BULETIN APLINDO N0.42/2014, Oktober - Desember 2014
APLINDO
Asosiasi Industri Pengecoran Logam Indonesia Gedung Manggala Wanabakti Blok IV Lantai 3 Ruang 303A Jl. Gatot Subroto, Senayan, Jakarta 10270 Telp. 021.573 3832 ; 571 0486; Fax : 021.572 1328
Email :
[email protected] Web Site : www.aplindo.web.id
BULETIN - APLINDO No.42/2014
DAFTAR ISI
No.
Uraian
Halaman
1.
Pengantar Redaksi
2
2.
PLN Berlakukan Tarif Baru1 Januari 2015
4
3.
Rencana Induk Pengembangan Industri Nasional 2015-2035
5
4.
ASEAN Harmonized Tariff Nomenclature (AHTN) 2017
21
5.
Produksi Rendah, Kebutuhan Tinggi
24
6.
On Indusry In Indonesia
25
7.
Measurement and Observation of Steel Casting Filling
26
8.
Designing Optimal Gating Systems for Iron Castings
31
9.
Data Kendaraan Bermotor di Indonesia 1. Data kendaraan bermotor roda 4 2. Data kendaraan bermotor roda 2 (sepeda motor)
36 37
10.
Informasi Umum dan Pameran 1. Website pemerintah yang dapat diakses 2. Website Asosiasi Industri Pengecoran Logam Indonesia 3. Website Himpunan Ahli Pengecoran Logam Indonesia 4. Pameran dan Seminar
38 38 38 38
1
BULETIN - APLINDO No.42/2014
Pengantar Redaksi Pada edisi 42/2014 ini, membahas Kenaikan TDL yang berlaku per 1 Januari 2015 Tariff
adjustment ini dilakukan berdasarkan tiga indikator yang mempengaruhi biaya pokok penyediaan listrik, yaitu harga minyak Indonesia (ICP, Indonesia Crude Palm), kurs dolar, dan tingkat inflasi. Dampak kenaikkan ini bagi semua kalangan usaha menyebabkan biaya produksi industri membengkak dan akan mengganggu cash flow perusahaan yang berujung pada kenaikan harga barang atau bahkan PHK bagi sebagian karyawan sebagai konsekuensi kenaikan ongkos produksi dan tentu akan menimpa kinerja industri, menurunkan daya saing, disisi lain Indonesia akan menghadapi Masyarakat Ekonomi Asean 2015. Denga terbitnya Undang-Undang No.3 tahun 2014 tetang Perindustrian, Kementerian Perindustrian membuat Rencana Indusk Pembangunan Industrial Nasional (RIPIN) 20152035 sebagai pedoman bagi Pemerintah dan pelaku industri dalam perencanaan dan pembangunan industri sehingga tercapai tujuan penyelenggaraan perindustrisn. Dalam RIPIN telah ditentukan industri prioritas yang akan didorong pengembangannya dimasa yang akan datang dan diharapkan dapat menjadi arah serta acuan bagi seluruh kepentingan dalam pembangunan di Indonesia. Selanjutnya kami mengharapkan agar buletin ini menjadi media antar anggota maupun antar industri pengecoran didalam negeri dan diluar negeri. Harapan kami, seluruh anggota dapat mengisi buletin ini menjadi kenyataan. Redaksi buletin APLINDO menghimbau anggota APLINDO berpartisipasi dalam mengisi tulisan/artikel, data maupun informasi lain yang berhubungan dengan industri pengecoran logam. Naskah tulisan/artikel dapat dikirim ke sekretariat APLINDO, melalui email ataupun fax. Redaksi
2
BULETIN - APLINDO No.42/2014
3
BULETIN - APLINDO No.42/2014 PLN Berlakukan Tarif Baru 1 Januari 2015 PLN akan menyesuaikan tarif listrik (tariff adjustment) 12 kelompok pelanggan tarif nonsubsidi. Kebijakan ini berlaku mulai 1 Januari 2014. Tariff adjustment ini dilakukan berdasarkan tiga indikator yang mempengaruhi biaya pokok penyediaan listrik, yaitu harga minyak Indonesia (ICP, Indonesia Crude Palm), kurs dolar, dan tingkat inflasi. Dengan demikian, harga listrik tiap bulan dapat berubah naik dan turun. Berikut ini daftar 12 golongan pelanggan tarif nonsubsidi. 1. Rumah Tangga R-1/TR daya 1.300 Va. 2. Rumah Tangga R-1/TR daya 2.200 Va. 3. Rumah Tangga R-2/TR daya 3.500 Va. 4. Rumah Tangga R3/TR daya 6.600 Va ke atas. 5. Bisnis B-2/TR daya 6.600 va s/d 200 kVa. 6. Bisnis B-3/TM daya di atas 200 kVa. 7. Industri I-3/TM daya di atas 200 kVa. 8. Industri I-4 /TT di atas daya 30.000 kVa. 9. Kantor pemerintah P-1/TR daya 6.600 Va. 10. Kantor pemerintah P-2/TM di atas 200 kVa. 11. Penerangan jalan umum P-3/TR. 12. Layanan khusus TR/TM/TT. Dari 12 golongan tersebut, empat di antaranya sudah diberlakukan tariff adjustment sejak Mei 2014, yaitu rumah tangga R-3/TR daya 6.600 VA ke atas, bisnis B-2/TR daya 6.600 VA sampai 200 kVA, bisnis B-3/tegangan menengah (TM) daya di atas 200 kVA, dan kantor pemerintah P-1/TR daya 6.600 VA sampai 200 kVA. Kebijakan ini berdasarkan landasan Peraturan Menteri ESDM Nomor 31 Tahun 2014 tentang Tarif Tenaga Listrik yang Disediakan oleh Perusahaan Perseroan (Persero) PT Perusahaan Listrik Negara dilakukan untuk mempertahankan kelangsungan pengusahaan penyediaan tenaga listrik, peningkatan mutu pelayanan kepada konsumen, peningkatan rasio elektrifikasi, mendorong subsidi listrik tepat sasaran dengan potensi penghematan subsidi energi yang akan didapat dari kebijakan tersebut Rp 8,4 triliun dan penerapan penyesuaian tarif tenaga listrik untuk beberapa golongan pelanggan tertentu.
4
BULETIN - APLINDO No.42/2014
Rencana Induk Pengembangan Industri Nasional 2015-2035 Dengan
disyahkan
Undang-Undang
Nomor
3
Tahun
2014
tentang
Perindustrian,
Kementerian Perindustrian (Kemenperin) tengah menyusunan Rencana Induk pembangunan Industri Nasional (RIPIN) 2015-2035 yang akan dikukuhkan dalam bentuk Peraturan Pemerintah (RPP) sebagai arah dan pedoman jangka panjang 2015-2035 bagi pemerintah dan swasta dalam perencanaan dan pengembangan industri nasional yang mencakup visi pembangunan industri nasional menuju negara industri tangguh. Melalui RIPIN ini, Kementerian Perindustrian terus berupaya mendorong pemerataan dan penyebaran industri ke seluruh wilayah Indonesia dengan harapan kontribusi luar Pulau Jawa terhadap nilai tambah sektor industri bisa ditingkatkan dari 27,22 persen pada 2013 menjadi sekira 40 persen pada 2035. Hal itu juga didukung adanya pertumbuhan di sektor tersebut yang lebih tinggi di luar Pulau Jawa, sebesar 6,56 persen dibandingkan di Jawa yang hanya 5,99 persen. Pembangunan industri ke depan ditujukan agar sektor industri dapat tumbuh lebih cepat sehingga dapat berperan lebih besar dalam penciptaan nilai tambah yang berujung pada peran sektor industri pada peningkatan pertumbuhan ekonomi dan penyerapan tenaga kerja. Peningkatan pertumbuhan dan peran sektor industri tersebut akan dapat dicapai apabila berbagai permasalahan yang dihadapi saat ini dapat diatasi, yaitu: 1.
masih lemahnya daya saing industri nasional;
2.
belum kuat dan belum dalamnya struktur industri nasional;
3.
masih terkonsentrasinya kegiatan industri di Pulau Jawa; dan
4.
belum optimalnya regulasi pemerintah dalam mendukung kemajuan sektor industri.
Strategi yang ditempuh untuk mencapai sasaran pembangunan industri nasional antara lain 1.
Mengembangkan industri hulu dan antara berbasis sumber daya alam
2.
Pengendalian Ekspor Bahan Mentah dan Sumber Energi
3.
Meningkatkan penguasaan teknologi dan kualitas SDM industri.
4.
Mengembangkan Wilayah Pengembangan Industri (WPI), Wilayah Pusat Pertumbuhan Industri (WPPI), Kawasan Industri (KI), dan Sentra Industri Kecil dan Menengah.
5
BULETIN - APLINDO No.42/2014 5.
Menyediakan langkah-langkah afirmatif berupa perumusan kebijakan, penguatan kapasitas kelembagaan dan pemberian fasilitas kepada Industri Kecil dan Menengah.
6.
Pembangunan sarana dan prasarana Industri
7.
Pembangunan industri hijau
8.
Pembangunan industri strategis
9.
Peningkatan Penggunaan Produk Dalam Negeri
10. Kerjasama internasional bidang industri Pembangunan industri prioritas akan dilakukan dalam jangka menengah dan jangka Sejalan dengan Rencana Pembangunan Jangka Panjang Nasional (RPJPN), yaitu: 1. Tahap I (2015-2020) Arah rencana pembangunan industri nasional pada tahap ini dimaksudkan untuk "meningkatkan nilai tambah sumber daya alam pada industri hulu berbasis agro, mineral dan migas, yang diikuti dengan pembangunan industri pendukung dan andalan secara selektif melalui penyiapan SDM yang ahli dan kompeten di bidang industri, serta meningkatkan penguasaan teknologi." 2. Tahap II (2020-2025) Arah rencana pembangunan industri nasional pada tahap ini dimaksudkan untuk "mencapai keunggulan kompetitif dan berwawasan lingkungan melalui penguatan struktur industri dan penguasaan teknologi, serta didukung oleh SDM yang berkualitas." 3. Tahap III (2025-2035) Arah rencana pembangunan industri nasional pada tahap ini dimaksudkan untuk "menjadikan Indonesia sebagai Negara Industri Tangguh yang bercirikan struktur industri nasional yang kuat dan dalam, berdaya saing tinggi di tingkat global, serta berbasis inovasi dan teknologi." Jenis industri dalam tahapan pembangunan industri prioritas.
6
BULETIN - APLINDO No.42/2014 Industri Priotas Tahun 2015- 2035
Jenis industri dalam tahapan pembangunan industri prioritas
7
BULETIN - APLINDO No.42/2014
8
BULETIN - APLINDO No.42/2014
9
BULETIN - APLINDO No.42/2014
10
BULETIN - APLINDO No.42/2014
11
BULETIN - APLINDO No.42/2014
12
BULETIN - APLINDO No.42/2014
13
BULETIN - APLINDO No.42/2014
14
BULETIN - APLINDO No.42/2014
15
BULETIN - APLINDO No.42/2014
16
BULETIN - APLINDO No.42/2014
Lingkup Wilayah Pengembangan Industri No.
Wilayah Pengembangan Industri
1 2 3
Papua Papua Barat Sulawesi Bagian Utara dan Maluku
4
Sulawesi Bagian Selatan
5
Kalimantan Bagian Timur
6
Kalimantan Bagian Barat
7
Bali dan Nusa Tenggara
No
Provinsi
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Papua Papua Barat Sulawesi Utara Gorontalo Sulawesi Tengah Sulawesi Tenggara Maluku Maluku Utara Sulawesi Barat Sulawesi Selatan Kalimantan Utara Kalimantan Timur Kalimantan Barat Kalimantan Tengah Kalimantan Selatan Bali Nusa Tenggara Barat
18
Nusa Tenggara Timur
17
BULETIN - APLINDO No.42/2014
No.
Wilayah Pengembangan Industri
No
Provinsi
8
Sumatera Bagian Utara
9
Sumatera Bagian Selatan
10
Jawa
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Aceh Sumatera Utara Sumatera Barat Riau Kep. Riau Jambi Bengkulu Bangka Belitung Sumatera Selatan Lampung Banten Jawa Barat DKI Jakarta DI Jogjakarta Jawa Tengah Jawa Timur
Daerah Yang ditetapkan sebagai Wilayah Pusat Pengembangan Industri No
Lokasi
Provinsi
1
Lhokseumawe
Aceh
2
Banda Aceh, Aceh Besar dan Pidie (KAPET BANDAR ACEH DARUSSALAM)
Aceh
3
Medan-Binjai-Deli Serdang-Serdang Bedagai
Sumatera Utara
4 5
Karo-Simalungun-Batubara Dumai-Siak
Sumatera Utara Riau
6
Batam-Bintan
Kep. Riau
7
Muara Enim
Sumatera Selatan
8
Banyuasin
Sumatera Selatan
9
Lampung
10
Lampung Bagian Selatan (Lampung Barat, Lampung Timur, Lampung Tengah, Tanggamus, Lampung Selatan) Cilegon-Serang-Tangerang
11
Bogor-Bekasi-Purwakarta-Subang-Karawang
Jawa Barat
12
Cirebon-Indramayu-Majalengka
Jawa Barat
13 14
Kendal-Semarang-Demak Tuban-Lamongan-Gresik-Surabaya-Sidoarjo-MojokertoBangkalan
Jawa Tengah Jawa Timur
Banten
18
BULETIN - APLINDO No.42/2014
No
Lokasi
Provinsi
15
Pontianak-Landak-Sanggau-Ketapang
Kalimantan Barat
16
Tanah Bumbu-Kotabaru (KAPET BATULICIN)
Kalimantan Selatan
17
Samarinda, Balikpapan, dan Kutai Kertanegara (KAPET SASAMBA) Bontang-Kutai Timur Tarakan
Kalimantan Timur
Bitung-Manado-Tomohon-Minahasa-Minahasa Utara (KAPET MANADO BITUNG) Morowali-Konawe-Pomala (Morowali + KAPET BANK SEJAHTERA SULTRA)
Sulawesi Utara
22
Palu-Donggala-Parigi Mountong-Sigi (KAPET PALAPAS)
Sulawesi Tengah
23
Makassar-Maros-Gowa
Sulawesi Selatan
24
Takalar-Jeneponto-Bantaeng
Sulawesi Selatan
25
Halmahera Timur-Halmahera Tengah
Maluku Utara
26
Pulau Morotai
Maluku Utara
27
Mimika
Papua
28
Teluk Bintuni
Papua Barat
18 19 20 21
Kalimantan Timur Kalimantan Utara
Sulawesi TengahSulawesi Tenggara
Proyeksi Kebutuhan dan Pasokan Sumber Daya Alam Industri Hulu
KEBUTUHAN DAN PASOKAN SUMBER DAYA ALAM NO
KELOMPOK / JENIS INDUSTRI
(1)
(2)
KAPASITAS PRODUKSI (ton per tahun)
KEBUTUHAN BAHAN BAKU (ton per tahun)
2015-2020
2020-2025
2025-2035
2015-2020
2020-2025
2025-2035
KETERSEDIAAN BAHAN BAKU (Juta TON)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
20 juta
28 juta
40 juta
Cadangan bijih besi / pasir besi: 1.217 * Konsentrat dengan kandungan besi 62% Cadangan bijih nikel: 2.905 * Total kandungan nikel Bahan baku nickel ore (1,8%)
I
INDUSTRI HULU BERBASIS MINERAL TAMBANG
1
Besi Baja Dasar
12 juta
17 juta
25 juta
2
Nikel
200 ribu
250 ribu
300 ribu
11 juta
14 juta
17 juta
3
Tembaga
500 ribu
750 ribu
1 juta
2 juta
3 juta
4 juta
Cadangan bijih Tembaga: 3.044 * Kadar konsentrat 25%
4
Aluminium
300 ribu
600 ribu
1 juta
600 ribu
1,2 juta
2 juta
Cadangan bauksit : 1.129 * Bahan baku alumina kadar minimum 50%
19
BULETIN - APLINDO No.42/2014
KEBUTUHAN DAN PASOKAN SUMBER DAYA ALAM NO
(1)
KELOMPOK / JENIS INDUSTRI
(2)
KAPASITAS PRODUKSI (ton per tahun)
KEBUTUHAN BAHAN BAKU (ton per tahun)
2015-2020
2020-2025
2025-2035
2015-2020
2020-2025
2025-2035
KETERSEDIAAN BAHAN BAKU (Juta TON)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
Minyak bumi : 3,7 Milyar Barrel (503 juta ton) Gas bumi : 152,89 TCF (3.142 juta ton) CBM : 453,3 TCF (9.315 juta ton) Shale gas : 574 TCF (11.796 juta ton) Batubara : 21.131,84 juta ton
II
INDUSTRI HULU BERBASIS MIGAS DAN BATUBARA;
1
Industri Petrokimia Hulu (olefin)
2
Industri Petrokimia Hulu (aromatik)
III
INDUSTRI HULU BERBASIS AGRO
1
Industri Bahan Penyegar (kakao)
2
Industri Oleofood, Oleokimia dan Kemurgi (kelapa sawit)
15,7 juta
20,5 juta
30 juta
Gas : 7,3 juta Batubara :12,4 juta
Gas : 13,5 juta Batubara : 23 juta
Gas : 19,7 juta Batubara : 33,5 juta
3,5 juta
4,2 juta
5,6 juta
Minyak bumi : 71 juta
Minyak bumi : 82,3 juta
Minyak bumi : 105 juta
0,80 juta
1,05 juta
1,37 juta
0,90 juta
1,42 juta
1,85 juta
42,9 juta
59,5 juta
75 juta
25,3 juta
37,4 juta
47,5 juta
Biji kakao: 2015-2019 : 1,36 2020-2024 : 2,04 2025-2035 : 2,86 CPO : 2015-2019 : 40 2020-2024 : 50 2025-2035 : 60
20
BULETIN - APLINDO No.42/2014
ASEAN Harmonized Tariff Nomenclature (AHTN) 2017
The Harmonized Commodity Description and Coding System, biasa disebut Harmonized
System (HS) adalah suatu nomenklatur (kode penomoran) kelompok barang yang disusun oleh World Customs Organization (WCO), antara lain untuk keperluan perdagangan internasional yang merupakan struktur dari klasifikasi Buku Tarif Kepabeanan Indonesia (BTKI). Berdasarkan Protocol Governing The Implementation of AHTN yang disahkan oleh Para Menteri Keuangan ASEAN tanggal 8 Agustus 2003 merupakan sistem klasifikasi barang yang diterapkan secara seragam di seluruh negara anggota ASEAN. Saat ini WCO sedang melakukan pembahasan tahap akhir amandemen HS yaitu HS 2017 yang diharapkan akan difinalisasi pada bulan Juni 2014 dan direncanakan akan diberlakukan mulai 1 Januari 2017 di seluruh dunia. AHTN sebagai struktur klasifikasi yang seragam ditingkat regional ASEAN juga akan terkena dampak amandemen HS 2017 sehingga perlu disesuaikan sekaligus direvisi untuk mengakomodir kepentingan negara anggota. Untuk itu dibentuk AHTN Task Force, yang beranggotakan perwakilan dari Bea Cukai masing-masing negara ASEAN, yang bertanggung jawab untuk melakukan pembahasan amandemen AHTN dan hal-hal lain berkaitan dengan klasifikasi AHTN termasuk dispute settlement. AHTN akan disusun berdasrkan struktur klasifikasi penomoran 8 digit dan dibahas setiap 5 (lima) tahun sekali sesuai siklus amandemen HS berdasarkan masukan dari masing-masing negara ASEAN diilengkapi dengan Catatan Penjelasan Tambahan (Supplementary
Explanatory Notes) dan Tabel Korelasi. Dalam BTKI 2017 sendiri direncanakan untuk menggunakan struktur klasifikasi 8 digit yaitu berdasarkan AHTN, tanpa dilakukan pemecahan lagi pos nasional pada tingkat 10 digit berdasarkan kesepakatan AHTN 2012 untuk menyusun “a single uniform tariff
nomenclature” dalam rangka mendukung pemberlakukan ASEAN Single Window dan ASEAN Economic Community.
21
BULETIN - APLINDO No.42/2014
Sebagai tindaklanjut dari penyusunan AHTN 2017 adalah : 1. Masing-masing sektor pembina menginventarisir produk-produk yang akan diusulkan masuk dalam struktur AHTN 2017, termasuk pos tarif nasional yang akan diusulkan untuk menjadi subpos AHTN. 2. Kriteria pos yang yang dapat dipertimbangkan untuk dijadikan usulan antara lain sebagai berikut : Barang yang nilai perdagangannya tinggi (ekspor atau impor) Barang yang perlu dirinci karena tarif bea masuknya tinggi dan/atau dibedakan dengan pos lainnya (MFN atau FTA) Barang yang sedang dan/atau akan dikenakan larangan terbatas (lartas) Barang yang perlu dirinci pencatatan statistiknya 3. Produk yang akan diusulkan wajib dilengkapi informasi sebagai berikut : Uraian dan spesifikasi yang lengkap untuk dapat memberikan informasi mengenai identifikasi barang (a.l foto barang,, proses pembuatan, komposisi, fungsi dan informasi terkait lainnya). Nilai perdagangan (nilai ekspor dan nilai impor dalam USD) untuk tahun 2012 dan 2013 per pos tarif yang diusulkan. 4. Proposal yang akan diusulkan harus dikirimkan secara terulis kepada Tim Tarif cc. Direktorat Teknis Kepabeanan paling lambat 30 (tiga puluh) hari sebelum masingmasing jadwal pertemuan AHTN Task Force.
22
BULETIN - APLINDO No.42/2014 5. Melakukan kajian dan persiapan lebih awal untuk penyusunan BTKI 2017 yang akan diberlakukan 1 Januari 2017.
CONTOH AMANDEMEN HS 2017 DAN ILUSTRASI PERUBAHAN POS NASIONAL PADA BTKI
Pos 2201.10.00 adalah pos WCO yang tidak dipecah lebih lanjut menjadi pos AHTN namun langsung dipecah menjadi pos nasional yaitu 2201.10.00.10 dan 2201.10.00.20. Untuk BTKI/AHTN 2017, kedua pos tersebut dapat diusulkan untuk menjadi pos AHTN 2201.10.10 untuk mineral waters dan 2201.10.20 untuk aerated waters. Untuk 2201.90.90.10 dan 2201.90.90.90 juga dapat diusulkan untuk menjadi pos AHTN 2017 nantinya
23
BULETIN - APLINDO No.42/2014
24
BULETIN - APLINDO No.42/2014
25
BULETIN - APLINDO No.42/2014
Measurement and Observation of Steel Casting Filling.
Fig.1. Shown is a schematic diagram of the test systems, including the wireless measurement system for the filling process of casting (a) and the sensor circuit (b).
Mold filling is the first step in forming a casting. Bad filling process may cause turbulence, mold wall erosion, cold shut, inclusions, misruns, etc. Physical measurement and numerical simulation are two common methods to designing feeding systems. Numerical simulation has been widely used in research and production. However, the simulated results of castings have been doubted due to lack of validation. Physical methods are rooted in the mind of researches, so they have tried all kinds of methods to investigate the filling process. Among them, water analog was used for the investigation of gating systems, cast specimens and simple castings, but complicated casting is costly to model. A high temperature resistant transparent window can be used in front of the mold cavity to observe the melt metal flow. Zhao used a transparent quartz pyrex window to observe the filling process of aluminum. Khodai used this method for the filling of aluminum, cast iron and steel during lost foam casting. However, this method is most suitable for experimental study and plate shaped cast specimen. In recent years, the development of high intensive X-ray provided a new method to research the filling process of test castings. Kashiwai and Zhao used in-situ X-ray to examine the fluid flow of aluminum castings. Li studied the filling process of turbine blade by cast iron replacement of nickel alloy. X-ray radiography method is suitable for experimental study, but application in production is limited by casting size and thickness, complex equipment and expense. Jong proposed the contact time method, where a set of wires connected to a circuit detected the melt flow, and applied this method to aluminum castings successfully. Li applied the method to study the filing process of an iron cast plate in lost foam casting and calculated the filling speed by the filling time and distance. However, this method hasn’t been used in steel castings yet, and too many wires or cables onsite may cause trouble in production.
Fig. 2. Key parts of the wireless measurement system of mold filling time include the probe and emitter (a), emitter (b) and receiver (c).
26
BULETIN - APLINDO No.42/2014
In this paper, a wireless filling process based on a contact time method is proposed, along with an observation system by a high temperature resistant, high speed camcorder. These two systems were used to investigate the filling process of two real steel castings. Development of the Measurement Method The mold filling time measurement is performed by a wireless contact time measurement system, as shown in Fig. 1(a). The sensor is buried in the sand with the end exposed at the inner surface of the sand mold during molding, and the emitter is placed outside the flask. A radio frequency signal is used for the emitter and receiver whose transmission distance is over 200m, enough for the onsite use. The receiver is connected to a laptop computer. Software acquires the filing time of each measurement point, stores the data, and plots it on the casting CAD model in time for monitoring. The sensor for mold filling time measurement is an open circuit with a pair of electrodes pointing into the inner surface of the mold cavity to sense the filling of the liquid metal.
Fig. 3. Measurement is performed onsite at the turbine blade.
As the melt flows through the pair of electrodes connected by the melt, the circuit is connected and electricity passes through the circuit. A signal emitter and a bulb are connected in the circuit for sending a signal and illustration, as shown in Fig. 1(b). The developed sensor, emitter and receiver are shown in Fig. 2. One sensor is one circuit. One circuit can link an emitter, or a dozen of circuits connect a public emitter. When electricity occurs, the emitter will send out a signal to a receiver which records the time. Meanwhile, to better observe the filling process, another observation system is used with a high temperature resistant camcorder used. The camcorder is buried in the sand mold with its lens exposed in the inner surface of sand mold. Each camcorder is connected to the computer to monitor the filing process. The number of camcorders can be installed at the necessary places. Therefore, the filling process of each area can be recorded.
27
BULETIN - APLINDO No.42/2014
Case studies
Fig. 4. Shown are the filling time measurement results of the turbine blade (unit: ms) The developed system was used in the production of two steel castings, a hydro turbine blade and a hub casting produced at Harbin Electric Machinery Co., Ltd. Case study one: Filling process of a hydro turbine blade The hydro turbine blade is made of ZG0Cr13Ni4Mo, measures 1460 mm x 1210 mm x 850 mm and weighs 0.9 tons. The gating system uses a bottom filling style. Ten measurement points were selected, and one camcorder was placed. The onsite measurement is shown in Fig. 3. The measurement results are shown in Fig.4
Fig. 5. In-mold filling of the turbine blade is observed at the beginning of pouring.
As seen in Fig. 4, the melt flows out from the third ingate first, and then through the first, fourth and second ingates. The filling of the bottom is fast because of its thinner section. The top corners P1 and P2 are filled far later than the middle P3, meaning the top corners are hard to fill. Good air escape measures should be taken, such as ventilation holes. The observation of the camcorder is shown in Fig. 5. The melt comes out from the third ingate earlier than the second and the fourth ingates.
28
BULETIN - APLINDO No.42/2014
Case study two: Filling process of a hub casting
Fig. 6. Shown are the filling time measurement results of the hub casting (in seconds).
The hub casting is made of B50E54D3, measures 1,460 mm x 1,210mm x 850 mm and weighs 11.3 tons. The gating system uses a bottom filling style. Eighteen measurement points were selected at the ingates, the ribs and the top flank, and two camcorders were placed on the top of the two risers. The measurement results are shown in Fig. 6.
Fig. 7. Shown is the section of the casting passing through a pair of ingates .
The four ingates fill the mold cavity almost at the same time, but ingates 1 and 3 along the flow direction fill faster than the two backward ingates 2 and 4. That indicates fluid flow is always toward the forward direction first. For heavy castings, this effect can be ignored, but it should be considered for small castings. By the filling times, the flow speed of the ingates can be calculated (it is 5 m/s), which will result in a flush of the flow and erosion of the sand roof it faces. The section view passing through a pair of ingates is shown in Fig. 7. Ther is still a certain height from the ingates to the roof sand, so the opening of the ingate is correct. The filling of the bottom flank and the ribs is uniform. The increasing speed of the melt at the bottom flank is 15mm/s, the ribs 30mm/s and the top flank 16mm/s. The observed filling processing of the hub casting by the camcorders were merged, as shown in Fig. 8. Splashing during initial pouring resulted in oxides and inclusions. The melt comes out from ingates 1 and 3 larger. At the beginning, melt overflows from the ingates, covering
29
BULETIN - APLINDO No.42/2014
the whole bottom area. Then it flows back to the center. This can be seen from the photos at 1.09s, 2s, 3s, 4s, 5s and 7s. Later, the covered area of the melt on the bottom increases, as shown by the photos at 8s, 12s and 25s. Basically, the filling process is uniform. The core releases smoke as the melt wraps the core, and it becomes heavier as the filling proceeds. Slag also is found floating on the melt front the melt level gets into the riser.
Fig. 8. The filling process of the hub casting is shown through photos taken by the camcorder. Conclusion A wireless measurement system for the filling process of casting based on contact time technique and an observation system for the filling process of casting based on high speed camcorder working under high temperature were developed. By using these two systems, the filling process of a turbine blade and a hub casting were measured and observed. The filling situation of these castings was obtained, and the filling time of a number of typical positions was recorded. The result showed that liquid steel filled ingates with those along the flow direction first. The velocity of the liquid steel in the mold was obtained by the calculation based on filling times. The study also shows these two systems operate conveniently and reliably. They are effective tools for monitoring the filling process of castings and optimizing gating system and have a broad prospect in casting production.
30
BULETIN - APLINDO No.42/2014
Designing Optimal Gating Systems for Iron Castings This entry was posted in Features and tagged Gating & Feeding Simulation on Wednesday January 29th, 2014 by Global Casting Magazine.
A properly designed feeding system for iron castings (both gray and ductile) requires an understanding of how these alloys differ from others, such as steel. If these differences are not considered, feeding systems may be less than adequate and casting quality will suffer. In many cases, feeders designed essentially for steel castings lead to production defects when applied to iron. Such misunderstandings lead to suggested solutions that often worsen the situation.
Figs. 1a-b. The ductile iron control arm originally was designed with two feeders .
Understanding design properties specific to iron, when applied in conjunction with simulation software, can lower scrap rates and result in quality castings. Additionally, running computer simulations prior to initial production can help avoid weeks and months of defective castings in mere minutes. Follow the Rules The biggest difference between iron and other alloys is the expansion of iron during graphite precipitation in solidification. This difference means iron castings can become self-feeding after the onset of expansion in most situations, so no further feeding is required. Appropriately, a feeding system for iron castings should provide metal only for the contraction of the liquid alloy and solidifying iron prior to expansion. Once the expansion begins, a well-designed feeding system should contain the pressure so the casting is selffeeding during the remainder of solidification. This principle is in direct contrast to other alloys, such as steel, where there is no expansion and feed metal must be supplied during most or all of solidification.
31
BULETIN - APLINDO No.42/2014
Fig. 2. Porosity at one of the two feeders was common.
Another major difference between iron and other alloys has to do with the mechanism involved in piping. Iron alloys (particularly ductile iron) do not readily form a solid skin during solidification. For feeders to pipe effectively, atmospheric pressure must be able to collapse the weak plastic skin when the internal pressure drops. After a feeder punctures the skin, the internal pressure then is equalized within a feeding zone (the area within a casting where liquid metal can flow from one point to another in response to expansion pressures). Only one feeder should be used for each feeding zone. If multiple feeders are placed on the same zone, one feeder will begin piping while the others will not. Often, porosity will be seen at contact points of the non-piping feeders. Iron’s requirement for a single feeder within a single zone is the design rule that is violated most often. When porosity is found at a feeder contact point, the tendency of many engineers is to add more feeders; this is exactly the wrong approach to take and will worsen the situation. The ductile iron control arm, shown in Figure 1a, is an example of an iron casting with an incorrectly designed feeding system. The metalcasting facility originally approached the feeding design for this iron casting by placing two symmetrical feeders, shown in Figure 1b. This approach was understandable, because the feeders were attached to the heaviest sections of the casting. During initial production, porosity occurred at one feeder contact on a consistent basis, as shown in Figure 2. The porosity was not always at the same contact, but on a large majority of castings, one contact showed evidence of porosity while the other did not. As a result, the metalcasting facility could not produce a quality casting with this pattern design.
Fig. 4. The casting has two areas of high modulus value, but there’s only one feeding zone.
32
BULETIN - APLINDO No.42/2014
Fig. 3. Engineers first ran a solidification simulation without gating or feeders .
Design With Data To correctly design feeder systems for iron castings, it is necessary to determine the location and size of the casting’s feed zones. Understanding the transfer modulus (MTR), a calculation relating to metal flow within a casting, can help determine if a casting has one or more feeding zones. If metal cannot flow from one location to another, each feeding zone may require its own feeder (but no more than one). The casting modulus (MC) represents the ratio of volume to surface area in various areas of the casting. The modulus is used to estimate the order of solidification by allowing engineers to estimate the progress of solidification in a casting. In iron castings, the modulus is used to estimate when expansion will begin and is expressed as a percentage of complete solidification. Modern software programs can simulate solidification in a few minutes, and the resulting data then can be converted to casting modulus values. A casting with a higher modulus (heavy section castings) will begin to expand earlier and will undergo more expansion than a casting with a low modulus (light section castings). The point when expansion begins is referred to as the shrinkage time point. Knowing the shrinkage time point allows the calculation of an equivalent modulus value that corresponds to the modulus at which contraction of the iron stops and expansion begins. This modulus value is known as the MTR, because it defines the areas of the casting where liquid metal transfer is possible. The calculation of MTR is: MTR = SQR (ST/100) * MC By plotting the MTR in a casting simulation, one can determine whether the entire casting is a single feed zone (the modulus transfer is continuous throughout the casting) or contains multiple zones (modulus transfer is discontinuous). The number of feeding zones then determines the number of required feeders, using one feeder per zone.
33
BULETIN - APLINDO No.42/2014
Figs. 5a-b. There was no porosity at the feeder contact, and no porosity elsewhere .
The value of transfer modulus can be understood as representing the casting modulus value below which feeding from risers is no longer effective and the iron becomes self-feeding due to expansion. The expansion pressure must be controlled, which means, assuming the mold is rigid enough, all contacts with the casting (gates and riser contacts) should be solid enough to ensure the expansion pressure is contained within the casting after the onset of the graphite expansion. This also means the modulus of the feeder contact neck should be equal to transfer modulus to ensure the feeding of the liquid contraction will be able to occur and also that the expansion pressure will be contained within the casting due to freezing of the feeder contact at the correct point in solidification. To resolve this problem in the ductile iron control arm example, the casting was analyzed to determine feeding requirements. First, a solidification simulation of the casting without gating or feeders was performed. The results of this simulation are shown in the plot of solidification time (in minutes) in Figure 3. The data from the simulation was converted to modulus data so the feeding calculations could be performed. It is tempting to conclude the original feeder design was correct, because the two areas of high modulus value in the casting were in close proximity to the feeder contacts in the original design.
Fig. 6. The revised pattern features a single feeder attached to the center of the arm.
However, it is necessary to analyze this casting further to determine the shrinkage time and MTR to understand the location and size of the feeding zone(s). Analysis of the iron
34
BULETIN - APLINDO No.42/2014
characteristics indicates the value of the MTR is 0.254 in. (0.645 cm). Creating a plot of this value within the casting will indicate the location of feed zone(s), shown in Figure 4. The entire casting is actually a single feed zone. The areas of higher modulus are connected by a section in which the modulus is above the transfer modulus value, thus allowing liquid transport for feeding throughout the casting. Only a single feeder should be used to avoid potential pososity at a non-piping feeder. Troubleshoot Defects The computer simulation in this case took 16 minutes to perform, and after calculating the shrinkage time and transfer modulus, the plot was created in 5 minutes. After about 20 minutes of analysis, the correct feeder design was determined. Had this been done before the original pattern equipment was created, several months dealing with defective castings could have been avoided. The associated costs were far greater than the upfront investment for the simulation software and training to perform the analysis. The pattern was revised to reflect a single feeder, shown in Figures 5a-b. The feeder in this case is not connected to an area of high modulus. In iron castings, the location of the feeder is not as critical as with steel castings because of the expansion pressure’s effects throughout the casting after graphite precipitation begins. No porosity was discovered at the casting’s contact area with the single feeder, shown in Figure 6, or elsewhere. A simple, quick analysis of the casting produced the correct feeder design that resulted in a sound casting. Computer simulation offers engineers an effective tool to design a production process, thereby avoiding potential costs involved with defective castings. ■ This article is based on a paper (13-1261) from the AFS Metalcasting Congress Proceedings 2013.
35
BULETIN - APLINDO No.42/2014
Data Kendaraan Bermotor Indonesia 1.
Data Kendaran Roda 4 a. Penjualan Kendaraan roda 4 (unit) tahun 2010-2014 No.
Bulan
1 2 3 4 5 6 7 8 9 10 11 12
Januari Februari Maret April Mei Juni Juli Agustus September Oktober Nopember Desember Total
2010
Penjualan (Unit) 2011 2012 2013
52,831 55,688 65,555 65,232 60,520 70,388 72,100 64,779 49,147 69,160 69,249 70,061 764,710
73,990 76.427 96.718 69,591 86.486 103.278 82,166 87.917 95.996 60,728 87.144 102.257 61,055 95.541 99.697 70,157 101.746 104.268 89,056 102.511 112.178 73,279 76.445 77.964 79,835 102.100 115.974 86,345 106.754 112.039 67,656 103.703 111841 80,325 89.456 97.691 894,183 1.116.230 1.229.901
2014 103.609 111.824 113.067 106.124 96.872 110.614 91.334 96.652 102.572 105.222 91.327 78.802 1.208.019
Sumber : Gaikindo
b. Produksi Kendaraan roda 4 (unit) tahun 2010-2014 No.
Bulan
1 2 3 4 5 6 7 8 9 10 11 12
Januari Februari Maret April Mei Juni Juli Agustus September Oktober Nopember Desember Total
2010 49,818 48,780 57,354 59,493 55,758 65,589 68,306 60,939 44,348 66,262 63,919 61,942 702,508
Produksi (Unit) 2011 2012 2013 2014 70,715 77.036 97.793 104.728 63,928 86.469 100.491 112.501 74,308 85.507 89.073 123.007 54,556 84.426 101.805 121.114 54,637 97.367 99.661 94.353 64,454 94.400 97.939 117.309 83,591 97.330 106.519 93.613 69,107 71.113 77.354 105.259 77,349 94.488 116.974 119.346 81,265 100.298 115.533 116.654 64,687 99.168 110.570 102.423 79,669 77.955 94.499 88.216 838.266 1.065.557 1.208.211 1.298.523
Sumber : Gaikindo
36
BULETIN - APLINDO No.42/2014
2.
Data Kendaraan Roda 2 / Sepeda Motor a.
Penjualan sepeda motor 2010-2014
No.
Bulan
1 2 3 4 5 6 7 8 9 10 11 12
Januari Februari Maret April Mei Juni Juli Agustus September Oktober Nopember Desember Total
Penjualan (Unit) 2010
2011
2012
503,840 540,067 608,142 657,185 641,871 655,363 701,432 734,439 481,619 698,342 656,597 516,751 7,395,648
667,124 613,449 713,672 709,177 709,122 661,304 740,121 681,444 723,906 717,514 643,271 463,431 8,043,535
652.601 670.757 626.689 622.929 619.540 550.468 585.658 433.741 628.739 634.575 627.048 488.841 7.141.586
2013
2014
649.983 580.288 653.357 681.267 657.483 728.820 660.505 729.279 647.215 734.030 661.282 753.789 704.019 539.171 490.824 599.250 678.139 706.938 717.272 675.962 688.527 592.635 552.408 556.586 7.771.014 7.908.014
sumber : AISI Diolah
b.
Produksi sepeda motor 2010-2014 No. Bulan
Produksi (Unit) 2010 2011 2012 2013 2014 1 Januari 515,962 677,356 685.688 662.920 595.636 2 Februari 528,303 621,988 665.570 659.417 659.258 3 Maret 628,967 720,284 606.984 654.760 729.476 4 April 650,001 715,864 619.839 672.370 748.401 5 Mei 636,023 698,427 619.829 644.881 722.192 6 Juni 664,767 645,975 535.621 653.384 761.117 7 Juli 695,974 722,184 577.488 694.492 553.626 8 Agustus 733,021 671,506 428.662 484.428 611.235 9 September 476,354 713,061 620.250 683.066 747.992 10 Oktober 690,194 725,036 627.352 729.876 686.101 11 Nopember 682,363 646,510 625.865 691.115 598.560 12 Desember 513,461 446,102 466.573 549.586 512.510 Total 7,415,390 8,004,293 7.079.721 7.780.295 7.926.104 sumber : AISI Diolah
37
BULETIN - APLINDO No.42/2014
Informasi Umum & Pameran
A.
B.
Web site Pemerintah yang dapat diakses : 1.
www.setneg.go.id (Sekretariat Negara)
2.
www.kemenperin.go.id (Kementerian Perindustrian)
3.
www.kemenkeu.go.id (Kementerian Keuangan)
4.
www.kemendag.go.id (Kementerian Perdagangan)
5.
www.beacukai.go.id (Direktorat Bea & Cukai, Kementerian Keuangan)
6.
www.esdm.go.id (Kementerian ESDM)
7.
www.bkpm.go.id (Badan Koordinasi Penanaman Modal)
8.
www.bps.go.id (Biro Pusat Statistik)
Web site Asosiasi Industri Pengecoran Logam Indonesia (APLINDO) Kini APLINDO telah tersedia Web site sendiri : www.aplindo.web.id, mohon dukungan partisipasi aktif Bapak-bapak sekalian dan diharapkan saran, masukan, permasalahan dan perkembangan yang terjadi di industri pengecoran logam di Indonesia. Saran dan masukan anda dapat berupa artikel ke alamat
[email protected]
C.
Web site Himpunan Ahli Pengecoran Logam Indonesia Kini HAPLI telah tersedia Web-site sendiri : http://hapli.wordpress.com/ , mohon dukungan partisipasi aktif Bapak-bapak sekalian dan diharapkan saran serta masukan anda berupa artikel sesuai page yang tersedia dalam format *.doc ke alamat
[email protected] untuk diupload, ataupun komentar langsung anda pada Blog.
D. Pameran dan Seminar 1.
11 Sep 2014 - 13 Sep 2014 Ankiros/Annofer/Turkcast 2014 Tuyap Centre, Istambul www.ankiros.com/
2.
Korea Metal Week 2014: 16 Sep 2014 - 19 Sep 2014
38
BULETIN - APLINDO No.42/2014
Kintex, South Korea As the specialised leading international trade fair in Korea, Korea Metal Week provides the best marketplace with the latest technology for suppliers, manufacturers and traders in the metal and machinery industries around the world. www.korea-metal.com 3.
54th International Foundry Conference - Slovenia: 17 Sep 2014 - 19 Sep 2014 Portorož, Slovenia Contact: Mirjam Jan-Blažic, Slovenian Foundrymen Society, email:
[email protected] www.drustvo-livarjev.si
4.
Fundiexpo 2014: 24 Sep 2014 - 26 Sep 2014 Cintermex Convention Centre Congress and international exhibition. http://www.fundiexpo2014.com/en/
5.
International Foundry Forum: 26 Sep 2014 - 27 Sep 2014 Venice, Italy www.international-foundry-forum.org
6.
Midest 2014: 4 Nov 2014 - 7 Nov 2014 Paris Nord Villepinte - France MIDEST is a key platform for international suppliers of industrial subcontracting, offering manufacturers, component suppliers and assemblers the chance for face to face meetings with suppliers of solutions in the fields of metals, plastics, electronics or industri services. http://www.midest.com/site/GB,C6374,I6374.htm
7.
Indometal 2014: 11 – 13 Des 2014 A robust intergrated platform for the metal and steel industries JIEXPO, PRJ Kemayoran Jakarta For enquiries, please contact : PT. Wahana Kemala Niaga, telp. +6221.53660804 Fax. +6221.5325587/90 email :
[email protected] http://www.indometal.net
8.
27 Feb 2015 - 1 Mar 2015, FEX 2015 Greater Noida, Gautam Buddh Nager, UP, India Alongside 63rd Indian Foundry Congress, IFEX 2015 – 11th edition of International Exhibition on Foundry Technology, Equipment Supplies. www.ifexindia.com
9.
16-20 June 2015 GIFA, METEC, THERMPROCESS and NEWCAST Düsseldorf, Germany Websites: www.gifa.de, www.metec.de, www.thermprocess.de and www.newcast.de.
39