui dalam soal?” S23 : “Ada” P : “Sebutkan informasi yang diketahui itu!” S24 : “Berapakah panjang persegi panjang jika luasnya m2 dan lebar m?” P : “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal” S25 : “... Paham”
45
P : “Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” S26 : “Dapat” P : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?” S27 : “Menemukan” P : “Bagaimana penjelasan langkah-langkah cara kamu menyelesaikan soal” S28 : “Saya... saya menggambar persegi panjang yang... yang luasnya m2 lebarnya . Diketahui luas persegi panjang
m2 lebar persegi
panjang , ditanya panjang persegi panjang?. Lalu saya gambar persegi panjang dua, berarti
3=
persegi panjang dua, berarti
2=
2=
lebar. Saya juga gambar lagi luas. Lebar
. Rumus luas persegi panjang = p
Berarti panjangnya persegi panjang adalah
l. 1
2 = 1. Luas 2 ... 1
=
”.
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.4 Jawaban No.2 Subjek S2
.
46
Pada hasil pekerjaan subjek diatas tampak bahwa subjek berhasil menggunakan konteks luas persegi panjang. Pada S28 subjek menyatakan bahwa telah menggambar dulu persegi panjang pada langkah pertama, luasnya ditaruh dalam dan lebarnya ditaruh bawah. Selanjutnya pada langkah kedua subjek menggambar persegi panjang empat karena pembilang dari lebarnya adalah empat, dan membagi luas dan lebarnya dengan empat. Pada langkah ketiga subjek menggambar persegi panjang lima berdasarkan hasil dari lebar yang sudah dibagi, lalu mengalikan luas dan lebarnya dengan lima. Untuk langkah keempat subjek telah memasukkan kedalam rumus luas persegi panjang. Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a. Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui. b. Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang. c. Siswa melalui langkah ketiga, yaitu membagi persegi panjang lagi sesuai hasil dari lebar. d. Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus.
47
Tahapan strategi siswa dalam memecahkan masalah pembagian pecahan melalui konteks luas persegi panjang dapat dirangkum pada tabel berikut: Tabel 4.2 Analisis Strategi Siswa dengan Kode Subjek S2 No. Soal
Langkah Pertama
Langkah-Langkah Startegi Siswa Langkah Langkah Langkah Kedua Ketiga Keempat
1. 2. Keterangan : : Melalui − : Tidak Melalui 3. Hasil dan Analisis Data Subjek S3 a. Masalah Matematika No. 1 P : “Dengan adek siapa?” S31 : “Sintia” P : “Apakah kamu membaca dengan cermat soal yang diberikan?” S32 : “Iya” P : “Apakah ada informasi diketahui dalam soal?” S33 : “......” P : “Apakah ada informasi yang diketahui dalam soal?” S34 : “Iya” P : “Jika iya, sebutkan informasi yang diketahui dalam soal!” S35 : “Sebuah persegi panjang memiliki luas m2 dan lebar m” P
: “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal” S36 : “Iya” P : “Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” S37 : “Iya”
48
P S38 P S39
: “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?” : “Iya” : “Jika iya, bagaimana penjelasan langkah-langkah cara tersebut!” : “Langkah pertama menggambar sebuah persegi panjang dengan luas m2 dan m.... membagi persegi panjang yang luas m2 dan m .. tersebut menjadi empat bagian, karena lebarnya dan pembilangnya adalah empat, sehingga sesuai pembilangnya persegi panjang tersebut dibagi dengan empat disusun secara horizontal. Persegi panjang sudah menjadi empat persegi panjang kecil. Lebar persegi panjang kecil dapat diketahui dengan ......
. Luas persegi panjang
juga harus dibagi dengan empat, sehingga luasnya adalah Lebar dari persegi panjang kecil sudah diketahui adalah
4. ,
sedangkan persegi panjang pada dua hanya terdiri dari empat persegi panjang kecil. Untuk memenuhi
harus ditambah satu
persegi panjang kecil. Eh...... sehingga menjadi ....... jawabannya 1=
.
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.5 Jawaban no.1 Subjek S3
49
Pada hasil pekerjaan subjek diatas tampak bahwa subjek kurang berhasil menggunakan konteks luas persegi panjang. Pada S39 subjek menyatakan bahwa langkah pertama menggambar sebuah persegi panjang dengan luas
m2 dan lebar
m2 dan lebar
m. Lalu membagi persegi panjang yang luas
m tersebut menjadi empat bagian, karena lebarnya
dan
pembilangnya adalah empat, sehingga sesuai pembilangnya persegi panjang tersebut dibagi dengan empat disusun secara horizontal. Persegi panjang sudah menjadi empat persegi panjang kecil. Luas dan lebar persegi panjang dibagi dengan empat. Namun subjek tidak melalui tahap ketiga, subjek lanmgsung memasukkan kedalam rumus. Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a. Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui. b. Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang. c. Siswa tidak melalui langkah ketiga, yaitu tidak membagi persegi panjang lagi sesuai hasil dari lebar. d. Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus.
50
b. Masalah Matematika No. 2 P S32 P S33 P
: “Apakah kamu membaca dengan cermat soal yang diberikan?” : “Iya” : “Apakah ada informasi diketahui dalam soal?” : “Iya” : “Jika ada, sebutkan!”
S34 : “Sebuah persegi panjang memiliki luas m2 dan lebar m” P S35 P S36 P S37 P S38
: “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal” : “Iya” : “Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” : “Iya” : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?” : “Iya” : “Jika iya, bagaimana penjelasan langkah-langkah cara tersebut!” : “Langkah pertama menggambar sebuah persegi panjang dengan luas m2 dan
m.... membagi persegi panjang yang luas
tersebut menjadi tiga bagian, karena lebarnya
m2 dan
m ..
dan pembilangnya
adalah tiga, sehingga sesuai pembilangnya persegi panjang tersebut dibagi dengan tiga disusun secara horizontal. Persegi panjang sudah menjadi tiga persegi panjang kecil. Lebar persegi panjang kecil dapat diketahui dengan ...... . Luas persegi panjang juga harus dibagi dengan tiga, sehingga luasnya adalah panjang kecil sudah diketahui adalah
3. Lebar dari persegi , sedangkan persegi panjang
pada dua hanya terdiri dari tiga persegi panjang kecil. Untuk memenuhi
harus ditambah satu persegi panjang kecil. Eh......
sehingga menjadi ....... jawabannya
1=
.”
51
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.6 Jawaban no.2 Subjek S3 Pada hasil pekerjaan subjek diatas tampak bahwa subjek kurang berhasil menggunakan konteks luas persegi panjang. Pada S38 subjek menyatakan bahwa langkah pertama menggambar sebuah persegi panjang dengan luas
m2 dan lebar
m2 dan lebar
m. Lalu membagi persegi panjang yang luas
m tersebut menjadi tiga bagian, karena lebarnya
dan
pembilangnya adalah tiga, sehingga sesuai pembilangnya persegi panjang tersebut dibagi dengan tiga disusun secara horizontal. Persegi panjang sudah menjadi tiga persegi panjang kecil. Luas dan lebar persegi panjang dibagi dengan tiga. Namun subjek tidak melalui tahap ketiga, subjek langsung memasukkan kedalam rumus.
52
Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a.
Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui.
b.
Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang.
c.
Siswa tidak melalui langkah ketiga, yaitu tidak membagi persegi panjang lagi sesuai hasil dari lebar.
d.
Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus. Tahapan strategi siswa dalam memecahkan masalah pembagian
pecahan melalui konteks luas persegi panjang dapat dirangkum pada tabel berikut: Tabel 4.3 Analisis Strategi Siswa dengan Kode Subjek S3 No. Soal
Langkah Pertama
1. 2. Keterangan : : Melalui − : Tidak Melalui
Langkah-Langkah Startegi Siswa Langkah Langkah Langkah Kedua Ketiga Keempat -
53
4. Hasil dan Analisis Data Subjek S4 a. Masalah Matematika No. 1 P S41 P S42 P S43 P
: “Dengan adek siapa” : “Alif” : “Apakah kamu membaca dengan cermat soal yang diberikan?” : “Iya” : “Apakah ada informasi diketahui dalam soal?” : “Iya” : “Sebutkan informasi tersebut!”
S44 : “Sebuah persegi panjang memiliki luas m2 dan lebar m” P
: “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal” S45 : “Iya” P :“Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” S46 : “Iya” P : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?” S47 : “Iya” P : “Bagaimana penjelasan langkah-langkah cara kamu menyelesaikan soal tadi” S48 : “Saya gambar persegi panjang samping.
3=
panjang,
1=
.
3=
saya taruh dalam, = 2.
,
saya taruh luas persegi
”.
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.7 Jawaban no.1 Subjek S4
54
Pada hasil pekerjaan subjek diatas tampak bahwa subjek kurang berhasil menggunakan konteks luas persegi panjang. Pada S48 subjek menyatakan bahwa menggambar dulu persegi panjang ditaruh dalam dan ditaruh bawah. Setelah menggambar pada langkah kedua yaitu membagi secara horizontal berdasarkan pembilang pada lebar, subjek ada kebingunan dalam pengoperasian, seharusnya subjek membagi luas danlebarnya tetapi disini subjek malah mengalikannya. Selanjutnya subjek langsung memasukkan kedalam rumus. Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a.
Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui.
b.
Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang.
c.
Siswa tidak melalui langkah ketiga, yaitu tidak membagi persegi panjang lagi sesuai hasil dari lebar.
d.
Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus.
b. Masalah Matematika No. 2 P : “Apakah kamu membaca dengan cermat soal yang diberikan?” S42 : “Iya” P : “Apakah ada informasi diketahui dalam soal?”
55
S43 : “Iya” P : “Sebutkan informasi tersebut!” S44 P S45 P S46 P S47 P
: “Sebuah persegi panjang memiliki luas m2 dan lebar m” : “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal” : “Iya” :“Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” : “Iya” : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?” : “Iya” : “Jika iya, bagaimana penjelasan langkah-langkah cara tersebut”
S48 : “Saya gambar persegi panjang
saya taruh dalam,
saya taruh
samping persegi panjang. Saya gambar tiga persegi panjang sama . 3= .
3 = = 2.
2= ,
1 = ”.
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.8 Jawaban no.2 subjek S4
56
Pada hasil pekerjaan subjek diatas tampak bahwa subjek kurang berhasil menggunakan konteks luas persegi panjang. Pada S48 subjek menyatakan bahwa menggambar dulu persegi panjang ditaruh dalam dan ditaruh bawah. Setelah menggambar pada langkah kedua yaitu membagi secara horizontal berdasarkan pembilang pada lebar, subjek agak kebingunan dalam pengoperasian, seharusnya subjek membagi luas danlebarnya tetapi disini subjek malah mengalikannya. Selanjutnya subjek langsung memasukkan kedalam rumus. Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a.
Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui.
b.
Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang.
c.
Siswa tidak melalui langkah ketiga, yaitu tidak membagi persegi panjang lagi sesuai hasil dari lebar.
d.
Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus. Tahapan strategi siswa dalam memecahkan masalah pembagian
pecahan melalui konteks luas persegi panjang dapat dirangkum pada tabel berikut:
57
Tabel 4.4 Analisis Strategi Siswa dengan Kode Subjek S4 No. Soal 1. 2.
5.
Langkah Pertama
Langkah-Langkah Startegi Siswa Langkah Langkah Kedua Ketiga -
Langkah Keempat
Keterangan : : Melalui − : Tidak Melalui Hasil dan Analisis Data Subjek S5 a.
Masalah Matematika No. 1 P : “Dengan adek siapa” S51 : “Herwindiya Putri Andini” P : “Apakah kamu membaca dengan cermat soal yang diberikan?” S52 : “Iya” P : “Apakah ada informasi diketahui dalam soal?” S53 : “Iya” P : “Sebutkan informasi yang diketahui itu!” S54 : “Sebuah persegi panjang memiliki luas m2 dan lebar m”. P : “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal?” S55 : “Iya” P : “Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” S56 : “Dapat” P : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?” S57 : “Menemukan” P : “Bagaimana penjelasan langkah-langkah cara kamu menyelesaikan soal ini! ” S58 : “Pertama saya gambar dulu persegi panjang yang luasnya
dan
lebarnya . Kedua saya menggambar empat persegi panjang, karena
58
pembilang dari lebar adalah empat, jadi
4=
dan
4=
.
Ketiga saya gambar persegi panjang lima, karena lebarnya , lalu 5 = 1 dan =p
1.
=
5=
. Rumus luas persegi panjang = p
. Berarti panjangnya persegi panjang adalah
l. .
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.9 Jawaban no.1 Subjek S5 Pada hasil pekerjaan subjek diatas tampak bahwa subjek berhasil menggunakan konteks luas persegi panjang. Pada S58 subjek menyatakan bahwa telah menggambar dulu persegi panjang pada langkah pertama, luasnya ditaruh dalam dan lebarnya ditaruh bawah. Selanjutnya pada langkah kedua subjek menggambar persegi panjang empat karena pembilang dari lebarnya adalah empat, dan membagi luas dan lebarnya
59
dengan empat. Pada langkah ketiga subjek menggambar persegi panjang lima berdasarkan hasil dari lebar yang sudah dibagi, lalu mengalikan luas dan lebarnya dengan lima. Untuk langkah keempat subjek telah memasukkan kedalam rumus luas persegi panjang. Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a. Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui. b. Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang. c. Siswa melalui langkah ketiga, yaitu membagi persegi panjang lagi sesuai hasil dari lebar. d. Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus. b. Masalah Matematika No. 2 P : “Apakah kamu membaca dengan cermat soal yang diberikan?” S52 : “Iya” P : “Apakah ada informasi diketahui dalam soal?” S53 : “Ada” P : “Sebutkan informasi yang diketahui itu!” S54 : “Sebuah persegi panjang memiliki luas m2 dan lebar m”. P : “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal?” S55 : “Iya” P : “Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?”
60
S56 : “Iya” P : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?” S57 : “Iya” P : “Bagaimana penjelasan langkah-langkah cara kamu menyelesaikan soal ini! ” S58 : ““Pertama saya gambar dulu persegi panjang yang luasnya
dan
lebarnya . Kedua saya menggambar tiga persegi panjang, karena pembilang dari lebar adalah tiga, jadi
3 =
dan
3 =
.
Ketiga saya gambar persegi panjang empat, untuk memenuhi , lalu 4 = 1 dan p
1.
=
4=
. Rumus luas persegi panjang = p
. Berarti panjangnya persegi panjang adalah
l.
=
.
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.10 Jawaban no.2 Subjek S5 Pada hasil pekerjaan subjek diatas tampak bahwa subjek berhasil menggunakan konteks luas persegi panjang. Pada S58 subjek menyatakan
61
bahwa telah menggambar dulu persegi panjang pada langkah pertama, luasnya ditaruh dalam dan lebarnya ditaruh bawah. Selanjutnya pada langkah kedua subjek menggambar persegi panjang empat karena pembilang dari lebarnya adalah empat, dan membagi luas dan lebarnya dengan empat. Pada langkah ketiga subjek menggambar persegi panjang lima berdasarkan hasil dari lebar yang sudah dibagi, lalu mengalikan luas dan lebarnya dengan lima. Untuk langkah keempat subjek telah memasukkan kedalam rumus luas persegi panjang. Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a. Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui. b. Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang. c. Siswa melalui langkah ketiga, yaitu membagi persegi panjang lagi sesuai hasil dari lebar. d. Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus. Tahapan strategi siswa dalam memecahkan masalah pembagian pecahan melalui konteks luas persegi panjang dapat dirangkum pada tabel berikut:
62
Tabel 4.5 Analisis Strategi Siswa dengan Kode Subjek S5
No. Soal
Memahami
Tahapan startegi siswa Menyusun Melaksanakan Rencana Rencana Penyelesaian Penyelesaian
Mengevaluasi Hasil
1. 2. Keterangan : : Melalui - : Tidak Melalui 6. Hasil dan Analisis Data Subjek S6 a. Masalah Matematika No. 1 P : “Dengan adek siapa?” S61 : “Yogi’” P : “Apakah kamu membaca dengan cermat soal yang diberikan?” S62 : “Iya” P : “Apakah ada informasi diketahui dalam soal?” S63 : “Iya” P : “Jika ada, sebutkan informasi yang diketahui!” S64 : “............. diketahui luas
lebar ditanyakan panjang”
P
: “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal” S65 : “Iya” P :“Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” S66 : “Iya” P : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?” S67 : “Iya” P : “Jika iya, bagaimana penjelasan langkah-langkah cara tersebut!” S68 : “Saya menggambar persegi panjang terlebih dahulu
saya taruh di...
di samping m2, lalu bahwa yang bawah saya kasih . Saya gambar
63
persegi panjang
3 = , kemudian
3 =
= 4. Luas persegi
panjang = panjang
lebar. Panjang persegi panjang =
=
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.11 Jawaban no.1 Subjek S6 Pada hasil pekerjaan subjek diatas tampak bahwa subjek kurang berhasil menggunakan konteks luas persegi panjang. Pada S68 subjek menyatakan bahwa menggambar dulu persegi panjang ditaruh dalam dan ditaruh bawah. Setelah menggambar pada langkah kedua yaitu membagi secara horizontal berdasarkan pembilang pada lebar, subjek agak kebingunan dalam pengoperasian, seharusnya subjek membagi luas
64
danlebarnya tetapi disini subjek malah mengalikannya. Selanjutnya subjek langsung memasukkan kedalam rumus. Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a.
Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui.
b.
Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang.
c.
Siswa tidak melalui langkah ketiga, yaitu tidak membagi persegi panjang lagi sesuai hasil dari lebar.
d.
Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus.
b. Masalah Matematika No. 2 P S62 P S63 P
: “Apakah kamu membaca dengan cermat soal yang diberikan?” : “Iya” : “Apakah ada informasi diketahui dalam soal?” : “Iya” : “Sebutkan informasi yang diketahui!”
S64
: “Diketahui luas lebar ditanyakan panjang persegi panjang”
P
: “Apakah kamu memahami maksud dari setiap kata/kalimat yang terdapat dalam soal” S65 : “Iya” P :“Apakah dengan informasi yang diketahui kamu dapat menyelesaikan soal?” S66 : “Iya” P : “Apakah kamu menemukan suatu cara penyelesaian untuk menyelesaikan soal tersebut?”
65
S67 : “Iya” P : “Jika iya, bagaimana penjelasan langkah-langkah cara tersebut!” S68 : “Panjang persegi panjang, saya gambar terlebih dahulu panjang persegi panjang, saya taruh angka yang di ..emm angka taruh di bawah.
3= ,
m2,
saya
3 = = 3.”
Dan tampak pula pada hasil pekerjaan siswa sebagai berikut:
Gambar 4.12 Jawaban no.2 Subjek S6 Pada hasil pekerjaan subjek diatas tampak bahwa subjek kurang berhasil menggunakan konteks luas persegi panjang. Pada S68 subjek menyatakan bahwa menggambar dulu persegi panjang ditaruh dalam dan ditaruh bawah. Setelah menggambar pada langkah kedua yaitu membagi secara horizontal berdasarkan pembilang pada lebar, subjek agak kebingunan dalam pengoperasian, seharusnya subjek membagi luas danlebarnya tetapi disini subjek malah mengalikannya. Selanjutnya subjek langsung memasukkan kedalam rumus.
66
Berdasarkan petikan wawancara di atas, hasil wawancara sesuai dengan hasil tes pemecahan masalah pembagian pecahan melalui konteks luas persegi panjang, sehingga dapat disimpulkan sebagai berikut: a.
Siswa melalui langkah pertama, yaitu menggambar sebuah persegi panjang dengan luas dan lebar yang sudah diketahui.
b.
Siswa melalui langkah kedua, yaitu membagi persegi panjang tersebut secara horizontal, berdasarkan pembilang dari lebar persegi panjang.
c.
Siswa tidak melalui langkah ketiga, yaitu tidak membagi persegi panjang lagi sesuai hasil dari lebar.
d.
Siswa melalui langkah keempat, yaitu memasukkan ke dalam rumus. Tahapan strategi siswa dalam memecahkan masalah pembagian
pecahan melalui konteks luas persegi panjang dapat dirangkum pada tabel berikut: Tabel 4.12 Analisis Strategi Siswa dengan Kode Subjek S6 No. Soal
Langkah Pertama
1. 2. Keterangan : : Melalui - : Tidak Melalui
Langkah-Langkah Startegi Siswa Langkah Langkah Langkah Kedua Ketiga Keempat -