ANALISIS DAN RANCANGAN BANGUNAN RESAPAN AIR HUJAN DI SEKITAR GEDUNG GRAHA WIDYA WISUDA (GWW)-FEMA, KAMPUS IPB DARMAGA, BOGOR
HENDY KUSUMA RAJASA
DEPARTEMEN TEKNIK SIPIL DAN LINGKUNGAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 2014
PERNYATAAN MENGENAI SKRIPSI DAN SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA* Dengan ini saya menyatakan bahwa skripsi berjudul “Analisis dan Rancangan Bangunan Resapan Air Hujan di Sekitar Gedung Graha Widya Wisuda (GWW)FEMA, Kampus IPB Darmaga, Bogor” adalah benar karya saya dengan arahan dari dosen pembimbing dan belum diajukan dalam bentuk apapun kepada perguruan tinggi mana pun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir skripsi ini. Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor. Bogor, Juni 2014
Hendy Kusuma Rajasa NIM F44100010
ABSTRAK HENDY KUSUMA RAJASA. Analisis dan Rancangan Bangunan Resapan Air Hujan di Sekitar Gedung Graha Widya Wisuda (GWW)-FEMA, Kampus IPB Darmaga, Bogor. Dibimbing oleh BUDI INDRA SETIAWAN. Jumlah curah hujan yang tinggi pada suatu daerah dan buruknya sistem drainase dapat mengakibatkan terjadinya limpasan permukaan dan genangan, seperti di Kampus IPB Darmaga, khususnya di sekitar Gedung Graha Widya Wisuda (GWW)-FEMA. Tujuan penelitian ini adalah menentukan rancangan dan jumlah bangunan resapan air hujan dalam upaya mengurangi genangan atau limpasan permukaan. Penelitian dilakukan dengan analisis hujan rencana dan pendugaan permeabilitas tanah. Perhitungan matematis dilakukan untuk mengetahui volume andil banjir, jumlah sumur resapan, dan parit berorak, serta efektifitas bangunan resapan tersebut. Setiap sumur resapan dapat menampung curah hujan sebanyak 0.017 mm. Selain itu, parit berorak juga dirancang sejumlah 546 buah yang masing-masing mampu menampung curah hujan sebesar 0.009 mm. Bangunan resapan yang telah dirancang mampu mengurangi 88 % dari total limpasan air hujan sebesar 63.65 mm. Sisa air limpasan sebesar 7.64 mm mampu ditampung saluran drainase yang telah dirancang. Biaya bahan yang diperlukan untuk membuat satu unit sumur resapan adalah sebesar Rp 3,100,000.00. Kata kunci: banjir, drainase, parit berorak, sumur resapan, zero runoff
ABSTRACT HENDY KUSUMA RAJASA. Analysis and Design of Raindrop Infiltration Structure in Around Graha Widya Wisuda (GWW)-FEMA Building, Kampus IPB Darmaga, Bogor. Supervised by BUDI INDRA SETIAWAN. The high rainfall in an area and bad drainage systems can affected to surface runoff and flood. For example is Kampus IPB Darmaga, especially around Graha Widya Wisuda (GWW)-FEMA Building. The aims of this research is to design rainwater infiltration structure to solve the problem. This research held by rainfall analysis and soil permeability estimation. Mathematical calculation is performed to determine the volume of flooding, amount of infiltration wells and perforated ditch, and effectiveness of those infiltration structure. Every single infiltration wells can accommodate 0.017 mm rainfall. On the other hand, perforated ditch also designed much as 546 what can accommodate 0.009 mm of rainfall. Designed of infiltration structure could decrease 88 % of total flood as much as 63.65 mm. Remaining surface runoff as much as 7.64 mm capable accommodated drainage has been designed. Material costs needed to build a unit of infiltration wells is Rp 3,100,000.00. Keywords: flood, drainage, infiltration wells, perforated ditch, zero runoff
ANALISIS DAN RANCANGAN BANGUNAN RESAPAN AIR HUJAN DI SEKITAR GEDUNG GRAHA WIDYA WISUDA (GWW)-FEMA, KAMPUS IPB DARMAGA, BOGOR
HENDY KUSUMA RAJASA
Skripsi sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik pada Departemen Teknik Sipil dan Lingkungan
DEPARTEMEN TEKNIK SIPIL DAN LINGKUNGAN FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN BOGOR BOGOR 2014
Judul Skripsi : Analisis dan Rancangan Bangunan Resapan Air Hujan di Sekitar Gedung Graha Widya Wisuda (GWW)-FEMA, Kampus IPB Darmaga, Bogor Nama : Hendy Kusuma Rajasa NIM : F44100010
Disetujui oleh,
Prof.Dr.Ir.Budi Indra Setiawan. M.Agr Dosen Pembimbing
Diketahui oleh,
Prof.Dr.Ir.Budi Indra Setiawan. M.Agr Ketua Departemen
Tanggal Lulus:
PRAKATA Puji dan syukur penulis panjatkan kepada Allah subhanahu wa ta’ala atas segala karunia-Nya sehingga karya ilmiah ini berhasil diselesaikan. Judul yang dipilih dalam penelitian yang dilaksanakan sejak bulan Februari 2014 ini adalah Analisis dan Rancangan Bangunan Resapan Air Hujan di Sekitar Gedung Graha Widya Wisuda (GWW)-FEMA Kampus IPB Darmaga, Bogor. Ucapan terima kasih penulis tujukan kepada: 1. Bapak Prof. Dr. Ir. Budi Indra Setiawan, M.Agr. selaku dosen pembimbing yang telah memberikan arahan serta bimbingan dalam penyusunan karya ilmiah ini. 2. Bapak Dr. Ir. Prastowo M.Eng. dan Bapak Allen Kurniawan S.T, M.T. selaku dosen penguji atas masukan dan saran untuk perbaikan karya ilmiah ini. 3. Kedua orang tua tercinta (Bapak Asim dan Almarhum Ibu Astuti), atas doa dan dukungan yang telah diberikan kepada penulis. 4. Teman-teman sebimbingan (Muhammad Ihsan, Cindhy Ade Hapsari, Angga Nugraha, M. Chandra Yuwana, dan Dodi Wijaya) yang telah bersama-sama berjuang selama penyusunan karya tulis ini. 5. Teman-teman Mahasiswa Teknik Sipil dan Lingkungan angkatan 2010 dan semua pihak terkait yang telah banyak memberi semangat, saran, maupun bantuan dalam penyusunan karya tulis ini. Semoga karya ilmiah ini bermanfaat.
Bogor, Juni 2014
Hendy Kusuma Rajasa
DAFTAR ISI DAFTAR TABEL
vi
DAFTAR GAMBAR
vi
DAFTAR LAMPIRAN
vi
PENDAHULUAN
1
Latar Belakang
1
Perumusan Masalah
1
Tujuan Penelitian
2
Manfaat Penelitian
2
Ruang Lingkup Penelitian
2
METODE
2
Waktu dan Tempat
2
Peralatan dan Bahan
3
Prosedur Pengumpulan Data
3
Prosedur Analisis Data
3
HASIL DAN PEMBAHASAN Daerah Tangkapan Air dan Tata Guna Lahan
8 8
Analisis Hujan dan Volume Genangan
10
Permeabilitas Tanah
12
Sistem Penampungan dan Peresapan Air Hujan
14
SIMPULAN DAN SARAN
18
Simpulan
18
Saran
18
DAFTAR PUSTAKA
19
LAMPIRAN
20
RIWAYAT HIDUP
30
DAFTAR TABEL 1 Parameter statistik analisis distribusi frekuensi 2 Persyaratan parameter statistik dan rumus hujan rencana tiap jenis distribui frekuensi 3 Periode ulang untuk tipologi kota tertentu 4 Nilai daya serap tanah berdasarkan tata guna lahan 5 Kategori permeabilitas tanah 6 Perhitungan koefisien limpasan tiap DTA 7 Rekapitulasi hasil analisis curah hujan puncak selama periode ulang tertentu 8 Perbandingan Nilai Cs, Ck, dan Cv hasil perhitungan dan persyaratan 9 Data curah hujan harian aktual maksimum 10 Hasil perhitungan jumlah sumur resapan dan kapasitas tampungan 11 Hasil perhitungan jumlah dan volume rorak
4 4 5 6 6 9 10 11 12 14 16
DAFTAR GAMBAR 1 2 3 4 5 6 7 8
Diagram alir prosedur penelitian Genangan yang terjadi di sekitar Gedung GWW dan FEMA Peta kontur dan arah aliran air di lokasi penelitian Peta DTA dan tata guna lahan lokasi penelitian Lubang pengukuran laju infiltrasi Perbandingan laju infiltrasi terukur dengan model Philips pada DTA 1 Perbandingan laju infiltrasi terukur dengan model Philips pada DTA 2 Tampak lubang sadap atau inlet
7 8 8 9 12 13 13 17
DAFTAR LAMPIRAN 1 2 3 4 5 6 7 8 9 10
Nilai koefisien limpasan C berbagai karakter permukaan Data curah hujan harian maksimum tahun 2004-2013 Data curah hujan harian maksimum Januari-April 2014 Contoh perhitungan volume banjir total dan jumlah sumur resapan Contoh perhitungan parit berorak dan efektifitas bangunan resapan Rincian rencana anggaran biaya (RAB) bahan sumur resapan Analisa harga satuan pekerjaan sumur resapan Gambar teknik denah sumur resapan Gambar teknik potongan sumur resapan Gambar 3 (tiga) dimensi sumur resapan
20 21 22 23 24 25 26 27 28 29
1
PENDAHULUAN Latar Belakang Hujan merupakan salah satu bagian dari siklus hidrologi. Hujan sebagian mengalir ke badan air secara langsung dan sebagian lain mengalami infiltrasi dan perkolasi ke dalam tanah. Peresapan air ke dalam tanah tersebut berdampak pada ketersediaan air tanah dalam akuifer. Air tanah dalam akuifer dapat dimanfaatkan untuk keperluan manusia dan makhluk hidup lain dalam memenuhi kebutuhan. Curah hujan tinggi mengakibatkan dampak buruk pada lingkungan sekitar. Hal ini dipengaruhi pula oleh sistem drainase yang diterapkan pada daerah tersebut. Kualitas sistem drainase tidak baik disebabkan oleh pola aliran yang tidak tepat dan sedimentasi. Selain itu, kesalahan penentuan dimensi saluran dan kerusakan fisik di sepanjang saluran menyebabkan permasalahan serius. Beberapa permasalahan tersebut mengakibatkan saluran drainase tidak berfungsi dengan baik untuk menampung kelebihan air sehingga terjadi limpasan dan genangan di sekitar saluran drainase. Limpasan dan genangan dapat mengganggu kegiatan dari civitas akademik. Selain itu, limpasan dan genangan juga dapat merusak badan jalan. Genangan air dalam waktu cukup lama akan meresap pada lapisan jalan sehingga dapat merusak struktur jalan seperti lubanglubang yang dapat membahayakan pengguna jalan tersebut. Limpasan dan genangan air hujan pada sistem drainase yang kurang baik tersebut terjadi di Kampus IPB Darmaga Bogor. Kampus IPB Darmaga merupakan salah satu kampus yang menerima cukup banyak curah hujan dengan intensitas hujan tinggi. Infrastruktur kampus IPB dibangun untuk mendukung kegiatan akademik maupun non akademik seluruh civitas. Namun, pembangunan infrastruktur terkadang kurang mendapat perawatan yang cukup sehingga tidak dapat berfungsi dengan baik. Masalah limpasan dan genangan air hujan merupakan salah satu dampak dari kurangnya perawatan infrastruktur kampus. Di dalam kampus IPB Darmaga, beberapa titik genangan air terdapat di sekitar Gedung Graha Widya Wisuda (GWW) dan jalan Dekanat Fakultas Ekologi Manusia (FEMA). Berdasarkan pada kasus tersebut, tindak lanjut berupa penyelesaian masalah limpasan dan genangan air yang terjadi di Kampus IPB Darmaga diperlukan dengan menganalisis sistem drainase dan merancang bangunan hidrolika resapan air hujan. Analisis ini bertujuan untuk mengurangi jumlah limpasan dengan cara meningkatkan kemampuan infiltrasi tanah. Dengan demikian, air limpasan masuk ke dalam akuifer sebagai cadangan air tanah. Salah satu bangunan untuk resapan air hujan adalah sumur resapan. Sumur resapan adalah sumur atau lubang pada permukaan tanah yang dibuat untuk menampung air hujan agar dapat meresap ke dalam tanah (Kusnaedi 2011).
Perumusan Masalah Rumusan masalah yang menjadi fokus dalam penelitian ini adalah menganalisis penerapan konsep zero runoff di sekitar Gedung Graha Widya Wisuda (GWW) dan FEMA sehingga limpasan dapat masuk baik ke badan air
2 secara langsung maupun infiltrasi ke dalam akuifer sebagai cadangan air. Berdasarkan hasil observasi lapang, ketidaksesuaian dimensi saluran drainase dan rusaknya sebagian jalan membuat proses penyerapan air menjadi terganggu.
Tujuan Penelitian Tujuan penelitian ini adalah menentukan rancangan dan jumlah bangunan resapan air hujan di sekitar Gedung Graha Widya Wisuda (GWW)-FEMA dalam upaya mengurangi terjadinya genangan dan limpasan permukaan pada saat hujan sehingga dapat menurunkan risiko terjadinya banjir.
Manfaat Penelitian Manfaat dari penelitian ini adalah menjadi rujukan untuk penyelesaian masalah banjir di lokasi lain dengan konsep zero runoff. Selain itu, sebagai masukan bagi pimpinan IPB terutama Bagian Sarana dan Prasana untuk mengatasi masalah limpasan yang dapat mengakibatkan terjadinya banjir di daerah tersebut.
Ruang Lingkup Penelitian Ruang lingkup penelitian adalah pengamatan arah aliran saluran drainase dan genangan pada lokasi penelitian. Kemudian, analisis mengenai konsep zero runoff dilakukan dengan cara penentuan arah aliran berdasarkan peta topografi, penentuan curah hujan harian rata-rata, volume andil banjir, nilai permeabilitas tanah, perancangan kesesuaian bangunan resapan air hujan, penentuan kapasitas volume dari bangunan yang direkomendasikan, serta perhitungan rencana anggaran biaya (RAB) dengan cakupan biaya bahan perancangan bangunan resapan.
METODE Waktu dan Tempat Penelitian ini dilakukan selama tiga bulan mulai tanggal 10 Februari 2014, hingga 23 April 2014. Penelitian dilakukan di sekitar Gedung Graha Widya Wisuda (GWW)-FEMA Kampus IPB Darmaga, Bogor. Lokasi penelitian tersebut terletak di antara garis lintang 6°33’22” Selatan hingga 6°33’46” Selatan dan garis bujur 106°43’32” Timur hingga 106°43’55” Timur. Tiga lokasi utama di IPB, yaitu parkiran GWW, Jalan Dekanat FEMA, dan Jalan Ramin seringkali mengalami banjir saat terjadi hujan.
3 Peralatan dan Bahan Penelitian ini menggunakan beberapa peralatan pengukuran seperti Automatic Total Station, kompas, Global Positioning System (GPS), pita ukur, penggaris, dan bor biopori. Peralatan lain untuk proses pengolahan data adalah kalkulator dan laptop yang dilengkapi dengan software Microsoft Word, Microsoft Excel, Google Earth, Surfer versi 10, ArcGIS versi 10, dan Google Sketch Up 8 dan AutoCAD 2010. Data primer berupa titik lokasi genangan, kondisi topografi lahan, dimensi dan kondisi saluran drainase, serta permeabilitas tanah, digunakan sebagai bahan pengolahan data. Selain itu, beberapa data sekunder juga diperlukan, antara lain data curah hujan maksimum selama 10 tahun tahun 2004-2013 dari Stasiun Klimatologi BMKG Darmaga, Bogor, data curah hujan harian tiap jam bulan Januari 2014 hingga Maret 2014 dari stasiun cuaca milik Departemen Teknik Sipil dan Lingkungan IPB, serta citra satelit Google Earth akuisisi 2 April 2014.
Prosedur Pengumpulan Data Prosedur penelitian ini diawali dengan survei lapangan untuk mengetahui permasalahan yang terjadi. Setelah itu, studi pustaka dilakukan untuk mendapatkan teori yang mendukung dalam penyusunan penelitian. Selain itu, dilakukan pengumpulan data, baik data primer maupun sekunder, untuk diolah pada tahap selanjutnya. Pengumpulan data primer dilakukan melalui pengukuran dan survei langsung di lapangan, antara lain lokasi dan volume banjir, topografi lahan, dimensi saluran, serta permeabilitas tanah. Selain itu, data sekunder diperoleh dari internet, buku, jurnal, data curah hujan, peta drainase, hasil penelitan maupun referensi lainnya. Prosedur Analisis Data Data primer dan sekunder dianalisis dengan beberapa metode. Prosedur pengolahan data adalah sebagai berikut: 1. Perhitungan curah hujan rencana (R24) Perhitungan dilakukan dengan menggunakan metode distribusi frekuensi. Distribusi frekuensi membantu untuk mengetahui hubungan kejadian hidrologis ekstrim, seperti banjir dengan jumlah kejadian, sehingga peluang kejadian ekstrim terhadap waktu dapat diprediksi (Bhim 2012). Jenis distribusi frekuensi antara lain, distribusi Normal, Log Normal, Log Person III, dan Gumbel. Parameter statistik yang dihitung untuk menentukan jenis distribusi frekuensi tersaji pada Tabel 1 berikut.
4 Tabel 1 Parameter statistik analisis distribusi frekuensi Parameter
Rumus 1 x= n
Rata-rata (x)
Simpangan baku (s)
s=
1 n-1
n
xi
(1)
i 1 1 2
n
(xi -x)2 i=1
s x n ∑ni=1 (xi -x)3 Cs= (n-1)(n-2)s3
Koefisien variasi (Cv)
Cv=
Koefisien Skewness/ kemencengan (Cs)
(2) (3) (4)
Koefisien kortuis (Ck)
Ck=
n2 ∑ni=1 (xi -x)4 (n-1)(n-2)(n-3)s4
(5)
Sumber : Suripin 2004
Hasil perhitungan parameter statistik di atas dibandingkan dengan persyaratan tiap jenis distribusi frekuensi. Kemudian perhitungan hujan rencana untuk periode ulang T tahun dilakukan melalui rumus pada Tabel 2 berikut. Tabel 2 Persyaratan parameter statistik dan rumus hujan rencana tiap jenis distribui frekuensi No Jenis Distribusi Syarat Rumus Hujan Rencana 1 Normal Cs ≈ 0 XT = x + KT.s (6) Ck ≈ 3 2 Log Normal Cs = 3Cv + Cv3 Ck=Cv8+6Cv6+15Cv4 Log XT = log x +KT.s (7) + 16Cv2+3 3 Gumbel Cs ≤ 1.1396 XT = x + s.K (8) Ck ≤ 5.4002 Log Pearson 4 Cs = 0 Log XT = log x +K.s (9) Tipe III Sumber: Suripin 2004
Keterangan: XT = hujan rencana periode T tahun X = hujan rata-rata contoh uji K = faktor probabilitas KT = faktor probabilitas (dari tabel Reduksi Gauss) S = standar deviasi (simpangan baku) Setelah itu, uji kecocokan dilakukan melalui metode SmirnovKolmogorov. Menurut B.Azeez (2012), uji Smirnov-Kolmogorov
5 digunakan untuk menentukan contoh uji berasal dari fungsi probabilitas yang kontinu. Dari hasil plot ini, penyimpangan terbesar (Dmaks) dapat diketahui. Penyimpangan ini dibandingkan dengan penyimpangan kritik yang masih diijinkan (Do). Penentuan periode ulang mengacu pada tabel materi drainase dari Kementrian Pekerjaan Umum seperti pada Tabel 3 berikut. Tabel 3 Periode ulang untuk tipologi kota tertentu Tipologi Kota Kota Metropolitan Kota Besar Kota Sedang Kota Kecil
<10 2 tahun 2 tahun 2 tahun 2 tahun
Daerah Tangkapan Air (ha) 10-100 101-500 >500 2-5 tahun 5-10 tahun 10-25 tahun 2-5 tahun 2-5 tahun 5-20 tahun 2-5 tahun 2-5 tahun 5-10 tahun 2 tahun 2 tahun 2-5 tahun
2. Perhitungan volume andil banjir total Volume andil banjir digunakan untuk merancang sumur resapan. Tata cara perencanaan sumur resapan air hujan mengacu pada SNI 032453-2002 tentang Tata Cara Perencanaan Sumur Resapan Air Hujan untuk Lahan Pekarangan, melalui persamaan berikut. Vab = 0.85 x C x A x R (10) Keterangan: Vab = Volume andil banjir (lt) C = Koefisien limpasan A = Luas daerah pengaliran (m2) R = Tinggi hujan harian rata-rata (lt/m2 hari) Selain itu, volume banjir juga ditentukan berdasarkan pengukuran langsung pada lokasi banjir saat terjadi hujan selama periode penelitian. Hasil pengukuran volume banjir melalui metode grid diolah dengan menggunakan software Surfer 10. Volume banjir dalam perhitungan perencanaan sumur resapan adalah volume banjir terbesar saat hujan maksimum. 3. Penentuan arah limpasan berdasarkan topografi lahan Hasil pengukuran kontur lahan dengan alat Total Station digunakan untuk penentuan arah aliran limpasan oleh software Google Earth dan Surfer. Pengolahan data menggunakan metode interpolasi. Algarni dan Hassan (2001) mendefinisikan metode interpolasi sebagai prosedur untuk mengestimasi nilai suatu properti pada titik yang belum diuji dengan menggunakan data yang telah ada. Penggunaan metode interpolasi tergantung dari sebaran titik detail saat melakukan surveying. Kerapatan dari data dengan interval sampling yang berbeda juga merupakan salah satu faktor yang mempengaruhi akurasi interpolasi (Chaplot et al. 2006; Weng 2006). Hasil pengolahan data berupa peta topografi lahan dan arah limpasan air digunakan untuk menentukan pembagian daerah tangkapan air (DTA).
6 4. Penentuan nilai koefisien permeabilitas tanah Hasil pengukuran laju infiltrasi tanah pada tiap DTA diolah dan dibandingkan dengan model infiltrasi Philips. Kemudian, nilai koefisien permeabilitas tanah diperoleh dengan metode trial and error. Menurut SNI 03-2453-2002, permeabilitas tanah adalah kemampuan tanah untuk dapat diresapi air. Dalam pengukuran kapasitas atau laju infiltrasi digunakan model Philips. Geonadi et al, (2012) menyatakan bahwa model infiltrasi Philips cukup sesuai digunakan dalam prediksi limpasan permukaan. Secara empiris, model tersebut dituliskan dalam persamaan berikut. 1
f t = S x t-0.5 + K
(11)
2
dengan : f(t) = Fungsi laju infiltrasi terhadap waktu (cm/det) S = Daya serap tanah K = Konduktivitas hidrolik/ permeabiltas tanah Berdasarkan Kusnaedi (2011), daya serap tanah terhadap air hujan dikelompokkan sesuai dengan tata guna lahan. Nilai daya serap tanah tersebut dapat dilihat pada Tabel 4 berikut. Tabel 4 Nilai daya serap tanah berdasarkan tata guna lahan Tata Guna Lahan (Land Use) Daya Serap Tanah terhadap Air Hujan (%) Daerah Hutan/Pekarangan Lebat 80-100 Daerah Taman Kota 75-95 Jalan Tanah 40-85 Jalan Aspal, Lantai Beton 10-15 Daerah dengan Bangunan Terpencar 30-70 Daerah Pemukiman agak Padat 15-30 Daerah Pemukiman Padat 10-30 Sumber : Kusnaedi 2011
Permeabilitas dapat juga diartikan sebagai kecepatan bergeraknya suatu cairan pada suatu media berpori dalam keadaan jenuh. Menurut Arsyad (2010), permeabilitas tanah dapat dikelompokkan seperti pada Tabel 5 berikut. Tabel 5 Kategori permeabilitas tanah Permeabilitas tanah (cm/jam) < 0.5 0.5-2.0 2.0-6.25 6.25-12.5 >12.5
Tipe P1 P2 P3 P4 P5
Kategori Lambat Agak lambat Sedang Agak cepat Cepat
7 5. Perencanaan dimensi, jumlah, dan kapasitas bangunan resapan air hujan, serta menentukan rencana anggaran biaya (RAB) Bangunan resapan air hujan yang dirancang mengacu pada SNI 032453-2002 tentang Tata Cara Perencanaan Sumur Resapan Air Hujan untuk Lahan Pekarangan. Penentuan jumlah sumur resapan berdasarkan volume andil banjir dari atap bangunan dan volume resapan air hujan, sehingga diperoleh volume penampungan air hujan. Metode ini dilakukan untuk meresapkan seluruh air limpasan atap ke dalam tanah. Sementara itu, masalah banjir di lokasi penelitian diselesaikan dengan perancangan sumur resapan berdasarkan volume genangan yang terjadi saat hujan maksimum selama periode penelitian. Selain itu, perancangan parit berorak disesuaikan dengan dimensi saluran drainase terukur. Rencana anggaran biaya (RAB) disusun hanya mencakup biaya bahan yang diperlukan dalam pembuatan sumur resapan dan pelengkapnya. Sementara itu, pembuatan parit berorak tidak membutuhkan biaya bahan karena hanya berupa lubang di sepanjang saluran drainase. Mulai
Identifikasi masalah
Pengolahan data
Studi literatur
Pengukuran lapang
Curah hujan rencana
Metode penelitian, rumus perhitungan, koefisien
Lokasi dan kedalaman banjir
Volume banjir
Topografi lahan
Arah aliran air dan DTA
Dimensi saluran
Sistem resapan air
Laju Infiltrasi
Permeabilitas tanah
Sistem resapan air hujan
Gambar 1 Diagram alir prosedur penelitian
8
HASIL DAN N PEMBA AHASAN Pada lokaasi penelitiian terdapaat tiga titik k genangan n utama, aantara lain Parkiiran GWW,, Depan Dekanat FEM MA, dan Jalaan Ramin (R Rektorat). S etiap turun hujann, ketiga lookasi terseb but selalu ddigenangi aiir. Hal tersebut disebaabkan oleh beberapa faktor,, antara lain n sistem draainase yang tidak memaadai dan konndisi lahan resappan air yangg semakin berkurang. b T Tampak gen nangan yan ng terjadi ter erlihat pada Gam mbar 2 berikuut.
Gambar 2 Genangan yang terjaddi di sekitarr Gedung GW WW dan FE EMA Daerah Ta angkapan A Air dan Ta ata Guna Lahan Peta konntur daerah h penelitiaan diperoleeh dari pengukuran p langsung mengggunakan alat a total sta ation TOPC CON GTS 235N. 2 Peta kontur k terseebut diolah untukk menentukkan arah aliiran air. Haasil pengolaahan data beerupa peta kkontur dan arah aliran air teersaji pada Gambar G 3 bberikut.
Gambbar 3 Peta kontur k dan arah aliran air di lokasi penelitiann
9 Berddasarkan peeta kontur ddan arah alirran air di atas, batas ddaerah tangk kapan air (DTA)) dan sub-D DTA ditentuukan untuk perencanaaan sistem reesapan air hujan. h Selain ituu, hasil citraa satelit dipperoleh berrupa peta taata guna laahan pada setiap s DTA. Daeerah penelittian terbagii menjadi 3 DTA, den ngan genanngan yang cukup c besar terjaadi pada DT TA 1 dan D DTA 2. Petta DTA dan n tata gunaa lahan disaajikan pada Gam mbar 4 beriku ut.
Gambar 4 Peta DTA A dan tata guna g lahan lokasi penellitian Peta DTA diibagi menjaadi beberap pa jenis tatta guna lahhan yaitu aspal/ a paving bloock, bangun nan, danau, lahan koso ong, dan veg getasi. Luass masing-m masing diukur denngan softwa are ArcGIS 10. Peta tatta guna lahaan tersebut ddigunakan untuk u menentukaan nilai koefisien limppasan tiap sub-DTA. Nilai N koefissien limpassan C berbagai karakter k perrmukaan terrsaji pada Lampiran 1. Hasil perhiitungan koefisien limpasan dan d luas sub b-DTA dapaat dilihat paada Tabel 6 berikut. Tabel 6 Perhitunngan koefissien limpasaan tiap DTA A DTA
SubDTA S SubDTA 1A
DTA 1
S SubDTA 1B
S SubDTA 1C
S SubDTA 2A DTA 2 S SubDTA 2B
Tutupan laahan Aspal/Pavinng
Luas (Ha) 0.3 30
C 1
Luas x C 0.30
C SubDTA
Bangunan
0.0 05
1
0.05
0.58
Vegetasi
0.5 51
0.3
0.15
Aspal/Pavinng
0.5 54
1
0.54
Bangunan
0.1 17
1
0.17
Vegetasi
0.2 27
0.3
0.08
Aspal/Pavinng
0.3 32
1
0.32
Vegetasi
0.3 34
0.3
0.10
Aspal/Pavinng
0.6 62
1
0.62
Bangunan
0.1 11
1
0.11
Vegetasi
0.5 52
0.3
0.15
Aspal/Pavinng
0.6 65
1
0.65
Vegetasi
0.9 92
0.3
0.28
0.81
0.64
0.71
0.59
10 DTA
SubDTA SubDTA 2C SubDTA 2D
SubDTA 2E DTA 2
SubDTA 2F
SubDTA 2G SubDTA 2H SubDTA 2I DTA 3
SubDTA 3A
Tutupan lahan Vegetasi Aspal/Paving Bangunan Danau Vegetasi Bangunan Danau Vegetasi Aspal/Paving Bangunan Vegetasi Aspal/Paving Bangunan Vegetasi Aspal/Paving Vegetasi Aspal/Paving Vegetasi Vegetasi
Luas (Ha) 0.93 0.51 1.11 0.27 1.62 0.22 0.23 0.80 0.63 1.30 1.94 0.94 2.63 1.00 0.04 1.26 0.76 1.54 2.55
C 0.3 1 1 0 0.3 1 0.3 0.3 1 1 0.3 1 1 0.3 1 0.3 1 0.3 0.3
Luas x C 0.28 0.51 1.11 0.00 0.48 0.22 0.07 0.24 0.63 1.30 0.58 0.94 2.63 0.30 0.04 0.38 0.76 0.46 0.77
C SubDTA 0.30 0.60
0.43
0.65
0.85 0.32 0.53 0.30
Nilai koefisien limpasan ditentukan oleh tata guna lahan pada tiap subDTA. Nilai koefisien limpasan terbesar terdapat pada subDTA 2G sebesar 0.85. Hal ini disebabkan oleh luas bangunan dan jalan aspal yang jauh lebih besar dibandingkan dengan luas lahan vegetasi. Nilai C terkecil terjadi pada subDTA 2C dan 3A yaitu sebesar 0.3 karena hanya terdapat lahan vegetasi.
Analisis Hujan dan Volume Genangan Analisis hujan menggunakan data curah hujan harian maksimum selama 10 tahun dari tahun 2004 hingga 2013 milik Stasiun Klimatologi BMKG Darmaga, Bogor (Lampiran 2). Kemudian, data curah hujan tersebut diolah melalui analisis distribusi frekuensi. Jenis distribusi frekuensi yang dilakukan adalah distribusi Normal, Log Normal, Log-Pearson III, dan Gumbel untuk periode ulang 2, 5, 10, 25, dan 50 tahun. Hasil analisis distribusi frekuensi terlihat pada Tabel 7 berikut. Tabel 7 Rekapitulasi hasil analisis curah hujan puncak selama periode ulang tertentu Analisis Probabilitas Hujan Rencana (mm/hari)
Periode Ulang (T tahun)
Normal
Log Normal
Log Person III
Gumbel
2 5 10 25 50
128.16 143.57 151.65 159.54 165.78
126.93 143.78 153.47 163.59 172.05
128.76 144.13 151.71 159.35 164.01
125.68 147.58 162.09 180.41 194.01
11 Untuk mengetahui jenis distribusi frekuensi terpilih, uji parameter statistik dan uji kecocokan perlu dilakukan. Uji parameter statistik menghasilkan nilai standar deviasi (S), koefisien kemencengan (Cs), koefisien kurtosis (Ck), dan koefisien variasi (Cv) dan dibandingkan dengan syarat pada masing-masing parameter. Hasil analisis tersaji pada Tabel 8 berikut. Tabel 8 Perbandingan Nilai Cs, Ck, dan Cv hasil perhitungan dan persyaratan No 1 2
Cs ≈ 0
Hasil Perhitungan 0.156
Ck ≈ 3
3.209
Jenis Distribusi Normal Log Normal
Syarat
Cs = 3Cv + Cv3 Cs = 0.41903569 Ck=Cv8+6Cv6+15Cv4+ 16Cv2+3 Ck=3.313799695
3 4
Gumbel Log Pearson Tipe III
Keterangan Tidak Memenuhi
0.156 Tidak Memenuhi 3.209
Cs ≤ 1.1396
0.156
Ck ≤ 5.4002
3.209
Cs = 0
0.156
Memenuhi Tidak Memenuhi
Dari hasil tersebut, hasil perhitungan parameter statistik yang memenuhi syarat adalah jenis distribusi Gumbel. Kemudian, uji kecocokan dilakukan melalui metode Smirnov-Kolmogorov pada masing-masing distribusi frekuensi. Pada distribusi Log Normal dan Log Pearson III untuk jumlah data (N) sebanyak 10 dan α sebesar 5%, diperoleh harga D0 5% sebesar 0,41. Dengan demikian, Dmaks sebesar 0,885 lebih besar dibandingkan D0 5%, sehingga dapat disimpulkan bahwa distribusi tersebut tidak dapat diterima. Sementara itu, pada distribusi Normal dan Gumbel diperoleh Dmaks diperoleh sebesar 0.0805 lebih kecil dibandingkan D0 5%, sehingga distribusi tersebut dapat diterima. Berdasarkan hasil uji parameter statistik dan uji kecocokan tersebut dapat diketahui bahwa distribusi yang digunakan adalah distribusi Gumbel. Pada tabel 1, luas tiap DTA 10-100 ha dengan jenis tipologi terlihat setara dengan kota sedang, sehingga nilai curah hujan rencana menggunakan periode ulang 2 tahun sebesar 125.68 mm/hari. Volume andil banjir pada daerah penelitian dihitung berdasarkan SNI 032453-2002 tentang Tata Cara Perencanaan Sumur Resapan Air Hujan untuk Lahan Pekarangan. Luas wilayah 25.5929 Ha dengan koefisien limpasan sebesar 0.5923, serta curah hujan rencana sebesar 125.68 mm/hari diperoleh volume banjir sebesar 16,291.09 m3 atau setara dengan 63.65 mm. Selain itu, volume genangan juga diperoleh dari pengukuran langsung di lapangan. Pengukuran dilakukan setiap hujan selama periode penelitian. Data curah hujan harian maksimum dapat dilihat pada Lampiran 3. Data curah hujan harian maksimum disajikan tiap minggu pada Tabel 9 berikut.
12
Bulan Januuari Februari Marret Aprril
T Tabel 9 Daata curah huujan harian aktual a makssimum Curah Huj ujan (mm) Minggu uI Minnggu II Minggu III Minnggu IV 34.4 773.4 86.8 37 31.2 222.4 5.2 25.8 35.4 13.2 40.2 56 113.4 1.6 -
Data voluume genang gan yang diigunakan ad dalah data tanggal 5 A April 2014 saat terjadi hujaan sangat leebat dengann curah hujaan harian teertinggi sebbesar 113.4 mm. Volume geenangan di lokasi parkkiran GWW W diperoleh sebesar 266.62 m3, di depaan dekanat FEMA F sebesar 28.07 m3, dan dii jalan Ram min (Rektoraat) sebesar 3 5.79 m . Keduaa data volum me banjir teersebut dijaadikan dasaar perancanggan sistem resappan air hujann dalam upaaya mengurrangi limpassan permuk kaan. Permeaabilitas Tan nah Faktor jennis tanah merupakan faaktor yang berpengaru uh terhadap efektivitas sumuur resapan. Menurut Johnson J (19986), jenis tanah liat kurang pottensial dan mem miliki kondduktivitas hidraulik h vvertikal rendah. Infiltrasi adallah proses masuuknya air ke dalam tanah meelalui perm mukaan tan nah. Prosess infiltrasi meniingkatkan kadar k air daalam tanah . Laju infilltrasi dipengaruhi olehh koefisien perm meabilitas taanah (K) yaang tergantuung pada distribusi d uk kuran partikkel, bentuk partikkel, dan struktur s tan nah. Penguukuran perrmeabilitas tanah dilaakukan di beberapa lokasi yang meewakili maasing-masing g DTA. Pengukuran dilakukan denggan mencataat waktu penurunan muuka air pad da lubang beerdiameter 10 cm dan kedaalaman 30 cm c hingga penurunanny p nya konstan.. Lubang teersebut sepeerti tampak padaa Gambar 5 berikut.
n laju infiltrrasi Gambar 5 Lubang pengukuran ndingkan deengan modeel infiltrasi Hasil penggukuran terrsebut diolaah dan diban Philiips. Hasil pengolahan data laju innfiltrasi pad da DTA 1 tersaji pada Gambar 6 berikkut.
Laju Infiltrasi (cm/s)
13 0,020 0,018 0,016 0,014 0,012 0,010 0,008 0,006 0,004 0,002 0,000 0
50
100
150
200
250
300
Waktu (s1/2) Infiltrasi Terukur
Model Philips
Gambar 6 Perbandingan laju infiltrasi terukur dengan model Philips pada DTA 1
Laju Infiltrasi (cm/s)
Gambar di atas menunjukkan bahwa kedua grafik hampir berhimpit mendekati sumbu X yang menunjukkan laju infiltrasi konstan karena kondisi tanah yang mulai jenuh. Perhitungan nilai permeabilitas tanah pada model infiltrasi Philips dilakukan melalui metode trial and error dengan nilai daya serap tanah untuk daerah bangunan terpencar sebesar 0.3. Dari perhitungan, nilai permeabilitas tanah pada DTA 1 diperoleh sebesar 0.00062128 cm/dtk atau 2.2366 cm/jam. Nilai rata-rata error pada perhitungan ini sebesar 0.0007 cm/dtk. Pengukuran yang sama juga dilakukan pada DTA 2 dengan hasil pengolahan tersaji pada Gambar 7 berikut. 0,030 0,028 0,026 0,024 0,022 0,020 0,018 0,016 0,014 0,012 0,010 0,008 0,006 0,004 0,002 0,000 0
50
100
150
200
250
Waktu (s1/2) Infiltrasi Terukur
Model Philips
Gambar 7 Perbandingan laju infiltrasi terukur dengan model Philips pada DTA 2 Berdasarkan gambar di atas, nilai permeabilitas tanah pada DTA 2 diperoleh sebesar 0.0005822 cm/dtk atau 2.0962 cm/jam dengan nilai rata-rata error sebesar 0.0007 cm/dtk. Nilai tersebut tidak berbeda jauh dengan nilai pada DTA 1 karena kedua lokasi berdekatan dan jenis tanah seragam. Kedua nilai permeabilitas tanah
14 tersebut termasuk dalam kelompok P3 atau permeabilitas sedang menurut Arsyad (2010). Selain itu menurut Suripin (2004), nilai tersebut memenuhi syarat permeabilitas tanah untuk perencanaan sumur resapan.
Sistem Penampungan dan Peresapan Air Hujan Menurut Wahyuningtyas dkk (2011), seluruh air hujan yang jatuh di suatu wilayah harus dibuang secepatnya ke sungai. Filosofi membuang air genangan secepatnya ke sungai mengakibatkan sungai menerima beban melampaui kapasitas, sementara tidak banyak air yang dapat meresap ke dalam tanah. Sebaiknya, limpasan air hujan di permukaan tanah diusahakan untuk meresap ke dalam tanah sebelum dibuang ke sungai melalui saluran drainase. Berdasarkan observasi lapang dan pengolahan data sebelumnya, masalah genangan pada beberapa titik di sekitar gedung GWW dapat disebabkan oleh kontur jalan yang bergelombang, dimensi saluran yang tidak mencukupi, serta kondisi tanah yang mulai jenuh. Oleh karena itu, sistem penampungan dan peresapan air hujan perlu dilakukan untuk menyalurkan air hujan dalam waktu yang lebih singkat. Sumur Resapan Beberapa bangunan penampungan dan peresapan air hujan yang akan dibangun adalah sumur resapan dan parit berorak. Analisis dan rancangan bangunan resapan berdasarkan SNI 03-2453-2002 tentang Tata Cara Perencanaan Sumur Resapan Air Hujan untuk Lahan Pekarangan. Dimensi dan kebutuhan jumlah sumur sangat tergantung pada nilai permeabilitas tanah, luas daerah penutupan, dan karakteristik hujan. Sumur resapan dirancang dengan diameter 1 m dan kedalaman 2.5 m. Perhitungan jumlah sumur resapan dan kapasitas tampungan berdasarkan luas bangunan pada tiap sub-DTA di daerah penelitian. Hasil perhitungan tersaji pada Tabel 10 berikut. Tabel 10 Hasil perhitungan jumlah sumur resapan dan kapasitas tampungan DTA
Sub-DTA 1A 1B 1C 2A 2B 2C 2D 2E 2F 2G 2H 2I
DTA 1
DTA 2
Total
Luas Bangunan (m2) 489.24 1665.39 1102.35 11096.95 2240.19 13006.19 26276.61 55876.92
Jumlah Sumur Resapan (buah) 27 91 61 607 123 712 1438 3059.00
CH Tertampung (mm) 0.46 1.54 1.03 10.26 2.08 12.03 24.30 51.70
15 Berdasarkan hasil perhitungan sumur resapan, seluruh curah hujan yang jatuh sebanyak 51.70 mm mampu ditampung sumur resapan sebanyak 3,059 buah. Masing-masing sumur resapan mampu menampung curah hujan sebanyak 0.017 mm. Selain itu, perhitungan juga dilakukan pada setiap gedung. Selain itu, pengnentuan jumlah sumur resapan juga didasarkan pada tiap gedung. Gedung GWW seluas 3,366 m2 memerlukan sumur sebanyak 185 buah agar dapat menampung semua volume andil banjir. Pada gedung perkuliahan dengan sistem Wing seperti gedung FEMA, Faperta, dan Fateta dengan luas sebesar 803 m2, jumlah kebutuhan sumur sebanyak 44 buah. Gedung lain yang dihitung adalah gedung perkuliahan dengan bentuk segitiga seluas 591 m2 diperlukan sumur resapan sebanyak 33 buah sumur. Sumur resapan juga dirancang berdasarkan volume genangan maksimal yang pernah terjadi selama periode penelitian. Jumlah sumur yang diperlukan di sekitar gedung GWW dengan volume genangan sebesar 26.62 m3 adalah 14 buah sumur. Selain itu, di depan dekanat FEMA dengan volume genangan 28.07 m3 diperlukan sumur resapan sebanyak 15 buah, serta di jalan Ramin (Rektorat) diperlukan tiga buah sumur resapan untuk mengatasi volume banjir sebesar 5.789 m3. Oleh karena itu, jumlah total sumur resapan untuk mengatasi genangan adalah sebanyak 32 buah sumur. Contoh perhitungan sumur resapan terdapat pada Lampiran 4. Waktu yang dibutuhkan oleh air hujan dalam sumur resapan untuk meresap habis ke dalam tanah adalah selama 12.1 jam. Rancangan sumur resapan dilengkapi dengan saluran pelimpah yang berfungsi membuang kelebihan air ke saluran drainase. Sumur resapan ditempatkan tepat di lokasi genangan. Persyaratan jarak minimum sumur resapan terhadap bangunan mengacu pada SNI 03-2453-2002 adalah 1 m dari pondasi bangunan, 5 meter dari septic tank dan 3 meter dari sumur air bersih. Konstruksi sumur resapan ini digunakan pasangan bata merah adukan 1:5 dengan jarak kosong 10 cm tanpa plester sebagai dinding, sedangkan alasnya menggunakan batu pecah sedalam 50 cm yang berfungsi meredam energi dan menyaring air yang masuk. Konstruksi pengisi sumur tidak perlu dirancang seperti tangki septik karena kualitas air hujan tidak seburuk air limbah. Penutup sumur menggunakan plat beton bertulang setebal 10 cm dengan campuran 1 semen: 2 pasir: 3 kerikil. Saluran air dari talang menuju ke sumur menggunakan pipa PVC dengan diameter 110 mm. Konstruksi sumur resapan tersaji pada Lampiran 8 dan 9. Parit Berorak dan Lubang Resapan Biopori (LRB) Saluran drainase yang tidak mampu menampung air hujan juga menyebabkan terjadinya limpasan permukaan dan banjir. Sistem parit berorak lebih mudah diterapkan untuk menambah kapasitas saluran drainase dibandingkan dengan mengubah dimensi saluran. Parit berorak merupakan model sumur resapan yang meresapkan air melalui parit-parit dengan sumur atau rorak penampung air (Ridhoatmaji 2013). Sistem ini dibangun dengan membuat lubang-lubang pada saluran dengan dimensi dan jarak tertentu. Dimensi rorak dirancang dengan kedalaman dua meter serta panjang satu meter dan lebar sesuai dimensi saluran. Jumlah total parit yang direncanakan sebanyak 546 buah dengan setiap rorak ratarata mampu menampung curah hujan (CH) sebesar 0.009 mm. Total curah hujan
16 yang ditampung oleh parit berorak adalah 4.32 mm. Berdasarkan Direktorat Pengolahan Lahan, Departemen Pertanian (2006) mengenai standar teknis pembuatan rorak, kemiringan lahan atau saluran yang diperbolehkan antara 330 %. Hal ini bertujuan untuk menjamin keberhasilan penggunaan rorak dalam menampung air. Contoh perhitungan parit berorak terdapat pada Lampiran 5. Hasil perhitungan jumlah rorak dan volume tertampung pada setiap saluran tersaji pada Tabel 11 berikut. Tabel 11 Hasil perhitungan jumlah dan volume rorak DTA
DTA 1
DTA 2
Panjang Saluran (m) 1250
Lebar Saluran (m) 0.25
Jumlah Parit (buah) 209
CH Tertampung per Unit (mm) 0.005
76.2
0.56
13
0.010
0.129
83.13
0.59
14
0.011
0.147
377
0.55
63
0.010
0.621
364
0.5
61
0.009
0.550
190
0.6
32
0.011
0.339
246
0.77
41
0.014
0.554
Jalan Ramin (kanan)
346
0.46
58
0.008
0.484
Jalan Ramin (kiri)
330
0.45
55
0.008
0.453
3262.33
-
546
-
4.32
Saluran Parkiran GWW Samping Toilet GWW Selatan GWW Depan Faperta (kanan) Depan Faperta (kiri) Depan FEMA (kanan) Depan FEMA (kiri)
Total
CH Total (m3) 1.045
Selain parit berorak, lubang resapan biopori (LRB) juga dapat diterapkan sebagai alternatif bangunan resapan air hujan. Biopori merupakan salah satu teknologi eko-drainase yang berupa lubang berdiameter 10-30 cm dengan kedalaman 80-100 cm (R. Kamir 2009). Dimensi lubang biopori relatif kecil dibandingkan dengan dimensi sumur resapan. LRB dengan diameter 10 cm dan kedalaman 80 cm hanya mampu menampung curah hujan sebesar 0.0001 mm. Volume tampungan satu sumur resapan setara dengan 170 lubang biopori. Oleh karena itu, LRB tidak direkomendasikan pada penelitian. Namun demikian, LRB dapat ditempatkan di beberapa lokasi genangan kecil dengan konstruksi sangat sederhana dan biaya yang relatif murah. Rencana Anggaran Biaya (RAB) dan Efektifitas Bangunan Resapan Pembuatan sumur resapan juga perlu disertai dengan perencanaan anggaran biaya. Penyusunan rencana anggaran biaya (RAB) berdasarkan Jurnal Harga Satuan Bahan Bangunan, Konstruksi, dan Interior Kabupaten Bogor Tahun 2014. Selain itu, analisis harga satuan pekerjaan mengacu pada SNI 6897-2008 tentang Tata Cara Perhitungan Harga Satuan Pekerjaan Dinding untuk Konstruksi Bangunan Gedung dan Perumahan, serta SNI 7394-2008 tentang Tata Cara Perhitungan Harga Satuan Pekerjaan Beton untuk Konstruksi Bangunan Gedung dan Perumahan. Rencana anggaran biaya hanya mencakup harga bahan atau material sumur resapan. Total biaya bahan yang diperlukan untuk pembuatan satu buah sumur
17 adalah sebesar Rp 3,100,000,0 3 00. Dalam upaya men ngatasi maasalah genaangan, diperlukann jumlah su umur resapaan sebanyak k 32 buah di sekitar llokasi genaangan. Oleh kareena itu, dipeerlukan biayya bahan keseluruhan k sebesar Rpp 99,200,00 00,00. Rincian RAB R dan an nalisis hargaa satuan pekerjaan dap pat dilihat ppada Lampiiran 6 dan 7. Peraancangan siistem resappan air hujaan dilakukaan dalam uupaya meng gatasi masalah banjir b pada daerah pennelitian. Sum mur resapan n mampu m meresapkan curah hujan sebbesar 51.69 9 mm dan parit bero orak mamp pu menamppung 4.32 mm. Kapasitas total bangu unan resapaan dapat menampung m curah hujaan sebesar 56.01 mm. Banggunan resap pan yang tellah dirancan ng mampu menguranggi 88 % darii total limpasan air hujan sebesar 63.665 mm. Sissa curah hu ujan sebesarr 7.64 mm akan cukup ditaampung oleh h saluran drrainase. Berddasarkan peengamatan langsung di d lokasi pen nelitian, ban anjir yang teerjadi juga disebbabkan oleh dimensi lubang sad dap atau in nlet yang kkurang mem madai sehingga air limpasaan membutuuhkan wak ktu yang cu ukup lama uuntuk masu uk ke dalam saaluran drain nase. Hal ini diperp parah deng gan adanyaa sampah yang menyumbat lubang saadap tersebuut. Selain ittu, konstruk ksi jalan yanng kurang miring m dan adanyya lubang pada p jalan m menyebabkaan genangan n semakin bbanyak. Tampak lubang saddap dapat diilihat pada G Gambar 8 berikut. b
Gambar G 8 T Tampak lubaang sadap attau inlet Peniingkatan efe fektifitas banngunan resaapan air hujjan dapat ddilakukan deengan memperbaaiki kompon nen lain sepperti lubang g sadap dan konstruksi jalan. Selaiin itu, perawatann rutin juga perlu dilakuukan khusu usnya untuk mengatasi masalah sampah yang seriing menyu umbat dann juga end dapan lum mpur di saaluran draiinase. Berdasarkkan hasil dii atas, konssep zero ru unoff telah dapat diterrapkan di lokasi l penelitian sebagai upaya mengurrangi volum me banjir. Zero Z runoff m merupakan suatu konsep draainase yang g cukup efekktif untuk menahan m dan menyerapp air limpassan ke dalam tanaah sehinggaa tidak terjaadi limpasan n permukaan n atau biasaa disebut ban njir.
18
SIMPULAN DAN SARAN Simpulan Berdasarkan pada observasi lapang mengenai sistem drainase dan kondisi lahan, penerapan konsep zero runoff di sekitar Gedung Graha Widya Wisuda (GWW)-FEMA adalah membangun sumur resapan dangkal dan parit berorak. Sumur resapan dirancang dengan diameter satu meter dan kedalaman 2.5 meter. Keseluruhan sumur resapan dapat menampung curah hujan sebesar 51.69 mm. Selain itu, parit berorak dirancang dengan kedalaman dua meter, panjang satu meter dan lebar menyesuaikan tiap saluran. Jumlah rorak total sebanyak 546 buah mampu menampung curah hujan sebesar 4.32 mm. Bangunan resapan yang telah dirancang mampu mengurangi 88 % dari total limpasan air hujan sebesar 63.65 mm. Sisa air limpasan sebesar 7.64 mm mampu ditampung saluran drainase. Biaya bahan yang diperlukan untuk membuat satu unit sumur resapan adalah Rp 3,100,000.00.
Saran Sebaiknya dilakukan penelitian lebih lanjut mengenai ujicoba sumur resapan untuk mengetahui efektivitas resapan air hujan. Selain itu, pihak terkait dalam hal ini IPB sebaiknya segera membangun sumur resapan dan parit berorak untuk menyelesaikan masalah genangan yang terjadi. Kemiringan jalan juga harus diperhatikan agar air tidak menggenang di jalan, serta lubang sadap atau inlet perlu diperbesar dengan dilengkapi jaring penahan sampah agar air dapat dengan cepat masuk ke dalam saluran drainase.
19
DAFTAR PUSTAKA Algarni D, Hassan I. 2001. Comparison of thin plate spline, polynomial Cfunction and Shepard’s interpolation techniques with GPS derived DEM. International Journal of Applied Earth Observation and Geoinformation. 3(2): 155-161. Arsyad. 2010. Konservasi Tanah dan Air. Edisi Revisi. Bogor (ID) : IPB Press [BSN] Badan Standardisasi Nasional. 2002. Standar Nasional Indonesia Nomor 03-2453-2002 tentang Tata Cara Perencanaan Sumur Resapan Air Hujan Untuk Lahan Pekarangan. Jakarta (ID): BSN. [BSN] Badan Standardisasi Nasional. 2002. Standar Nasional Indonesia Nomor 6897-2008 tentang Tata Cara Perhitungan Harga Satuan Pekerjaan Dinding untuk Konstruksi Bangunan Gedung dan Perumahan. Jakarta (ID): BSN. [BSN] Badan Standardisasi Nasional. 2002. Standar Nasional Indonesia Nomor 7394-2008 tentang Tata Cara Perhitungan Harga Satuan Pekerjaan Beton untuk Konstruksi Bangunan Gedung dan Perumahan. Jakarta (ID): BSN. Bhim S, Deepak R, Amol V, Jitendra S. Probability analysis for estimation of annual one day maximum rainfall of Jhalarapatan area of Rajasthan, India. Plant Archives. 12(2) : 1093-1100. ISSN : 0972-5210. Chaplot V, Darboux F, Bourennane H, Leguedois S, Silvera N, Phachomphon K. 2006. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology. 77 : 126-141. Direktorat Pengolahan Lahan. 2006. Pedoman Teknis Pembuatan Rorak dalam Rangka Upaya Konservasi Tanah dan Air. Jakarta (ID): Departemen Pertanian Geonadi S, Mawardi M, Ritawati S. 2012. Kesesuaian Model Infiltrasi Philips untuk Prediksi Limpasan Permukaan Menggunakan Metode Bilangan Kurva. AGRITECH 32(3):331. Johnson A.I, Moston R.P, Versaw S.F. 1966. Laboratory study of aquifer properties and well design for an artificial recharge site. US Geological Survey Water Supply Paper, No. 1615-H, 41p. Kusnaedi. 2011. Sumur Resapan untuk Pemukiman Perkotaan dan Pedesaan. Jakarta: Penebar Swadaya. R. Kamir B. 2009. Lubang Resapan Biopori untuk Mitigasi Banjir, Kekeringan dan Perbaikan. Prosiding Seminar Lubang Biopori (LBR) di Gedung BPPT, Jakarta. Ridhoatmaji, Dinda. 2013. Analisis dan Desain Bangunan Hidrolika dengan Konsep Zero Runoff di Perumahan Taman Sari Persada, Bogor [skripsi]. Bogor (ID): IPB Press Suripin. 2004. Sistem Drainase Perkotaan yang Berkelanjutan. Yogyakarta: Andi. Wahyuningtyas, Ayu Dkk. 2011. Strategi Penerapan Sumur Resapan Sebagai Teknologi Ekodrrainase di Kota Malang (Studi Kasus: Sub Das Metro). Jurnal Tata Kota dan Daerah Volume 3, Nomor 1, Juli 2011
20 Lampiran 1 Nilai koefisien limpasan C berbagai karakter permukaan Deskripsi lahan/ karakter permukaan Business Perkotaan Pinggiran Perumahan Rumah tunggal Multiunit, terpisah Multiunit, tergabung Perkampungan Apartemen Industri Ringan Berat Perkerasan Aspal dan beton Batu bata, paving Atap Halaman, tanah berpasir Datar, 2% Rata-rata, 2-7% Curam, 7% Halaman, tanah berat Datar, 2% Rata-rata, 2-7% Curam, 7% Halaman kereta api Taman tempat bermain Taman, perkuburan Hutan Datar, 0-5 % Bergelombang, 5-10% Berbukit, 10-30 % Sumber: McGuen 1989 dalam Suripin 2004
Koefisien limpasan, C 0.70-0.90 0.50-0.70 0.30-0.50 0.40-0.60 0.60-0.75 0.25-0.40 0.50-0.70 0.50-0.80 0.60-0.90 0.70-0.95 0.50-0.70 0.75-0.95 0.05-0.10 0.10-0.15 0.15-0.20 0.13-0.17 0.18-0.22 0.25-0.35 0.10-0.35 0.20-0.35 0.10-0.25 0.10-0.40 0.25-0.50 0.30-0.60
21
Lampiran 2 Data curah hujan harian maksimum tahun 2004-2013 Tahun
Jan
Feb
Mar
Apr
Mei
Jun
Jul
Ags
Sep
Okt
Nov
Des
2004
98.5
48.3
66.2
83.4
78.3
102.2
65.6
141.6
86.4
133
64.4
101.6
2005
115
126.5
107.5
76
105.5
101.5
44.8
58.1
95.5
62.6
79.6
57.5
2006
136.4
66
24
66.5
93.3
78.2
7.6
73.8
23
44.3
81.5
38.7
2007
114.3
83
36.5
155.5
27.4
41.5
35.5
57.5
115
50.4
79.3
77
2008
82.1
75.5
104.5
67.5
70
45.5
102.2
32.7
95.5
59.1
89.4
58.2
2009
93
37.5
40.5
62.2
115.1
94.3
40.6
15.7
35.5
63
78.2
48
2010
48.6
81.2
75.6
14.6
71.3
101.1
66.3
100
144.5
91.2
48
21.4
2011
58.8
15.6
27.5
49.5
97.6
75.5
88.2
56.6
23.9
67
74.3
57.8
2012
42
85.3
34.5
116
44.1
36.8
79.3
58.2
57.5
86.4
123.1
76.7
2013
74.2
96.5
71.5
42
95.6
36.5
92.7
86.7
136.8
60.2
46.1
97.4
Sumber: Stasiun BMKG Dramaga Bogor
21
22 Lampiran 3 Data curah hujan harian maksimum Januari-April 2014 Curah Hujan (mmm) Tanggal Bulan Januari Februari Maret 1 10 0 35.4 2 2.2 16.6 0.4 3 0.2 31.2 0 4 2.2 10.6 0 5 4 13.8 6.2 6 0 1.2 1.8 7 6.4 0.2 19.8 8 34.4 6.8 3 9 0 22.4 0 10 4.2 22.4 0 11 57.4 0 0 12 73.4 0 0 13 6.4 0 2.8 14 1.4 0 0 15 23.8 2.2 0 16 16.6 3.8 13.2 17 86.8 0.4 27.2 18 33.6 0 5.2 19 21.6 0 40.2 20 20.4 0.8 23 21 41.2 5.2 1.6 22 6.2 25.8 0 23 10 12.4 14.4 24 18.6 19.2 7.8 25 0.2 10.6 1.6 26 1.4 21.2 0 27 3.4 1.4 56 28 34.2 14.8 14.8 29 37 10.4 30 2.4 0 31 4.4 4.8 Sumber : Stasiun Cuaca Departemen Teknik Sipil dan Lingkungan
April 9.2 4 0.4 5.6 113.4 6.2 0.2 0 0.4 1.6 0.8 0 1.2 1.6 0
23 Lampiran 4 Contoh perhitungan volume banjir total dan jumlah sumur resapan 1. Perhitungan volume andil banjir total : Diketahui: Luas total DTA = 25.59 ha = 255 929.4 m2 Koefisien limpasan (C) = 0.59 Curah hujan rencana (R) = 125.68 mm/hari Perhitungan : Va = 0.855 CAR = 0.855 x 0.59 x 255 929.4 x 125.68 = 16 291.09 m3 2. Perhitungan volume andil banjir sub-DTA 1 : Diketahui: Luas atap bangunan = 489.24 m2 Koefisien tadah (C) =1 Curah hujan rencana (R) = 125.68 mm/hari Perhitungan : Vab = 0.855 CAR = 0.855 x 1 x 489.24 x 125.68 = 52.57 m3 3. Perhitungan volume penampungan (storasi) dan jumlah sumur : Ditetapkan: Diameter sumur (D) =1m Kedalaman sumur (Hrencana) = 2.5 m Koefisien permeabilitas tanah = 2.2366 cm/jam (0.537 m/hari) Durasi hujan (tc) = 0.9 R0.92 = 0.9 x 125.680.92 = 76.84 menit ≈ 1.28 jam = 3.14 x 0.52 = 0.786 m2 AH = Luas alas sumur AV = Luas dinding sumur = 3.14 x 1 x 2.5 = 7.857 m2 Atotal = Luas permukaan total = 8.643 m2 Air yang meresap selama hujan dengan durasi (tc) 1.28 jam, maka : Vrsp = (tc.Atotal.K) / 24 = (0.5 x 8.643 x 0.537) / 24 = 0.055 m3 Vstorasi = Vab - Vrsp = 52.57 – 0.055 = 52.34 m3 Maka : H = Vstorasi / Ah = 52.34 / 0.786 = 66.61 m Untuk Hrencana = 2.5 m, diperlukan 27 buah sumur.
24 Lampiran 5 Contoh perhitungan parit berorak dan efektifitas bangunan resapan 1. Perhitungan volume resapan saat hujan dan volume penampungan pada gedung GWW: = 1.28 jam Diketahui : Durasi hujan tc Curah hujan rencana = 125.68 mm/hari Direncanakan : Kedalaman rorak (H) Panjang Lebar antar rorak
=2m =1m = 0.56 m (sesuai dimensi saluran) Jarak =5m
= 0.56 x 1 = 0.56 m2 Ah = Luas alas rorak Av = Luas dinding rorak = 2 x [(1 x 2)+(0.56 x 2)] = 6.24 m2 Atotal = Luas permukaan total = 6.8 m2 maka : Vrsp = (tc.Atotal.K) / 24 = (1.28 x 6.8 x 0.537) / 24 = 0.044 m3 Vstorasi = Vrorak = 2 x 1 x 0.56 = 1.12 m3 2. Perhitungan jumlah rorak yang dapat dibuat : Diketahui : Panjang saluran = 76.2 m Jumlah rorak pada parit
= Panjang saluran / (jarak rorak + panjang rorak) = 76.2 / (5 + 1) = 13 rorak
3. Volume andil banjir yang berkurang dengan adanya sistem sumur resapan dan parit berorak : Volume total sumur resapan = 6 004.28 m3 Volume total parit berorak = 488.803 m3 maka, volume andil banjir total yang dapat dikurangi dengan adanya sistem ini adalah sebesar = 6 004.28 + 488.803 = 6 493.083 m3, dengan efektifitas : = (Vab (terserap) / Vab (perumahan) ) x 100% = (6 493.083 / 16 291.09) x 100% = 39.86 %
25 Lampiran 6 Rincian rencana anggaran biaya (RAB) bahan sumur resapan No
Uraian
A
Pekerjaan Sumur Resapan Pasangan Dinding Bata Merah adukan 1:5 Plat Beton Bertulang campuran 1:2:3 Batu Pecah Pengisi Sumur Bahan Lain-lain Total Biaya Pekerjaan Bak Kontrol Pasangan Dinding Bata Merah adukan 1:5 Plat Beton Bertulang campuran 1:2:3 Total Biaya
1 2 3 4 B 1 2
Volume
Satuan
Harga Satuan
Total Harga
7.86
m2
112,709.46
885,896.34
0.16
m3
7,315,853.82
1,191,940.71
0.39 1.00
m3
180,873.00 369,378.00
71,057.25 369,378.00 2,518,272.30
1.25
m2
112,709.46
140,886.82
0.05
m3
7,315,853.82
400,616.16 541,502.98
26 Lampiran 7 Analisa harga satuan pekerjaan sumur resapan No. 1
2
3
Harga Jumlah Satuan Memasang 1 m2 dinding sumur bata merah ukuran (5 x 11 x 12) cm tebal 1 bata, campuran spesi 1 PC : 5 PP Bata merah bakar kelas I 53 bh 998 52894.00 Semen PC Tiga roda/ 50 kg 0.444 zak 81705 36277.02 Pasir pasang kali 0.102 m3 230769 23538.44 112709.46 2 Total biaya bahan dinding 7.86 m 112709.46 885896.34 Kebutuhan
Indeks
Memasang 1 m2 dinding bak kontrol bata merah ukuran (5 x 11 x 12) cm tebal 1 bata, campuran spesi 1 PC : 5 PP Bata merah bakar kelas I Semen PC Tiga roda/ 50 kg Pasir pasang kali
53 0.444 0.102
bh zak m3
998 81705 230769
52894.00 36277.02 23538.44 112709.46
Total biaya bahan dinding
1.25
m2
112709.46
140886.82
Membuat 1 m3 plat beton bertulang 1:2:3 + bekisting Kayu kelas III Paku 5 cm-12cm Minyak bekisting Besi beton polos Kawat beton Semen PC Tiga roda/ 50 kg PB KR Kayu kelas II balok Plywood 9 mm Dolken kayu galam, dia. (8-10) cm, 4 m
0.32 3.2 1.6 157.5 2.25 6.72 0.54 0.81 0.12 2.8
m3 kg liter kg kg zak m3 m3 m3 lembar
2363130 15916 6000 19957 24400 81705 220790 224532 7877100 168898
756201.60 50931.20 9600.00 3143227.50 54900.00 549057.60 119226.60 181870.92 945252.00 472914.40
32
batang
32271
1032672.00 7315853.82
4
Total biaya penutup sumur
0.162926
m
7315853.82
1191940.71
Total biaya penutup bak kontrol
0.05476
m3
7315853.82
400616.16
1 0.392857
m3 m3
180873 180873
180873.00
1
bt
283058
283058.00
2
bh
37467
74934.00
1 1
tb gl
8570 2816
8570.00 2816.00
Memasang pengisi sumur Batu pecah mesin 5/7 Total biaya pengisi sumur
5
3
Analisa bahan pelengkap lain Pipa PVC MASPION ABU dia. 4" Macam2 sambungan paralon dia 4" Lem paralon solatif leideng Total biaya bahan pelengkap
71057.25
369378.00
27
28
29 30
RIWAYAT HIDUP Penulis merupakan anak ke tiga dari tiga bersaudara yang dilahirkan pada tanggal 20 Desember 1991 dari pasangan Asim dan Astuti (Alm) di Malang. Penulis memulai pendidikan tingkat dasar di SD Negeri Percobaan Malang (1998) kemudian melanjutkan ke tingkat menengah di SMP Negeri 1 Malang pada tahun 2004 dan lulus pada tahun 2007. Selanjutkan penulis memasuki jenjang sekolah tingkat atas di SMA Negeri 1 Malang dan lulus pada tahun 2010. Sebelum lulus SMA, penulis telah diterima sebagai mahasiswa di Institut Pertanian Bogor melalui jalur Undangan Saringan Masuk IPB (USMI). Penulis menempuh studi tingkat S1 di Departemen Teknik Sipil dan Lingkungan, Fakultas Teknologi Pertanian dan lulus pada tahun 2014. Selama menjadi mahasiswa, penulis pernah mengikuti kompetisi di bidang teknik sipil dan lingkungan, serta beberapa kali mengusulkan gagasan dalam Pekan Kreatifitas Mahasiswa (PKM-GT). Selain itu, penulis juga terlibat dalam kepanitiaan acara Himpunan Mahasiswa Teknik Sipil dan Lingkungan (HIMATESIL) dan menjadi asisten praktikum beberapa mata kuliah seperti Ilmu Ukur Tanah, Hidrolika, dan Teknik Irigasi dan Drainase. Penulis pernah melakukan Praktik Lapangan (PL) pada tahun 2013 di Perum Jasa Tirta I Divisi JASA ASA I/I dengan topik “Mempelajari Pemanfaatan Bendungan Sutami Karangkates-Malang, Jawa Timur untuk Kebutuhan Air Industri”.