perpustakaan.uns.ac.id
digilib.uns.ac.id
DAYA HAMBAT LAPISAN SiO2 DAN KOMPOSIT KITOSAN/Ag PADA KAIN KATUN TERHADAP AKTIVITAS BAKTERI Staphylococcus aureus
Disusun oleh : DHIENTA CORY PRAMITA M0304033
Disusun Oleh :
DHIENTA CORY PRAMITA M0304033
SKRIPSI Diajukan untuk memenuhi sebagian persyaratan mendapatkan gelar Sarjana Sains Kimia
JURUSAN KIMIA FAKULTAS MATEMATIKA DAN ILMU PENGTAHUAN ALAM UNIVERSITAS SEBELAS MARET SURAKARTA 2011 commit to user
1
2 digilib.uns.ac.id
perpustakaan.uns.ac.id
HALAMAN PENGESAHAN Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta telah mengesahkan skripsi mahasiswa Dhienta Cory Pramita, NIM M0304033, dengan judul ” Daya Hambat Lapisan SiO2 Dan Komposit Kitosan/Ag Pada Kain Katun Terhadap Aktivitas Bakteri Staphylococcus aureus
Pembimbing I
Pembimbing II
Candra Purnawan, M. Sc
Dra. Tri Martini, M. Si
NIP. 19781228 200501 1001
NIP. 19581029 198503 2002
Skripsi ini dibimbing oleh:
Dipertahankan di depan Tim Penguji Skripsi pada : Hari Tanggal
: Kamis : 10 Februari 2011
Anggota Tim Penguji : 1. Prof.Drs. Sentot Budi Rahardjo, PhD
1………………………..
NIP. 19560507 198601 1001 2. Nestri Handayani, M.Si,Apt
2………………………..
NIP. 19701211 200501 2002
Disahkan oleh Ketua Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas SebelasMaret Surakarta
Prof. Drs. Sentot Budi Rahardjo, Ph.D NIP. 19560507 198601 1001 commit to user
3 digilib.uns.ac.id
perpustakaan.uns.ac.id
PERNYATAAN Dengan ini saya menyatakan bahwa skripsi saya yang berjudul “ DAYA HAMBAT LAPISAN SiO2 DAN KOMPOSIT KITOSAN/Ag PADA KAIN KATUN TERHADAP AKTIVITAS BAKTERI Staphylococcus aureus “ adalah benarbenar hasil penelitian sendiri dan tidak terdapat karya yang pernah diajukan untuk memperoleh gelar kesarjanaan di suatu perguruan tinggi, dan sepanjang pengetahuan saya juga tidak terdapat kerja atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka.
Surakarta, Februari 2011 DHIENTA CORY PRAMITA
commit to user
4 digilib.uns.ac.id
perpustakaan.uns.ac.id
DAYA HAMBAT LAPISAN SiO2 DAN KOMPOSIT KITOSAN/Ag PADA KAIN KATUN TERHADAP AKTIVITAS BAKTERI Staphylococcus aureus DHIENTA CORY PRAMITA Jurusan Kimia, Fakultas MIPA, Universitas Sebelas Maret
ABSTRAK
Telah dilakukan penelitian tentang studi penambahan sifat antibakteri komposit kitosan/Ag dengan SiO2 pada kain katun. Tujuan dari penelitian ini adalah untuk mengetahui pengaruh waktu adsorbsi logam Ag oleh kitosan, mengetahui pengaruh lapisan SiO2 dan komposit kitosan/Ag pada kain katun, dan untuk mengetahui daya hambat komposit kitosan/Ag dengan SiO2 pada kain katun sebelum dan setelah pencucian terhadap aktivitas pertumbuhan bakteri S.aureus. Adsorbsi logam Ag oleh kitosan dilakukan dengan memvariasikan dengan waktu shaker. Lapisan SiO2 dan komposit kitosan/Ag pada kain katun dapat dilihat dari hasil analisa XRD dan SEM. Daya hambat komposit kitosan/Ag dengan SiO2 pada kain katun sebelum dan setelah pencucian terhadap aktivitas pertumbuhan bakteri S.aureus di uji dengan shake flash method. Hasil penelitian menunjukkan bahwa semakin lama waktu adsorbsi logam Ag oleh kitosan maka semakin banyak Ag yang teradsorb. Waktu optimum adsorpsi logam Ag oleh kitosan pada jam ke-5. Adanya lapisan SiO2 menyebabkan kain katun semakin tidak kaku dan komposit kitosan/Ag pada kain katun dapat bersifat sebagai antibakteri. Komposit kitosan/Ag dengan SiO2 pada kain katun mampu menghambat aktivitas pertumbuhan bakteri S.aureus optimum pada konsentrasi komposit kitosan/Ag 0.1 % (b/v) baik sebelum maupun setelah pencucian, selain itu daya hambat komposit kitosan/Ag dengan SiO2 sebelum pencucian lebih besar daripada setelah pencucian terhadap aktivitas pertumbuhan bakteri S.aureus. Kata kunci : SiO2, kain katun, kitosan/Ag, daya hambat, bakteri S.aureus.
commit to user
5 digilib.uns.ac.id
perpustakaan.uns.ac.id
THE INHIBITION OF SiO2 LAYER AND CHITOSAN/Ag COMPOSITE ON THE COTTON FOR BACTERIAL ACTIVITY OF Staphylococcus aureus DHIENTA CORY PRAMITA Department of Chemistry, Faculty of Mathematic and Sciences Sebelas Maret University
ABSTRACT
The study of additional antibacterial characteristic chitosan/Ag composite with SiO2 on the cotton was has been conducted. The purpose of this research had studied the time of adsorbsion Ag metal by chitosan, the influence of SiO2 layer and chitosan/Ag composite on the cotton, and inhibition of chitosan/Ag composite with the SiO2 on the cotton before and after laundering for the growth activity of S.aureus. Adsorption of the Ag metal by chitosan was conducted with variation of the shaker time. SiO2 layer and chitosan/Ag composite on the cotton could be analyzed from XRD and SEM. The inhibition of chitosan/Ag composite with SiO2 on the cotton before and after the laundering for the growth activity of S.aureus with shake flash method. The results showed that longer time of adsorbtion so more Ag metal adsorbed by chitosan. The optimum time of adsorbtion was at 5th hours. SiO2 layer made cotton not stiff and chitosan/Ag composite on the cotton as antibacterial agent. The optimum consentration of chitosan/Ag composite was 0.1 % (b/v) as bacterial agent before and after laundering. And inhibition of chitosan/Ag composit with SiO2 was higher before laundering than after laundering for the growth activity of S.aureus. Key word : SiO2, cotton, chitosan/Ag, inhibition, S.aureus
commit to user
6 digilib.uns.ac.id
perpustakaan.uns.ac.id
MOTTO
“Amalan yang paling dicintai oleh Alloh adalah sholat tepat pada waktunya” (HR. Bukhari)
”Aku tahu rizkiku tak akan diambil orang lain karena itu hatiku menjadi tentram. Aku tahu amalku tidak bisa dilakukan orang lain karena itu akupun sibuk beramal. Akupun tahu kematian menungguku karena itu aku mempersiapkan bekal untuk berjumpa dengan Rabb-ku. Aku tahu diriku selalu diawasi Alloh karena itu aku malu jika Dia melihatku sedang melakukan kemaksiatan” (Hatim al-A’shom)
“Harta dan anak-anak adalah perhiasan kehidupan dunia, tetapi amalanamalan yang kekal lagi saleh adalah lebih baik pahalanya disisi rabb-Mu serta lebih baik untuk menjadi harapan” (QS : Al-Kahfi-54)
commit to user
7 digilib.uns.ac.id
perpustakaan.uns.ac.id
Karya kecil ini jauh sekali dari sempurna, maka dalam kesempatan ini saya ingin meminta maaf jika ada kesalahan didalam tulisan ini, dan jangan dijadikan sebagai acuan untuk kedepannya, tetapi sebagai pembelajaran bagi kita semua. Untuk itu ucapan terimakasih ingin saya sampaikan kepada : © Bapak dan Ibu tersayang © Suami tercinta © Putir kecilku Aisyah © My little brother Riezal © Mbah Angi dan semua keluarga besar Terimakasih atas semua doa, dukungan dan kasih sayang kepada saya. Kalian semua sangat berarti dan telah memberi warna dalam hidupku. Mudah- mudahan Alloh membalas segala kebaikan kalian. Jazakumulloh khoiron katsiro
commit to user
8 digilib.uns.ac.id
perpustakaan.uns.ac.id
KATA PENGANTAR Segala Syukur kepada Alloh SWT yang telah memberikan banyak nikmat, dan kemudahan sehingga penulis dapat menyelesaikan penulisan skripsi ini untuk memenuhi sebagian persyaratan guna mencapai gelar Sarjana Sains dari Jurusan Kimia Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sebelas Maret. Dalam kesempatan ini dengan kerendahan hati penulis menyampaikan terimakasih kepada: 1. Bapak Prof. Drs. Sutarno, M.Sc, Ph.D., selaku Dekan FMIPA UNS. 2. Bapak Prof. Drs. Sentot Budi Rahardjo, Ph.D., selaku Ketua Jurusan Kimia dan Pembimbing Akademis. 3. Bapak Candra Purnawan, M.Sc., selaku pembimbing pertama 4. Ibu Dra. Tri Martini, M.Si., selaku pembimbing kedua. 5. Bapak dan Ibu Dosen di Jurusan Kimia, FMIPA UNS atas semua ilmu yang berguna dalam penyusunan skripsi ini. 6. Staf Laboratorium Kimia Dasar dan Sub Laboratorium Kimia FMIPA UNS 7. Staf Laboratorium Mikrobiologi PAU UGM Yogyakarta. 8. Deswita Aristianti atas kerjasama dan pengalaman yang tak terlupakan dalam penyusunan skripsi ini. 9. Teman – teman Kimia angkatan 2004 Semoga Allah SWT membalas jerih payah dan pengorbanan yang telah diberikan dengan balasan yang lebih baik. Amin. Penulis menyadari banyak kekurangan dalam penulisan skripsi ini. Skripsi ini juga jauh dari sempurna. Oleh karena itu, penulis meminta maaf atas banyaknya kekurangan dan kesalahan yang ada didalamnya. Namun demikian, penulis berharap semoga sedikit yang ada didalam tulisan ini bermanfaat bagi semuanya. Amin.
Surakarta, Februari 2011 commit to user
Dhienta Cory Pramita
9 digilib.uns.ac.id
perpustakaan.uns.ac.id
DAFTAR ISI Halaman HALAMAN JUDUL .......................................................................................
i
HALAMAN PENGESAHAN .........................................................................
ii
HALAMAN PERNYATAAN ........................................................................
iii
HALAMAN ABSTRAK .................................................................................
iv
HALAMAN MOTTO ......................................................................................
vi
HALAMAN PERSEMBAHAN ......................................................................
vii
KATA PENGANTAR ....................................................................................
viii
DAFTAR ISI ...................................................................................................
ix
DAFTAR TABEL ...........................................................................................
xii
DAFTAR GAMBAR .....................................................................................
xiii
DAFTAR LAMPIRAN ...................................................................................
xv
BAB I PENDAHULUAN A. Latar Belakang Masalah .......................................................................
1
B. Perumusan Masalah ..............................................................................
2
1. Identifikasi masalah .......................................................................
2
2. Batasan masalah .............................................................................
4
3. Rumusan masalah ...........................................................................
5
C. Tujuan Penelitian ..................................................................................
5
D. Manfaat Penelitian ................................................................................
6
BAB II LANDASAN TEORI A. Tinjauan Pustaka ...................................................................................
7
1. Kitin dan kitosan ............................................................................
7
2. Silika ..............................................................................................
9
3. Bakteri ............................................................................................
10
4. Staphylococcus aureus ................................................................... commit to user 5. Aktivitas kain antibakteri ................................................................
11 12
10 digilib.uns.ac.id
perpustakaan.uns.ac.id
B. Kerangka Pemikiran .............................................................................
14
C. Hipotesis ...............................................................................................
15
BAB III METODOLOGI PENELITIAN A. Metode Penelitian .................................................................................
16
B. Tempat dan Waktu Penelitian ...............................................................
16
C. Alat dan Bahan Penelitian .....................................................................
16
D. Prosedur Penelitian ...............................................................................
17
1. Isolasi kitin dan sintesis kitosan dari cangkang udang ..................
17
2. Pembuatan komposit kitosan/Ag ....................................................
18
3. Pelapisan kain dengan SiO2 ...........................................................
18
4. Pelapisan kain dengan kitosan/Ag variasi berat .............................
18
5. Uji aktivitas antibakteri kain sebelum pencucian (laundering) ......
18
6. Uji aktivitas antibakteri kain setelah pencucian (laundering) ........
19
7. Karakterisasi Gugus Fungsi, Uji kekakuan kain, dan Analisa Difraksi Sinar X (XRD) pada kain, kain terlapisi SiO2 dan kain terlapisi SiO2 dan komposit kitosan/Ag, Analisis permukaan kain, kain terlapisi SiO2 dan kain terlapisi SiO2 dan komposit kitosan/Ag dengan SEM ...................................................................................
20
BAB IV HASIL DAN PEMBAHASAN A. Isolasi Kitin dan Sintesis Kitosan .........................................................
24
1. Karakterisasi kitin dan kitosan dengan spektroskopi IR ................
25
2. Analisis X-Ray Diffractometer (difraksi sinar-X)...........................
27
B. Penentuan Konsentrasi Optimum Adsorpsi Logam Ag oleh Kitosan ...
29
1. Karakterisasi FTIR kitosan setelah adsorbsi logam Ag ..................
30
2. Karakterisasi XRD kitosan setelah adsorbsi logam Ag ..................
32
3. Karakterisasi DTA/TGA kitosan setelah adsorbsi logam Ag .........
33
C. Penentuan Kondisi Optimum Pelapisan Kain katun dengan SiO2 dan Komposit Kitosan/Ag........................................................................... commit to user 1. Pelapisan kain katun dengan SiO .................................................. 2
35 35
11 digilib.uns.ac.id
perpustakaan.uns.ac.id
2. Pelapisan kain katun terlapisi SiO2dengan komposit kitosan/Ag ..
37
D. Aktivitas Kain Antibakteri ....................................................................
41
BAB V PENUTUP A. Kesimpulan ...........................................................................................
46
B. Saran ......................................................................................................
46
Daftar Pustaka .................................................................................................
47
Lampiran .........................................................................................................
50
commit to user
12 digilib.uns.ac.id
perpustakaan.uns.ac.id
DAFTAR TABEL Halaman Tabel 1. Gugus fungsi spektra IR kitin dan kitosan .......................................
25
Tabel 2. Hasil uji kekakuan kain terlapisi SiO2 .............................................
36
Tabel 3. Hasil Uji Kekakuan Kain terlapisi SiO2 dan komposit kitosan/Ag ..
38
Tabel 4. Berat kain sesudah dan sebelum proses pencucian ...........................
43
Tabel 5. Persentase (%) inhibisi optimum lapisan SiO2 dan komposit kitosan/Ag terhadap bakteri S.aureus sebelum pencucian …………
44
Tabel 6. Persentase (%) inhibisi optimum lapisan SiO2 dan komposit kitosan/Ag terhadap bakteri S.aureus setelah pencucian …………..
45
commit to user
13 digilib.uns.ac.id
perpustakaan.uns.ac.id
DAFTAR GAMBAR Halaman Gambar 1. Struktur kitin, kitosan dan selulosa ............................................
7
Gambar 2. Reaksi hidrolisis pada proses deasetilasi kitin oleh basa kuat ...
8
Gambar 3.
Bakteri Staphylococcus aureus ..................................................
11
Gambar 4.
Spektra IR kitin dan kitosan cangkang udang ...........................
25
Gambar 5.
Difraktogram kitin dan kitosan ..................................................
27
Gambar 6.
Interaksi intermolekuler kitin atau kitosan .................................
28
Gambar 7.
Ikatan hidrogen dari kitin ..........................................................
28
Gambar 8.
Ikatan hidrogen dari kitosan .....................................................
28
Gambar 9.
Kurva standar logam Ag menggunakan AAS ............................
29
Gambar 10. Adsorbsi logam Ag oleh kitosan ................................................
30
Gambar 11. Perubahan spektra IR kitosan sebelum dan setelah proses adsorbsi ......................................................................................
31
Gambar 12. Perubahan difraktogram kitosan ................................................
32
Gambar 13. Berkurangnya ikatan hidrogen intramolekuler dan intermolekuler kitosan ...............................................................
33
Gambar 14. Perubahan Termogram TGA Kitosan ........................................
34
Gambar 15. Perubahan Termogram DTA Kitosan ........................................
34
Gambar 16. Hubungan antara waktu pencelupan kain dengan berat lapisan SiO2 ...........................................................................................
36
Gambar 17. Hubungan antara konsentrasi komposit kitosan/Ag dengan berat lapisan komposit kitosan/Ag .............................................
37
Gambar 18. Perubahan difraktogram kain yang terlapisi SiO2 dan terlapisi komposit kitosan/Ag ....................................................
38
Gambar 19. Tekstur permukaan kain tanpa perlakuan ..................................
39
Gambar 20. Tekstur permukaan kain yang dilapisi SiO2 ...............................
39
Gambar 21. Tekstur permukaan kain yang dilapisi SiO2 dan komposit kitosan/Ag 0,1%(b/v) ................................................................. commit to user
39
14 digilib.uns.ac.id
perpustakaan.uns.ac.id
Gambar 22. Kurva standar hubungan antara absorbansi atau optical density dan jumlah koloni sel bakteri Staphylococcus aureus (CFU/mL) ...........................................................................................
42
Gambar 23. Perbandingan persentase daya hambat lapisan SiO2 dan komposit kitosan/Ag
terhadap
bakteri
Staphylococcus
aureus
sebelum
pencucian ...................................................................................
43
Gambar 24. Perbandingan persentase daya hambat lapisan SiO2 dan komposit kitosan/Ag terhadap bakteri Staphylococcus aureus setelah pencucian ................................................................................................. 44
commit to user
15 digilib.uns.ac.id
perpustakaan.uns.ac.id
DAFTAR LAMPIRAN Halaman Lampiran 1. Penentuan Derajad Deasetilasi (DD) berdasarkan baseline b ....
50
Lampiran 2. Data pembuatan kurva standar adsorbsi logam Ag menggunakan AAS ...................................................................
51
Lampiran 3. Data persentase (%) adsorbsi logam Ag oleh kitosan ...............
51
Lampiran 4. Penentuan kondisi optimum % adsorbsi ....................................
52
Lampiran 5. Uji Duncan kondisi optimum % adsorbsi ..................................
53
Lampiran 6. Data uji Duncan kekakuan kain terlapisi SiO2 ...........................
53
Lampiran 7. Data kurva standar hubungan antara absorbansi atau optical density dan jumlah koloni sel bakteri S.aureus (CFU/mL) ...................
54
Lampiran 8. Data ke-1 persentase daya hambat lapisan SiO2 dan komposit kitosan/Ag sebelum pencucian terhadap bakteri S.aureus ........
55
Lampiran 9. Data ke-2 persentase daya hambat lapisan SiO2 dan komposit kitosan/Ag sebelum pencucian terhadap bakteri S.aureus ........
56
Lampiran 10. Data ke-1 persentase daya hambat lapisan SiO2 dan komposit kitosan/Ag setelah pencucian terhadap bakteri S.aureus ..........
57
Lampiran 11. Data ke-2 persentase daya hambat lapisan SiO2 dan komposit kitosan/Ag setelah pencucian terhadap bakteri S.aureus ..........
commit to user
58
16 digilib.uns.ac.id
perpustakaan.uns.ac.id
BAB I PENDAHULUAN
A. Latar Belakang Masalah Pakaian merupakan salah satu kebutuhan primer bagi manusia yang berfungsi sebagai pelindung bagi tubuh terhadap lingkungan dan cuaca.
Pakaian
yang baik adalah pakaian yang enak dipakai, mudah dalam hal perawatannya. Tidak hanya itu saja tetapi pakaian juga harus bersih dan higienis sehingga memberikan kenyamanan bagi pemakainya. Pakaian yang tidak
higienis akan dapat
menimbulkan masalah kesehatan, misalnya penyakit infeksi kencing atau
yang
dapat
seringnya
iritasi
disebabkan pada
bayi
tidak karena
higienisnya penggunaan
saluran pakaian popok
dalam
(pampers)
(http://gresnews.com/ch/Health/cluster/Dokter, 2010). Salah satu penyebab pakaian tidak higienis karena banyak bakteri yang tumbuh pada pakaian tersebut. Untuk menghambat dan mencegah pertumbuhan bakteri perlu adanya bahan antibakteri didalam pakaian tersebut. Untuk memberikan sifat antibakteri pada pakaian atau kain bisa dengan menambahkan suatu bahan yang bersifat polikationik (Lee et al., 1999; Ramachandran, 2003). Salah satu bahan alami yang bersifat polikationik yang dapat digunakan sebagai bahan antibakteri pada kain adalah kitosan. Kitosan (2-amino-deoksi-β-D-glukosa) merupakan polimer kationik alami yang bersifat nontoksik, dapat mengalami biodegradasi dan bersifat biokompatibel. Kitosan memiliki kegunaan yang sangat luas dalam kehidupan misalnya sebagai adsorben limbah logam berat dan zat warna, anti jamur, kosmetik, farmasi, flokulan, antikanker, dan antibakteri (Liu et al., 2006; Prashanth and Tharanathan 2007). Kitosan dapat aktif dan berinteraksi dengan sel, enzim atau matrik polimer yang bermuatan negatif (Stephen, 2005). Oleh karena itu, kitosan dapat dijadikan salah satu alternatif bahan antibakteri yang ramah lingkungan dan tidak berbahaya dalam pembuatan kain antibakteri. Penelitian Purnawan dkk.commit (2008)tomenyebutkan bahwa aktivitas antibakteri user kitosan konsentrasi 0,1; 0,2; 0,4; 0,8; 1,4% (b/v) pada kain katun hanya sekitar 67%
17 digilib.uns.ac.id
perpustakaan.uns.ac.id
sebelum pencucian dan jauh menurun menjadi sekitar 43% setelah pencucian kain dalam waktu kontak 3 jam. Aktivitas antibakteri kitosan yang relatif kecil ini disebabkan karena interaksi kitosan dengan kain yang masih lemah dan besarnya berat molekul kitosan. Lemahnya interaksi kitosan dangan kain menyebabkan kitosan mudah lepas, sedangkan besarnya berat molekul kitosan menyebabkan interaksi ammonium kuartener kitosan yang bermuatan positif dengan bakteri menjadi kurang efektif. Ada beberapa cara untuk meningkatkan sifat antibakteri dalam pembuatan kain antara lain: 1) Penambahan senyawa pengemban yang dapat memperkuat interaksi dengan kain, seperti penambahan SiO2. Adanya gugus aktif silanol
(Si-
OH) pada SiO2 yang berfungsi sebagai pengemban kitosan dapat memperkuat interaksi dengan kain sehingga kitosan tidak mudah lepas (Li et al., 2007).
2)
Penambahan suatu logam berat yang dapat menghambat bakteri seperti (Cd, Ag, Cu) (Ramachandran, 2003). Logam berat jika terakumulasi dalam tubuh manusia bisa menyebabkan gangguan kesehatan karena bersifat toksik tetapi diantara logam berat yang ada Ag mempunyai toksisitas rendah bagi manusia, sehingga Ag aman digunakan sebagai bahan antibakteri pada pakaian. Adanya ion logam Ag dalam polietilen dapat meningkatkan sifat antibakteri secara signifikan (Zhang et al., 2008). Ahmad et al. (2009) dalam penelitiannya menyatakan bahwa hasil sintesis bionanokomposit Ag/Lempung/kitosan cocok diapliasikan sebagai bahan antibakteri dan dunia kesehatan meskipun penelitian ini belum menguji sifat antibakteri hasil sintesis tersebut. Hal ini diharapkan dengan penambahan ion logam Ag ke dalam silika dan kitosan dapat meningkatkan sifat antibakteri kain. Keberhasilan
penelitian
ini
akan
memberikan
peningkatan
dalam
menciptakan pakaian yang memiliki daya hambat dan daya tahan terhadap aktivitas bakteri dikulit manusia sehingga kesehatan lebih terjaga. Selain itu, keberhasilan metode penelitian ini dapat memberikan informasi tentang pembuatan tekstil antibakteri terhadap masyarakat luas maupun kalangan industri sehingga dapat dimanfaatkan oleh masyarakat. commit to user
18 digilib.uns.ac.id
perpustakaan.uns.ac.id
B. Perumusan Masalah 1. Identifikasi Masalah Banyak jenis kain yang ada di pasaran yaitu katun, nilon, wool, sutera tetapi yang paling umum digunakan di Indonesia adalah kain katun karena kain ini memiliki banyak keunggulan dibandingkan dengan jenis kain yang lain. diantaranya karena katun terbuat dari bahan alami yaitu kapas atau selulosa sehingga kain katun mudah berinteraksi dengan senyawa lain, mudah diwarnai, dipintal, menutup dengan baik, mudah menyerap air, lembut serta nyaman dipakai jika dibandingkan dengan kain yang terbuat dari sintesis (Anonim, 2001). Kitosan banyak tedapat pada biota laut terutama dari hewan golongan crustacea dan arthropoda sepeti udang dan kepiting. Perbedaan kitosan dari cangkang udang dan kepiting yaitu besarnya derajad deasetilasi (DD) dimana DD dari cangkang udang lebih besar dari cangkang kepiting pada kondisi yang sama (Puspawati dkk.,2010).
Perbedaan DD kitosan menyebabkan perbedaan daya
hambat terhadap pertumbuhan bakteri. Besarnya derajat deasetilasi dipengaruhi oleh konsentrasi basa, temperatur, waktu dan banyaknya pengulangan proses deasetilasi. Menurut Purnawan (2008) menyebutkan bahwa semakin besar konsentrasi basa, temperatur pada saat proses deasetilasi maka DD kitosan akan semakin besar dan semakin lama waktu serta banyak pengulangan pada saat deasetilasi maka DD kitosan akan semakin besar pula. Penambahan kitosan dalam proses pembuatan kain diharapkan mampu memberikan sifat antibakteri. Sifat antibakteri kain juga dapat ditingkatkan dengan penambahan logam yang memiliki sifat antibakteri ke dalam kitosan membentuk komposit logam-kitosan seperti perak (Ag), tembaga (Cu), cadmium (Cd), timbal (Pb) dan nikel (Ni) (Ramachandran, 2003). Kemampuan kitosan dalam menyerap logam sangat dipengaruhi oleh suhu, waktu kontak dan konsentrasi. Perbedaan waktu kontak kitosan dengan logam yang diadsorpsi akan memberikan perbedaan konsentrasi logam yang terserap. Proses pelapisan komposit kitosan/Ag ke kain katun dapat dilakukan dengan metode pencelupan (dip-coating), penyemprotan, pembusaan. Untuk lebih commit to user meningkatkan daya rekat komposit kitosan/Ag pada kain katun maka perlu ditambah
19 digilib.uns.ac.id
perpustakaan.uns.ac.id
suatu senyawa pengemban seperti SiO2, lempung, momnmorilonith, zeolit. Adanya pengemban diharapkan komposit kitosan/Ag yang terikat pada kain tidak akan hilang oleh pencucian dan tidak menyebabkan perubahan sifat fisik kain yang signifikan seperti perubahan warna dan kekauan kain. Beberapa analisis yang bisa dilakukan untuk mengetahui kwalitas kain antara lain dengan uji kekakuan, uji warna, uji kekuatan tarik, XRD dan analisis tekstur dapat dilakukan dengan SEM. Analisa aktivitas antibakteri bisa dilakukan terhadap bakteri gram negatif ataupun gram positif. Metode yang bisa digunakan untuk melakukan pengujian aktivitas antibakteri diantara lain turbidimetri dan shake flash, diameter daya hambat dan viable count.
Media pembiakan bakteri yang dapat digunakan antara lain
nutrient borth (NB), nutrient agar (NA), triptho soya agar (TSA), triptho soya broth (TSB), mannitol salt agar (MSA) dan lain-lain. Penggunaan media yang berbeda akan memberikan tingkat pertumbuhan bakteri yang berbeda pula. Media yang umum digunakan untuk pertumbuhan bakteri adalah TSB, NA, NB karena tidak selektif terhadap bakteri tertentu. 2. Batasan Masalah Berdasarkan identifikasi masalah di atas, maka masalah dalam penelitian ini dibatasi oleh : a.
Jenis kain yang digunakan dari katun primisima.
b.
Senyawa antibakteri yang digunakan adalah kitosan dengan DD ≥ 90% yang diperoleh dari proses deasetilasi kitin limbah cangkang udang dalam 60% NaOH pada suhu 120 oC selama 3 x 1 jam.
c.
Adsorbsi logam Ag oleh kitosan dilakukan pada variasi waktu kontak 1, 2, 3, 4, 5, 6 dan 7 jam, dengan 20 ml larutan Ag 1000 ppm dan menggunakan kitosan sebanyak 0,2 g.
d.
Pelapisan kain dilakukan dengan mencelupkan kain kedalam larutan SiO2, Konsentrasi SiO2 yang digunakan 0,20% (b/v). Pelarut untuk SiO2 menggunakan NaOH 5% .
e.
Kain yang sudah terlapisi SiO2 dicelupkan kedalam
komposit kitosan/Ag.
Konsentrasi komposit kitosan/Ag yang digunakan adalah 0; 0,05; 0,10; 0,50; commit to user 1,00; 1,50 dan 2,00% (b/v). Pelarut untuk komposit menggunakan asetat 1%.
20 digilib.uns.ac.id
perpustakaan.uns.ac.id
f.
Analisis kain meliputi Uji kekakuan, XRD dan SEM.
g.
Metode yang digunakan pada uji aktivitas antibakteri kain adalah shake flask method dan turbidimetri menggunakan UV-Vis pada λ = 610 nm. Media pembiakan bakteri menggunakan TSB. Analisis bakteri dilakukan pada watu kontak jam ke 0, 2, 4, 6 dan 8.
3. Rumusan Masalah Berdasarkan identifikasi dan batasan masalah tersebut, maka rumusan masalah dalam penelitian ini adalah: a.
Bagaimanakah pengaruh lapisan SiO2 dan kitosan/Ag terhadap kekakuan kain katun?
b.
Bagaimana daya hambat komposit kitosan/Ag dengan pengemban SiO2 pada kain katun sebelum dan setelah pencucian terhadap aktivitas pertumbuhan bakteri S.aureus.?
C. Tujuan Penelitian Tujuan dari penelitian ini adalah: a.
Mengetahui pengaruh lapisan SiO2 dan kitosan/Ag pada kekakuan kain katun.
b.
Mengetahui daya hambat komposit kitosan/Ag dengan pengemban SiO2 pada kain katun sebelum dan setelah pencucian terhadap aktivitas pertumbuhan bakteri S.aureus.
D. Manfaat Penelitian Manfaat dari penelitian ini adalah : a.
Secara
teoritis,
diharapkan
dapat
memberikan
bahan
masukan
bagi
pengembangan ilmu pengetahuan dan teknologi, terutama yang berkaitan dengan sifat antibakteri komposit kitosan/Ag dengan pengemban SiO2 pada kain katun. b.
Secara praktis, dapat digunakan untuk pengembangan kain yang mempunyai commit to user sifat anti bakteri terhadap bakteri S.aureus.
21 digilib.uns.ac.id
perpustakaan.uns.ac.id
BAB II LANDASAN TEORI
A. Tinjauan Pustaka 1. Kitin dan Kitosan Kitin adalah senyawa karbohidrat yang termasuk dalam polisakarida, tersusun atas monomer-monomer asetilglukosamin yang saling berikatan dengan ikatan 1,4 β membentuk suatu unit polimer linier yaitu β-(1,4)-2-asetamido-2deoksi-D-glukosa atau poli-(β-1,4-N-asetilglukosamin). Kitosan merupakan kitin yang telah dihilangkan gugus asetilnya melalui proses deasetilasi. Kitosan juga disebut poli (1,4)-2-amina-2-deoksi-β-D-glukosa atau poli-(β-1,4-glukosamin). Sumber utama kitin dan kitosan terdapat pada biota laut terutama dari hewan golongan crustacea dan arthropoda sepeti udang dan kepiting. Struktur kitin dan kitosan memiliki kemiripan seperti yang terlihat pada Gambar 1. OH
OH O
NHAc
HO O
HO
O O
O
NHAc
NHAc
HO O
HO
O
NHAc OH
OH
kitin
HO O
HO O
HO
NH2
HO
NH2
O
O
NH2
O
O HO
HO
HO
NH2
HO
O
kitosan
Gambar 1. Struktur kitin dan kitosan Kitosan memiliki gugus amina primer yang lebih banyak daripada kitin sehingga membuat kitosan lebih basa dan nukleofilik. Pada saat pemanasan, kitin dan kitosan cenderung terdekomposisi daripada meleleh sehingga polimer ini tidak memiliki titik leleh. Kitosan tidak larut dalam larutan netral atau basa tetapi larut commit to user dalam larutan asam seperti asam asetat, asam format, asam laktat, dan asam
22 digilib.uns.ac.id
perpustakaan.uns.ac.id
glutamat. Ketika kitosan dilarutkan dalam larutan asam, gugus amina primer dalam kitosan akan terprotonasi dan bermuatan positif. Oleh karena itu, molekul kitosan yang tersolvasi merupakan polikationik dan dapat terkoagulasi jika ditambahkan partikel atau molekul yang membawa muatan negatif seperti sodium alginat, anion sulfat dan phosphat. Namun kitosan juga rentan terhadap hidrolisis dengan katalis asam atau basa sehingga terjadi proses depolimerisasi dengan pemutusan ikatan βglikosidik.
Kitin
dan
kitosan
mempunyai
sifat
dapat
terbiodegradasi,
biokompabilitas, tidak berbau, tidak beracun, secara umum tidak larut dalam pelarut organik tetapi larut dalam asam atau basa encer. Oligomer dari kitin dan kitosan secara biologis dapat aktif dan berinteraksi dengan sel maupun jaringan hewan dan tumbuhan, dapat membentuk jaringan atau matrik dengan polimer yang bermuatan negatif. (Prashanth et al., 2007). Pembentukan kitosan dari kitin dilakukan dengan pemutusan gugus asetil menggunakan nukleofil kuat. Mekanisme pemutusan asetil pada Gambar 2.
O
O H N
C
CH3
+
H N
OH
C
CH3
O
Kitin
H
O
O NH2
+
H3 C
C
NH
O
+
H3C
C
OH
Kitosan CH2OH O
H
=
H OH
O
H H
H
Gambar 2. Reaksi hidrolisis pada proses deasetilasi kitin oleh basa kuat (Champagne, 2002) Dalam hidrolisis basa terhadap kitin dan kitosan, adanya oksigen dan ion hidroksil tidak menginisiasi putusnya ikatan glikosida. Kemungkinan disebabkan oleh adanya air yang berlebih dalam larutan. Adanya nukleofilik dari NaOH, KOH, NaCl, NaI, dan KI dalam kondisi atmosfer udara bebas, O2, N2 tidak memberikan perbedaan BM karena rasio perbandingan BM/BM0 dalam kondisi tersebut adalah sama. Hal ini menunjukkan bahwa kondisi-kondisi tersebut memiliki pengaruh yang commit to user sama terhadap putusnya ikatan glikosida (Chebotok et al., 2006).
23 digilib.uns.ac.id
perpustakaan.uns.ac.id
Sifat-sifat dari kitosan sangat dipengaruhi oleh 2 parameter penting yaitu: derajat deasetilasi (DD) dan berat molekul (BM). Nilai DD dan BM ini sangat dipengaruhi oleh konsentrasi basa, temperatur, waktu dan pengulangan proses selama pembentukan kitosan. Pengukuran DD kitosan dapat dihitung melalui beberapa metode antara lain: metode spektrofotometer IR yang diusulkan oleh Domzy dan Robert (base line a) dan yang diusulkan oleh Baxter (base line b) serta pengembangannya (Brugnerotto et al., 2001; Khan et al., 2002), XRD (Zhang et al., 2005), first derivative UV-Spectrophotometry, HBr titrimetry (Khan et al., 2002), high intensity ultrasonicated (Baxter et al., 2005), dan titrasi potensiometri (Balazs et al., 2007).
2. Silika (SiO2) Silika adalah suatu istilah yang digunakan dalam geologi untuk SiO2 atau silikon dioksida dalam bentuk quartz atau sebagai segmen kimia dari silikat atau silikon dioksida yang larut dalam air. Silikon murni yang terkandung dalam kerak bumi sekitar 25,7%. Silikon berikatan kuat dengan oksigen dan hampir selalu ditemukan sebagai silikon oksida, SiO2 (quartz) atau sebagai silikat (SiO44-). Silikon jarang ditemukan secara alami dalam bentuk murninya. Unit dasar kimia dari silikat adalah SiO44- bentuk tetrahedron. Ion pusat silikon mempunyai muatan positif empat dimana oksigen mempunyai muatan negatif dua (2-) dari energi ikatan total oksigen. Kondisi ini memungkinkan oksigen mengikat ion silikon sehingga menghubungkan satu (SiO44-) tetrahedron dengan yang lain. Struktur tetrahedron silikat ini sungguh mengaumkan karena dapat membentuk unit tunggal, unit ganda, rantai, lembaran, cincin dan struktur kerangka (Berry et al., 1983). Scott (1993) menyatakan bahwa silika bersifat amorf, mempunyai daya serap tinggi, serta sebagian berada dalam bentuk terhidrat. Silika amorf memiliki densitas yang rendah, luas permukaan yang besar dan porositas yang tinggi sehingga dapat digunakan sebagai katalis. Silika memiliki gugus aktif pada permukaannya yaitu gugus silanol (Si-OH) dan gugus siloksan (Si-O-Si) (Oscik, 1982). Silika dipilih user sebagai host/inang material agarcommit dapat to berfungsi sebagai pembatas pertumbuhan
24 digilib.uns.ac.id
perpustakaan.uns.ac.id
kristal oksida yang berada didalamnya sehingga ukuran partikel menjadi sangat kecil. Efektivitas dari suatu semikonduktor dapat meningkat jika memiliki ukuran partikel relatif kecil atau dalam skala nanometer (Ekimov et al., 1985). 3. Bakteri Organisme prokariotik secara garis besar dikelompokkan menjadi 2 kelompok besar yaitu Eubakteri yang merupakan bakteri sejati dan Archaea. Kelompok
Archaea
meliputi
organisme prokariotik
yang tidak
memiliki
peptidoglikon pada dinding selnya. Eubakteri dibagi 4 kategori utama berdasarkan ciri khas dinding selnya yaitu: eubakteri gram-negatif yang memiliki dinding sel, eubakteri gram-positif yang memiliki dinding sel, eubakteri yang tidak memiliki dinding sel, dan arkeobakteri (Pratiwi, 2005) Sel bakteri memiliki struktur eksternal dan internal sel. Salah satu struktur eksternal sel bakteri adalah dinding sel sedangkan salah satu struktur internal sel bakteri adalah membran plasma atau membran sitoplasma. Dinding sel bakteri merupakan struktur komplek dan berfungsi sebagai penentu bentuk sel, pelindung dari kemungkinan pecahnya sel, pelindung isi sel dari perubahan lingkungan luar sel. Dinding sel terdiri dari atas peptidoglikan atau murein yang menyebabkan kakunya dinding sel. Peptidoglikan merupakan polimer yang tersusun atas perulangan disakarida yang tersusun atas monosakarida Nasetilglikosamin (NAG) dan N-asam asetilmuramid (NAM) yang melekat pada suatu peptida yang terdiri dari 4 atau 5 asam amino yaitu L-alanin, D-alanin, asam Dglutamat, dan lisin atau asam diaminopimelat membentuk selubung mengelilingi sel. Asam amino dalam kondisi lingkungan tertentu (netral) berada dalam bentuk ion dipolar (switter ion) dengan memiliki ion negatif dan positif sekaligus. Asam-asam amino lisin memiliki rantai cabang yang dapat bermuatan positif maupun negatif. Asam-asam glutamat memiliki rantai cabang berupa asam dan bermuatan negatif (Brooks et al., 1986). Dinding sel bakteri gram positif mengandung banyak lapis peptidoglikan membentuk struktur yang tebal dan kaku, serta mengandung asam teikoat yang terdiri dari alkohol dan fosfat sehingga commitseltobakteri user cenderung bermuatan negatif dan memiliki gugus hidrofilik. Dinding sel bakteri gram negatif mengandung satu atau
25 digilib.uns.ac.id
perpustakaan.uns.ac.id
beberapa lapis peptidoglikan dan membran luar. Peptidoglikan terikat pada lipoprotein pada membran luar. Selain itu, terdapat daerah periplasma yaitu daerah yang terdapat diantara plasma membran dan membran luar. Dinding sel bakteri gram negatif tidak mengandung asam teikoat dan hanya mengandung sejumlah kecil peptidoglikan sehingga dinding sel gram negatif relatif tidak kaku dan relatif lebih tahan terhadap kerusakan mekanis (Pratiwi, 2005). Membran plasma (inner membran atau membran sitoplasma) adalah struktur tipis yang terdapat di sebelah dalam dinding sel dan menutup sitoplasma sel. Membran plasma tersusun atas fosfolipid dua lapis dan protein. Fosfolipid merupakan ester asam lemak dan gliserol yang mengandung ion fosfat yang bermuatan negatif. Membran plasma berfungsi sebagai sekat selektif materialmaterial di dalam dan di luar sel. Membran plasma juga berfungsi untuk memecah nutrien dan produksi energi. Golongan bakteri garam negatif antara lain: Treponema, Helicobacter, Pseudomonas, Escherichia, Salmonella, Bacteriodes sedangkan golongan bakteri garam positif antara lain: Staphylococcus, Streptococcus, Bacillus, Listeria, Mycobacterium, Streptomyces.
4. Bakteri Staphylococcus aureus Bakteri Staphylococcus aureus adalah sel gram positif. Sel – selnya berbentuk bola dengan garis tengah sekitar 1 µm dan tersusun dalam kelompokkelompok tak beraturan.
Staphylococcus aureus mudah tumbuh pada berbagai
perbenihan bakteri dalam keadaan aerobic atau mikroaerofilik. Koloni hasil perbenihan padat berbentuk bundar, halus, berkilau dan berwarna abu-abu sampai kuning emas (Brooks et al., 1986 )
Gambar 3. Bakteri Staphylococcus aureus commit to user
26 digilib.uns.ac.id
perpustakaan.uns.ac.id
Klasifikasi Kingdom
: Bacteria
Phylum
: Eubacteria
Class
: Bacilli
Order
: Bacillales
Family
: Staphylococcaceae
Genus
: Staphylococcus
Species
: S. aureus
Staphylococcus aureus merupakan bentuk koagulase positif yang menjadi pathogen utama bagi manusia. Selain mudah ditemukan pada bagian tubuh manusia seperti kulit, hidung, dan rambut, bakteri ini juga dapat ditemukan pada baju, sprei, dan benda-benda lain di lingkungan sekitar manusia. Bakteri pathogen ini memberikan efek yang tidak baik bagi manusia, mulai hanya sekedar mual dan muntah hingga timbulnya penyakit yang membhayakan bahkan mematikan. Staphylococcus aureus dapat menyebabkan pneumonia, meningitis, empiema, endokarditis atau sepsis dengan penanahan pada bagian tubuh manapun serta dapat menimbulkan infeksi paru-paru.
5. Aktivitas Kain Antibakteri Kain merupakan bahan utama untuk membuat pakaian. Kain yang baik adalah kain yang aman bagi kesehatan dan lingkungan. Kain yang tidak baik yaitu kain yang mempunyai pori besar dan kasar karena dapat digunakan sebagai media untuk pertumbuhan jamur dan bakteri. Bakteri akan menyerang kain dan berdampak pada kesehatan tubuh seperti menimbulkan bau dan infeksi serta menurunkan kualitas kain (Danna, 1978). Untuk mendapatkan sifat antibakteri pada kain dapat diperoleh melalui dua metode umum, yaitu penambahan bahan antibakteri pada polimer serat kain sebelum proses ekstrusi (fibre chemistry) atau pemberian perlakuan akhir (post-treatment) pada serat kain pada tahap finishing (Anonim, 2005). Pada
umumnya,
tujuan perlakuan kain dengan bahan antibakteri user mencegah infeksi silang oleh (Ramachandran, 2003) adalah commit : 1). tountuk
27 digilib.uns.ac.id
perpustakaan.uns.ac.id
mikroorganisme patogen, 2). untuk mengontrol penyebaran mikroba, 3). untuk menghambat metabolisme mikroba sehingga mengurangi bau yang tidak mengenakkan, 4). untuk melindungi produk kain dari noda dan perusakan warna serta menurunnya kualitas kain dan hasil akhirnya akan diperoleh kain yang aman dan sehat. Kain sebagai bahan utama pembuat pakaian semestinya memenuhi syarat dalam hal kemudahan pembasahan sekaligus tahan terhadap proses pencucian. Oleh karena itu, sangat penting memperhitungkan efek bahan yang digunakan sebagai bahan antibakteri pada proses akhir produksi kain terhadap kekuatan kain serta daya tahan termal dan mekanis. Beberapa syarat yang harus dipenuhi untuk mendapatkan manfaat yang maksimal dari proses pemberian bahan antibakteri pada kain adalah : 1). ketahanan terhadap pencucian basah maupun kering serta pencucian dengan panas,
2).
mempunyai
aktivitas
selektif
terhadap
mikroorganisme
tidak
menyenangkan, memberikan kontrol efektif terhadap bakteri dan jamur, 3). tidak memberikan efek berbahaya bagi produsen, pengguna maupun lingkungan, 4). metode mudah diaplikasikan dalam proses tekstil secara umum, 5). tidak mengurangi kualitas kain. Bahan antibakteri dapat digunakan pada kain dengan berbagai cara, seperti teknik
penguapan,
penambahan
bahan
pengisi
secara
kering,
pelapisan,
penyemprotan dan teknik pembusaan. Ramachandran (2003) merekomendasikan beberapa senyawa yang dapat digunakan sebagai bahan antibakteri pada kain, yaitu: 1). oksidator, seperti aldehida dan halogen yang dapat menyerang membran sel, 2). koagulan, 3). produk triklosan yang berfungsi sebagai disinfektan, 4). senyawa amonium kuartener, amina dan glukoperotamin
yang menunjukkan sifat
polikationik, 5). senyawa komplek logam (Cd, Ag, Cu), 6). kitosan sebagai bahan antibakteri alami. Aktifitas antibakteri dapat melalui cara membunuh mikroorganisme (bakteriosidal) dan atau penghambat pertumbuhan mikroorganisme (bakteriostatik) dengan jalan menghancurkan atau menggangu dinding sel, menghambat sintesis dinding sel, menghambat sintesis protein dan asam nukleat, merusak DNA, commit enzim. to user denaturasi protein, menghambat aktifitas
28 digilib.uns.ac.id
perpustakaan.uns.ac.id
B. Kerangka Pemikiran Kitosan merupakan senyawa polikationik dan polimer terbesar kedua di alam setelah selulosa. Kitosan memiliki gugus amina terprotonasi yang dapat menghambat pertumbuhan bakteri melalui interaksi dengan muatan ion negatif mikroorganisme. Semakin besar derajad deasetilasi kitosan, semakin banyak gugus amina terprotonasinya sehingga daya hambat kitosan terhadap bakteri semakin besar. Kitosan memiliki sifat menghambat dan mempercepat pertumbuhan bakteri yang saling berkompetensi. Adanya atom nitrogen menjadikan kitosan sebagai inhibitor dan sekaligus sebagai sumber makanan bagi bakteri (Brooks et al., 1986). Oleh karena itu kitosan mempunyai konsentrasi optimum sebagai inhibitor. Penambahan
sifat
antibakteri
pada
kain
dapat
dilakukan
dengan
menambahkan logam pada kitosan. Menurut Ramachandran (2003) salah satu senyawa logam yang bisa digunakan sebagai antibakteri adalah logam Ag. Logam Ag bisa bersifat sebagai antibakteri karena mempunyai muatan positif yaitu Ag+ yang dapat berinteraksi dengan muatan ion negatif mikroorganisme. Logam Ag dapat terabsorb oleh kitosan dan menghasilkan komposit kitosan/Ag. Silika merupakan senyawa kimia yang mempunyai daya serap tinggi. Adanya gugus aktif silanol pada silika dapat digunakan sebagai pengemban komposit kitosan/Ag karena SiO2 bisa berinteraksi dengan selulosa kain
(Li
et al.,2007). Penggunaan SiO2 sebagai pemngemban diharapkan dapat memperkuat interaksi komposit kitosan/Ag dengan kain sehingga komposit tidak mudah lepas pada kain saat pencucian dan daya hambat komposit sebelum dan sesudah pencucian sama. Pelarut untuk SiO2 pada saat pelapisan pada kain katun menggunakan NaOH 5%. Adanya NaOH sebagai pelarut SiO2 secara tidak langsung bisa membuat selulosa kain menjadi terhidrolisis sebagian (Anonim, 2010) sehingga membuat kain katun yang dilapisi oleh SiO2 menjadi tidak kaku.
commit to user
29 digilib.uns.ac.id
perpustakaan.uns.ac.id
C. Hipotesis Berdasarkan kerangka pemikiran di atas dapat diambil hipotesis: c.
Silika (SiO2) dengan pelarut NaOH tidak menyebabkan kekakuan pada kain dan semakin besar konsentrasi komposit kitosan/Ag yang dilapiskan pada kain katun menyebabkan kekakuan pada kain katun .
d.
Silika (SiO2) dapat berfungsi sebagai pengemban yang dapat memperkuat interaksi komposit kitosan/Ag dengan kain sehingga dapat mempertahankan sifat antibakteri komposit sebelum dan sesudah pencucian terhadap bakteri S.aureus.
commit to user
30 digilib.uns.ac.id
perpustakaan.uns.ac.id
BAB III METODOLOGI PENELITIAN
A. Metodologi Penelitian Penelitian tentang daya hambat lapisan SiO2 dan komposit kitosan/Ag pada kain katun terhadap aktivitas bakteri menggunakan metode eksperimen laboratorium dan data yang didapatkan merupadan data duplo bersama partner saya Deswita. Pembuatan komposit kitosan/Ag dilakukan dengan cara pencampurkan larutan Ag dan kitosan kemudian digoyang pada kondisi tertentu. Sedangkan karakterisasi dan analisa daya hambat lapisan SiO2 dan komposit kitosan/Ag pada kain katun dilakukan dengan FTIR, XRD, DTA-TGA, uji kekakuan kain serta uji aktivitas antibakteri dilakukan terhadap bakteri S.aureus.
B. Tempat dan Waktu Penelitian Penelitian ini akan dilakukan di Laboratorium Kimia Dasar FMIPA UNS, Laboratorium Pusat MIPA Sub Laboratorium Kimia Pusat UNS, Laboratorium Mikrobiologi PAU UGM. Waktu penelitian dari bulan Juli 2010 sampai Oktober 2010.
C. Alat dan Bahan yang digunakan 1. Alat Peralatan laboratorium yang dipergunakan dalam penelitian ini adalah sebagai berikut: spektrofotometer infra merah (FTIR, shimdzu prestige 21), spektrometer serapan atom (AAS, AA-6650 shimadzu), spektrometer UV-Vis (UV, 1601 uv-visible spectrophotometer shimadzu), internal mixer (haake polydrive with rheomix R600-610), alat difraksi sinar-x (shimadzu XRD 7000 X-Ray difractometer maxima), Alat penguji kekakuan kain, autoclave
(Hirayama), incubator,
seperangkat alat refluks, peralatan gelas, ayakan stainless steel ukuran 100 mesh, seperangkat penyaring Buchner, termometer, penggerus porselin, cawan porselin, pengaduk magnet, hotplate, pH indicator, neraca commit to user analitis, mikropipet, bunsen.
31 digilib.uns.ac.id
perpustakaan.uns.ac.id
2. Bahan Kain katun jenis Primisima, serbuk cangkang udang yang lolos ayakan 100 mesh, bakteri Staphylococcus aureus, Trypto Soya Broth (TSB) , NaOH (Merck), SiO2 (Merck), asam asetat p.a (Merck), AgNO3 (Merck), H2SO4 (Merck), HNO3 (Merck), etanol 70%, minyak goreng, kertas saring whatman 41, spirtus, kapas, aquades produksi laboratorium FMIPA UNS
D. Prosedur Penelitian 1. Isolasi kitin dan sintesis kitosan dari cangkang udang Cangkang udang yang telah dibersihkan, dikeringkan dan diblender kemudian disaring menggunakan ayakan 100 mesh. Proses deproteinasi. Serbuk cangkang udang sebanyak 25 g dan 250 mL larutan NaOH 4% (b/v) dimasukkan ke dalam labu alas bulat 500 mL dan dipanaskan sambil diaduk pada suhu 80 ºC selama 1 jam. Padatan yang diperoleh kemudian dicuci dengan akuades sampai netral dan dikeringkan pada suhu 60 ºC sampai kering (Purnawan dkk., 2008). Proses demineralisasi. Serbuk cangkang udang sebanyak 10 g hasil deproteinasi dan 150 mL larutan HCl 1 M dimasukkan ke dalam gelas beaker 500 mL dan diaduk pada suhu kamar selama 3 jam. Serbuk yang diperoleh kemudian dicuci sampai netral dengan akuades dan dikeringkan pada suhu 60 ºC sampai kering (Purnawan dkk., 2008). Proses Deasetilasi Kitin. Sebanyak 10 g kitin dimasukkan ke dalam labu leher dua 500 mL ditambah 150 mL larutan NaOH 60% (b/v), direfluks pada suhu 120 °C selama 3 jam. Hasil deasetilasi disaring dengan kertas saring biasa dan dicuci menggunakan akuades sampai netral. Residu hasil deasetilasi dikeringkan pada suhu 60 °C sampai kering (±8 jam) (Purnawan dkk., 2008). Kemudian kitin dan kitosan yang diproleh dikarakterisasi menggunakan spektrometer IR dan XRD.
commit to user
32 digilib.uns.ac.id
perpustakaan.uns.ac.id
2. Pembuatan komposit kitosan/Ag Sebanyak 100 mg adsorben (kitosan hasil deasetilasi) diinteraksikan dengan Ag pada konsentrasi 1000 mg/L, diambil sebanyak 10 ml pada 7 gelas beker dan masing-masing dishaker dengan variasi waktu shaker 1, 2, 3, 4, 5, 6, 7 jam. Kemudian filtrat dan residu dipisahkan dengan disaring. Residu dikeringkan dengan dioven selama 3 jam. Filtrat diukur kadar Ag yang tersisa dalam larutan dengan spektrofotometer serapan atom untuk mengetahui kondisi optimum proses adsorpsi kitosan terhadap logam Ag sedangkan residu kitosan dikarakterisasi IR, DTA/TGA dan XRD. 3. Pelapisan kain dengan SiO2 Kain katun dengan ukuran 12 x 3 cm2 yang sudah ditimbang beratnya dicelupkan kedalam larutan SiO2 (0.2 gram SiO2 yang dilarutkan dalam NaOH 5% (b/v)) dengan variasi waktu pencelupan 0, 5, 10, 15, 20, 25, 30 menit. Kain dikeringkan pada suhu 60 oC selama 30 menit. Kemudian kain ditimbang beratnya hingga konstan. Kekakuan kain diuji dengan uji kekakuan. 4. Pelapisan kain dengan kitosan/Ag variasi berat Kain katun yang sudah terlapisi SiO2 dicelupkan kedalam variasi larutan komposit 0, 0.01, 0.05, 0.10, 0.50, 1.00, 1.50 dan 2.00 % (b/v) selama 10 menit. Kain dikeringkan pada suhu 60 oC selama 30 menit dan dimantapkan pada suhu 150 oC selama 3 menit. Kemudian kain ditimbang beratnya hingga konstan. Kekakuan kain diuji dengan uji kekakuan dan karakterisasi kain dianalisis menggunakan XRD dan SEM. 5. Uji aktivitas antibakteri kain sebelum pencucian (laundering) Metode yang digunakan adalah shake flash method. Media TSB 3% (b/v) 25 ml dimasukkan ke dalam erlenmeyer 50 ml yang sudah steril. Kain masing - masing bukuran 2 x 3 cm2 sebanyak 6 potong yang telah dilapisi komposit dimasukkan kedalam 6 erlenmeyer, lalu dimasukkan dan dipanaskan didalam autoclave pada suhu 121 oC selama 15 menit. Setelah dingin sebanyak 1 ml bakteri S.aureus hasil inkubasi selama 24 jam dimasukkan ke dalam sampel larutan media (sebagai commit to user kontrol), larutan media dan kain tanpa perlakuan, larutan media dan kain dilapisi
33 digilib.uns.ac.id
perpustakaan.uns.ac.id
SiO2, larutan media dan kain dilapisi komposit (0.01, 0.05, 0.10, 0.50 % (b/v)). Pengukuran absorbansi sampel dilakukan pada jam ke-0, 2, 4, 6 dan 8 menggunakan spektrofotometer UV-Vis pada panjang gelombang 610 nm. Percobaan dilakukan duplo. Dari data tersebut, dihitung persentase daya hambat pada kain berlapiskan SiO2 dan kitosan/Ag terhadap pertumbuhan bakteri S.aureus. inhibisi (%) =
(A t - A 0 ) - ( Bt - A0 ) x 100% At - A0
Dengan: A0 = jumlah bakteri kontrol jam ke-nol At = jumlah bakteri kontrol jam ke-t Bt = jumlah bakteri sampel jam ke-t 6. Uji aktivitas antibakteri kain setelah pencucian (laundering) Metode yang digunakan adalah shake flash method. Media TSB 3% (b/v) 25 ml dimasukkan ke dalam erlenmeyer 50 ml yang sudah steril. Kain masing - masing berukuran 2 x 3 cm2 sebanyak 6 potong yang telah dilapisi komposit dan dicuci dengan 0.2% (v/v) surfaktan tween-20 selama 5 menit dan dibilas dengan aquades selama 2 menit menggunakan sonic washer. Kemudian kain dikeringkan, setelah kering kain dimasukkan kedalam 6 erlenmeyer, lalu dimasukkan dan dipanaskan didalam autoclave pada suhu 121 oC selama 15 menit. Setelah dingin sebanyak 1 ml bakteri S.aureus hasil inkubasi selama 24 jam dimasukkan ke dalam sampel larutan media (sebagai kontrol), larutan media dan kain tanpa perlakuan, larutan media dan kain dilapisi SiO2, larutan media dan kain dilapisi komposit (0.01, 0.05, 0.10, 0.50 % (b/v)). Pengukuran absorbansi sampel dilakukan pada jam ke-0, 2, 4, 6 dan 8 menggunakan spektrofotometer UV-Vis pada panjang gelombang 610 nm. Percobaan dilakukan duplo. Dari data tersebut, dihitung persentase daya hambat pada kain berlapiskan SiO2 dan kitosan/Ag dengan konsentrasi bervariasi terhadap pertumbuhan bakteri S.aureus.
inhibisi (%) =
(A t - A 0 ) - ( Bt - A0 ) x 100% A A t 0 commit to user
34 digilib.uns.ac.id
perpustakaan.uns.ac.id
Dengan: A0 = jumlah bakteri kontrol jam ke-nol At = jumlah bakteri kontrol jam ke-t Bt = jumlah bakteri sampel jam ke-t 7. Karakterisasi Gugus Fungsi, Uji kekakuan kain, dan Analisa Difraksi Sinar X (XRD) pada kain, kain terlapisi SiO2, kain terlapisi SiO2 dan komposit kitosan/Ag, Analisis permukaan kain, kain terlapisi SiO2, kain terlapisi SiO2 dan komposit kitosan/Ag dengan (SEM) a. Analisis Gugus Fungsi Sampel berupa kitin, kitosan, komposit kitosan/Ag dimasukkan dalam spektrofotometer Infra Merah (FTIR, Shimdzu Prestige 21). Hasil diperoleh dalam bentuk spektra IR yang menginformasikan adanya serapan gugus fungsi pada frekuensi tertentu. b. Analisis kekakuan kain Kekakuan kain dianalisis menggunakan stiffness tester. Kain yang sudah ditimbang beratnya dan diukur luasnya (2 x 3 cm2) diletakkan diatas alat kemudian digeser menggunakan penggaris kearah bidang miring hingga ujung kain menyentuh bidang miring yang bersudut 41,5o. Panjang pita yang menggantung dari kain tersebut dicatat dan besarnya kekakuan kain didapatkan.
c. Analisa Difraksi Sinar X (XRD) Sampel ditempatkan pada sample holder yang ketebalannya 2 mm alat XRD pada posisi rata atau sejajar dengan Ganiometer dan luas penyinaran antara 0,5 x 2 cm sampai 1 x 2 cm, kemudian dilakukan scanning pada kondisi: X-ray tube X-ray tube (target = Cu, voltage = 40.0 (kV), current = 30.0 (mA)); Slits (divergence slit = 1.00000 (deg), scatter slit = 1.00000 (deg), receiving slit = 0.15000 (mm)); Scanning (drive axis = Theta-2Theta, scan range = 5.000 - 89.980), scan mode = Continuous Scan, scan speed = 2.0000 (deg/min), sampling pitch = 0.0200 (deg) , preset time = 0.60 (sec)
commit to user
35 digilib.uns.ac.id
perpustakaan.uns.ac.id
d. Analisis Permukaan dengan SEM Kain dengan ketebalan sekitar 0,5 mm diletakkan di bawah mikroskop elektron dengan perbesaran 2500x dan diatur sedemikian rupa sehingga terlihat gambar yang jelas. Gambar kain difoto dengan kamera digital melalui mikroskop.
E. Teknik Pengumpulan dan Analisa Data 1. Penetuan derajat deasetilasi (DD) Derajat deasetilasi kitosan ditentukan berdasarkan karakter spektra IR. Derajat deasetilasi (DD) kitosan diperoleh dari perbandingan absorbansi puncak pada daerah serapan sekitar 1650 cm-1 yang merupakan serapan gugus karbonil dan absorbansi puncak serapan sekitar 3450 cm-1 yang merupakan serapan hidroksil sebagai standar internal atau puncak referensi dari metode spektroskopi IR. Semakin besar derajat deasetilasi kitosan, intensitas serapan pada daerah sekitar 1650 cm-1 yang menunjukkan C=O stretching semakin menurun, sedangkan intensitas serapan pada daerah sekitar 1596 cm-1 yang menunjukkan amina primer (-NH2) semakin meningkat. 2. Penentuan kondisi optimum adsorbsi logam Ag oleh kitosan Dengan menggunakan spektroskopi serapan atom (AAS) dengan teknik analisa menggunakan metode kurva kalibrasi. Dari AAS diperoleh data absorbansi dan konsentrasi. Kondisi optimum absorbsi ditentukan dari grafik % absorbsi terhadap perbandingan kitosan dan Ag. Kondisi optimum absorbsi ditunjukkan oleh penurunan % absorbsi secara signifikan dengan naiknya perbandingan kitosan/Ag hingga mencapai maksimum dan penurunan secara tajam % absorbsi. Penentuan kondisi optimum juga didukung dengan perhitungan secara statistik kimia melalui uji anava satu faktor.
commit to user
36 digilib.uns.ac.id
perpustakaan.uns.ac.id
3. Penentuan kekakuan kain Dengan menggunakan stiffness tester yang akan diperoleh data berupa kekakuan kain (g.cm). Sehingga diperoleh data kekakuan kain tanpa perlakuan, kain terlapisi SiO2 dan kain terlapisi SiO2 dan komposit kitosan/Ag. Semakin kaku suatu bahan, maka kekakuannya semakin besar. Kondisi optimum kain yang tidak terlalu kaku ditentukan dari besarnya kekakuan yang dihasilkan. Data yang terbaik menunjukkan kekakuan kain yang mendekati kain awalnya (kain tanpa perlakuan). 4. Analisa interaksi antara senyawa penyusun komposit kitosan/Ag Dapat dipelajari dari data spektra IR menggunakan FTIR dan kristalinitas menggunakan XRD. Adanya penurunan intensitas pada serapan tertentu dan munculnya serapan baru mengindikasikan adanya ikatan baru. Hal serupa ditunjukkan oleh difraktogram XRD, munculnya pola difraktogram baru mengindikasikan adanya pembentukan serapan baru dengan pola kristal yang berbeda. 5. Penentuan kristalinitas kain terlapisi SiO2 dan komposit kitosan/Ag Dengan menggunakan XRD yang akan diperoleh data berupa difraktogram yang menunjukkan pola difraksi 2θ. Terbentuknya ikatan antara kain, kain terlapisi SiO2 dan kain terlapisi SiO2 dan komposit kitosan/Ag ditandai dengan ternjadinya pergeseran pola difraksi utama pada posisi 2θ disekitar 10o dan 20o serta jarak antar puncak utama. Selain itu adanya perubahan pola difraksi dan intensitas puncak ini menunjukkan pola kristal kristalinitas kain terlapisi SiO2 dan komposit kitosan/Ag dibandingkan senyawa-senyawa pembentuknya. 6. Homogenitas permukaan komposit SiO2/kitosan/Ag Dianalisis dengan scanning mikroskop elektron (SEM). Data foto mikrografi berupa gambar dengan perbesaran tertentu yang menunjukkan homogenitas permukaan kain, kain terlapisi SiO2 dan kain terlapisi SiO2 dan komposit kitosan/Ag. Semakin homogen pencampuran bahan, persebaran lapisan SiO2 dan komposit kitosan/Ag dalam kain semakin merata. commit to user
37 digilib.uns.ac.id
perpustakaan.uns.ac.id
7. Analisis kemampuan aktivitas antibakteri pada kain Dilakukan terhadap bakteri S.aureus. Dari uji antibakteri ini akan diperoleh data jumlah koloni bakteri pada masing-masing sempel. Komposit yang memiliki jumlah koloni paling sedikit, berarti memiliki daya hambat terhadap bakteri paling besar.
commit to user
38 digilib.uns.ac.id
perpustakaan.uns.ac.id
BAB IV HASIL DAN PEMBAHASAN
Pada bab ini akan diuraikan pembahasan tentang isolasi kitin dan sintesis kitosan cangkang udang, penentuan konsentrasi optimum adsorbsi logam Ag oleh kitosan, penentuan kondisi optimum pelapisan kain katun dengan SiO2 dan komposit kitosan/Ag dan karakterisasinya serta uji aktivitas kain antibakteri.
A. Isolasi kitin dan sintesis kitosan Isolasi kitin dan sintesis kitosan dari cangkang udang melalui beberapa tahap yaitu pembuatan serbuk cangkang udang lolos ayakan 100 mesh, proses deproteinasi, proses demineralisasi dan proses deasetilasi. Proses deproteinasi bertujuan untuk menghilangkan sisa-sisa protein dan lemak pada cangkang udang. Pada cangkang udang, keberadaan kitin disertai dengan adanya protein dan fraksi anorganik yang kebanyakan disusun oleh garam-garam kalsium karbonat (CaCO3) dan kalsium fosfat (Ca3(PO4)2). Untuk memperoleh kitin diperlukan proses demineralisasi yang bertujuan untuk menghilangkan mineralmineral yang terdapat dalam kulit udang. Adapun reaksi demineralisasi dalam pelarut asam adalah sebagai berikut: Ca3(PO4)2 (s) + 6 HCl (aq)
3 CaCl2 (aq) + 2 H3PO4 (aq)
CaCO2 (s) + 2 HCl (aq)
CaCl2 (aq) + CO2 (g) + H2O (l)
Adanya CO2 yang dihasilkan dapat terlihat dari buih yang terbentuk pada proses demineralisasi. Pemutusan gugus asetil dari gugus N-asetil pada kitin untuk menghasilkan kitosan disebut proses deasetilasi. Reaksi hidrolisis dengan basa kuat yang terjadi antara kitin dengan NaOH yang terjadi seperti yang diperlihatkan pada Gambar 2. Proses isolasi kitin dari cangkang udang yang telah dilakukan sebanyak 25 g serbuk cangkang udang (berat kering) menghasilkan kitin rata- rata sebanyak 4,801 ± 0, 136 g (19,20% dari cangkang udang) yang kemudian sintesis kitin menjadi kitosan rata-rata menghasilkan sebanyak 3,013 g (12,05% dari berat cangkang udang) kitosan.
commit to user
39 digilib.uns.ac.id
perpustakaan.uns.ac.id
1.
Karakterisasi kitin dan kitosan dengan spektroskopi IR
Kitin dan kitosan yang dihasilkan dari cangkang udang dikarakterisasi dengan spektroskopi infra merah untuk mengidentifikasi gugus-gugus fungsionalnya selain itu derajat deasetilasi kitosan juga dapat ditentukan. Serapan dan gugus fungsi yang terdapat pada kitin dan kitosan disajikan pada Tabel 1 (Brugnerotto et al., 2001; Ming et al., 2001; 2003; Liu et al., 2006; Khan et al., 2002; Tretenichenko et al., 2006) Tabel 1. Gugus fungsi spektra IR kitin dan kitosan Bil. Gelombang (cm-1) sekitar
Gugus fungsi kitin dan kitosan
3448,5 3271,0 & 3109,0 2931,6 & 2885,3 (doublet) 1658,7 & 1630,0 (doublet-singlet) 1596,0 1419,0 & 1377,0 1558,4 & 1311,5 1157,2 1072,3 & 1026,1 894,9
O-H stretching dan N-H (-NH2)Amina N-H (NHCOCH3) Amida II C-H stretching (C-H ring, -CH3 dan –CH2-) C=O stretching (NHCOCH3) Amida I N-H bending (-NH2) C-H bending (C-Hring;-CH2;-CH3)dan C-C N-H & C-N (NHCOCH3) AmidaII & III Brigde-O-stretching (C-OC) C-O asym & C-O sym stretching Ring stretching (C-H siklo atau ring)
Spektra kitin dan kitosan hasil isolasi ditunjukkan pada Gambar 4.
1596 cm-1, -NH2
3271 & 3109 -NH Amida II 3271 & 3109 -NH Amida II1658,7 &
1311,5 -C-N Amida III
1558,4 –NH amida II
1630 -C=O -C=Ostr
Gambar 4. Spektra IR kitin dan kitosan cangkang udang commit IR to user Berdasarkan Gambar 4, spektra kitin muncul serapan sekitar 3271 dan
perpustakaan.uns.ac.id
40 digilib.uns.ac.id
3109 cm-1 yang menunjukkan gugus N-H (NHCOCH3, Amida II); 2931,6 dan 2885,3 cm-1 yang menunjukkan gugus C-H stretching; 1658,7 dan 1630 cm-1 yang menunjukkan gugus C=O stretching (NHCOCH3, Amida I); 1558,4 dan
1311,5
cm-1 menunjukkan gugus N-H dan C-N (NHCOCH3, Amida II dan III). Terbentuknya kitosan dari proses deasetilasi kitin ditandai dengan perubahan serapan sekitar 3448,5 cm-1 menjadi lebih lebar. Intensitas puncak serapan sekitar 3271,0 dan 3109,0 cm-1 yang menunjukkan gugus N-H (Amida II) semakin rendah dan hilang. Hal ini kemungkinan disebabkan terjadi tumpang tindih dengan serapan -NH2 dan -OH. Serapan gugus amina lebih kecil daripada serapan gugus hidroksida karena ikatannya lebih lemah. Semakin besarnya gugus asetil pada kitin yang tersubstitusi dengan atom H menjadi gugus amina (-NH2), kemampuan kitosan membentuk ikatan hidrogen dengan molekul air semakin besar, sehingga menyebabkan pelebaran puncak serapan sekitar 3448,5 cm-1 dan menyebabkan puncak serapan sekitar 3271,0 dan 3109,0 cm-1 semakin tidak kelihatan. Perubahan juga terjadi pada puncak serapan sekitar 1658,7 dan 1630 cm-1 yang menunjukkan gugus C=O stretching (NHCOCH3, Amida I). Intensitas puncak serapan ini menjadi lebih kecil dan muncul serapan baru yang lebih kecil yaitu serapan pada bilangan gelombang 1596 cm-1 yang menunjukkan gugus amina primer. Hal ini menunjukkan banyaknya gugus asetil yang lepas, membentuk gugus amina (-NH2). Kekuatan ikatan C=O dari gugus asetil lebih besar dari kekuatan ikatan N-H dari gugus amina, sehingga energi vibrasi yang dibutuhkan lebih kecil dan bilangan gelombang yang disebabkan oleh adanya gugus asetil lebih besar daripada energi vibrasi dan bilangan gelombang yang disebabkan oleh adanya gugus amina (hukum Hooke). Serapan 1558,4 cm-1 yang menunjukkan gugus N-H (NHCOCH3, Amida II) bergeser ke bilangan gelombang yang lebih besar yaitu ke arah 1596 cm-1 yang menunjukkan gugus N-H amina. Hal ini disebabkan karena kekuatan ikatan N-H dalam amina (-NH2) lebih kuat daripada kekuatan ikatan N-H dalam amida (NHCOCH3). Karakterisasi kitosan dengan spektrofotometer IR selain untuk mengetahui gugus-gugus fungsi dari kitosan hasil isolasi, dapat juga digunakan untuk commit to user menghitung derajat deasetilasi kitosan hasil isolasi yang didasarkan pada absorbansi
41 digilib.uns.ac.id
perpustakaan.uns.ac.id
gugus amina, hidroksi dan karbonil. Untuk menghitung derajat deasetilasi kitosan dapat digunakan baseline b yang diusulkan oleh Baxter (Khan et al., 2002). Dari penelitian ini derajat deasetilasi yang diperoleh adalah 95,15% berdasarkan baseline b. Adapun cara penentuan DD dapat dilihat pada Lampiran 1.
2.
Analisis X-Ray Diffractometer (difraksi sinar-X)
Karakterisasi kedua dari kitin dan kitosan dilakukan dengan menggunakan teknik difraksi sinar-X yang umumnya digunakan untuk karakterisasi padatan sehingga diketahui kristalinitasnya. Difraktogram kitin dan kitosan disajikan pada Gambar 5. 1654
878 769 579
Gambar 5. Difraktogram kitin dan kitosan Pola difraksi sinar-X kitin dan kitosan menunjukkan pola puncak difraksi yang memiliki posisi 2θ yang relatif sama, namun pada kitosan mempunyai intensitas yang lebih lemah dan melebar. Pola difraksi kitin dan kitosan terdiri dari puncak utama pada 2θ sekitar 10o dan 20o. Pelebaran puncak menunjukkan ketidakteraturan pengaturan bidang kristal setelah deasetilasi. Tingginya kristalinitas pada kitin disebabkan adanya ikatan hidrogen intramolekul dan intermolekul. Struktur kristalinitas kitin dan kitosan dapat terlihat seperti pada Gambar 6.
commit to user
42 digilib.uns.ac.id
perpustakaan.uns.ac.id
Gambar 6. Interaksi intermolekuler kitin atau kitosan (Champagne, 2002) Adanya interaksi intramolekuler menyebabkan keteraturan bidang unit polimer kitin dan kitosan. Secara umum kristalinitas kitin lebih tinggi daripada kitosan karena ikatan hidrogen yang mempengaruhi interaksi intramolekuler dan intermolekuler kitin lebih kuat daripada kitosan. Ikatan hidrogen kitin dan kitosan terlihat seperti Gambar 7 dan 8.
Ik.hidrogen
HN : C
..δδ+ O : ------- H
..δO ..
H3C Gambar 7. Ikatan hidrogen dari kitin Ik.hidrogen δ-
..N
δ+ H------:O ..δ-
Hδ+ Hδ+ Gambar 8. Ikatan hidrogen dari kitosan Oksigen lebih elektronegatif dari pada nitrogen sehingga dipol negatif oksigen lebih kuat dari pada nitrogen dan menyebabkan momen dipol hidrogen yang terikat pada oksigen lebih positif dari pada hidrogen yang terikat pada nitrogen. Hal ini menyebabkan ikatan hidrogen intramolekuler dan intermolekuler kitin lebih kuat daripada kitosan. Selama proses deasetilasi kitin sangat dimungkinkan terjadinya deasetilasi commit to user dan pemutusan rantai polimer secara acak. Hal ini menyebabkan keteraturan kitin
43 digilib.uns.ac.id
perpustakaan.uns.ac.id
semakin menurun. Selain itu ikatan hidrogen intermolekuler –NH2---OH kitosan dapat diperlemah oleh adanya faktor sterik molekul karena panjang ikatan gugus amina lebih pendek dibandingkan panjang ikatan gugus asetil. Semakin banyak gugus asetil tersubstitusi menjadi gugus amina maka jarak antar bidang rantai polimer yang membentuk ikatan hidrogen intermolekuler semakin pendek dan menyebabkan kestabilan ikatan hidrogen intermolekuler –NH2---OH lebih kecil dibandingkan ikatan hidrogen intermolekuler –C=O---HO-gugus asetil pada kitin. Oleh karena itu, secara umum kristalinitas kitosan lebih rendah daripada kitin.
B. Penentuan konsentrasi optimum adsorpsi logam Ag oleh kitosan Proses adsorbsi logam Ag oleh kitosan dilakukan untuk menentukan persentase (%) optimum penyerapan logam Ag oleh kitosan pada variasi waktu shaker Ag/kitosan (20 ml Ag 1000 ppm : 0,2 g) selama 1, 2, 3, 4, 5, 6 dan 7 jam. Besarnya persentase adsorbsi logam Ag oleh kitosan dianalisis dengan menggunakan spektrofotometer serapan atom (AAS) dengan metode kurva standar. Kurva standar dan persentase adsorbsi logam Ag oleh kitosan dapat dilihat pada Gambar 9 dan 10.
Gambar 9. Kurva standar logam Ag menggunakan AAS commit to user
44 digilib.uns.ac.id
perpustakaan.uns.ac.id
Gambar 10. Adsorbsi logam Ag oleh kitosan Berdasarkan Gambar 10 menunjukkan bahwa terjadi peningkatan jumlah logam Ag yang teradsorb pada jam ke-1 sampai jam ke-5 secara signifikan. Akan tetapi pada jam ke-5 sampai jam ke-7 jumlah logam Ag yang teradsorb semakin tidak signifikan. Banyaknya logam Ag yang teradsorb oleh kitosan dapat dilihat pada lampiran 3. Penurunan adsrobsi logam Ag oleh kitosan terjadi mulai dari waktu shaker pada jam ke-5. Hal ini disebabkan karena adanya ketidak seimbangan jumlah logam Ag dan situs aktif (-NH2 dan -OH) pada kitosan, semakin lama waktu shaker logam Ag dengan jumlah situs aktif yang sama, maka situs aktif kitosan mengalami kejenuhan. Berdasarkan Gambar 10, kondisi optimum proses penyerapan logam Ag oleh kitosan terjadi pada jam ke-5. Penentuan kondisi optimum ini didukung dengan penghitungan secara statistika menggunakan anava satu arah dan uji Duncan yang dapat dilihat pada Lampiran 4 dan 5.
1. Karakterisasi FTIR kitosan setelah adsorbsi logam Ag Adanya interaksi antara kitosan dengan logam Ag menyebabkan terjadinya perubahan karakter spektra IR kitosan. Perubahan spektra IR kitosan setelah mengadsorp logam Ag dapat dilihat pada Gambar 11. commit to user
45 digilib.uns.ac.id
perpustakaan.uns.ac.id
-OH & -NH2str
-NH2 str
-C-C
Kitosan/Ag
Kitosan
-CH
-C-N
Gambar 11. Perubahan spektra IR kitosan sebelum dan setelah proses adsorbsi Secara kualitatif, Gambar 11 menunjukkan adanya perubahan baik intensitas, maupun lebar puncak dari kitosan. Serapan vibrasi sekitar 3448,72 cm-1 dan 1597,06 cm-1 yang menunjukkan serapan overlapping vibrasi gugus –NH2 dan -OH mengalami penyempitan karena adanya logam Ag. Hal ini dimungkinkan karena berkurangnya kekuatan ikatan hidrogen intramolekuler dan intermolekuler kitosan setelah adanya logam Ag, serta terbentuknya ikatan hidrogen dengan molekul air semakin besar pada kitosan. Interaksi antara logam Ag dengan gugus –NH2 dan -OH juga menyebabkan terjadinya penurunan intensitas pada daerah 1419,61 cm-1 yang merupakan serapan dari C-H dan daerah 1319,31 cm-1 serapan dari gugus C-N serta 1381,03 cm-1 yang merupakan daerah serapan dari gugus C-C semakin tidak kelihatan. Hal ini dimungkinkan karena interaksi Ag dengan gugus NH2 dan –OH menyebabkan kekakuan vibrasi gugus C-H, C-C dan C-N, sehingga intensitas vibrasi gugus - gugus tersebut menjadi lebih kecil. commit to user
46 digilib.uns.ac.id
perpustakaan.uns.ac.id
2. Karakterisasi XRD kitosan setelah adsorbsi logam Ag Kitosan memiliki kisi kristal yang ditunjukkan oleh munculnya pola difraksi utama yaitu 2θ sekitar 10o dan 20o, dengan intensitas yang rendah (Trecenichenco et al., 2006). Adanya proses adsorbsi logam Ag oleh kitosan mempengaruhi kristalinitas kitosan. Adanya logam Ag menyebabkan puncak utama difraktogram kitosan semakin lebar dan intensitas kitosan semakin rendah. Hal ini ditunjukkan pada Gambar 12.
62
66 769
579 Kitosan/Ag
Gambar 12. Perubahan difraktogram kitosan Berdasarkan Gambar l2 menunjukkan bahwa terjadinya penurunan intensitas puncak pada difraktogram kitosan disebabkan karena kristalinitas kitosan setelah adanya logam Ag menurun. Modrzejewska et al. (2009) menyebutkan bahwa dengan meningkatnya
jumlah ion logam yang teradsobsi oleh kitosan, maka indek
kristalinitas dari kitosan semakin menurun. Kristalinitas kitosan dipengaruhi oleh ikatan hidrogen intramolekuler dan intermolekuler. Dengan adanya logam Ag menyebabkan rusaknya ikatan hidrogen intramolekuler dan intermolekuler kitosan dengan membentuk khelat antara logam Ag dengan kitosan seperti yang diiliustrasikan Gambar 13. Hal ini menyebabkan kristalinitas kitosan menurun.
commit to user
47 digilib.uns.ac.id
perpustakaan.uns.ac.id
Gambar 13. Berkurangnya ikatan hidrogen intramolekuler dan intermolekuler kitosan 3. Karakterisasi DTA/TGA kitosan setelah adsorbsi logam Ag Dalam analisis TGA (Thermogravimetric Analysis) dan DTA (Differential Thermal Analysis), sampel mulai mengalami perubahan atau reaksi ditunjukkan oleh penyimpangan terhadap garis horizontal dan reaksi telah sempurna apabila tercapai kurva horizontal dan tidak mengalami perubahan kembali (plateu). Suatu reaksi yang tidak diikuti oleh adanya perubahan massa, tidak dapat dianalisis dengan TGA. Perubahan termogram DTA disebabkan oleh perubahan panas reaksi yang tidak hanya dipengaruhi oleh perubahan massa sampel tapi juga oleh terjadinya proses reaksi, perubahan struktur dan perubahan fasa sampel. Perubahan termogram adsorbsi logam Ag oleh kitosan disajikan pada Gambar 14 dan 15.
commit to user
48 digilib.uns.ac.id
perpustakaan.uns.ac.id
II
I
II
Kitosan/A g
I Kitosan
Gambar 14. Perubahan Termogram TGA Kitosan Kitosan/A g
I II II
Kitosan
I
Gambar 15. Perubahan Termogram DTA Kitosan Dari termogram TGA dan DTA, secara umum diperoleh 4 perubahan kurva yang menunjukkan adanya perubahan massa dan panas reaksi yaitu : Suhu antara di bawah 120 oC (kurva miring I), suhu antara 250 – 360 oC (kurva miring II), suhu antara 360 – 610 oC (kurva miring III) dan suhu diatas 610 oC (kurva miring IV). Suhu antara dibawah 120 oC (kurva miring I) menujukkan proses transisi kristal yang merupakan reaksi eksotermis yang ditunjukkan puncak ke atas pada termogram DTA kitosan (Gary, 1986). commit to user
Suhu antara 250 – 360 oC (kurva miring II) kemungkinan menunjukkan
49 digilib.uns.ac.id
perpustakaan.uns.ac.id
hilangnya sisa gugus asetil dari kitosan karena gugus asetil memiliki ikatan yang lebih lemah dan reaktif sehingga mudah putus terlebih dahulu. Termogram TGA pada komposit kitosan/Ag pada suhu sekitar 300 oC menunjukkan proses hilangnya gugus asetil telah selesai. Sedangkan pada Termogram TGA kitosan proses hilangnya gugus asetil masih terus berlangsung. Lepasnya gugus asetil pada komposit kitosan/Ag lebih cepat daripada pada kitosan. Hal ini dimungkinkan karena
hilangnya
ikatan
hidrogen
pada
komposit
kitosan/Ag,
sehingga
keteraturannya menjadi lebih acak dan gugus asetil lebih cepat lepas. Hilangnya gugus asetil dari kitosan merupakan reaksi endotermis, ditunjukkan munculnya puncak ke bawah termogram DTA. Suhu antara sekitar 360 – 610
o
C (kurva miring III) kemungkinan
menunjukkan proses degradasi dan dekomposisi rantai kitosan, maupun komposit kitosan/Ag berdasarkan termogram DTA proses degradasi dan dekomposisi rantai kitosan merupakan reaksi eksotermis (Gary, 1986). Suhu di atas 610 oC (kurva miring IV) terbentuk garis horizontal pada termogram TGA kitosan yang menunjukkan habis terdekomposisi menjadi komponen penyusunnya. Adanya sisa logam Ag dalam kitosan menyebabkan komposit kitosan/Ag tidak habis terdegradasi hingga mendekati persen berat yaitu 0% karena titik leleh Ag lebih besar dari 700 oC.
C. Penentuan kondisi optimum pelapisan kain katun dengan SiO2 dan komposit kitosan/Ag 1. Pelapisan kain katun dengan SiO2 Kain katun dengan ukuran 12 x 3 cm2 yang sudah ditimbang beratnya dicelupkan kedalam larutan SiO2. Larutan SiO2 dibuat dengan cara melarutkan 0,2 gram SiO2 dalam NaOH 5% (b/v) dan dipanaskan sampai suhu > 80 oC. (Ibrahim, 2009). Pencelupan kain dilakukan dengan waktu pencelupan 0, 5, 10, 15, 20, 25 dan 30 menit. Kain dicelupkan secara bolak-balik dengan kecepatan celup 8 celupan/menit. Kemudian kain dikeringkan pada suhu 60 oC selama 30 menit dan ditimbang beratnya hingga konstan. Hubungan antara waktu pencelupan dengan commit to user berat lapisan SiO seperti yang ditunjukkan pada Gambar 16. 2
50 digilib.uns.ac.id
perpustakaan.uns.ac.id
Gambar 16. Hubungan antara waktu pencelupan kain dengan berat lapisan SiO2 Gambar 16 menunjukkan bahwa semakin lama kain dicelupkan maka semakin besar beratnya, hal itu disebabkan semakin banyaknya SiO2 yang menempel pada selulosa kain. Kain yang sudah terlapisi oleh SiO2 dilakukan uji kekakuaanya menggunakan stiffness tester. Hasil uji kekakuan kain disajikan pada Tabel 2 dan menunjukkan bahwa semakin lama waktu celup kain kedalam larutan SiO2 maka kain semakin kaku. Tabel 2. Hasil uji kekakuan kain terlapisi SiO2 Waktu (menit)
Berat (gr)
Kekakuan (mg/cm)
0 5 10 15 20 25 30
0,000 ± 0,000 0,002 ± 0,001 0,006 ± 0,001 0,009 ± 0,000 0,012 ± 0,001 0,016 ± 0,000
6,845 ± 0,106 6,088 ± 0,096 6,185 ± 0,085 6,237 ± 0,118 6,341 ± 0,147 6,341 ± 0,084
0,016 ± 0,000
6,765 ± 0,050
Berdasarkan Gambar 16 dan Tabel 2, waktu yang dianggap paling optimum adalah waktu pencelupan 25 menit dengan berat kain optimum dan kekakuan yang tidak kaku. Penentuan kondisi optimum ini didukung dengan penghitungan secara commit to user statistika menggunakan anava satu arah dan uji Duncan yang dapat dilihat di
51 digilib.uns.ac.id
perpustakaan.uns.ac.id
Lampiran 6. Pada penelitian kali ini SiO2 berfungsi sebagai pengemban bagi komposit kitosan-Ag dan selulosa kain (Li et al., 2007). Oleh karena itu kain dilapisi terlebih dahulu dengan SiO2 sehingga diharapkan terdapat interaksi antar SiO2 dengan selulosa kain. Adanya interaksi antara SiO2 dengan selulosa kain maka diharapkan SiO2 bisa mengemban komposit kitosan/Ag sehingga interaksi komposit kitosan/Ag menjadi lebih kuat. 2. Pelapisan kain katun terlapisi SiO2 dengan komposit kitosan/Ag Kain katun terlapisi SiO2 dicelupkan kedalam variasi larutan komposit 0; 0,05; 0,10; 0,50; 1,00; 1,50 dan 2,00 % (b/v) dalam asetat 1% selama 10 menit. Kain dicelupkan secara bolak-balik dengan kecepatan celup 8 celupan/menit kemudian kain dikeringkan pada suhu 60 oC selama 30 menit dan dimantapkan pada suhu 150 oC selama 3 menit. Kain ditimbang beratnya hingga konstan. Hubungan antara konsentrasi komposit kitosan/Ag dengan berat lapisan komposit kitosan/Ag seperti yang ditunjukkan pada Gambar 17.
Gambar 17. Hubungan antara konsentrasi komposit kitosan/Ag dengan berat lapisan komposit kitosan/Ag Gambar 17 menunjukkan bahwa semakin besar konsentrasi komposit kitosan/Ag, maka semakin banyak komposit kitosan/Ag yang terikat pada kain yang telah dilapisi SiO2. Kain yang sudah terlapisi oleh SiO2 dan komposit kitosan/Ag dilakukan uji kekakuaanya menggunakan tester. Hasil uji kekakuan kain commit to stiffness user disajikan pada Tabel 4 dan menunjukkan bahwa semakin besar konsentrasi komposit
52 digilib.uns.ac.id
perpustakaan.uns.ac.id
kitosan/Ag maka kain semakin kaku. Tabel 3. Hasil Uji Kekakuan Kain terlapisi SiO2 dan komposit kitosan/Ag Berat (% (b/v)) 0.00 0.01 0.05 0.10 0.50 1.00 1.50 2.00
Kekakuan (mg/cm) 6.845 ± 0.003 4.877 ± 0.003 4.495 ± 0,001 4.124 ± 0,000 24.166 ± 0,003 57.149 ± 0,001 86.440 ± 0,003 105.094 ± 0,001
Berdasarkan Tabel 3, berat kain yang sudah dilapisi SiO2 dan komposit kitosan/Ag dan uji kekakuan kain, maka yang dianggap paling optimum adalah pada saat kain terlapisi komposit pada konsentrasi 0.10 % (b/v). Kain yang dilapisi komposit pada konsentrasi diatas 0.50 % (b/v) terdapat layer tebal diatasnya. Sehingga pada konsentrasi tersebut kain tidak layak digunakan sebagai sampel untuk diuji aktivitas antibakterinya. Kain yang sudah dilapisi oleh SiO2 dan komposit kitosan/Ag dianalisa dengan XRD dan dapat dilihat pada Gambar 18
Gambar 18. Perubahan difraktogram kain yang terlapisi SiO2 dan terlapisi komposit kitosan/Ag Pada difraktogram kain yang terlapisi komposit kitosan/Ag mempunyai puncak difraktogram yang lebih tinggi dibandingkan dengan difraktogram kain yang terlapisi SiO2, karena dimungkinkan adanya Si yang lepas dari kain. Meskipun demikian adanya komposit kitosan/Ag pada commit to userkain ditunjukkan dengan turunnya
perpustakaan.uns.ac.id
53 digilib.uns.ac.id
puncak difraktogram kain yang terlapisi komposit kitosan/Ag jika dibandingkan dengan difraktogram kain. Adanya interaksi antara kain dengan SiO2 dan kain dengan komposit kitosan/Ag ditunjukkan pada Gambar 19 – 21.
Gambar 19. Tekstur permukaan kain tanpa perlakuan
Gambar 20. Tekstur permukaan kain yang dilapisi SiO2
Gambar 21. Tekstur permukaan kain dilapisi SiO2 dan komposit kitosan/Ag 0,1%(b/v) Berdasarkan analisis SEM nampak bahwa permukaan serat kain tanpa perlakuan relatif halus dan homogen. Tekstur serat kain setelah dilapisi SiO2 menjadi kasar dan tidak rata. Hal commit ini menunjukkan to user bahwa SiO2 menempel pada kain. Di sisi lain nampak pula kain yang dilapisi komposit kitosan/Ag 0,1% (b/v)
54 digilib.uns.ac.id
perpustakaan.uns.ac.id
permukaannya menjadi lebih kasar dan tidak rata jika dibandingkan dengan kain yang terlapisi SiO2. Hal ini menunjukkan bahwa komposit kitosan/Ag menempel pada kain yang terlapisi SiO2.
D. Aktivitas kain antibakteri Bakteri Staphylococcus aureus merupakan salah satu bakteri pathogen yang berbahaya bagi kesehatan manusia sehingga perlu dihambat pertumbuhannya. Aktivitas antibakteri dapat melalui cara membunuh atau menghambat pertumbuhan mikroorganisme. Kitosan merupakan polikationik alami yang unik, dimana gugus amina
(–
NH2) dalam larutan asam akan terprotonasi menjadi gugus amina kuarterner atau ammonium kuarterner. Gugus ammonium kuarterner ini merupakan gugus aktif yang dapat digunakan untuk menghambat pertumbuhan bakteri melalui interaksi antara polikationik ammonium kuarterner kitosan dengan muatan ion negatif sel bakteri. Salah satu parameter penting yang menentukan karakteristik kitosan adalah derajat deasetilasi (DD) kitosan. Semakin besar DD maka gugus amina dalam kitosan semakin besar (Purnawan. dkk., 2008). Semakin tinggi DD kitosan, dimungkinkan aktivitas antibakteri kitosan akan semakin besar. Namun disisi lain, nitrogen merupakan salah satu sumber makanan bagi bakteri sehingga kitosan akan memicu pertumbuhan bakteri pada konsentrasi tertentu. Penambahan suatu logam seperti Ag, Cu dan Cd dapat menghambat bakteri (Ramachandran, 2003). Berbeda dengan logam berat lainnya Ag tidak mempunyai toksisitas tinggi untuk manusia. Selain itu ion perak dan senyawa perak menunjukkan efek toksik pada beberapa bakteri, virus, alga dan jamur. Sifat antibakteri perak berasal dari sifat kimia bentuk terionisasi nya, yaitu ion Ag+. Dalam penelitian yang pernah dilakukan sebelumnya Ion perak menghambat pertumbuhan bakteri dan jamur ketika ditambahkan ke pakaian, seperti kaos kaki, untuk mengurangi bau, risiko bakteri dan jamur. Perak dimasukkan ke dalam pakaian atau sepatu baik dengan mengintegrasikan nanopartikel perak ke dalam polimer dari benang yang dibuat atau dengan benang pelapisan dengan perak commit to user (Anonim, 2008).
55 digilib.uns.ac.id
perpustakaan.uns.ac.id
Upaya lain untuk meningkatan sifat antibakteri dalam pembuatan kain antibakteri dapat dilakukan dengan penambahan senyawa pengemban yang dapat memperkuat interaksi dengan kain, seperti penambahan SiO2. Adanya gugus aktif silanol (Si-OH) pada SiO2 yang berfungsi sebagai pengemban kitosan dapat memperkuat interaksi dengan kain sehingga kitosan tidak mudah lepas
(Li
et al., 2007). Interaksi bahan antibakteri dapat melalui interaksi ionik dan interaksi hidrofobik. Namun karena kitosan tidak memiliki gugus alkil hidrofobik, maka kemungkinan besar interaksi sifat antibakteri lapisan SiO2 dan komposit kitosan/Ag dengan bakteri melalui interaksi ionik antara polikationik ammonium kuarterner kitosan yang bergabung dengan Ag yang memiliki ion positif dengan muatan ion negatif sel bakteri. Kemungkinan besar sasaran agen antibakteri lapisan SiO2 dan komposit kitosan/Ag adalah dinding sel, membran sitoplasma dan mengganggu sintesis DNA sel bakteri. Bahan anti bakteri khususnya dengan gugus ammonium kuaterner
berinteraksi
dengan
dinding
sel
yang
mengandung
protein,
lipopolisakarida atau peptidoglikon, serta asam teikoat yang mengandung alkohol dan fosfat (Kim et al., 2002). Staphylococcus aureus merupakan bakteri gram positif mengandung banyak lapis peptidoglikan membentuk struktur yang tebal dan kaku, serta mengandung asam teikoat yang terdiri dari alkohol dan fosfat sehingga sel bakteri cenderung bermuatan negatif. Gugus hidrofilik yang cenderung bermuatan negatif ini kemudian berinteraksi dengan lapisan SiO2 dan komposit kitosan/Ag. Maka dengan adanya lapisan SiO2 dan komposit kitosan/Ag maka dapat mengganggu metabolisme bakteri dengan melapisi permukaan sel bakteri, mencegah masuknya nutrient kedalam sel, berikatan dengan DNA kemudian menghambat RNA dan sintesis protein, sehingga menyebabkan kerusakan komponen intraseluler dan penyusutan membran sel secara perlahan dan akhirnya mengakibatkan kematian sel bakteri. Pada penelitian ini, konsentrasi komposit kitosan/Ag yang digunakan untuk melapisi kain yang telah terlapisi SiO2 adalah 0, 0.01, 0.05, 0.10, 0.50, 1.00, 1.50 commit to userDD > 95%. Hal ini didasarkan pada dan 2.00% (b/v) dalam asam asetat 1% dengan
56 digilib.uns.ac.id
perpustakaan.uns.ac.id
penelitian yang dilakukan oleh Liu et al., (2006) menyebutkan bahwa pada konsentrasi 1000 ppm (0,1% b/v) membunuh bakteri S.aureus hingga mencapai optimum. Volume media yang digunakan sebanyak 25 mL. Pengukuran absorbansi larutan sampel kain antibakteri dilakukan pada jam ke-0, 2, 4, 6 dan 8 menggunakan spektrofotometer UV-Vis pada panjang gelombang 610 nm. Kemudian absorbansi dari bakteri dikonversi kedalam jumlah koloni sel bakteri (CFU, Colony Forming Units) menggunakan kurva standar. Kurva standar yang terbentuk merupakan hubungan antara absorbansi dengan jumlah koloni bakteri S.aureus, yang dapat dilihat pada Gambar 22.
Gambar 22. Kurva standar hubungan antara absorbansi atau optical density (OD) dan jumlah koloni sel bakteri S.aureus (CFU/mL) Kain yang terlapisi SiO2 dan komposit kitosan/Ag juga dilakukan pencucian untuk mengetahui kekuatan interaksi komposit pada kain. Proses pencucian dilakukan 1 kali. Kain yang telah terlapisi komposit ditimbang, dicuci dengan surfaktan non ionik tween-20 0,2% (v/v) selama 5 menit dan dibilas dengan akuades selama 2 menit menggunakan sonic-washer. Kemudian kain dikeringkan pada suhu 60 oC selama 30 menit dan ditimbang hingga berat konstan. Berat kain sesudah dan sebelum proses pencucian terlihat pada Tabel 5.
commit to user
57 digilib.uns.ac.id
perpustakaan.uns.ac.id
Tabel 4. Berat kain sesudah dan sebelum proses pencucian No.
Perlakuan
Berat Kain Sebelum Pencucian (g)
Berat Kain setelah Pencucian (g)
1
Kain tanpa perlakuan
0,12
0,12
2
Kain dg SiO2
0,16
0,12
3
Kain dg komposit 0,01
0,13
0,12
4
Kain dg komposit 0,05
0,13
0,12
5
Kain dg komposit 0,10
0,13
0,12
6
Kain dg komposit 0,50
0,13
0,12
Berdasarkan Tabel 4, berat kain sebelum dan sesudah pencucian relatif sama. Hal ini menunjukkan bahwa komposit kitosan/Ag berinteraksi pada kain dengan adanya SiO2 sebagai pengemban. SiO2 juga tidak larut dalam H2O maka diharapkan SiO2 berinteraksi kuat dengan komposit kitosan/Ag. Pembiakan bakteri S.aureus untuk pengujian antibakteri lapisan SiO2 dan komposit kitosan/Ag dilakukan dalam Trypto Soya Broth (TSB) selama 24 jam. Pengukuran absorbansi kain terlapisi SiO2 dan komposit kitosan/Ag yang telah diberikan bakteri kemudian dikonversi dengan persamaan y = 17.29x - 0,283 dari kurva standar Gambar 22 diperoleh jumlah koloni (CFU) bakteri S.aureus. Perbandingan persentase (%) inhibisi komposit SiO2/kitosan/Ag sebelum pencucian terhadap S.aureus dapat dilihat pada Gambar 23. Data I
Data II
commit (%) to user Gambar 23. Perbandingan persentase inhibisi lapisan SiO2 dan komposit kitosan/Ag terhadap bakteri S.aureus sebelum pencucian
58 digilib.uns.ac.id
perpustakaan.uns.ac.id
Gambar 23 menunjukkan trend yang sama yaitu kain sebelum pencucian dimana konsentrasi komposit kitosan/Ag yang mampu menghambat pertumbuhan bakteri paling besar adalah konsentrasi komposit kitosan/Ag 0,1% (b/v) pada jam ke-6. Besarnya Persentase (%) inhibisi optimum sebelum pencucian disajikan pada tabel 5. Tabel 5. Persentase (%) inhibisi optimum lapisan SiO2 dan komposit kitosan/Ag terhadap bakteri S.aureus sebelum pada jam ke-6 % inhibisi Sebelum Pencucian Sampel Data I
Data II
Kain
-11.28
-0.54
Kain dengan SiO2
37.95
0.34
Kain+komposit kit/Ag 0.01%
37.95
9.98
Kain+komposit kit/Ag 0.05%
48.51
13.08
Kain+komposit kit/Ag 0.1%
84.44
43.57
Kain+komposit kit/Ag 0.5%
-4.22
8.76
Kemudian dari data yang optimum tersebut yaitu kain yang dilapisi komposit 0.1% dilakukan pencucian dan diuji aktivitas antibakterinya. Perbandingan persentase (%) inhibisi komposit SiO2/kitosan/Ag setelah pencucian terhadap S.aureus dapat dilihat pada gambar 24.
Gambar 24. Perbandingan persentase (%) inhibisi lapisan SiO2 dan komposit commit to user kitosan/Ag terhadap bakteri S.aureus setelah pencucian
59 digilib.uns.ac.id
perpustakaan.uns.ac.id
Gambar 24 menunjukkan trend yang tetap sama yaitu konsentrasi komposit kitosan/Ag yang mampu menghambat pertumbuhan bakteri paling besar setelah pencucian adalah konsentrasi komposit kitosan/Ag 0,1% (b/v). Besarnya Persentase (%) inhibisi optimum setelah pencucian disajikan pada tabel 6.
Tabel 5. Persentase (%) inhibisi optimum lapisan SiO2 dan komposit kitosan/Ag terhadap bakteri S.aureus sebelum pada jam ke-6 % inhibisi Stelah Pencucian Sampel Data I
Data II
Kain
15.01
1.32
Kain dengan SiO2
16.15
17.18
Kain+komposit kit/Ag 0.01%
16.64
17.58
Kain+komposit kit/Ag 0.05%
21.44
23.86
Kain+komposit kit/Ag 0.1%
25.64
31.13
Kain+komposit kit/Ag 0.5%
13.72
7.71
Berdasarkan tabel 5 dan 6 menunjukkan terjadi penurunan daya hambat komposit kitosan/Ag dengan pengemban SiO2 sebelum dan setelah pencucian hal ini disebabkan karena adanya komposit kitosan/Ag yang hilang setelah pencucian sehingga jumlah komposit kitosan/Ag sebelum pencucian lebih banyak daripada setelah pencucian. Konsentrasi komposit kitosan/Ag diatas 0,1% (b/v) mempunyai inhibisi yang menurun, hal ini disebabkan karena kitosan memiliki sifat menghambat dan mempercepat pertumbuhan bakteri yang saling berkompetensi. Semakin besar konsentrasi komposit kitosan/Ag maka jumlah kitosan semakin banyak dan semakin ruah, sehingga dimungkinkan gugus aktif kitosan yang bereaksi dengan bakteri semakin rendah. Selain itu semakin banyak jumlah komposit maka dimungkinkan adanya gugus aktif kitosan berupa N-H dan O-H membentuk ikatan hidrogen dan tidak berinteraksi dengan bakteri sehingga sehingga jumlah bakteri yang hidup semakin banyak dan inhibisi komposit menurun. commit to user
60 digilib.uns.ac.id
perpustakaan.uns.ac.id
BAB V PENUTUP A. KESIMPULAN Dari penelitian ini dapat diambil kesimpulan sebagai berikut : 1.
Kain yang terlapisi SiO2 0.2% (b/v) tidak membuat kain katun menjadi kaku dan semakin besar konsentrasi komposit kitosan/Ag yang dilapiskan pada kain katun membuat kain menjadi kaku.
2.
Daya hambat komposit kitosan/Ag dengan pengemban SiO2 pada kain katun sebelum pencucian lebih besar daripada setelah pencucian dan optimum pada konsentrasi komposit kitosan/Ag 0.1% (b/v) terhadap aktivitas pertumbuhan bakteri S.aureus. B. SARAN Adapun beberapa saran yang dapat dilakukan untuk penigkatan hasil
penelitian ini, antara lain: 1.
Perlu adanya kajian lebih lanjut terhadap metode pelapisan kain dengan pengemban SiO2 sehingga komposit kitosan/Ag dapat terikat kuat.
2.
Perlu adanya variasi suhu, kecepatan pencelupan yang lebih beragam dalam proses pelapisan kain katun.
3.
Perlu dilakukan pencucian berulang pada kain dengan waktu yang lebih lama untuk mengetahui apakah SiO2 sebagai pengemban yang baik untuk komposit kitosan/Ag pada kain katun.
commit to user