Prosiding SENTIA 2016 – Politeknik Negeri Malang
Volume 8 – ISSN: 2085-2347
APLIKASI SISTEM PAKAR DIAGNOSA PENYAKIT KEPALA PRIMER DENGAN METODE CERTAINTY FACTOR Florena Galatia Mahardika1, Imam Fahrur Rozi2, Rudy Ariyanto3 Program Studi Teknik Informatika, Jurusan Teknologi Informasi, Politeknik Negeri Malang 1
[email protected],2
[email protected], 3
[email protected] Abstrak Sakit kepala merupakan suatu kondisi yang terdapat rasa sakit di dalam kepala atau sakit di belakang leher atau punggung bagian atas. Pada penelitian ini akan meneliti tentang penyakit kepala primer, dikarenakan jenis sakit kepala ini merupakan jenis penyakit yang paling umum dan sampai dengan 90% orang dewasa mengalami atau akan mengalami jenis sakit kepala ini (dr. Obed Paundralingga,Msc.2015). Penyakit kepala primer ini diklasifikasikan menjadi 4 bagian besar diantaranya Migraine, Tension Type Headache (TTH), Trigeminal autonomic cephalalgias (TACs), dan Gangguan sakit kepala primer lainnya. Penyakit migraine ini terbagi atas banyak sub penyakit, beberapa diantaranya ialah Migraine With Aura, Migraine Without Aura, Chronic Migraine, etc dan penyakit Tension Type Headache (TTH) terbagi atas 3 sub yakni Infrequent episodic tension-type headache,Frequent episodic tension-type headache, Chronic tension-type headache (International Headache Society.2013:636). Pada sistem pakar diagnosa penyakit kepala primer ini menggunakan metode certainty factor untuk perhitungan tingkat kepercayaannya. Certainty factor memiliki nilai kepercayaan user dan nilai kepercyaan dari pakar, dan nilai kepercayaan ini digunakan untuk mendapatkan nilai kepercayaan (CF). Dan setelah mendapatkan nilai kepercayaan (CF), metode ini mengkombinasikan nilai CF berdasarkan penyakitnya, dan hasil diagnosa akan tampil berdasarkan nilai kombinasi terbesar dari masing-masing penyakit. Sistem pakar ini diimplementasikan dalam bentuk website yang bertujuan untuk memudahkan para pengguna mencari informasi atau mendiagnosa penyakit kepala primer. Proses pengujian sistem pakar diagnosa penyakit kepala primer ini adalah dengan membandingkan perhitungan manual, perhitungan sistem dan dari seorang pakar yang nantinya akan menghasilkan keakuratan sistem. Pada penelitian ini menghasilkan keakuratan diagnosa penyakit sebesar 100% dari 10 sampel data . Kata kunci : Sakit Kepala, Kepala Primer, Migraine, Tension-Type Headache (TTH), Certaity Factor , Sistem Pakar
dewasa. Namun, pasien ini tidak mengetahui jenis sakit kepala migraine dan Tension Type Headache yang seperti apa. Sehingga diperlukan suatu sistem yang mampu membantu dalam penentuan jenis Migraine dan Tension Type Headache yang pasien derita. Maka dari itu dalam penelitian ini akan meneliti 6 jenis penyakit kepala primer, yakni 3 dari penyakit migraine dan 3 dari penyakit tension type headache. Untuk 3 penyakit migraine, diantaranya adalah sebagai berikut Migraine With Aura, Migraine Without Aura, Chronic Migraine. sedangkan untuk tension type headache, yaitu Infrequent episodic tension-type headache,Frequent episodic tension-type headache, Chronic tensiontype headache, karena mengingat adanya kemampuan suatu sistem dalam mendiagnosa suatu gejala memang tidak sebaik seorang dokter ahli, masih banyak hal yang tidak pasti atau tidak konsisten yang dapat menyebabkan kemungkinan kesalahan diagnosa,maka perhitungan ketidakpastian sangat diperlukan dalam sistem pakar, agar hasil diagnosa sistem dapat meyakinkan seperti layaknya diagnosa seorang ahli pakar. Perhitungan ketidakpastian sistem dapat dilakukan dengan beberapa metode, salah satu
1.
Pendahuluan Sakit kepala yang secara medis dikenal sebagai cephalalgia atau dilafalkan cephalgia merupakan suatu kondisi yang terdapat rasa sakit di dalam kepala atau sakit di belakang leher atau punggung bagian atas, disebut juga sebagai sakit kepala. Penyakit kepala ini terdiri dari penyakit kepala primer, penyakit kepala skunder dan nyeri saraf kranial (cranial neuralgia), nyeri wajah, dan sakit kepala lainnya. Penelitian ini akan meneliti tentang penyakit kepala primer, dikarenakan jenis sakit kepala ini merupakan jenis penyakit yang paling umum dan sampai dengan 90% orang dewasa mengalami atau akan mengalami jenis sakit kepala ini (dr. Obed Paundralingga,Msc.2015). Penyakit kepala primer ini dapat diklasifikasikan menjadi 4 bagian besar diantaranya Migraine, Tension Type Headache (TTH), Trigeminal autonomic cephalalgias (TACs), dan Gangguan sakit kepala primer lainnya (International Headache Society.2013:636). Dalam survey yang telah dilakukan, banyak orang telah mengalami sakit kepala terutama migraine dan Tension Type Headache. Penyakit kepala migraine ini sering dialami oleh remaja dan wanita sedangkan penyakit tension type headache sering dialami oleh orang
A-19
Prosiding SENTIA 2016 – Politeknik Negeri Malang metode yang dapat digunakan adalah metode Certainty factor. Metode Certaity Factor merupakan metode yang mendefenisikan ukuran kepastian terhadap suatu fakta atau aturan untuk menggambarkan tingkat keyakinan pakar terhadap masalah yang sedang dihadapi, maka dari itu dapat disimpulkan bahwa dengan menggunakan metode Certainty factor dapat menggambarkan suatu tingkat keyakinan pakar. Metode Certainty Factor ini juga telah diterapkan pada penelitian mengenai penyakit anak dan penyakit pada tanaman semangka dengan mendapatkan hasil yang akurat. Maka dari itu, sistem ini akan dibangun dengan menggunakan metode certainty factor.
1 MD( H , E ) min[ P( P | E ), P( H )] P( H ) min[1,0] P( H )
(3)
Dimana : CF(Rule) = faktor kepastian MB(H,E)=measure of belief (ukuran kepercayaan) terhadap hipotesis H, jika diberikan evidence E (antara 0 dan 1) MD(H,E)=measure of disbelief (ukuran ketidakpercayaan) terhadap evidence H, jika diberikan evidence E (antara 0 dan 1) P(H) = probabilitas kebenaran hipotesis H P(H|E) = probabilitas bahwa H benar karena fakta E MB(H,E) = 1, jika 1 , jika tidak 1 maka MB(H,E) = max[ P( H | E ), P( H )] P( H )
2. Landasan Teori 2.1 Hasil Penelitian Terkait Pada penelitian yang dilakukan oleh International Headache Society penyakit kepala primer ini terdiri dari 4 bagian besar penyakit yakni penyakit Migraine, Tension Type Headache (TTH), Trigeminal autonomic cephalalgias (TACs), dan Gangguan sakit kepala primer lainnya. Dan dalam 4 bagian besar ini masih terdapat sub-sub penyakit. Menurut dr.Obed Paundralingga, MSc penyakit kepala primer adalah penyakit kepala yang umum dan 90% orang telah mengalami atau akan mengalami penyakit kepala tersebut. Penyakit kepala migraine sering dialami oleh remaja dan wanita, sedangkan penyakit kepala tension type headache sering dialami oleh orang dewasa. Pada penelitian yang berbeda, Husniawati dan Randy telah meneliti penyakit anak-anak dengan menggunakan metode Certainty factor, adapun hasil yang didapatkan yaitu metode ini telah menghasilkan nilai yang akurat dalam mendiagnosa penyakit anak-anak. Selain itu, pada penelitian yang dilakukan oleh Dodi Harto dalam mendeteksi penyakit pada buah semangka juga mendapatkan nilai yang akurat.
max[1,0] P( H )
MD(H,E) = 1 jika 1, jika tidak 1 maka MD(H,E) = min[ P( P | E ), P( H )] P( H ) min[1,0] P( H )
Setelah menemukan nilai CF(H,E) yang digunakan sebagai nilai kepastian dari rule, maka langkah berikutnya menghitung nilai CF(H,e) dimana nilai ini digunakan sebagai nilai kepercayaan terhadap suatu hipotesa (H) berdasarkan suatu evidence (e). (4)
CF ( H , e) CF ( E, e) *CF ( H , E )
Formula Certainty factor untuk beberapa kaidah yang mengarah pada hiptesa yang sama menurut Kusrini dalam Latumakulita (2012), dapat dituliskan sebagai berikut :
CF ( R1) CF ( R2) * [1 CF ( R1)]
CF (H ) CF ( R1) CF ( R2) * [1 CF ( R1)] (5)
2.2 Dasar Teori 2.2.1 Certainty factor Teori Certainty factor (CF) diusulkan oleh Shortliffe dan Buchanan pada tahun 1975 untuk mengakomadasi ketidakpastian pemikiran (inexact reasoning) seorang pakar. Seorang pakar, (misalnya dokter) sering kali tidak pasti dalam menganalisa suatu informasi yang ada dengan cara mengungkapkan “mungkin”, “kemungkinan besar”, “hampir pasti”. Dalam mengekspresikan derajat kepastian seorang pakar terhadap suatu data dengan menggunakan Certainty factor. Berikut adalah konsep derajat kepastian yang diformulasikan dalam rumusan sebagai berikut : (1) CF ( H , E ) MB( H , E ) MD( H , E )
1 MB( H , E ) max[ P( H(2) | E ), P( H )] P( H ) max[1,0] P( H )
Volume 8 – ISSN: 2085-2347
CF ( R1) CF ( R2) 1 min[| CF ( R1) |, | CF ( R2) |]
Pada implementasi sistem pakar diagnosa penyakit kepala primer menggunakan rumus: (6) CF ( R1, R2) CF ( R1) CF ( R2) * [1 CF ( R1)] Karena nilai CF yang diberikan bernilai positif dan nilainya lebih dari 0. 3.
Metodologi Penelitian Metodologi penelitian yang digunakan dalam sistem ini adalah dengan menggunakan metode waterfall. Dimana metode ini dimulai dari tahapan analisa baik analisa kebutuhan data, pengguna, dan fungsional setelah itu lanjut pada tahapan desain, kemudian tahapan implementasi, tahapan pengujian dan tahapan pemeliharan. Tahapan analisa kebutuhan data terbagi atas 2 yakni data primer dan data sekunder. Dimana data primer merupakan data yang didapat dari dr.Obed Paundralingga,MSc selaku pakar penyakit kepala
A-20
Prosiding SENTIA 2016 – Politeknik Negeri Malang yang berupa data valid mengenai gejala dan penyakit kepala primer. Sedangkan data sekunder didapat dari studi literature baik jurnal, buku mengenai sistem pakar, certainty factor dan migraine serta tension type headache.
Volume 8 – ISSN: 2085-2347 detail penyakit atau data basis aturan , data diagnosa,dan data pasien. Selain mengelola data dokter juga memiliki hak akses untuk menggunakan sistem diagnosa penyakit kepala primer. 2. Pasien adalah user yang mempunyai hak untuk melakukan atau menggunakan sistem diagnosa penyakit kepala primer. Tiap entity memberikan masukan berupa data yang diperlukan dalam sistem. Dokter memasukan data penyakit, gejala, aturan (detail data penyakit) , pasien dan diagnosa. Entity user atau pasien memasukan data registrasi diri dan data diagnosa. Selanjutnya sistem pakar diagnosa penyakit kepala primer ini akan memproses serta memberikan keluaran berupa hasil diagnosa dengan menggunakan metode certainty factor. Pada gambar 4.3 merupakan diagram level 1 dari sistem pakar diagnosa penyakit kepala primer, dimana sistem ini memiliki 4 proses yakni proses login, pengelolaan data, registrasi, dan diagnosa penyakit.
4. Analisis dan Perancangan 4.1 Analisis Pada sistem diagnosa penyakit terdapat proses pertama yang dilakukan oleh user baik itu dokter maupun pasien yang ingin melakukan diagnosa yaitu melakukan regristrasi atau mendaftarkan diri kemudian user menjawab pertanyaan yang berhubungan dengan gejala penyakit kepala primer yang telah pernah ia rasakan atau sedang ia rasakan. Setelah user menjawab pertanyaan tersebut maka jawaban dari user akan dicocokan dengan basis aturan kemudian akan dilanjutkan dengan menghitung suatu kepastian menggunakan metode certainty factor dan akan mengeluarkan hasil penyakit yang diderita oleh pasien dengan nilai keyakinannya. Secara umum sistem yang akan dibangun akan ditampilkan pada gambar 4.1 dibawah ini :
Data Login Data_login
1. Login
Informasi Data Login
Data Login
Dokter
Data Gejala Data_gejala
Informasi Data Aturan ( Detail Data Penyakit ) Informasi Data Gejala Informasi Data Penyakit Informasi Data Gejala Data Penyakit
Data_penyakit
Data Gejala
Informasi Data Penyakit
2. Pengolahan Data
Data Penyakit Data Aturan ( Detail Data Penyakit )
Data Aturan ( Detail Data Penyakit ) Detail_datapenyakit
Informasi Data Aturan ( Detail Data Penyakit )
Data_pasien
Informasi Data Pasien
Data Pasien Data Pasien 3. Regristrasi
Data Pasien
User / Pasien
Gambar 4.1 WBS Pengguna dalam sistem ini adalah pasien yang telah atau sedang mengalami penyakit kepala primer. Sistem ini juga dapat diakses oleh dokter.
Data_diagnosa
Data Diagnosa Informasi Data Diagnosa Informasi Data Diagnosa Data Diagnosa
4. Diagnosa Penyakit
Hasil Diagnosa Data Diagnosa Hasil Diagnosa Data Diagnosa
Gambar 4.3 Diagram Level Satu Usecase Diagram Berikut ini adalah usecase diagram dari sistem pakar diagnosa penyakit kepala primer. b.
4.2 Perancangan a. DFD Pada gambar 4.2 merupakan diagram context sistem pakar diagnosa penyakit kepala primer.
System Login
Registrasi Data Diri Pasien
Data Gejala Data Penyakit Data Aturan ( Detail Data Penyakit ) Hasil Diagnosa
Hasil Diagnosa
Diagnosa Penyakit
Hasil Diagnosa Dokter
Registrasi User / Pasien
Registrasi
Sistem Pakar Diagnosa Penyakit Kepala Primer
Kelola Data Penyakit User / Pasien
Dokter
Kelola Data Gejala
Kelola Data Aturan
Diagnosa Data Aturan ( Detail Data Penyakit ) Data Penyakit Data Gejala
Cetak Hasil Diagnosa
Diagnosa
Kelola Data Diagnosa
Gambar 4.2 Diagram Context Sistem ini melibatkan dokter dan pasien, dimana : 1. Dokter adalah user yang mempunyai hak akses dalam mengelola data penyakit, data gejala, data
Gambar 4.4 Usecase Diagram
A-21
Prosiding SENTIA 2016 – Politeknik Negeri Malang ERD (Entity Relational Diagram) Gambar 4.4 merupakan hubungan antar tabel yang dimiliki oleh sistem pakar diagnosa penyakit kepala primer Berikut ini merupakan hubungan antar tabel dalam sistem pakar diagnosa penyakit kepala primer.
Volume 8 – ISSN: 2085-2347
c.
tanggal_periksa kode_pasien
1.
Pasien memilih gejala yang dialami CF(E,e) : • Setidaknya pernah mengalami 5 kali serangan =iya (1*1=1) • Nyeri kepala selama 4-72 jam (tanpa atau dengan obat) = iya (1*1) =1 • Nyeri kepala hanya satu sisi = iya (1*0.8=0.8) • Nyeri kepala berdenyut = iya (1*0.8=0.8)
2.
Cek basis aturan yang sesuai dengan gejalanya
3.
Hitung Nilai Kepercayaannya CF(H,E) =MB(H,E) – MD(H,E) : • CFPakar (Setidaknya pernah mengalami 5 kali serangan) =1 – 0 = 1 • CFPakar (Nyeri kepala selama 4-72 jam (tanpa atau dengan obat)) =1 – 0 = 1 •CFPakar (Nyeri kepala hanya satu sisi) =0.8 – 0.2 = 0.6 •CFPakar (Nyeri kepala berdenyut)P01=0.8 – 0.2 = 0.6
nama_pasien
nama_pasien kode_diagnosa
jenis_kelamin
jenis_kelamin usia data_pasien
memiliki
data_diagnosa
1
m
usia
m
1
hasil_diagnosa
nilai
memiliki
1 memiliki
data_penyakit
1
1
memiliki
data_gejala
1
nama_gejala
kode_penyakit nama_penyakit
kode_gejala memiliki
kode_detail M
nilai_mb
detail_datapenyakit
M memiliki
nilai_cf
m
m
temp_hitung
nilai_user
kode_temp
Gambar 4.4 ERD 4. Setelah itu hitung CFPakar dengan CFUser menggunakan persamaan CF(H,e) = CF(E,e) * CF(H,E) • CF 1.1 = 1* 1 = 1 •CF 1.2 = 1 * 1 = 1 •CF 1.3 = 0.8 * 0.6 = 0.4 • CF 1.4 = 0.8 * 0.6 = 0.4 5. Langkah terakhir adalah mengkombinasikan nilai CF masing-masing rule: CFCombine(CF1,CF2) = CF1 + CF2 * (1-CF1) • CFCombine(CF1.1,CF1.2) = CF1.1 + CF1.2 * (1-CF1.1) = 1 + 1 * (1-1) = 1 • CFCombine(CFold,CF1.3) = CFold + CF1.3 * (1- CFold)= 1 + 0.4 * (1-1) = 1 • CFCombine(CFold,CF1.4) = CFold + CF1.4 * (1- CFold) = 1 + 0.4 * (1-1) = 1 6. Dan pada sistem akan menemukan hasil penyakit yang dialami oleh pasien.
d.
Perancangan Perhitungan Metode Certainty factor Pada gambar 4.5 ini merupakan suatu diagram alir untuk menghitung metode certainty factor. Start
Input Gejala
CF comb = CF1 + CF2(1-CF1)
Y
CF1>0 && CF2 >0
T
Nilai Probabilitas Penyakit (CF(H,E))
CF comb = CF1 + CF2 / 1 min(|CF1|,|CF2|)
Y
CF1 >0 or CF2 >0
T
Pemberian Nilai Keyakinan masing-masing gjala yang dialami pengguna CF(E,e) CF comb = CF1 + CF2(1-CF1)
Hitung CF Gejala 1 CF(H,e)=CF(E,e)CF(H,E)
Nilai CF Comb
Hitung CF Gejala 3 CF3(H,e)=CF3(E,e)CF3(H,E)
Hitung CF Gejala 2 CF2(H,e)=CF2(E,e)CF2(H,E)
A
Gambar 4.5 Alur Perhitungan Metode Certainty factor
Presentase keyakinan = CFCombine(CFold,CF1.4) * 100 % = 1 * 100% =100% Dengan demikian dapat disimpulkan bahwa perhitungan certainty factor yang dilakukan pada jenis penyakit Migraine Without Aura memiliki tingkat keyakinan 100%.
A
CF comb1 = CFcomb + CF3(1CFcomb)
CFcomb>0 && CF3 >0
Y
T
Nilai CF Penyakit
CF comb = CF1 + CF2 / 1 -min(|CF1|,|CF2|)
Y
5. Implementasi 5.1 Implementasi Database Implementasi dari perancangan basis data sesuai dengan perancangan yang dilakukan pada bab sebelumnya pada bagian ERD. Database yang dibuat adalah app_penyakitkepala dan memiliki 7 tabel, yaitu: tabel data penyakit, tabel data gejala, tabel detail data penyakit , tabel diagnosa pasien, tabel login, tabel temp_hitung.
CFcomb >0 or CF3 >0
T
End
CF comb1 = CFcomb + CF3(1CFcomb)
Gambar 4.6 Alur Perhitungan Metode Certainty factor Berikut adalah penjabaran dari diagram alir proses perhitungan metode certainty factor atau langkah dalam perhitungan metode certainty factor :
A-22
Prosiding SENTIA 2016 – Politeknik Negeri Malang
Volume 8 – ISSN: 2085-2347
Berikut adalah impelementasi database yang telah dirancang melalui ERD untuk sistem pakar diagnosa penyakit kepala primer.
Gambar 5.5 Tampilan Halaman Hasil Diagnosa Gambar 5.1 Database app_penyakitkepala
6.
Pengujian
Pada bab ini dilakukan pengujian setelah dilakukannya implementasi database, sistem , metode serta konten. Pengujian dilakukan supaya dapat mengetahui apakah aplikasi ini berjalan sesuai dengan ketentuan dan kenginginan atau tidak. Pengujian pada sistem ini meliputi dua jenis pengujian yaitu pengujian validasi dan pengujian akurasi. Pengujian validasi dilakukan untuk memastikan bahwa sistem telah memenuhi seluruh kebutuhan yang telah ditentukan. Pengujian validasi dianggap berhasil jika sistem berfungsi sebagaimana yang diharapkan dalam analisis kebutuhan. Dan pengujian akurasi dilakukan untuk mengetahui tingkat keakuratan data yang dibandingkan dengan proses manual dengan sistem yang dibuat.
5.2 Implementasi Sistem Pada sub bab ini merupakan hasil implementasi dari rancangan interface dari sistem yang telah dirancang pada bab sebelumnya. Rancangan yang dibuat tersebut kemudian diimplementasikan untuk membangun aplikasi menggunakan PHP sebagai bahasa pemrograman berbasis website. Tampilan pada sistem terdiri dari halaman beranda pasien, halaman registrasi pasien, halaman diagnosa penyakit, halaman login, halaman beranda dokter, halaman data penyakit, halaman data gejala, halaman data detail penyakit, halaman data pasien, halaman data diagnosa, halaman tentang kami.
7.
Kesimpulan dan Saran
7.1 Kesimpulan Berdasarkan perancangan, implementasi dan uji coba sistem pakar diagnosa penyakit kepala primer, maka didapatkan kesimpulan sebagai berikut: 1. Analisa basis pengetahuan untuk diagnosa jenis penyakit kepala migraine dan tension type headache (TTH) dilakukan dengan cara mewawancari pakar penyakit kepala primer. 2. Membangun sistem pakar diagnosa jenis penyakit kepala primer (migraine dan tension type headache) pada manusia berdasarkan analisa basis pengetahuan dilakukan dengan cara membuat rule dimana rule ini akan di jalankan dengan menggunakan forward chaining dan nantinya kesimpulan dari faktabarunya dihitung keyakinannya dengan certainty factor.
Gambar 5.3 Tampilan Halaman Registrasi Pasien
3. Gambar 5.4 Tampilan Halaman Diagnosa Penyakit
A-23
Berdasarkan tabel pengujian dengan pakar dapat disimpulkan bahwa sistem pakar diagnosa penyakit kepala primer menggunakan metode
Prosiding SENTIA 2016 – Politeknik Negeri Malang certainty factor untuk nilai kepercayaannya dapat mengidentifikasi penyakit dengan baik. Hal ini dibuktikan dengan hasil pengujian sistem sebesar 100 % dari 10 sampel data. 4.
Volume 8 – ISSN: 2085-2347 Asad, Hafid.(2014).Rancang Bangun Sistem Pakar Sakit Kepala Primer Pada Manusia Menggunakan Metode Dempster Shafer. Aziz,Anugerah Jaya.(2014).Sistem Pakar Diagnosa Penyakit Paru-Paru Dengan Metode Forward Chainning. Program Studi Teknik Informatika:Laporan Tidak Diterbitkan. Fahrurrozi, Imam dan SN,Azhari. Proses Pemodelan Software dengan Metode Waterfall dan Extreme Progamming : Studi Perbandingan Hustinawati dan Aprianggi, Randy.(2014).The Development Of Web Based Expert System For Diagnosing Children Diseases Using PHP and MySQL. International Headache Society.(2013).The International Classification of Headache Disorders,3rdedition (beta version). Sari, Nur Anjas.(2013).Sistem Pakar Mediagnosa Penyakit Demam Berdarah Menggunakan Metode Certainty factor . Sutojo,Y.dkk.(2011). Kecerdasan Buatan.Yogyakarta:Andi. Syatibi, Ahmad.,2012.Sistem Pakar Diagnosa Awal Penyakit Kulit Sapi Berbasis Web Dengan Menggunakan Metode Certainty factor.
Sistem pakar diagnosa penyakit kepala primer ini dapat memberikan kesimpulan identifikasi sesuai dengan pemikiran seorang pakar.
7.2 Saran Berdasarkan peneletian ini, adapun beberapa hal yang disarankan yaitu : 1. Diharapkan sistem ini dapat dikembangan dalam sistem berbasis Android supaya dapat memudahkan para penggunanya menggunakan sistemini. Daftar Pustaka Ariyanto,Rudy.(2013).Sistem Pendukung Keputusan Kelompok Untuk Seleksi Proposal Penelitian Hibah Bersaing Menggunakan Metode FAHP dan FMCDM. Program Studi S2 Ilmu Komputer Universitas Gajah Mada:Laporan Tidak Diterbitkan.
A-24