Aeroszolok, lioszolok, xeroszolok Márta Berka és István Bányai, University of Debrecen Dept of Colloid and Environmental Chemistry
http://dragon.unideb.hu/~kolloid/
2007.02.27.
x. lecture
1
Kolloid rendszerek (szerkezet alapján) Kolloid rendszerek
inkoherens rendszerek
diszperziós k. szolok (liofób kolloidok)
makromol.
koherens rendszerek gélek
asszociációs
porodin (pórusos)
kolloid oldatok liofil kolloidok
retikuláris hálós
korpuszkuláris fibrillás
Spongoid szivacsszerő
lamellás
Szol-gél átalakulás: xeroszolok http://www.iupac.org/reports/2001/colloid_2001/manual_of_s_and_t/node34.html
2007.02.27.
x. lecture http://www.du.edu/~jcalvert/phys/colloid.htm
2
Diszperziós kolloidok (szolok) Halmazállapot szerint Gázközegő aeroszolok
L/G folyadék aeroszol: köd, permet S/G szilárd aeroszol: füst, kolloid por
2007.02.27.
Folyékonyközegő lioszolok
Szilárdközegő xeroszolok
G/L gázlioszolok (tömény =hab)
G/S szilárd hab: polisztirol hab
L/L emulzió
L/S szilárd emulzió: opál, igazgyöngy S/S szilárd kolloid szuszpenzió: pigmentált polimerek
S/L liofób kolloid szol, szuszpenzió (aranyszol, fogpaszta) x. lecture
3
Kolloidok elıállítása (általános) •
Heterogén rendszerbıl • Méretcsökkentés, eloszlatás (porlasztás, ırlés, kolloidmalmok)
•
Homogén közegbıl – Kondenzálás (új fázis, méretnövelés) Weimarn szabály • Folyadékból (paraffin) • Gázfázisból (ködök)
– Kémiai reakciók útján • Monodiszperz kolloidok (kénszol, fémoxid szolok) • Makromolekulák polimerizációval
– Asszociációs kolloidok (konc., hm.) 2007.02.27. x. lecture 4 • Kolloid rendszerbıl: Szol-gél átalakulás oda-vissza http://www.solgel.com/
Aeroszolok Elıállitás – a diszpergálás hatékonysága a felületi feszültségtıl és a viszkozitástól függ, kisebb könnyebb. (porlasztás, ultrahang, -Kondenzálás, köd, permet L/G. -Füst S/G, szmog S/L/G
Weimarn szabály: túltelitettség, Q-L, és az oldékonyság, L, és a realtiv túltelitettség, (Q-L/L), szabja meg a diszperzitás fokát
Atmospheric aerosols
2007.02.27.
x. lecture
5
Atmospheric aerosols S/G, L/G, komplex (S-L)/G (0.001 µ – 50 µ), természetes és antropogén eredet: homok, talajok, mezıgazdaság tengervíz permet ipar (korom, por) elılények tüzelı és motorolajok égése, biomassza égése: párolgás/ lecsapódás (felhık, köd, jégkristályok) SO2 a legfontosabb, savas esık! Vulkánok, sivatagosodás, éghajlati hatások.
Anthropogenic Aerosols takes 10 % (1999: NASA Earth Observing System)
2007.02.27.
x. lecture
6
Habképzıdés
A folyadék a közeg, lehet kolloid mérető, ez a képzıdéskor jól látszik 2007.02.27.
x. lecture
Buborékolás (pórusosos testen) módszere küszöbnyomás, p=2γ/r Eloszor a nagyobb jon ki
7
Foam • Habképzı szükséges nem stabilak • Habszerkezet
Spherical bubbles <7075%
Foam structure of a wet spherical foam at 400X magnification Polyhedral cells Foam structure of dry hexagonal foam at 400X magnification
/www.ctmw.com/articles/Rita/2.htm
2007.02.27.
x. lecture
8
Formation of bubbles
2γ ∆P = r
bubble aeration pr
p
p
Két buborék lebeg a folyadek levegı határfelületen. A nyomás a B helyen kisebb mint az A vagy A` helyen Polyhedral cells
The arrows show the direction of streaming , hence water will flow to these points, until they become unstable If you add glycerol to a soap solution, the viscosity increases, and the drainage of the foam is slowed down: it takes a longer time before the foam collapses
2007.02.27.
x. lecture
9
Stabilization of a foam film Electrostatic stabilization of a foam film
Liquid crystals stabilize foams
Each interface is electrically charged. As the film thins, the repulsion increases. 2007.02.27.
Good emulsifying are also good foaming agent. x. lecture
10
Foam Stability, Inhibition and Breaking The stability of a liquid foam is governed by three main processes: Drainage (oldoszer kiaramlas): liquid will drain through the Plateau border channels until an equilibrium state is reached. Coarsening (novekedes): gas diffuses between bubbles - some grow while others shrink and disappear. The net result of this process is that the average bubble size grows in time. Film Rupture (szakadas): if a foam film gets too thin and weak, it will rupture. Eventually the foam will collapse and vanish. Unstable foams are formed from aqueous solutions of short chain acids or alcohols. Metastable foams are typically formed from solution of soaps, synthetic detergents, proteins, saponins, etc. •Foam inhibitors - added before foam forms, displace foaming agents, or solubilizing the foaming agents (in micelles) •Foam breaking - mechanical, shock waves, compression waves, ultrasonics, rotating discs, heating, an electrical spark. •Antifoams - added to existing foams, in the form of small droplets, which spread on the lamellae, thinning and breaking it. 2007.02.27.
x. lecture
11
Antifoams L
With an antifoam on one surface, electrostatic stabilization is lost.
2007.02.27.
(a) Antifoam drop. (b) Entering the surface. (c ) Leading to rupture of the film.
•Antifoams - added to existing foams, in the form of small droplets, which spread on the lamellae, thinning and breaking it. x. lecture
12
Examples Marshmellow (mályvacukor)- foam formed from egg white, gelatin, and sugar. Ice cream - refrigerated and aerated at the same time. Ice crystals and fat crystals form the matrix. Dynamic foams: cakes, sponges, bread, meringues, soufflés. Bubbles change at various stages of preparation. Foams on drying, especially in distillation columns. A foam blanket at the surface acts as an insulating layer - causing overheating. Metallic slags (salak) foam probably because of the high viscosity. Cooling stabilizes the foam. Paper making - Caused by lignin, resin, and fatty acids in wood, sulfate soaps from pitch. Also, sizing materials, dyes, fillers, oxidized starch, proteins, etc act as profoamers. Beer - foam should not affect taste, but it remains important. Too little, beer looks "flat". Sources of foam: entrained air in the pouring, in the pressurizing, and from dissolved carbon dioxide. Mostly stabilized by proteins. Protein-polysaccharide complexes are especially 2007.02.27. x. lecture 13 stabilizing.
Examples Firefighting Foams •Primarily for fire protection in petroleum storage. Airplane fires. •Foam is made in a self-aspirating branchpipe: high pressure pushes the water + foaming agent down a pipe, aspirating air, foaming because of the turbulence ( about 1mm bubbles) and is thrown from about 15 to 75 m. •Types: (1) Protein foam liquid - solution of hydrolysed protein, (2) liquid with various perfluorinated surfactants (high performance, non-biodegradable), (3) mixtures of perfluorinated surfactants with proteins
2007.02.27.
x. lecture
14
Examples Foams to Immobilize • To retard evaporation. Improve insulation. • For fumigants (toxic to fungi), insecticides, contraceptives, to keep them in place. • Applying thin layers, such as adhesives or etching formulations, dyes or bleaches • Capture of aerosols. • Aqueous foam is an excellent suspending medium for paper fibers. Pseudo plasticity enables dispersion of long fibers. At low shear stress the fibers are "frozen" in position. Enables the use of long fibers which otherwise orient on coating.
2007.02.27.
x. lecture
15
Solid foams Solid foams are cellular materials, i.e. materials which are made up from a framework of solid material surrounding gas-filled voids (bubbles). Solid foams can be 100 times lighter than the equivalent solid material. Natural solid foams include wood, bone and sea sponges. The bee's honeycomb is a two-dimensional cellular structure:
Honeycomb concrete , habbeton
2007.02.27.
x. lecture
16
Emulsion, terminology The emulsion is a dispersed system in which the phases are immiscible or partially miscible.
Droplet size: 0.1-10 µm
Phase 1
Phase 2
Droplet
Serum
Dispersed
Medium
Internal
External
Discontinuous
Continuous
O/W (oil in water), O/W (water in oil ) emulsions and bicontinuous
Polyhedral cells 2007.02.27.
x. lecture
17
Emulsion types • Identification of emulsion type: 1. Generally, an O/W emulsion has a creamy texture and a W/O emulsion feels greasy 2. The emulsion mixes readily with a liquid which is miscible with the dispersion medium 3. The emulsion is readily coloured by dyes which are soluble in the dispersion medium 4. O/W generally have a much higher electrical conductivity than W/O emulsions
The liquid with the greater phase volume need not necessarily be the dispersion medium! Above 74% there is either a phase inversion or the droplets are deformed to polyhedra.
2007.02.27.
x. lecture
18
Terminology Macroemulsions – At least one immiscible liquid dispersed in another as drops whose diameters generally exceed 10 µm. The stability is improved by the addition of surfactants and/or finely divided solids. Considered only kinetically stable.
Becher, P. Emulsions, theory and practice, 3rd ed.; Oxford University Press: New York; 2001.
Miniemulsions – An emulsion with droplets between 0.1 and 10 µm, reportedly thermodynamically stable. Microemulsions – An emulsion with droplets below 100 nm. A thermodynamically stable, transparent solution of micelles swollen with solubilizate. Microemulsions usually require the presence of both a surfactant and a cosurfactant (e.g. short chain alcohol). • Creaming – less dense phase rises • Inversion – internal phase becomes external phase • Ostwald ripening – small droplets get smaller • Flocculation – droplets stick together • Coalesence – droplets combine into larger ones The most important physical properties of an emulsion is its stability 2007.02.27.
x. lecture
19
Surface activity in emulsions Emulsions are dispersions of droplets of one liquid in another. Emulsifiers form an adsorbed film around the dispersed droplets. Emulsifiers are soluble, to different degrees, in both phases. Drops flocculate and coalesce spontaneously. In general, emulsions are thermodynamically unstable
∆G = γ∆ A > 0
emulsifiers
∆G = γ∆ A + work of desorption
If the work of desorption of emulsifier is high, the coalescence is prevented.
2007.02.27.
x. lecture
20
Making emulsions • Method of phase inversion • High Speed Mixers • Condensation methods - solubilize an internal phase in micelles • Electric emulsification • Intermittent milling szaggatott orles
Homogenizer, Mills, Microfluidizer, Sonolator In which fluid streams at high velocities are forced against each other resulting in cavitations, turbulence, and shear. Emulsification proceeds in two steps: -mechanical mixing -stabilization 2007.02.27.
x. lecture
21
Emulsion stability Emulsifiers: -surface active materials, -naturally occurring materials, -finely divided solids (Pickering stabilization)
Factors favor emulsion stability (see lecture about colloid stability) 1. Low interfacial tension 2. Steric stabilization. Mechanically strong interfacial film (proteins, surfactants, mixed emulsifiers are common. Temperature is important) 3. Electrical double layer repulsions (at lower volume fractions) 4. Relative small volume of dispersed phase 5. Narrow size distribution 6. High viscosity (simple retards the rates of creaming, coalescence, etc.)
2007.02.27.
x. lecture
22
Emulsion Bicontinous emulsion a sponge-like random network oil W/O
O/W
water
2007.02.27.
x. lecture
23
Emulsion, emulsifiers
self-assembly of binary amphiphilic fluids into bicontinous cubic phases http://www.touchbriefings.com/pdf/1133/Tiberg.pdf
2007.02.27.
x. lecture
24
Emulsifiers “The emulsifier stabilizes the emulsion type where the continuous phase is the medium in which it is most soluble.”
O O W A hydrophilic solute in an O/W emulsion.
The long tail on the surfactant is to represent the longer range interaction of a “hydrophilic” molecule through water.
O W
A hydrophilic solute in a W/O emulsion. 2007.02.27.
x. lecture
25
Emulsion Inversion As the concentration increases (A) the droplets get closer until they pinch off into smaller, opposite type of emulsion (B). making milk into butter
• Milk is a fairly dilute, not very stable O/W emulsion, about 4% fat. • Creaming produces a concentrated, not very stable O/W emulsion, about 36% fat. • Gentle agitation, particularly when cool, 13 – 18 C, inverts it to make a W/O emulsion about 85% fat. • Drain, add salt, and mix well. • Lo and behold! – butter! • What remains is buttermilk. 2007.02.27.
x. lecture
26
Typical food emulsions Food Milk, cream
Emulsion type O/W
Ice cream
O/W (aerated to foam)
Butter
W/O
Buttermilk: milk proteins, phospholipids, salts. Volume fraction: 16%
Imitation cream (to be aerated)
O/W
Vegetable oils and fats. Droplet size: 1 – 5 µm. Volume fraction: 10 – 30%
2007.02.27.
Dispersed phase Butterfat triglycerides partially crystalline and liquid oils. Droplet size: 1 – 10 µm Volume fraction: Milk: 3-4% Cream: 10- 30% Butterfat (cream) or vegetable, partially crystallized fat. Volume fraction of air phase: 50%
x. lecture
Continuous phase Aqueous solution of milk proteins, salts, minerals,
Stabilization factors, etc Lipoprotein membrane, phospolipids, and adsorbed casein.
Water and ice crystals, milk proteins, carboxydrates (sucrose, corn syrup) Approx. 85% of the water content is frozen at –20 oC.
The foam structure is stabilized by agglomerated fat globules forming the surface of air cells. Added surfactants act as “destabilizers” controlling fat agglomeration. Semisolid frozen phase Water droplets distributed in semisolid, plastic continuous fat phase.
Butterfat triglycerides, partially crystallized and liquid oils; genuine milk fat globules are also present. Aqueous solution of proteins (casein), sucrose, salts, hydrocolloids.
Before aeration: adsorbed protein film. After aeration: the foam structure is stabilized by aggregated fat globules, forming a network around air cells; added lipophilic surfactants promote the needed fat globule aggregation.
27
Typical food emulsions Food
Emulsion type
Dispersed phase
Continuous phase
Stabilization factors, etc
Coffee whiteners
O/W
Vegetable oils and fats. Droplet size: 1 – 5 µm. Volume fraction: 10 – 15 %
Aqueous solution of proteins (sodium caseinate), carbohydrates (maltodextrin, corn syrup, etc.), salts, and hydrocolloids.
Blends of nonionic and anionic surfactants together with adsorbed proteins.
Margarine and related Products (low calorie spread)
W/O
Water phase may contain cultured milk, salts, flavors. Droplet size: 1 – 20 µm Volume fraction: 16 – 50 %
Edible fats and oils, partially hydrogenated, of animal or vegetable origin. Colors, flavor, vitamins.
The dispersed water droplets are fixed in a semisolid matrix of fat crystals; surfactants added to reduce surface tension/promote emulsification during processing.
Mayonnaise
O/W
Vegetable oil. Droplet size: 1 – 5 µm. Volume fractions: Minimum 65% (U.S. food standard.)
Aqueous solution of egg yolk, salt flavors, seasonings, ingredients, etc. pH: 4.0 – 4.5
Egg yolk proteins and phosphatides. Lecitin (O/W), cholesterine (W/O)
Salad dressing
O/W
Vegetable oil. Droplet size: 1 – 5 µm. Volume fractions: Minimum 30% (U.S. food standard.)
Aqueous solutions of egg yolk, sugar, salt, starch, flavors, seasonings, hydrocolloids, and acidifying ingredients. pH: 3.5 – 4.0
Egg yolk proteins and phosphatides combined with hydrocolloids and surfactants, where permitted by local food law.
2007.02.27.
x. lecture
28
HLB (hydrophilic -lipophilic balance) values The amphiphilic nature of many emulsifying agents (particularly non/ionic surfactant) can be expressed in terms of an empirical scale of so-called HLB
Applications
Dispersibility in water
3-6 W/O emulsions
Nil
7-9 wetting agents
3-6 poor
8-15 O/W emulsions
6-8 unstable milky dispersions
13-15 detergent
8-10 stable milky dispersions
15-18 solubiliser
10-13 Translucent dispersion/solution 13- clear solution
Solubility in octanol and water 2007.02.27.
x. lecture
29
1
HLB Scale
20
example
2007.02.27.
x. lecture
30
Variation of type and amount of residual emulsion with HLB number of emulsifier. (antagonistic action)
Nature of the emulsifying agent determine the type of emulsion
2007.02.27.
x. lecture
31
Multiple emulsions
W/O/W double emulsion
Particles as emulsion stabilizers
O/W/O double emulsion Almost all particles are only partially wetted by either phase. When particles are “adsorbed” at the surface, they are hard to remove – the emulsion stability is high. Crude oil is a W/O emulsion and is very old!!
Each interface needs a different HLB value. The curvature of each interface is different.
(Pickering stabilization) bentonite clays tend to give O/W whereas carbon black tends to give W/O emulsions 2007.02.27.
x. lecture
32
Physical properties of emulsions • Identification of “internal” and “external” phases; W/O or O/W • Droplet size and size distributions – generally greater than a micron • Concentration of dispersed phase – often quite high. The viscosity, conductivity, etc, of emulsions are much different than the continuous phase. • Rheology – complex combinations of viscous (flowing), elastic (when moved a little) and viscoelastic (when moved a lot) properties. • Electrical properties – useful to characterize structure. • Multiple phase emulsions – drops in drops in drops in drops, …
2007.02.27.
x. lecture
33
Multiple phase emulsions – drops in drops in drops
http://www.rsc.org/delivery/_ArticleLinking/DisplayArticleForFree.cfm?doi=b501972a&JournalCode=SM
Drug delivery 2007.02.27.
x. lecture
34
Breaking emulsions
2007.02.27.
x. lecture
35
Breaking emulsions First, determine type, O/W or W/O. Continuous phase will mix with water or oil. • Chemical demulsification, i.e. change the HLB Add an emulsifier of opposite type (antagonistic action). Add agent of opposite charge. • Freeze-thaw cycles. • Add electrolyte. Change the pH. Ion exchange • Raise temperature. • Apply electric field. • Filter through fritted glass or fibers. • Centrifugation. 2007.02.27.
x. lecture
36
Phase inversion temperature
2007.02.27.
x. lecture
37
Emulsion polymerization Meeting place of oil soluble monomer and water soluble initiator Emulsifier surfactant water water soluble Initiator
The number of polymer particles finally depend on largely on emulsifier concentration 2007.02.27.
x. lecture
Nano-emulsions
38
További példák: szilárd aeroszolok S/G, (füst, por). Gélek
Fumed Silica Aggregates (Carbon Black Aggregates) Aktív szén aggregátumok Primarily used as reinforcing filler • Tire • Elastomer composites • Plastics, Pipe • Printing Inks, Coatings 2007.02.27.
x. lecture
Thermal conductivity: 12 to 16 mW/m·K Light transmission: 20 to 80% at 2 cm Particle density: 140 kg/m³ Bulk Density: 40-100 kg/ m³ Surface area: 700 m2/g Porosity: > 90% Particle size: 5µ - 5 mm Surface Chemistry hydrophobic
39
Egyéb fémoxid kolloid porok, füstök (fumed metal oxides) Fumed Silica, Alumina, Titania, and Ceria • Láng közegő gyártás (fumed) • Felület módosított változatok Elsıdlegesen reológiai adalékok • Szilikon/ tömítıszer megerısítés • Félvezetık • Ragasztók & Bevonatok • Festék patronok, gyógyszerek
2007.02.27.
x. lecture
40
Aerogel „frozen smoke” Aerogel is a low-density solid-state material derived from gel in which the liquid component of the gel has been replaced with gas. Extremely low density solid, most notably as an insulator. It is nicknamed frozen smoke, solid smoke or blue smoke due to its semitransparent nature and the way light scatters in the material The first results were silica gels. Aerogel can be made of many different materials based on silica, alumina, chromia, and tin oxide. Carbon aerogels were first developed in the early 1990s
2007.02.27.
x. lecture
41
Aerogel A folyadék cseréje gázra
State-of-the-Art Manufacturing Technology
http://www.resonancepub.com/aerogel.htm http://en.wikipedia.org/wiki/Aerogel
2007.02.27.
x. lecture
42
Xerogélek: Szilárd, pórusos szilikagél Vízüveg oldatból - szilika szol, flokkulációval - hidrogél nyitott térhálós szerkezet, majd szárítással - xerogel.
További térhálósodás a szárítás során. Aerogel Új típusú kerámiák közel szobahımérsékleten 2007.02.27.
x. lecture
43
Xerogel bevonatok A szol szintézise, bemerítés, oxidbevonat készítése, nátrium boroszilikát bevonat üvegre alacsony hımérsékleten!
Szárítás, tömörítés
Rendezett szerkezető, néhány nanométeres vastagságú oxid bevonatok közel szobahımérsékleten 2007.02.27.
x. lecture
44
Szol gél technológia és termékei
2007.02.27.
x. lecture
45