Analysis of Interval Type-2 Fuzzy PI Controller for Load Frequency Control on Multi Area Power System Using Genetic Algorithm MUH BUDI R WIDODO NRP: 2206100121 Jurusan Teknik Elektro ITS Institut Teknologi Sepuluh November Surabaya
[email protected]
Abstrak, Paper ini merepresentasikan aplikasi Interval Type-2 Fuzzy PI (IT2FPI) Controller yang dioptimalkan dengan Genetic Algorithm (GA) pada sistem tenaga listrik dua area. Pemasangan kontroller ini bertujuan untuk memperbaiki performansi respon kestabilan frekuensi sistem tenaga listrik dua area dengan melakukan simulasi menggunakan MATLAB 7.3. Simulasi dilakukan dengan membandingkan respon kestabilan frekuensi sistem tenaga listrik dua area yang di kontrol menggunakan Integral controller, Proportional Integral (PI) controller, Interval Type-1 Fuzzy PI (IT1FPI) controller, Interval Type-2 Fuzzy PI (IT2FPI) Controller, dan IT2FPI controller yang dioptimalkan menggunakan GA. Dari hasil simulasi yang dilakukan di peroleh hasil bahwa dengan mengunakan IT2FPI controller yang dioptimalkan dengan GA overshoot (ayunan pertama) dan settling time dari respon frekuensi sistem mampu diredam. Overshot frekuensi area 1, area 2 , Ptie , Pmek area 1, dan Pmek area 2 masing-masing adalah -0.003572, -0.001532 , -0.00277 dan -0.00586, dan 0.5918 p.u, sedangkan untuk settling time masing-masing adalah adalah 11.76, 21, 22.53, 14.15 dan 15.8 detik Keyword: Interval Type-2 Fuzzy PI Controller, Genertic Algortihm (GA), Load Frequency Control, sistem tenaga listrik dua area
I.
PENDAHULUAN
Frekuensi merupakan salah satu parameter yang menjadi tolok ukur performansi sistem tenaga listrik [1,2,3]. Pengaturan frekuensi sistem tenaga listrik yang baik dapat menjamin putaran konstan untuk beban mesin sinkron dan mesin induksi[1,3]. Putaran konstan pada motor sangat penting untuk memperoleh kinerja sistem yang diinginkan [1,4]. Pada sistem interkoneksi sekala besar banyak sistem pembangkit besar dan pembangkit kecil terhubung menjadi satu secara sinkron, sehingga diperlukan pengaturan kebutuhan daya yang tepat pada tiap-tiap pembangkit [2,3,4]. Selain hal itu dalam sistem interkoneksi pembangkit praktis mensuplai beban dengan frekuensi yang praktis konstran [1,4,5]. Masalah yang timbul adalah beban yang berfluktuasi setiap saat mengakibatkan frekuensi sistem juga mengalami fluktuasi, sehingga generator harus merespon secara cepat perubahan frekuensi yang terjadi [1,3,5]. Jika perubahan frekuensi terus dibiarkan maka generator akan lepas dari sinkron, sehingga akan mengganggu kestabilan sitem tenaga listrik, sehingga diperlukan pengaturan frekuensi dan beban sistem tenaga listrik. Pengaturan beban dan frekeunsi dikenal sebagai Load Frequency Control (LFC) [3,5,6]. Tujuan utama dari LFC pada sistem tenaga listrik adalah: menjaga perubahan frequency sistem pada batas yang diijinkan dan meminimalkan transfer daya aliran daya pada tie-line [3,6,7]. Untuk melakukan pengaturan beban dan frekuensi, dua variabel frekuensi dan daya pada tie- line ditukar dan ditimbang bersama oleh kombinasi
linier untuk membentuk variabel tunggal yang disebut Area Control error (ACE) [1,7,8]. ACE inilah yang digunakan sebagai input sinyal kontrol dalam Pengaturan beban dan frequency [1,3,5,6]. Pada pengaturan ACE konvensional, PI controller merupakan pilihan utama di kalangan industri [1,9]. pengunaan yang mudah dan tidak rumit menjadikan kontroller ini memiliki daya tarik terendiri [1,10]. PI controller merupakan gabungan dari propotional dan integral controller [9,10] . dengan gabungan Gabungan dua buah kotroler tersebut memungkinkan untuk membuat ACE menjadi nol yang berarti sistem telah stabil [1,5,10].
Fuzzy Logic atau logika samar telah dikenal sebagai metode yang handal dan teruji mampu memperbaiki performansi sistem [1,11,12]. Penggunaan fuzzy yang mudah dan tidak memerlukan persamaan matematis dalam menyelesaikan permasalah menjadikan logika fuzzy ini sangat di gemari di kalangan peneliti [1,13,14]. Seiring dengan perkembangnya fuzzy mengalami banyak penyempurnaan. Pada tahun 1965 A lotfi zadeh Interval Type-2 Fuzzy Logic yang merupakan penyempurnaan dari Fuzzy logic [1,15,17]. Interval Type-2 Fuzzy memperbaiki kelemahan pendifinisian antacedent dan consequent dari fuzzy type-1 dengan mebership function ganda yaitu Lower membership function(LMF) dan upper mebership function(UMF) [16,17]. Along with imporement of fyzzy, it’s having a lot of refinement. In 1965 Lotfi Zadeh A Type-2 introduce the Interval Fuzzy Logic which is a refinement of the type-1 Fuzzy logic [1,15,17]. Interval Type-2 Fuzzy fix weakness of type-1 fuzzy to determine antacedent and consequent of rule bese by using a double mebership function, they are Lower Membership Function (LMF) and the Upper Membership Function (UMF) [16.17].
simulasi yang dilakukan dengan membadingkan respon kestabilan frekuensi LFC dua area yang dikontrol dengan Intergal controller, PI Controller, IT1FPI Controller, dan IT2FPI Controller, serta IT2FPI yang dioptimalkan dengan GA di peroleh hasil bahwa respon kestabilan frekuensi sistem yang menggunakan IT2FPI yang dioptmalkan dengan GA mempu meningkat performansi respon frekuensi dan transfer daya dari sistem lebih bagus dibandingkan dengan menggunakan kontroler yang lain. II.
MODEL LINIER LOAD FREKUENSI CONTROL (LFC) SITEM TENAGA LISTRIK DUA AREA
Sistem Tenaga listrik dua area terdiri dari dua area pembangkit yang dihubungkan oleh sebuah reaktansi tie line (Xtie) dan setiap area akan diwakili oleh sebuah unit pembangkit equivalent yang memperlihatkan bentuk secara keseluruhan [1,2]. Model liner sistem tenaga lsitrik dua area ditunjukan pada Gambar 1. f1
-
+ 1
1 sM 1 D1
f2 2
1 sM 2 D2
T/s Ptie
PL1
-
+
Pm1
1 1 sTCH 1 1 RG1
Y1
1 1 sTg1
-
+
PL 2
Pm2
+
1 1 sTCH 2 1 RG 2
Y2
1 1 sTg 2
-
+
+
Pc1
Pc2
Gambar 1, Model kontrol interkoneksi sistem dua area
Genetic algorithm(GA) adalah teknik optimisasi dan stokastik yang menganut prinsip genetika dan seleksi alam [1,18,19]. Metode ini telah dibangun oleh John Holand (1975) dan terus di kembangkan antara 1960-1970 dan akhirnya di populerkan oleh muridnya, David Goldberg (1989) [1,20]. Secara umum algotirma ini digunakan pencarian optimal dari suatu problema dengan mengkodekan nilai tersebut kedalam kromosom dan gen. Algoritma genetika banyak dipakai dikalangan peneliti karena suitable di hybrid dengan metode lain seperti Fuzzy [21,22]. Pada penelitian ini, Interval Type-2 Fuzzy PI (IT2FPI) Controller yang dioptimalkan dengan GA digunakan untuk memperbaiki performansi respon kestabilan frekuensi sistem tenaga listrik dua area. Dari hasil
Dari model sistem tenaga listrik dua area pada Gambar 1, akan dibuat sebuah kontroler untuk mengatur speed changer (ΔPci) sehingga governor mampu mengembalikan frekeunsi ke posisi nol (50 Hz). Kontroller yang usulkan adalah Interval Type-2 Fuzzy PI Controller. III. INTERVAL TYPE-2 FUZZY PI CONTROLLER and GENETIC ALGORITHM Konsep ketidakpastian dari fuzzy set type-2 pertama kali dikenalkan oleh Zadeh, sebagai pengembangan dari konsep ordinary fuzzy set [12,17]. Type-2 fuzzy set memiliki tingkatan membership yang mereka sendiri adalah fuzzy. 3.1 Desain Interval type-2 Fuzzy PI Controller [4]
Transfer function dari kontroler PI konvensional dalam bentuk persamaan laplace dinyatakan dengan,
u P I ( s)
Ki
( KP
(1)
) E ( s)
s
Persamaan (1) dapat ditransformasikan kedalam bentuk diskrit dengan transformasi bilinier s 2 / T [ z - 1/ z + 1 ] , dengan T > 0 sehingga diperoleh hasil, u PI ( z )
( Kp -
Ki T
Ki T
2
1- z
-1
(2)
) E( z )
_
(1 - z
-1
dan
2
PI
_ (Z)
KP ( 1 - z
-1
Ki = Ki T Upper _MF
_ )E ( z )
Lower _MF
Ki E ( z )
maka dengan menggunakan invers transformasi–Z kita peroleh, _
u PI ( n T ) - u PI ( n T - T )
_
K i e ( n T)
K p e( n T ) -e( n T - T )
(3)
dengan membagi persamaan (3) dengan T, maka di peroleh, _
-L
x1
0
x2
L
x3
x4
Gambar 3, Fungsi Keanggotaan Error Dan Delta Error
Sedangkan untuk fungsi keanggotaan output dan rule base fuzzy nsing-masing ditunjukan pada Gambar 5 dan Tabel 1. op n
op p
zo 1
_
u PI ( n T) - u PI ( n T - T)
K p e( n T) - e( n T -T)
K i e( n T)
T
T
T
u PI ( n T)
Epp (error positif) Evn(delta error positif)
1
_
Ki T
_ )u
3.1.1 Membership function Gambar 3 adalah fungsi keanggotaan input dari fuzzy Type-2 PI yaitu berupa error (ep) dan delta error (ev). Epn (error negatif) Evn(delta error positif)
dengan asumsi bahwa, Kp = K P -
Gambar 2, Blok Diagram Kontrol Fuzzy Type-2 PI
(4)
Upper _MF
Lower _MF
u PI ( n T - T) - u PI ( n T - T)
x5
-L
x6
T
x9
0 x10
x7
L
x8
Gambar 4, Fungsi Keanggotaan Error Dan Delta Error
dengan, u PI ( n T)
u PI ( n T - T) + u PI ( n T) T
(5)
Tabel 1, Rule Base Fuzzy Type-2 Delta error (ev)
dengan increment control, e( n T ) - e( n T - T )
(6)
v PI ( n T )
Error (ep)
Rule epn epp
evn on zo
evp zo op
T
Maka di peroleh, u PI ( n T )
_ K P v( n T)
_ Ki
e( n T)
T
(7)
Kemudian dari persamaanv 5, dengan mengganti nilai dari u PI ( n T) , T u PI ( n T) dengan kontrol fuzzy K u PI
akhirnya dapat kita peroleh, u PI ( n T) = u PI ( n T - T) + K U u PI ( n T) PI
(8)
Dari persamaan-diatas maka dipat digambarkan ke dalam blok diagram seperti pada Gambar 2 berikut ini
3.1.2 Deffuzzyfikasi Pada interval type 2 fuzzy set, proses pencarian centroid dilakukan pada Upper Membership Function (UMF) dan Lower Membership Function (LMF). Metode pencarian ini dirumuskan oleh Karnik dan Mendel yang terkenal dengan Karnik-Mendel Algorithm. Berikut ini adalah diagram alir dari algotirma dari Karnik Memdel.
Pentalan membership function fuzzy menggunakan GA pada sistem tenaga listrik dua area berdasarkan diagram alir GA berikut ini,
START Inisialisasi ? i 1 μ xi 2 A
θi
μA xi
Start
Hitung c’
N
Nvar=10 JumGen=Nvar UkPop=50 Psilang=0.8 Pmut=0.9 MaxG=10
x iθ i i 1 N
c θ 1 ,... θ N
c'
θi i 1
Inisialisasi Populasi, N kromosom
Cari nilai K
xk
c'
xk
1
C’=Cl”
Dikodekan kromosom [x1,x2….x10] Xn=1 x jumGen
C’=Cr” Hitung c” untuk Cl k
cl "
Hitung c” untuk Cr k
N
xi μA xi
xi μ
i 1 k
μA xi
μ
cr "
T
xi μA xi
xi A
i 1
i k 1 N
k
μ
xi
i k 1 A
i 1
Evaluasi Individu ITAE=abs( frek_1^2+frek_2^2+P_tie^2)
N
xi μ
xi A
i k 1 N
i 1
μ
xi A
i k 1
xi A
N kromosom?
C” =C’
C” =C’ Y
T Elitisme
Y Centroid = ( Cl + Cr ) /2
Pilih Kromosom Linear Fitness rangking
STOP
Roulette wheel
Gambar5, Flow Chart Karnik-Mendel Algorithm
tidak Kriteria penghentian terpenuhi?
Ya
Pindah silang STOP
Genetic Algotihtm (GA)
3.2
Mutasi
Frek_1 Frek_2 Ptie_3
N-kromosom baru
Pada penerapan GA pada IT2FPI Controller ini, GA digunakan untuk mentala mebership function pada IT2FPI, dengan mengkodekan membership function input dan output dari fuzzy ini dalam x1,x2,x3,x4, x5,x6,x7,x8,x9,x10, sehingga diperoleh respon frekuensi yang lebih bagus.
Generation Replecement [x1,x2,..x10]
Plant
Karnik Mandel Algortihm (IT2FPI)
Gambar 8, Diagram alir IT2FPICLFC-GA
4.
HASIL SIMULASI DAN ANALISIS
Pdi
Bi
+
ACE
1/T
+/-
+
K i1
Fuzzy type-2
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
+ 1/z
-
KuPi
+
Simulasi dilakukan dengan menggunakan MATLAB 7.3, dengan melakukan pengamatan respon kestabilan frekuensi, Ptie, dan daya mekanik sistem. Sistem diberikan gangguan di area satu berupa perubahan beban sebesar 0.05 p.u, 4.1 Respon frekuensi, Ptie dan Pmek Hasil simulasi yang ditunjukan pada Tabel 2 -4 dan gambar 11-20,
Kontrol Area (i)
+
f Ptie ,i
1/z
Interval type-1 fuzzy PI Controller
K Pi
Gambar 6, Aplocation of genetic Algorithm (GA) on IT2FPI
Aplikasi dari kontrol IT2FPI-GA pada LFC sistem tenaga listrik dua area dpat dilihat pada Gambar 8,
Table 2, Frequency Response of 1-th and 2-th area Kontroler
Area 1
PG 2
PG1
Area 2
f1i Governor
f 2i
Governor
f 2i
1/R
1/R
f1i
-
-
+
+
Pci 2
Pci1 B1
+
Integral PI IT1FPI IT2FPI IT2FPI-GA
Overshot Area 1 Area2 -0.01239 -0.01028 -0.008938 -0.006401 -0.004662 -0.002335 -0.003622 -0.001535 -0.003572 -0.001532
Time Settling Area 1 Area 2 153.2 154.7 41.5 34.64 19.06 24.19 14.27 21.11 11.76 21
Table 3, P-tie Response on Two Area Power System
ACE 1
+
e1 Interval Type- 2 Fuzzy PI Controller
+
+
GA
ACE 2
-
+
GA
+
Inteval Type- 2 Fuzzy PI Controller
B2
Ptie
Gambar 7, Kontroler Interval Type-2 Fuzzy PI pada LFC
Kontroler Integral PI IT1FPI IT2FPI IT2FPI-GA
Ptie Overshoot -0.02353 -0.01455 -0.00469 -0.002794 -0.00277
ts (detik) 153. 37.25 17.12 15.69 22.53
Tabel 4, Respon Daya Mekanik Sitem
-3
Pmek area 2 overshot ts( detik) -0.1002 >50 -0.007482 34.67 -0.006468 20 -0.005877 15.69 -0.00586 15.58
0 X: 11.76 Y: 1.685e-005
-0.5 -1
amplitude (pu)
Pmek area 1 overshot ts( detik) 0.05427 >50 0.05 34.5 0.05659 16.92 0.05952 14.29 0.5918 14.15
respon frekuensi area 1(pu)
x 10
0.5
-1.5 -2 -2.5
Untuk lebih detail tentang respon frekuensi, transfer daya line dan Daya mekanik sistem dapat dilihat pada Gambar 10-20 berikut ini,
-3 -3.5 -4
respon frekuensi area 1(pu) 0.015 kontrol integral kontrol PI IT1FPIC IT2FPIC
0.01 0.005
IT2FPI-GA
0
5
10
15
20
25 30 Waktu (detik)
35
40
45
50
Gambar 12, Respon frekuensi area 1 -4
2
respon frekuensi area 2(pu)
x 10
-2
-0.005
amplitude (pu)
-4
-0.01 -0.015
-6 -8 -10
-0.02 -12
-0.025
0
5
10
15
20
25 30 Waktu (detik)
35
40
45
50
X: 3.277 Y: -0.001529
-14 -16
Gambar 9, Respon frekuensi area 1
0
5
10
IT2FPI-GA
15
20
25 30 Waktu (detik)
35
40
45
50
Gambar 13, Respon frekuensi area 2 respon frekuensi area 2(pu)
-3
0.015
respon P-tie area 1(pu)
x 10 kontrol integral kontrol PI IT1FPIC IT2FPIC
0.01 0.005
0 X: 22.53 Y: -1.838e-005
-0.5
0
-1 -0.005
-1.5
-0.01 -0.015
-2
-0.02
-2.5 -0.025
0
5
10
15
20
25 30 Waktu (detik)
35
40
45
IT2FPI-GA
50
0
5
10
15
20
Gambar 10, Respon frekuensi area 2
25 30 Waktu (detik)
35
40
45
50
45
50
Gambar 14, Respon Ptie- antar area respon P-tie area 1(pu)
4.2
0.03 kontrol integral kontrol PI IT1FPIC IT2FPIC
0.02 0.01
Respon daya mekanik sistem (Pmek) respon daya mekanik area 1(pu) 0.06 1
2
0.05 0
0.04
-0.01
amplitude (pu)
amplitude (pu)
amplitude (pu)
0
0
-0.02 -0.03
3 0.03
4
0.02 -0.04 -0.05
1. 2. 3. 4.
0.01 0
5
10
15
20
25 30 Waktu (detik)
35
40
Gambar 11, Respon Ptie antar area
45
50
0
0
5
10
15
20
IT2FPI Controller IT1FPI Controller PI Controller Integral Controller
25 30 Waktu (detik)
35
40
Gambar 15, Respon Daya Mekanik Area 1
respon daya mekanik area 2(pu) 0.02
Bode Diagram 0
4
0.01
2
amplitude (pu)
1
3
IT2FPI Controller IT1FPI Controller PI Controller Integral Controller
-100
Magnitude (dB)
0.015
1. 2. 3. 4.
-200 -300 -400
0.005 -500 0
0 Phase (deg)
-180
-0.005
-360 -540
-0.01
-720 -2
10
-0.015
0
5
10
15
20
25 30 Waktu (detik)
35
40
45
50
respon daya mekanik area 1(pu) 0.06 X: 1.417 Y: 0.05918
0.05
0.04
amplitude (pu)
0
10
1
10
2
10
3
10
Frequency (rad/sec)
Gambar 16, Respon Daya Mekanik Area 2
0.03
0.02
0.01
0
0
5
10
15
20
25 30 Waktu (detik)
35
40
45
50
Gambar 17, Respon Daya Menaknik Area 1 dengan IT2FPI-GA -3
6
respon daya mekanik area 2(pu)
x 10
4
2
amplitude (pu)
-1
10
X: 15.58 Y: 0.0001261
0
Gambar 20, Bode Plot Sistem using IT2FPI-GA
Pada hasil simulasi yang ditunjukan pada Tabel 2-4, dan Gambar 9-18, dilihat dari respon frekuensi sistem yang menggunakan IT2FPI-GA memiliki overhot dan settling time yang paling kecil yaitu -0.003572 p.u dan 11.76 detik untuk area 1, -0.001532 p.u dan 21 detik di area 2. Dilihat dari respon transfer daya antar area sistem yang menggunakan IT2FPI-GA juga memiliki overshot dan setling time yang paling kecil yaitu -0.00277 p.u dan 22.53 detik. Rerspon daya mekanik sistem juga memperlihatkan yang sama, sistem yang dikotrol dengan IT2FPI-GA memiliki overshot dan setling time yang paling kecil yaitu 0.5918 p.u dan 14.15 detik untuk area 1, -0.00586 p.u dan 15.58 detik di area 2. Pada hasil analisis kestabilan menggunakan nyquist plot pada gambar 19, terlihat bahwa sistem stabil karena daerah plot tidak melingkupi titik (-1, j0), sedangkan pada sistem bode plot pada Gambar 20, saat respon gain margin bernilai nol phase margin harus positif, dan saat phase margin bernilai 180 º maka sistem meiliki gain margin yang posistif pula, sehingga dikatakan bahwa sistem stabil.
-2
5.
KESIMPULAN
-4
-6
0
5
10
15
20
25 30 Waktu (detik)
35
40
45
50
Gambar 18, Daya Mekanik Area 2 dengan IT2FPI-GA
4.3
Nyquist Plot dan Bode Plot system -3
Nyquist Diagram
x 10
System: sys Real: -0.000107 Imag: 0.000799 Frequency (rad/sec): -0.804
1.5
1
Imaginary Axis
0.5
Penggunaan Interval Type-2 fuzzy PI controller yang dioptimasi dengan Genetic Algorithm (GA) pada sistem tenga listrik dua ara ini sangat efektif, dan performansi sistem mapu ditingkatkan. Hal ini terlihat dari overshoot dan settling time respon frekuensi, transfer daya tie-line dan respon daya mekanik sistem yang diperlihatkan pada Tabel 2 sampai dengan 4. Overshot frekuensi area 1, area 2 , Ptie , Pmek area 1, dan Pmek area 2 masing-masing adalah -0.003572, -0.001532 , -0.00277 dan -0.00586, dan 0.5918 p.u, sedangkan untuk settling time masing-masing adalah adalah 11.76, 21, 22.53, 14.15 dan 15.8 detik
0
-0.5
6.
-1
-1.5
[1] -1.5
-1
-0.5
0 Real Axis
0.5
1
1.5 -3
x 10
Gambar 19, Nyquist plot sistem yang dikontrol dengan IT2FPI-GA
[2]
REFERENSI
Imam Robandi,” Desain Sistem Tenaga Modern, Penerbit ANDI, Yogyakarta, 2006. Hadi Saadat, Power System Analysis 2nd Edition, McGrowHill. 2004
[3] [4]
[5]
[6]
[7]
[8]
[9] [10] [11]
[12]
[13]
[14] [15] [16] [17] [18]
[19]
[20]
[21]
[22]
Djiteng Marsudi,” Operasi sistem tenaga listrik”.2006. Graha ilmu, Yogyakarta. ISBN 978-756 Muh Budi R Widodo, Muhammad abidillah, Imam Robandi,” optimal design load frequency Control on multi area power system using interval type-2 Fuzzy PI Controller. APTECS-2009. Paper number: 034. Muhammad Abdillah, “Desain Optimal Fuzzy Logic Load Frequency Control pada Sistem Tenaga Listrik Menggunakan Artificial Immune System Via Clonal Selection. Tugas Akhir, Jurusan Teknik Elektro ITS, 2009. Ceyhun YILDIZ, A. Serdar YILMAZ, Mahmet BAYRAK, “Genetic Algorithm based PI Controller for Load Frequency Control in Power system”. Proceding of 5 th International symposium on Intelegent Manufacturing System, may 2931,2006:1202-1210 Jawad Talaq and Fadel Al-basri, Adapteve gain sceduling for load frequency control, IEEE Transc. on Power Systems, Vol 14. No 1, February, pp. 145-150, 1999. Charles E. Fosha, Jr., and Olle I.Elgerd, The Megawatt-Frequency Control Problem: New approach via Optimal Control Theory, IEEE Trans. Vol. PAS. No.4, April 1970, pp.563-577. Anderson P.M, Fouad A.A, Power Control and Stability, The lowa State University, Press.1982. Kundur,.P, Power System Stability and Control, McGrawHill,Inc.,1994. Imam Robandi, and Bedy kharisma,” Design of Interval type-2 Fuzzy Logic Based Power system stabilizer. PWASET VOLUME 31 July 2008 ISSN 1307-6884. WU, DONGRUI, ”Design and Analysis of Type-2 Fuzzy Logic System”. Thesis submitted for the degree of master engineering departement of electrical and computer engineering national university of singapore. Muh Budi R Widodo, muhammad abdillah, imam robandi aplikasi Fuzzy PIPD pada Singel Machine Infinite Bus (SMIB), Seminar on intelegnet technology and it’s Aplication (SITIA). 2009. Pp090 Xinyu Du and Hao Ying, “Deriving Analitical stucture of Type-2 Fuzzy PD/PI Controller”. IEEE-2008.978-1-4244-2352 G .Chen, “Qilian Liangand, Jerry M. Mandel, ”Interval Type-2 Fuzzy Logic System Theory and Design”,IEEE, 2000. Juan R.Castro, Oscar Castillo, “Interval Type-2 Fuzzy Logic for Intelligent Control Aplication”, IEEE, 2007. Jerry M.Mandel, Robert I. Bob John,” Type-2 Fuzzy Sets Made Simple”, IEEE, April, 2002. Muh Budi R Widodo, Imam Robandi, “Optimization of Fuzzy PIPD Controller for Excitation System Stability Analysis on Single Machine Infinite Bus (SMIB) using Genetic Algorithm (GA)” ICAST. 2009. B.Venkata Prasant, Dr. S. V. Jayaram Kumar,” Load Frequency Control for a Two Area Interconnected Power System Using Robust Genetic Algorithm Controller, Jatit 2005-2008. D.E Goldberg, Genetic Algorithm (GA) in Serch, Optimation and Mechine Learning, Addition-wesley Publishing Compani,In.,1989. Cl. Karr and D.E Goldberg, Genetic Algorithm Based Design of an air-injected Hidro Cylone”,Control 90, Mineral Metalurgi Processing, pp.265-272, 1990. Suyanto,” Algoritma Genetika dalam MATLAB”. 2005. ANDI yogyakarta
7. Bi Di Fi Ki Kp Mi nT
: : : : : : :
NUMENKLATUR
Bias Frekuensi pada area ke-i konstanta dumping pada area ke-i frekuensi area ke-i Penguatan Integral Penguatan Proporsional konstatnta inersia area ke-i continues-time frequency domain
PLi Pm Pci Ri T TcH1 Tgi1 u Y1 z δ1 ω2 ep ev upi L Pmek Ptie Pv ts Pci
: perubahan beban pada area 1 : daya mekanik area ke-i : referensi beban dari prem over area 2 : speed drop dari governor area i : priede sampling : konstata waktu turbin uap area 1 : konstata waktu governor area 1 : output of proportional – integral controller : governor output on area 1 : discrete-time frequency domain : sudut rotor pada area 1 : kecepatan sudut rotor area 2 : error input fuzzy : delta error fuzzy : output fuzzy : panjang daerah membership fuction : Daya Mekanik system : Transfere daya tie line : daya penggerak yang dikeluearkan governor : Time settiling (detik) : Daya speed changer
APENDIKS Paramenter yang digunakan dalam model linier sistem tenaga listrik 2 area, Tabel 5, Parameter LFC Dua Area PARAMETER Tgi TcH M D R T B
AREA 1 0.04 0.5 0.35 6 2.4 0.62 (1/R1)+D1
AREA 2 0.5 0.4 8 2 3.2 0.62 (1/R2)+D2
Tabel 6, Gain controller PI
Ki
-0.25
Kp
-0.9
KuPi
23.333
Tabel 7, Membership Function Membership function
Epp_umf, Evp_umf Epp_lmf, Evp_lmf Epn_lmf, Evn_lmf Epn_umf, Evn_umf zo_umf zo_lmf zo_lmf zo_umf opn_lmf, opp_umf opn_umf,opp_lmf
Code
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10
batas atas (ra) 0.95 0.87 0.90 0.88 0.94 0.93 0.89 0.915 0.889 0.8952
batas bawah (rb) 0.872 0.861 0.8495 0.8674 0.8499 0.8621 0.8712 0.8654 0.8773 0.8668
ADENDUM Penulis bernama lengkap MUH BUDI R WIDODO, lahir di tuban 7 desember 1987. Penulis tamat dari bangku sekolah dasar di SDN Sokosari 1 pada tahun 2000 dan melanjutkan di sekolah menengan pertama di SMPN 1 Rengel; dan lulus tahun 2003. Putra pasangan Suhardi dan Warinten ini aktif dalam berbagai kegiatan sekolah diantaranya menjadi pengurus OSIS di SMP 1 Rengel, menjadi reporter majalah GENERASI, Pramuka, dan seni baca alquran. Saat duduk dibangku SMP, dia juga aktif dalam kegiatan ekstra kurikuler diantaranya PSHT (Persaudaraan Setia Hati Teratai), dan Iqra’ Club, selain itu beliau juga ikut ekstakurukuler di bidang akademisi diantaranya: IMO (International Matematic Organitation), IFO ( International Fisic Organitation) dan ICHO (International Chimistry Organitation). Penulis lulus dari bangku SMA tahun 2006 dan melanjutkan kuliah di Teknik Elektro ITS surabaya, dan sekarang konsentrasi dalam Bidang study Sistem Tenaga. Di bangku kuliah beliau juga aktif dalam berbagai kegiatan diantaranya menjadi kadif media departemen KALAM (Kajian Islam), member lab PSOC (power system Oeration and Control). Selain itu beliau juga seorang penulis, karya beliau diantaranya diwujudkan dalam PKM dan Paper (yaitu): 1.
Sofware Cerdas Berbasis Data Maining Untuk Mencari Lowongan Pekerjaan, 2. Pelatihan Mikrosof Office Dan Internet Untuk Guru Sekolah Dasar. 3. Aplikasi Fuzzy PIPD pada Automatic Voltage Regulator(AVR). 4. Meningktkan Top Mind PLN Dimata Masyarakat Melalui Studi Analisis Subsidi Listrik Terhadap Pendapatan Perkapita Penduduk Di Pulau Bali, 5. Analisis Biokonservasi Elektrik Sebagai Strategi Alternatif Mitigasi Global Warming Sebagai Upaya Penangulangan Bencana Alam Di Indonesia 6. Optimisasi Kontrol Fuzzy PIPD Menggunakan Genetic Algorithm(GA) untuk Analisis Kestabilan Sistem Eksitasi (AVR) Pada Single Mesin Infinite Bus(SMIB) 7. Optimal design Load Frequency Control on Multi area Power system Using Interval Type-2 Fuzzy PI Controller 8. Apliaksi Fuzzy PIPD pada pengendali Wet gate pembangkit mycrihydro 9. Optmilal design Excitation system AVR on Single machine Infinete Bus using Interval Type-2 Fuzzy PI Controller 10. Optimal desain Interval Type-2 Fuzzy pada single machine infinite bus sebagai pengganti PSS.