A Szilikátipari Tudományos Egyesület lapja
Journal of Silicate Based and Composite Materials
A tartalomból: Rheological characterization of crude oil-water emulsions The adobe of Neolithic long houses and the following paleoenvironmental consequences About what is happening in the stomach after swallowing human river pebbles, gravel, chalk, clay and tablets drugs Research of mechanical and cutting properties, wear and failure mechanisms of nano-structured multilayered composite coating Ti-TiN(NbZrAl)N Synthesis and characterization of Zirconia-Yttria nanoparticles in t’ phase by sol-gel and spray drying 45S5 Bioglass porous scaffolds: structure, composition and bioactivity characterization
2016/4
ECerS2017 15th Conference & Exhibition of the European Ceramic Society July 9-13, 2017/Budapest, Hungary On behalf of the Organizing Committee, we would like to warmly welcome you to the beatiful and historical city of Budapest for the 15th Conference & Exhibition of the European Ceramic Society (ECerS2017), between 9th and 13th of July, 2017. For the first time, the Conference will be organised jointly by the two member societies namely Turkish Ceramic Society and Hungarian Scientific Society of the Silicate Industry. Since the first ECerS conference in 1989, the tremendous growth in interest and participation from ceramic communities has made the ECerS Conference a globally very popular venue for scientists, artists, students and industrialists willing to have a direct access to one of the largest community of international experts of ceramic art, science and technology. We would like to promote in the next ECerS2017 a multi-disciplinary atmosphere, mixing ceramics, materials science, chemistry, physics, art, design, archeology, dentistry, electronic, energy departments and industry and universities as well as young scientist with the experienced to discuss the developments in the ceramic art, science and technology under 12 different topics from the latest energy applications to traditional ceramics, from the latest additive manufacturing technologies to cultural heritage and art, from high temperature production to geopolymers. All in all, our goal is to organize a truely unforgettable event for all attending as students, scientists, artists, craftsmans, industrialists and so on.
We look forward to welcoming you in Budapest!
http://ecers2017.akcongress.com
építôanyag
2016/4
Journal Journal of of Silicate Silicate Based Based and and Composite Composite Materials Materials
Tartalom
Content
98 Kőolaj-víz emulziók reológiai jellemzése
98 Rheological characterization of crude oil-water emulsions
Nagy Roland Elekes Andrea Bartha László Vágó Árpád
105 Neolitikumi hosszúházak paticsanyaga és
Roland Nagy Andrea Elekes László Bartha Árpád Vágó
105 The adobe of Neolithic long houses and
őskörnyezeti vonatkozásai
the following paleoenvironmental consequences
Kalmár János Kocsis-Buruzs Gábor
János Kalmár Gábor Kocsis-Buruzs
110 Mi történik a gyomorban folyami kavics, mészkő, agyag
110 About what is happening in the stomach after swallowing
és gyógyszer tabletták lenyelését követően
human river pebbles, gravel, chalk, clay and tablets drugs
Aleksandr URAKOV Natalia URAKOVA Alexey RESHETNIKOV
Aleksandr URAKOV Natalia URAKOVA Alexey RESHETNIKOV
Anton KASATKIN Maxim KOPYLOV Dmitry BAIMURZIN
Anton KASATKIN Maxim KOPYLOV Dmitry BAIMURZIN
114 Nano-szerkezetű, többrétegű Ti-TiN-(NbZrAl)N kompozit
114 Research of mechanical and cutting properties,
bevonatok mechanikai és megmunkálhatósági jellemzői,
wear and failure mechanisms of nano-structured
kopásállósága és tönkremeneteli módjai
multilayered composite coating Ti-TiN-(NbZrAl)N
Alexey Vereschaka Andrey Kutin Nikolay Sitnikov
Alexey Vereschaka Andrey Kutin Nikolay Sitnikov
Gaik Oganyan Oleg Sharipov
Gaik Oganyan Oleg Sharipov
120 Cirkónium-ittrium nanorészecskék szintézise és
120 Synthesis and characterization of Zirconia-Yttria
jellemzői t’ fázisban, szol-gél technikával előállítva
nanoparticles in t’ phase by sol-gel and spray drying
Gerardo Manuel Rodríguez Torres Juan Zarate Medina
Gerardo Manuel Rodríguez Torres Juan Zarate Medina
María Eugenia Contreras García
María Eugenia Contreras García
124 45S5 Bioüveg porózus implantátumvázak:
124 45S5 Bioglass porous scaffolds:
szerkezet, összetétel és bioaktivitás
structure, composition and bioactivity characterization
ME Abad-Javier M Cajero-Juárez
ME Abad-Javier M Cajero-Juárez
María Eugenia Contreras García
María Eugenia Contreras García
A finomkerámia-, üveg-, cement-, mész-, beton-, tégla- és cserép-, kõ- és kavics-, tûzállóanyag-, szigetelõanyag-iparágak szakmai lapja Scientific journal of ceramics, glass, cement, concrete, clay products, stone and gravel, insulating and fireproof materials and composites Szerkesztőbizottság • Editorial
board
Prof. Dr. Gömze A. László – elnök/president Dr. Borosnyói Adorján – főszerkesztő/editor-in-chief
A folyóiratot referálja · The journal is referred by: Cambridge Scientific Abstracts ProQuest
Tagok • Members Prof. Dr. Parvin Alizadeh, Bocskay Balázs,
Címlapfotó · Cover photo: KÓSA Luca Kornélia
Prof. Dr. Csőke Barnabás, Prof. Dr. Katherine T. FABER,
Hirdetési
Wojnárovitsné Dr. Hrapka Ilona – örökös Tóth-Asztalos Réka – tervezőszerkesztő/design editor
Prof. Dr. Saverio FIORE, Prof. Dr. David Hui, Prof. Dr. Gálos Miklós, Dr. Viktor GRIBNIAK, Prof. Dr. Kozo Ishizaki, Dr. Józsa Zsuzsanna, Kárpáti László, Dr. KOCSERHA István, Dr. Kovács Kristóf, Prof. Dr. Sergey N. Kulkov, Mattyasovszky Zsolnay Eszter, Dr. MUCSI Gábor, Dr. Pálvölgyi Tamás, Dr. Révay Miklós, Prof. Dr. Tomasz SADOWSKI, Prof. Dr. Tohru SEKINO, Prof. Dr. David S. SMITH, Prof. Dr. Bojja SREEDHAR,
árak 2016
• ADVERTISING RATES 2016:
B2 borító színes · cover colour 76 000 Ft B3 borító színes · cover colour 70 000 Ft B4 borító színes · cover colour 85 000 Ft 1/1 oldal színes · page colour 64 000 Ft 1/1 oldal fekete-fehér · page b&w 32 000 Ft 1/2 oldal színes · page colour 32 000 Ft 1/2 oldal fekete-fehér · page b&w 16 000 Ft 1/4 oldal színes · page colour 16 000 Ft 1/4 oldal fekete-fehér · page b&w 8 000 Ft Az árak az áfát nem tartalmazzák. · Without VAT.
www.epitoanyag.org.hu en.epitoanyag.org.hu
Tanácsadó Testület • Advisory
Online ISSN: 2064-4477 Print ISSN: 0013-970x INDEX: 2 52 50 § 68 (2016) 97–128
board
304 EUR 280 EUR 340 EUR 256 EUR 128 EUR 128 EUR 64 EUR 64 EUR 32 EUR
A hirdetési megrendelő letölthető a folyóirat honlapjáról. Order-form for advertisement is avaliable on the website of the journal.
Prof. Dr. Szépvölgyi János, Prof. Dr. Szűcs István
Finta Ferenc, Kiss Róbert, Dr. Mizser János
támogató tagvállalatai
Supporting A folyóiratban lektorált cikkek jelennek meg. All published papers are peer-reviewed. Kiadó · Publisher: Szilikátipari Tudományos Egyesület (SZTE) Elnök · President: ASZTALOS István 1034 Budapest, Bécsi út 122–124. Tel./fax: +36-1/201-9360 § E-mail: epitoanyag@szte.org.hu Tördelő szerkesztő · Layout editor: Németh Hajnalka
tiszteletbeli felelős szerkesztő/senior editor-in-chief
Az SZTE
companies of
SZTE
3B Hungária Kft. § Air Liquide Kft. § Anzo Kft. Baranya Tégla Kft. § Berényi Téglaipari Kft. ■ Budai Tégla Zrt. § Budapest Kerámia Kft. Cerlux Kft. § Colas-Északkõ Kft. § Electro-Coord Kft. Fátyolüveg Kft. § GE Hungary Kft. § Geoteam Kft. Guardian Orosháza Kft. § Hunext Kft. § Interkerám Kft. KK Kavics Beton Kft. § KÕKA Kft. § Kötés Kft. § KTI Kht. Kvarc-Ásvány Kft. § Libál Lajos § Lighttech Kft. Maltha Hungary Kft. § Messer Hungarogáz Kft. MFL Hungária Kft. § Mineralholding Kft. MOTIM Kádkő Kft. § MTA KK AKI O-I Manufacturing Magyarország Kft. § Pápateszéri Tégl. Kft. Perlit-92 Kft. § Q&L Kft. § Rákosy Glass Kft. RATH Hungária Kft. § Rockwool Hungary Kft. Speciál Bau Kft. § SZIKKTI Labor Kft. § Taurus Techno Kft. WITEG Kõporc Kft. § Zalakerámia Zrt.
Vol. 68, No. 4
építôanyag § Journal of Silicate Based and Composite Materials
Rheological characterization of crude oil-water emulsions Roland Nagy MOL Department of Hydrocarbon and Coal Processing, University of Pannonia nroland@almos.uni-pannon.hu
Andrea Elekes MOL Department of Hydrocarbon and Coal Processing, University of Pannonia elekesa@almos.uni-pannon.hu
László Bartha Department of Chemical Engineering Science, University of Pannonia
bartha@almos.uni-pannon.hu Árpád Vágó MOL Plc., Exploration & Production Division avago@mol.hu
Érkezett: 2016. 10. 18. Received: 18. 10. 2016. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.17
Abstract The polymer-surfactant packages are dissolved in brine and injected into the reservoir in the CEOR (Chemical Enhanced Oil Recovery) processing, where oil in water type emulsions with different stability are formed. The flow properties of emulsions and their phase separation could be significantly influenced by the flow rate of the fluid phases in the pores of the reservoir rock. The goal of this research was to determine the dynamic viscosity of settled oil-water emulsions. The measurement methods of emulsions were completed with assessment of the phase viscosity characteristics of settled emulsions by using a Brookfield rotational viscometer. Based on the test results it was found that the visually observed phase boundaries were different from that the border determined by the change of dynamic viscosity measured along the liquid column height. The latter method allows a more precise determination of the phase boundary and the ratio of the different phases. Keywords: CEOR, crude oil-water emulsion, method development, Brookfield viscometer
1. Introduction In parallel with the rapid growth of energy demand the quantity of economically exploitable crude oil is continuously decreasing [1]. However, not to be overlooked that by primary and secondary oil recovery had been brought to the surface only 30-50% of the original total oil reservation so far. In order to further improve of the oil recovery efficiency the chemical enhanced oil recovery methods were developed [2]. Our research was dealing with the chemical type of the polymer-surfactant enhanced oil recovery. In this process, the aqueous solution and the crude oil mixture get various stable emulsions. The oil recovery efficiency is highly influenced by the rheological properties of the flowing fluids in the reservoir [3, 4]. An important requirement for surfactants is to minimize the interfacial tension under the reservoir conditions that can cause the trapped oil mobilization and discharge it through the pores. Several mixes of three types of surfactants were used for this purpose: an alkyl sulfonate [5], a long chain surface-active compound and also a non-ionic surfactant [6]. The suitable ratio of surfactants can promote the emulsion formation and throttle down the inevitable settlement [7]. Many studies were carried out on the rheological properties of oil-water emulsions [8, 9]. The findings indicated that the characteristics of emulsions greatly influence the interfacial layer structure [10]. Masood et al. [11] examined the factors affecting viscosity of two types of heavy oil and water emulsion with Tagushi method. It was found, that the concentration of the oil and temperature of the emulsion have the greatest impact on the viscosity of the emulsion. The increase in the concentration of the oil and the emulsifier caused a significant increase in viscosity, however, by raising the temperature the viscosity decreases. 98
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
Roland Nagy, PhD. His main researching area is the investigation of surfactants for petroleum industry. Now he works at MOL Department of Hydrocarbon and Coal Processing, University of Pannonia. He obtained the M.Eng. in Chemical Engineering degree at University of Veszprém in 2006; and PhD at same university in 2015. Andrea Elekes, MSc. She graduated from the chemical engineering and specialized engineering in research and development at Department of MOL-Hydrocarbon and Coal Processing at the University of Pannonia, Hungary. Her scientific interests: investigation of non-ionic surfactants for petroleum industry. László Bartha, CSc. He is a professor emeritus at University of Pannonia. His main researching area are surfactants, polymer based composites and polymer degradation. Árpád Vágó, MSc. He started to work at the Research Institute of Heavy Chemical (Veszprém, Hungary). Now he works for the New Technology and Research and Development part of the MOL EPD as a R&D expert. Árpád Vágó graduated as a chemical engineer specialised in hydrocarbon and coal processing and organic chemical technology at University of Chemical Industry, Veszprém in 1985.
Brazilian researchers have studied how the dynamic viscosity could affect the long-term storage of W/O type emulsions [12]. The flow properties of emulsions were tested immediately after preparation, and after 15 or 60 days storage as well. It was found that the stability of the emulsions reduced during storage, which caused changes in the structure of emulsions. The viscosity of emulsion phase of some samples increased by nearly 10% during the 60-day testing period, with other samples, this change was smaller. Santos et al. [13] reported the rheological behavior and phase separation of oil-water emulsions. It was demonstrated that the rheological behavior of emulsions is influenced significantly by the alkyl alcohol type co-surfactants.
2. Experimental 2.1 Materials The tests were performed with Hungarian paraffinic type crude oil and brine. Anionic and non-ionic surfactants were used to reduce oil-water interfacial tension. The brine was mixed with a flow modifier polymer to increase the viscosity of surfactant solution. The main properties of crude oils from South-East Hungary were used as shown in Table 1.
építôanyag § Journal of Silicate Based and Composite Materials
Properties Density, g/cm3 (20°C)
CO-1
CO-2
0.8365
0.7601
Dynamic viscosity, mPa.s (50°C)
12.8
4.6
Sulfate, mg/kg
1470
1810
Acid number, mg KOH/g
0.41
0.52
Watson characterization factor
13.2
12.3
Paraffinic
Paraffinic
Character of crude oil Table 1. Properties of crude oils 1. táblázat Kőolajok jellemzői
The measurement data are given in volume% related to the total liquid volume as under, middle and upper phases. The maximum difference between the parallel measurements data were less than 5%. 3.2 Determination of dynamic viscosity The dynamic viscosity of crude oil – water emulsions were measured with Brookfield DV-III digital programmable viscometer (Fig. 1).
The main parameters of brine from South-East Hungary were used as shown in Table 2. Properties
Value
Conductivity (20°C), mS/cm
3.38 8.4
pH-value TDS (Total Dissolved Salts) mg/l
3860
Hydrogen carbonate, mg/l
1620
Sodium, mg/l
1164
Table 2. Properties of brine 2. táblázat Rétegvíz jellemző értékei
The anionic surfactants (AS-1 … AS-3) for the purpose of CEOR experiment were prepared by Research Institute of Chemical and Process Engineering at the University of Pannonia and the MOL Department of Hydrocarbon and Coal Processing synthesized non-ionic surfactants (NS-1 … NS-5) used in the surfactant mixtures (Table 3). Solutions were prepared in a surfactant concentration of 15g/dm3, and in 1 g/dm3 was added a partially water-soluble flow modifier type polymer. Sign of Sign and compo- Sign and comSign and comsurfactant nent ratio of an- ponent ratio of ponent ratio of mixtures ionic surfactant nonionic surfac- nonionic surfactant tant TK-1
A-1, 60 w%
N-1, 40 w%
-
TK-2
A-2, 60 w%
N-2, 40 w%
-
TK-3
A-2, 60 w%
N-3, 40 w%
-
TK-4
A-2, 60 w%
N-5, 40 w%
-
TK-5
A-3, 55 w%
N-2, 25 w%
N-4, 20 w%
TK-6
A-2, 55 w%
N-2, 25 w%
N-3, 20 w%
Table 3. Composition of surfactant mixtures 3. táblázat Tenzidkompozíciók összetétele
3. Measuring methods 3.1 Investigation of emulsifiers capacity For the measurement of emulsifier capacity, 10 cm3 of an aqueous surfactant solution and 10 cm3 of crude oil were taken in a graduated cylinder, then it was placed in a thermostat at 80°C, and the phases were shaken after 1 hour. The volumes of the phases (under, middle, upper) were read immediately before and after 1 hour storage at 80°C. The under phase containing mainly an aqueous or external aqueous phase components. The overlying middle phase formed was mainly an oil-in-water type emulsion. The upper phase was an oil-rich, water-in-oil type emulsion.
Fig. 1. Brookfield rotational viscometer 1. ábra Brookfield rotációs viszkoziméter vázlatos rajza
The viscosity range of the equipment was between 5-6000 mPas that should not be overlooked because of the high inaccuracy of this measurement out of this interact. If the Helipath T-bar spindle was used, should not be overlooked that the range of 1% accuracy can be achieved only in 10-100% torque% range. Below 10% of measuring range has been more the inaccuracies. 3.3 Development of the measuring method Our goal was to determine the dynamic viscosity of the settled oil-in-water emulsions before and after the phase separation created real phase boundaries, transitional phases and flow characteristics which can be useful in design of CEOR process parameters. 50 cm3 of water-emulsifier mixture was prepared, and then mixed with 50 cm3 of previously homogenized crude oil. Finally it was shaken to 180° translation 30 times. The temperature of reservoir (80°C) was simulated by a thermostat. The emulsion was poured into double-walled thermostatic vessel and the viscosity was immediately measured along the liquid column height. Then the emulsion was kept in stationary state at 80°C temperature for 1 hour then the viscosity in the separate layers was measured again, then the dynamic viscosity versus the liquid column height -correlation curve was drawn. Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
99
építôanyag § Journal of Silicate Based and Composite Materials
Measuring point
Number of measurements
Average
Standard deviation
Coefficient of variation,%
DV1, mPa.s
DV2, mPa.s
DV3, mPa.s
DV4, mPa.s
DV5, mPa.s
DV6, mPa.s
DV7, mPa.s
16.
11.06
12.89
11.12
12.65
11.72
11.60
12.89
11.99
0.81
6.7
15.
11.06
12.89
12.16
12.65
12.89
11.60
12.89
12.31
0.73
5.9
14.
9.89
12.89
11.12
11.60
11.72
10.54
11.72
11.35
0.96
8.5
13.
11.06
14.06
12.28
11.65
11.72
10.54
11.72
11.86
1.12
9.4
12.
11.06
14.06
12.33
12.65
11.72
10.54
11.72
12.01
1.15
9.6
11.
11.06
12.89
13.20
12.65
12.89
10.54
11.72
12.14
1.03
8.5
10.
11.06
12.89
11.12
12.65
12.89
10.54
11.72
11.84
0.97
8.2
9.
11.06
12.89
11.12
12.65
11.72
10.54
11.72
11.67
0.86
7.3
8.
11.06
12.89
13.24
12.65
11.72
10.54
11.72
11.97
0.99
8.3
7.
12.23
12.89
11.12
13.71
11.72
10.54
11.72
11.99
1.07
8.9
6.
12.23
12.89
12.16
13.71
11.72
10.54
11.72
12.14
1.00
8.2
5.
12.23
12.89
13.20
13.71
11.72
10.54
11.72
12.29
1.07
8.7
4.
11.06
12.89
13.20
12.65
11.72
11.60
12.89
12.29
0.82
6.6
3.
11.06
12.89
13.33
12.65
11.72
10.54
11.72
11.99
1.01
8.4
2.
11.06
12.89
12.16
12.65
11.72
10.54
11.72
11.82
0.84
7.1
1.
11.00
10.37
12.16
12.60
12.20
10.18
10.20
11.24
1.05
9.3
Table 4. Results of repeatability test 4. táblázat Megbízhatósági vizsgálat
3.4 The reliability of the method The accuracy of measurement of dynamic viscosity values were ascertained, dynamic viscosity oil-in-water emulsion with TK-2 surfactant composition was measured in 16 measuring points along the liquid column height seven times. The measurement results were calculated on the average value, standard deviation and ratio of these two values, the coefficient of variation. The measured and calculated results are summarized in Table 4. At each measuring point was the coefficient of variation below 10%, so the of repeatability of the method established.
4. Results and discussion In the further investigation the dynamic viscosity along the liquid column height by Brookfield type rotational viscometer in 16 measuring points are measured. The changes in the dynamic viscosity of different crude oil from two wells and only polymer contain brine from South-East Hungary were also studied before analysis of the surfactants. 4.1 Investigation of crude oil The dynamic viscosity of the polymer containg CO-1 crude oil without surfactant was 3 mPa.s along the total height of the liquid column at 80°C (Fig. 2). However, after 60 minutes, the dynamic viscosity values was changed significantly. Top of the column of liquid increased the viscosity to 5 mPa.s, and towards to bottom of liquid column increased this value to 12 100
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
mPa.s (Fig. 3). The viscosity increase was due to settlement of the fragmented colloidal structure.
Fig. 2. Dynamic viscosity changes of CO-1 crude oil along the liquid column height, after 0. min, at 80°C 2. ábra CO-1 jelű kőolaj dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 0. perc, 80°C
Fig. 3. Dynamic viscosity changes of CO-1 crude oil along the liquid column height, after 60. min, at 80°C 3. ábra CO-1 jelű kőolaj dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 60.perc, 80°C
építôanyag § Journal of Silicate Based and Composite Materials
Fig. 4 and 5 show the dynamic viscosity distribution of a lower viscosity oil. In the case of the CO-2 oil emulsion, the initial dynamic viscosity of 1-2 mPa.s (Fig. 4) did not change even after 60 minutes (Fig. 5). The oil remained homogeneous during the investigation which is due to this type of crude oil contained only lower carbon number hydrocarbons. Compared to CO-1 crude oil, only a very small amounts of settlement has not been happened.
It can be seen in Fig. 6 that owing to the flow modifier polymer the dynamic viscosity of brine increased significantly. In the further examinations the surfactant mixtures was considered to the points of this reference dynamic viscosity value. It was observed that the dynamic viscosity increased approximately with 2 mPa.s by the TK-1 marked surfactant that demonstrated the excellent dispersant efficiency of surfactant dispersed in the polymer solution. 4.3 Influence of crude oil on the viscosity of emulsion
Fig. 4. Dynamic viscosity changes of CO-2 crude oil function of the liquid column height, after 0. min, at 80°C 4. ábra CO-2 jelű kőolaj dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 0. perc, 80°C
Fig. 5. Dynamic viscosity changes of CO-2 crude oil function of the liquid column height, after 60. min, at 80°C 5. ábra CO-2 jelű kőolaj dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 60. perc, 80°C
4.2 The flow properties of flow modifier polymer solutioncontaining brine and/or surfactant mixture The viscosity of brine and aqueous solution of polymer was dispersed and measured at 80°C, along the height of the liquid column (Fig. 6). The viscosity values were 1.17 and 7 mPa.s. Sedimentation or viscosity increase was not observed after 60 minutes of storage, due to the homogeneity of brine and the well dispersed polymer components.
It was found that the viscosity increasing effect of surfactant can be significantly influenced by the crude oil type. The impact of the comparison of the emulsions on the stability of the formed emulsion phases and viscosity were also investigated. Red lines in Fig. 7 indicate the phase boundaries between the oil phase and emulsion phase, and blue lines show the phase boundaries between the emulsion and water. The viscosities of brine soluble TK-1 marked surfactant mixed CO-1 crude oil containing homogeneous emulsion phase were along the height of liquid column between 15 to 25 mPa.s (Fig. 7).
Fig. 6. Dynamic viscosity changes function of the liquid column height, after 0. min, at 80°C 6. ábra Dinamikai viszkozitás változása a folyadékoszlop magasságának függvényében,0. perc, 80°C
Fig. 7. Changes of dynamic viscosity of TK-1 surfactant mixture contain crude oilwater emulsion along the height of the liquid column, at 80°C
7. ábra TK-1 jelű tenzidkompozíció felhasználásával készített kőolaj-víz emulzió dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 80°C-on
Phase separation was not visually observed after 60 minutes settling time, but a small oil fall-out was detected on the surface of the sample. However, the values of dynamic viscosity increased 25-60 mPa.s, and phase separation occurred. This could cause phase change in composition of the emulsion. Apparent phase boundary was defined from the significant change of dynamic viscosity. The phase boundary was marked out in inflection point or half of sharp change. The visually determined emulsion phase is indicated with solid line on diagrams, while dashed lines mark the basis of rapid change of dynamic viscosity values established boundary. Fig. 8 show the changes of dynamic viscosities of TK-1 surfactant composition and CO-2 crude oil contain crude oilwater emulsion along the height of the liquid column. Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
101
építôanyag § Journal of Silicate Based and Composite Materials
Fig. 8. Changes of dynamic viscosity of TK-1 surfactant mixture and CO-2 crude oil contain crude oil-water emulsion along the height of the liquid column, at 80°C 8. ábra TK-1 jelű tenzidkompozíció felhasználásával készített CO-2 kőolajat tartalmazó kőolaj-víz emulzió dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 80°C-on
The basis of comparison of the two figure sequences showed that the quality of the crude oil have significant effect on the type and stability of the emulsion. In the case of CO-1 crude oil it was also present about 100 V/V% of emulsion phase after 60 minutes, however, in the case of CO-2 crude oil the emulsion was fully disintegrated in an oily and an aqueous phase after 60 minutes. This difference can be observed when comparing also the values of dynamic viscosities of emulsions. The dynamic viscosities of emulsion with CO-1 crude oil were initially in the range of 40-60 mPa.s, however these values were found only between 5 to 15 mPa.s by CO-2 crude oil. The difference shows that the surfactant could not form high stability emulsion for the lighter CO-2 crude oil. 4.4 Comparative study of surfactant mixtures In the following studies the tests were carried out only with CO-1 crude oil, which was selected by the planned next polymer-surfactant flooding experiments. The diagrams, which have been edited from the measurement data, are shown in Fig. 9-13.
Fig. 9. Changes of dynamic viscosity of TK-2 surfactant mixture and flow modifier polymer contain crude oil-water emulsion along the height of the liquid column, at 80°C 9. ábra TK-2 jelű tenzidkompozíció felhasználásával készített kőolaj-víz emulzió dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 80°C-on
It can be observed that the dynamic viscosities of oil-water emulsions containing flow modifier polymer and surfactant were higher than the sum of the viscosities of flow modifier free polymer solutions and the viscosities of crude oil alone. The initial viscosities of the emulsion containing the TK-2 surfactant composition were between 10-20 mPa.s (Fig. 9). Oil fall-out was observed on top of the sample and water fall-out 102
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
after 60 minutes of settling. In the 2/3 under part on column declined the dynamic viscosity of 20 mPa.s. In the upper part of the intermediate phase an increase in viscosity of 10 mPa.s was observed. During the TK-3 test it was observed that the initial homogeneous emulsion, having approximately 30 mPa.s viscosity became separated to two phases after 60 minutes of settling time (Fig. 10). Oil phase was observed upper. The values of dynamic viscosity increased in the 20-45 mPa.s interval after 60 minutes of sedimentation. The viscosity of the under aqueous layer toward the upper oil phase increased gradually, because the oil-in-water emulsion changed to waterin-oil emulsion.
Fig. 10. Changes of dynamic viscosity of TK-3 surfactant mixture and flow modifier polymer contain crude oil-water emulsion along the height of the liquid column, at 80°C 10. ábra TK-3 jelű tenzidkompozíció felhasználásával készített kőolaj-víz emulzió dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 80°C-on
The TK-4 surfactant mixture containing emulsion formed initially was homogeneous, with a relatively large (40-45 mPa.s) dynamic viscosity phase (Fig. 11). The start of test after 60 minutes was observed a small amount of oil fall-out. Fig. 11 shows an increase of nearly 30 mPa.s dynamic viscosity values at 10% by volume of oil phase, also we can suppose the formation of an intermediate phase.
Fig. 11. Changes of dynamic viscosity of TK-4 surfactant mixture and flow modifier polymer contain crude oil-water emulsion along the height of the liquid column, at 80°C 11. ábra TK-4 jelű tenzidkompozíció felhasználásával készített kőolaj-víz emulzió dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 80°C-on
It was found in the investigation of TK-5 surfactant mixture that the emulsion phase is initially homogeneous visually, however, the values of dynamic viscosity have significant change along liquid column height (Fig. 12). At 10-55 mPa.s interval the viscosities in the mid-block phase were decreased gradually caused by phase inversion. Only a small oil fall-out was experienced on the surface of the sample after 60 minutes
építôanyag § Journal of Silicate Based and Composite Materials
of settling. Aqueous phase was not generated. The value of dynamic viscosity was reduced from 35 mPa.s to 5 mPa.s in the under part of the sample.
Fig. 12. Changes of dynamic viscosity of TK-5 surfactant mixture and flow modifier polymer contain crude oil-water emulsion along the height of the liquid column, at 80°C 12. ábra TK-5 jelű tenzidkompozíció felhasználásával készített kőolaj-víz emulzió dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 80°C-on
The TK-6 surfactant containing oil-water emulsion was initially homogeneous (Fig. 13). Dynamic viscosities were along the fluid column 35-38 mPa.s. After 60 minutes only slightly decreased (5%) and was visually defined by volume ratio of emulsion phases. The top of the emulsion phase appeared to be oil layer. By the dynamic viscosity no significant change in the values was obtained. In the dynamic viscosity only 15 mPa.s increase was observed on the top of the sample.
4.5 Comparison of rate of phase separation by the curve characteristics In Fig. 14 bar chart representation shows the rate of middle emulsion phase. It was seen that after 1 hour of settling time differing visually and deduced from changes of dynamic viscosity of phase partition.
It was observed in Fig. 15 that the visually observed phase boundaries were different than based on viscosity values determined phase boundary. The difference of ratio of emulsion phase between the two methods presented is shown in Fig. 15.
Fig. 13. Changes of dynamic viscosity of TK-6 surfactant mixture and flow modifier polymer contain crude oil-water emulsion along the height of the liquid column, at 80°C 13. ábra TK-6 jelű tenzidkompozíció felhasználásával készített kőolaj-víz emulzió dinamikai viszkozitásának változása a folyadékoszlop magasságának függvényében, 80°C-on
The phase boundary estimated by the dynamic viscosity values was not equaled and visually defined. The test results demonstrated that the type and ratio of anionic and nonionic surfactants influence the dynamic viscosity at large extent, volume ratio and stability of emulsion phases. The smallest dynamic viscosity emulsion phase could be created with TK-2 surfactant mixture. In this case, the viscosities did not increase above 30 mPa.s. Whereas perspective of EOR is prefer the low viscosity, high oil content, stable oil-in-water emulsion, therefore, it was found that the TK-2 surfactant was the most effective, made of three components. The dynamic viscosities of the emulsion phase after 60-minute settling time only 20 mPa.s by TK-2 surfactant mixture and only 5-5 V/V% oil and aqueous phases was generated.
Fig. 14. Emulsion phase rates by two methods at 80°C after 1 hour settling time 14. ábra kétféle módszerrel meghatározott emulziós fázis arányok 80°C-on, 1óra ülepedést követően
Fig. 15. Differences in volume of emulsion phases 15. ábra A kétféle módszerrel meghatározott emulziós fázisok arányai közötti különbség
It was found that the differences of volume of emulsion phases were 10-45%. The smallest difference was observed for TK-4 surfactant composition. The differences of the results are caused by darkness of crude oil which complicates the determination of the phase border. Moreover, it is also involved that at the interface of oil-, emulsion- and aqueous phase no sharp break in the physical characteristics can be detected, but appreciable is one intermediate phase where the phase inversion is observed. The advantage of this method is that real changes in the phases of O/V emulsions became monitorable.
5. Conclusions In the present study a new method to determine the phase boundary of the settling oil-water emulsions for CEOR was presented. This method is more accurate than the previous visual monitoring. The test method of emulsions was supplemented with measuring of phase viscosities of settled emulsion by Brookfield type rotational viscometer. Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
103
építôanyag § Journal of Silicate Based and Composite Materials
Changes of dynamic viscosities were studied on two different crude oils. The efficiency of surfactants was investigated by the use of two different crude oils. It was found that varying degrees of emulsifying effect were exerted in different types of crude oils. Specific compositions for EOR technologies could be produced in different reservoirs on the basis of these findings, to be able to achieve an optimal effect. Based on examination of six surfactant mixtures, it can be concluded that the change of the structure or concentration of anionic and non-ionic components in the surfactants can have also a significant impact on emulsions of phase distribution, ratio and viscosity by after 1 hour sedimentation. The visually determined phase boundaries were different from that of based on change of viscosities along the liquid height determined phase boundaries. The latter method allows a more precise definition of phase boundary. References [1] International Energy Agency (2014):World energy outlook 2014 www.iea.org [2] Lakatos, I. – Lakatos-Szabó, J. (2008): The significance of non-conventional hydrocarbons in the 21st century; Crude oil and natural gas 22, pp. 1-19. [3] Lyons, W. C. (1996): Standard Handbook of Petroleum and Natural Gas Engineering: Volume 2, Gulf Professional Publishing, pp. 319-343. ISBN: 978-0-88415-643-7 [4] Olajire, A. A. (2014): Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges, Energy 77, pp. 963-982. http://dx.doi.org/10.1016/j.energy.2014.09.005 [5] Wuest, W. – Eskuchen, R. – Richter, B. (1994): Enhanced oil recovery using mixture of alkyl ether sulfonate and alkoxylated alcohol produced by reacting alkyl ether sulfate with aqueous alkali metal sulfite solution, US 5318709 A [6] Ahmadi, M. A. – Zendehboudi, S. – Shafiei, A. – James, L. (2012): Nonionic Surfactant for Enhanced Oil Recovery from Carbonates: Adsorption Kinetics and Equilibrium, Ind. Eng. Chem. Res., Vol. 51, No. 29, 9894–9905. http://dx.doi.org/10.1021/ie300269c [7] Schramm, L. L. (2000): Surfactants: Fundamentals and Applications in the Petroleum Industry, Cambridge Univerity Press, pp. 203-250.ISBN-13: 978-0521157933 [8] Malkin, A. A. – Malkin, A. Y. – Isayev, A. I. (2006): Rheology: Concepts, Methods & Applications, ChemTec Publishing, ISBN: 978-1-895198-49-2 [9] Cohen-Addad, S. – Höhler, R. (2014): Rheology of foams and highly concentrated emulsions, Current Opinion in Colloid & Interface Science, Vol. 19, pp. 536–548. http://dx.doi.org/10.1016/j.cocis.2014.11.003
GlassPrint is the only European event dedicated to hollow & flat glass decoration. The 7th edition of the conference takes place on 29-30 November 2017 in Düsseldorf, Germany. http://www.glassprint.org 104
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
Karbaschi, M. – Lotfi, M. – Krägel, J. – Javadi, A. – Bastani, [10] D. – Miller, R. (2014): Rheology of interfacial layers, Current Opinion in Colloid & Interface Science, Vol. 19, No. 6, pp. 514–519. http://dx.doi.org/10.1016/j.cocis.2014.08.003 [11] Masood Azodi, Ali Reza Solaimany Nazar: An experimental study on factors affecting the heavy crude oil in water emulsions viscosity; Journal of Petroleum Science and Engineering 106, 2013, 1–8. http://dx.doi.org/10.1016/j.petrol.2013.04.002 [12] Filho, D. C. M. – Ramalho, J. B.V.S. – Spinelli, L. S. – Lucas, E. F. (2012): Aging of water-in-crude oil emulsions: Effect on water content, droplet size distribution, dynamic viscosity and stability, Colloids and Surfaces A: Physicochemical and Engineering Aspects Vol. 396, pp. 208– 212. http://dx.doi.org/10.1016/j.colsurfa.2011.12.076 [13] Santos, R. G. – Bannwart, A. C. – Loh, W. (2014): Phase segregation, shear thinning and rheological behavior of crude oil-in-water emulsions, Chemical engineering research and design, Vol. 92, pp. 1629–1636. http://dx.doi.org/10.1016/j.cherd.2013.12.002 Ref.: Nagy, Roland – Elekes, Andrea – Bartha, László – Vágó, Árpád: Rheological characterization of crude oil-water emulsions Építőanyag – Journal of Silicate Based and Composite Materials, Vol. 68, No. 3 (2016), 98–104. p. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.17
Kőolaj-víz emulziók reológiai jellemzése A kőolaj-kitermelés fokozásának egyik módja a polimertenzides harmadlagos kitermelés (CEOR), melynek során a vizes tenzidoldatok és a kőolaj keveredésekor különböző stabilitású emulziók alakulnak ki. Az emulziók tároló kőzet pórusaiban történő áramlási sebességét nagymértékben befolyásolja a dinamikai viszkozitásuk és stabilitásuk. Kutatómunkánk során célunk az EOR eljárások során kialakuló, ülepedő kőolaj-víz emulziók dinamikai viszkozitásának meghatározása volt. A kőolaj tenzides kiszorítási technológiájának kutatásának keretében az emulziók vizsgálati módszerét az ülepített emulziók fázis viszkozitásainak Brookfield-típusú rotációs viszkoziméterrel történő mérésével egészítettük ki. A vizsgálati eredmények alapján arra a következtetésre jutottunk, hogy a vizuálisan megállapított fázishatár különbözött a Brookfield rotációs viszkoziméterrel mért dinamikai viszkozitás értékek alapján meghatározott fázishatártól. Az általunk kidolgozott eljárással lehetőség nyílik pontosabb fázishatár meghatározásra. Kulcsszavak: CEOR, kőolaj-víz emulzió, módszerfejlesztés, Brookfield viszkoziméter
építôanyag § Journal of Silicate Based and Composite Materials
Neolitikumi hosszúházak paticsanyaga és ôskörnyezeti vonatkozásai Kalmár János Magyar Földtani és Geofizikai Intézet johannkalmar@gmail.com Kocsis-Buruzs Gábor SALISBURY Kft. kocsisbg@salisburykft.hu Érkezett: 2016. 10. 20. Received: 20. 10. 2016. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.18
The adobe of Neolithic long houses and the following paleoenvironmental consequences Based on the archaeological excavations in Somota site (Berettyóújfalu, East Hungary) a huge number of adobe pieces were found as the rest of six Neolithic aged (5500–5000 years B. Chr.) long houses. Data about the origin, the technology- and the temporal transformation of the raw material were studied with ten samples, using physico-mineralogical and paleobotanical analyses. The adobe was prepared using local, Pleistocene aged loam, with minimal sand and ash supply. The structure of them indicates, that the well mixed plastic material was spread on the hazelnut or willow wattle wall. The material lost the excess water until it became dry and strong. Smutcovered surfaces, tar drops, slight and intense mineralogical transformations mark the fire effects. On the other hand, the adobe conserved the fine structure of the twig cortex and the staples. Based on these findings, some paleoenvironmental observations were taken. Under mild climatic conditions, Neolithic people lived in these relatively comfortable houses, close to Nagy Sárrét wetland — breeding sheep and practising a primitive agriculture. Keywords: Neolithic age, adobe, mineralogy, fire effects, long houses Kulcsszavak: Neolitikum, patics, ásványtan, tűzhatás, hosszú házak
1. Bevezető: a somotai ásatás helye és célkitűzései A Berettyóújfalutól kb. 3 km-re keletre fekvő Somota-dűlő területén 2015. tavaszán végzett ásatások az M-4 autópálya nyomvonalán található régészeti objektumok feltárása céljából készültek. Az ásatást Farkas Zoltán és Kocsis-Buruzs Gábor régészek vezették (Salisbury Kft.). Ugyanaz év októberében a terület bejárására, ásvány-kőzettani és paleobotanikai vizsgálathoz szükséges mintavételezésre is sor került, es két Ejkelkamp sekélyfúrás is készült Berettyóújfalu és környéke a Tiszántúl keleti részén lévő Nagy Sárrét peremén fekszik, a Berettyó magas árterén, ahol a feltárt neolitikus település építményei patics-anyagán végeztünk vizsgálatokat, anyagismereti és környezeti szempontból egyaránt. A neolitikus település jellegzetes műtárgyai a hosszú házak voltak. A lelőhelyen a középső neolitikum (Kr.e. 5500–5000) második feléhez kapcsolható két rövid házsor maradványait sikerült azonosítani (1. ábra). Ezek az épületek cölöpszerkezetesek, amely azt jelenti, hogy a házfalakat egymás mellé, sorban leásott, vesszőfonatokkal összekötött cölöpök alkotják, amelyek végül agyaggal kerülnek betapasztásra. A két házsor és az őket alkotó házak közötti pontos időbeli viszony megállapítása még nem lehetséges, de a korszakon belül biztos összetartozóak. Az épületek használata után a belőlük származó omladékok töltötték fel az őket lehatároló – és részben az anyagot adó – gödröket.
2. Anyag és módszer Az anyagvizsgálat 8 mintán (S100/1, S100/2, S397, S419/1, S419/2, S438, Ás74, és Ás79 jelű minták) valamint a kéreglenyomatokat tartalmazó Ás85 ill. Ás86 jelű mintákon történt. A
Dr. Kalmár János, Ph.D. mineralógus (sz. 1937.), a Magyar Földtani és Geofizikai Intézet nyugalmazott tud. főmunkatársa. Tanulmányait 1954–1959 között Bukarestben végezte, érc- és ásványkutatásban, földtani térképezésben tevékenykedett, itthon, Dél-Amerikában és Afrikában. Természetes kőzetek, üledékek, talajok és mesterséges anyagok ásvány-kőzettani kutatásait a környezetföldtan és régészet területén is hasznosította. Kocsis-Buruzs Gábor archeológus (sz. 1989), 2012-ben szerzett alapszakos régész diplomát a Pécsi Tudományegyetemen őskor-róma szakirányon, ezután 2014-ig az Eötvös Lóránd Tudományegyetemen őskor-archeometriai szakon végezte mesterszakos tanulmányait. Kutatási területe az újkőkori társadalom és technológia.
szabad szemmel történő megfigyelést követően szemcse, mikroszkópos, röntgendiffrakciós ásványtani és mechanikai vizsgálatokat, valamint a kéreglenyomatok vizsgálatát végeztük el.
1. ábra A Somotai ásatási terület vázlata, a kutakkal (k), az Ejkelkamp fúrások helyével és a feltárt hosszúházakkal (négyszögek) Fig. 1. The sketch of Somota archeological site with the dug wells (k), the location of Ejkelcamp shallow boreholes and the „long houses” (rectangles)
2.1. Szemcseméret eloszlás A vizsgált patics egy többfázisú, kompozit anyag, ezért megvizsgáltuk a minták vetületét az agyag-kőzetliszt-homok háromszög-diagramban [1]. Ezek az optimális szemcseösszeVol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
105
építôanyag § Journal of Silicate Based and Composite Materials
tétel jobb felső sarkába vetülnek, egy minta kivételével (2. ábra). Összehasonlítva a területről vett üledékek szemcse eloszlásával, ehhez az Ejk-2 jelű fúrás 1,8–2,2 m-es finomhomokos kőzetliszt minta áll legközelebb, ami arra utal, hogy a vizsgált patics alapanyaga a közvetlen közelben található, kis mennyiségű homok adalékkal.
Homokfrakció. A homokfrakció fő ásványa metamorf és vulkáni eredetű kvarc, kevés földpáttal, csillámokkal, kárpáti és erdélyi eredetű kőzettörmelékkel (bontott andezit, horzsakő, csillámkvarcit), ezen kívül faszén és cserép-töredék. Mikroszkópos összetétel. A vékony és felületi csiszolatok ásvány-kőzettani összetételét, a pórusokat és a minták szerkezeti-szöveti sajátosságait vizsgálatuk. Az ásványi összetétel azonos a homokfrakció összetételével (1. táblázat). Látható a metamorf, és a vulkáni kvarc, a mikroklin és a plagioklász. Az S100/2, S397 és S439 jelű csiszolatokban a kvarcszemcséken kontrakciós repedések, a földpát szemcsék körül olvadásos burok látható, amelyeket finom agyagos film vesz körül, ill. behatol a repedésekbe (3. ábra, 1. fotó). A felületi csiszolatokban jelen vannak a magnetiten és a hematiton kívül üveggyöngyök (3. ábra, 2. fotó) valamint a faszén-töredékek (3. ábra, 3. fotó). Az S100/2 jelű mintában néhány, jól megőrzött állati (birka) szőrszál jelenik meg (3. ábra, 4. fotó). A minta alapanyagában, korom szferulák és <0,20 mm méretű, korong alakú, sötétbarna kátránycseppek is találhatók (4. ábra, 1. fotó).
2. ábra Patics minták szemcse háromszög-diagramja, 2. Homok; 5. Agyagos homok; 7. Agyagos kőzetliszt; 8. Kőzetlisztes homok; 9. Homokos kőzetliszt Fig. 2. Ternary diagram of grain size composition of adobe samples. 2. Sand; 5. Clayey sand; 7. Clayey silt; 8. Silty sand; 9. Sandy silt
2.2. Ásványi összetétel, szerkezet és szövet A patics mintákon az ásványi összetételt a leválasztott homokfrakción, a mintákból készült vékony- és felületi csiszolatokon és a <0,063 mm-es frakción röntgendiffrakciós mód szerrel végeztük. Ásványi fázis
Méret, mm
%
Ásványok Kvarc
0,02–1,20
45–60
K-földpát
0,05–0,22
2–6
Plagioklász
0,05–0,30
<3
Muszkovit
0,01–0,03×0,05–0,20
1–2
Biotit
0,02–0,08×0,06–0,10
<2
Klorit
0,03–0,05×0,12–0,25
jelen
0,08–0,150
jelen
Piroxén
0,08×0,15
jelen
Járulékos ásványok
0,01–0,05
<3
Opak ásványok
0,01–0,05
<2
Gipsz
0,02–0,08
jelen
Limonit
0,05–0,20
<3
Amfibol
Törmelékek Kőzettörmelék
0,08–1,15
2–6
Üveg
0,12–0,50
2–4
Kerámia
0,15–1,50
3–10
Szén
0,15–0,35
2–5
Növényi/állati részek
0,25–1,40
jelen
Korom, kátrány
0,008–0,20
<3
<0,005
25–45
Alapanyag
1. táblázat Patics minták ásványi összetétele Table 1. Mineralogic composition of adobe samples
106
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
3. ábra 1. Fotó. Szétrepedezett kvarcszemcse (q) és káliföldpát (fp), vékony olvdási burokkal. agyagos repedéskitöltéssel. S397. minta, vékony csiszolat, + nikolok. 2. Fotó. Üveggyönggyé olvadt hamu, hematittá (h) átalakult limonittal. Ás74. minta, felületi csiszolat. 3. Fotó. Faszéntöredék(sz) finom sejtes szövettel. S 100/1. minta, vékony csiszolat, II nikolokkal. 4. Fotó. Hajlított szőrszálak (haj) finom szemű alapanyagban, a szálak végén látható a keratin szálas szövete. S100/1. minta, vékony csiszolat, II nikolokkal. Fig. 3. Photo 1. Cracked quartz (q) and K-feldspar (fp) grains, the last with thin melting rim, both with clay fillings in the cracks. Sample S397; thin section, + nichols. Photo 2. Melted ash glass pearl, with limonite (lim) passing in hematite (h). Ás74 sample, polished section Photo 3. Charcoal fragment (sz) with thin cellular fabric. S100/1 sample, thin section, II nichols. Photo 4. Folded staples (haj) in fine grainedd matrix, with unaltered keratine fibres at the ends. S100/1 sample, thin section, thin section, II nichols.
2
S419/2
5
2 10 6 56 5
2
5
S397
6
2
8
5 57 3
6
3
Ás74
11 5 58 3
7
4
1
1
3 100
1
2
2
4 100
2
4
1
3 100
1
3
1
7 100
Összesen
4
amorf fázis
dolomit
3
gipsz
kalcit
6 60 2
goethit
plagioklász
7
hematit
kaolinit+klorit
3
amfibol
illit+muszkovit
8
káliföldpát
illit-montmorillonit
S000/2
kvarc
Minta
montmorillonit
építôanyag § Journal of Silicate Based and Composite Materials
2. táblázat Röntgendiffrakciós összetétele egyes patics mintáknak Table 2. XRD composition of some adobe samples
4. ábra 1. Fotó. Kvarc (q), földpát (fp) szemcsék és kátránycseppek (k). S439. minta, vékony csiszolat, II nikolok 2. Fotó. Szabálytalan alakú szuprakapilláris pórus, gipszkristályokkal (gy). S419/2. minta, vékony csiszolat, II nikolok 3. Fotó. Az S439. minta rögös szerkezete, a két rög (R1, R2) között finom szemű kötőanyaggal (K). Vékony csiszolat, II nikolok 4. Fotó. A finom szemű (F) és a durva szemű (D) paticsanyag párhuzamos erek, eredetileg vízhártyák mentén találkozik. S419/2. minta, vékony csiszolat, II nikolok Fig. 4. Photo 1. Quartz (q), feldspar (fp) grains and tar drops (k). Sample S439, thin section, II nichols Photo 2. Irregular supra capillar pore, with gypsum crystals (g). Sample S419/2, thin section, II nichols Photo 3. Clodish structure of sample S439. between the R1 and R2 clods, fine grained matrix (K). thin section, II nichols Photo 4. The coarse (D) and fine grained adobe (F) take contact by some parallel veins, as former water films. Sample S419/2, thin section, II nichols
Az Ás74. jelű mintában egymáshoz tapadó, kiégett agyagmorzsák, égetett kvarc- és földpát-szemcsék jelennek meg. Az S419 jelű mintában egy több mm-es humuszos, talajmorzsa figyelhető meg a patics anyagában. Az S419/2 és az S439 jelű mintákban repedésekben és pórusokban tűs-táblás gipszkristályok láthatók (4. ábra, 2. fotó). A patics minták alapanyagát sárgás vagy vöröses, <0,01 mm méretű, szálas, lemezes szemcsék képezik amelyek a 0,01–0,05 mm-es szilánkos szemcséket kötik egybe. Röntgendiffrakciós vizsgálat. A <0,063 mm frakción röntgendiffrakciós vizsgálatot végeztünk (2. táblázat). A kvarcon, földpáton és csillámokon kívül a rendezetlen szerkezetű agyagásványok, kevés karbonát és gipsz, vasásványok és amorf fázis jelenléte is kimutatható. Míg az S100/2, S419/2 és S397 jelű mintákban az agyagásványok bázisreflexiói elmosódottak, harangszerűek, az Ás74 jelű mintából hiányzik a montmorillonit, megnő az illit-muszkovit csúcsa és az amorf fázis részaránya.
Szerkezet és szövet. Az S439/1, S419/2 és S439 jelű minták eredeti felületén finom sávozással, rizsszem alakú kidudorodások láthatók és az S419/2 jelű mintán egy ütésnyom. A mintáknál a pélites, aleuro-pélites, azon belül a morzsás mik roszerkezet dominál, így az anyag 0,2–0,5 mm-es morzsákból álló 1–3 cm-es rögök halmaza (4. ábra, 3. fotó). Az Ás74 jelű mintát fakóvörös, 0,3–1,0 mm-es kiégetett agyagmorzsák alkotják. A vizsgált patics mintákra a tömeges szövet jellemző, ese tenként látható bizonyos fokú irányítottság, pl. az S419/2 és az S439 jelű mintában, ahol a párhuzamos lefutású erek különböző sávokat választanak el. Pórusok és repedések. A patics mintákban számos pórus jelenik meg, amelyek jelenleg üresek, vagy csak helyenként tartalmaznak másodlagos ásványokat. Egyenletesen hintett kisebb, 0,05–0,10 mm-es ovális, és a nagyobb, 0,25–0,50 mm-es, sza bálytalan vagy amoeba-szerű pórusok láthatók (4. ábra, 2. fotó), az utóbbiak mikronos agyaghártyával bélelve. A még képlékeny anyag simításának nyomai az S419/1, és az S419/2 jelű min tában lévő 0,05–0,10-es hártyák metszete (4. ábra, 4. fotó). Az S397 és S439 jelű mintákon zegzugos lefutású, ~0,1 mm széles kontrakciós repedések láthatók, amelyek átszelik a pórusokat, köztük a korommal kitöltött repedést is (S397 minta) 2.3. Fizikai paraméterek Az S/100/1, S/419/2 és Ás74 jelű mintán fajsúly, pórustér (p), szobahőmérsékleti víztartalom (w) és nyomószilárdság (σ) mérést végeztünk a gödöllői Szent István Egyetem talajmechanikai laboratóriumában. A 3. táblázatban bemutatott eredményeket Molnár [2] határértékeivel összehasonlítva látható, hogy a neolitikumi és a modern anyag között nincs lényeges különbség, csak a szilárdságuk nagyobb, amelyet az anyag természetes „öregedésével” lehet összefüggésbe hozni [3]. Az Ás74 jelű kiégetett patics paraméterei a durva kerámia jellemzőivel egyeznek meg. Minta jele
Fajsúly
Pórus térfogat p
Nedvesség, w
Nyomásszilárdság, σ
g/cm3
%
%
N/mm2
S100/1
1,35
18
12
1,15
S/419/1
1,43
21
15
3,35
Ás74
1,69
Molnár, [2] 1,25–1,88
16
10
4,56
13–30
5–20
0,5–3,9
3. táblázat Patics minták fizikai paraméterei Table 3. Physical parameters of some adobe samples
Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
107
építôanyag § Journal of Silicate Based and Composite Materials
2.4. Paleobotanikai vizsgálatok Az ásatás közepén lévő kút mellett két fakéreg-lenyomatot találtunk, amelyeket Marzena Klusek, a Krakkói Jagelló Egye tem munkatársa vizsgált meg a következő eredményekkel: Ás85 jelű minta: Cortex corilli csp. 8,5 cm hosszú, 2,2 cm átmérőjű, 1,8 cm mély, hengeres kéreglenyomat, a faj jellegzetes mozaikos rajzolatával, két hosszanti hajszálvékony (száradási) repedéssel. A kéreglenyomat egy kb. 2 cm átmérőjű mogyoró-vesszőtől származik. As86 jelű minta: Cortex salici csp. 12 cm hosszú, 1,8 cm átmérőjű, 1,1 cm mély, kb. 30°-ra meghajlított finom sávos kéreglenyomat, két lencsés rügylenyo mattal, egy harántrepedéssel. A kéreglenyomat egy 1,2–1,5 cm átmérőjű fűzfavesszőtől származik.
3. A vizsgálati eredmények kiértékelése: eredet, technológia, elváltozások Eredet. A minták vizsgálata arra enged következtetni, hogy a paticsdarabok anyaga nagyrészt az alapszinti pleisztocén üledékből származik, kis mennyiségű homokadalékkal, a szilárdságot növelő fahamuval (benne a hőhatásos homokszemcsékkel és a faszénnel is), a tűzhelyekből belekerült, 800 °C-ot meghaladó hőmérsékleten a felületükön megolvadt földpát- és égetési repedéses kvarc homokszemcsékkel, valamint a hamuban lévő faszén-töredékkel. A hamu hozzáadása jelentősen növeli a paticsfelület keménységét és fokozott védelmet eredményez szél- és eső okozta erózió ellen [3]. Véletlenszerűen kerültek a paticsba a humuszos morzsák és a cserép-töredékek. Keverés, homogenizálás. A patics minták szerkezete arra utal, hogy az anyagot alaposan átkeverték, A hasonló anyagoknál a félfolyós állapothoz (Attemberg-limit) 20-25% víz szükséges [2]. Ugyancsak megfelelő homogenizálásra utal a 0,05-0,10 mm méretű, ovális pórusok, eredetileg levegőbuborékok egyenletes eloszlása. Tapasztás, simítás. Észak-erdélyi megfigyelések alapján [4] a patics anyagát galacsinokban a vesszőfonat felületére dobják, majd a felületet kézzel, vagy egy deszkavéggel leegyengetik. A beltérhez finomabb szemű keveréket használnak, és vizes kézzel végigsimítják, Az ipari kerámiákhoz hasonlón [5] a simítás során vékony vízhártyák keletkeznek, ezek a csiszolatokban látható erekként jelennek meg. Szikkadás, száradás, hőhatás, maturizáció. A felhordott anyag csak akkor marad a falon, ha a fölös vízmennyiség a szupraka pilláris, 0,25–0,50 mm méretű, vékony (filtrációs) agyaghártyás bélésű pórusokon keresztül eltávozik [6]. Erre mondják, hogy akkor lesz tartós a falazás, ha az „könnyezik”. A patics száradása egy meglehetősen hosszú folyamat, hónapokig is eltarthat, de Somotához hasonló szabad térszínű területen ez a folyamat felgyorsul. Ilyenkor a patics falban az ásványi átrendeződés nem képes követni a vízveszteség által okozott zsugorodást, és a feszültséget a mintákban látható, zeg zugos kontrakciós repedések vezetik le [7]. A minták felületén koromfoltok, a belsejükben érkitöltés, finoman hintett korom-szferulák, kátránycseppek láthatók, a kö108
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
zelben lévő, de nem kiégető tűz jelenlétére utalnak (a szőrszál nem bomlott le, a kátrány se párolgott el és nem változott az agyagásványok bázisreflexiója sem). Rövid ideig tartó hőhatás által okozott vörös szín, keményedés, limonit-gélből kristályosodott goethit – az S419/1 és S397 jelű mintákban figyelhetők meg. Végül hosszan tartó, 800 °C hőmérsékletet meghaladó hőhatás az Ás74 jelű mintában mutatható ki, amely egy kiégetett durva kerámiához hasonlít, ásványtanilag (lebontott szmektitek, hematit, sok amorf fázis), valószínű, egy tűzhely vagy kemence béléseként. A megszilárdult paticsfal korántsem zárja le légmentesen az épület belterét. Pórustéri légáramlás bizonyítéka: egyes pórusokban lerakódott gipszkristályok (S397 és S419/2 jelű minták), amelyek a beltéri kipárolgások kéntartalmából és a fala nyag kalciumából keletkeztek [1]. A hosszú ház (és a település?) vége. A patics minták alapján nem lehet pontosan meghatározni, mi okozta az épület(ek) tönkremenetelét. Egyrészt jelen vannak a rövid ideig tartó hőhatás bélyegei, de a minták egy részén nincsenek kimutat ható jelei az égésnek. Ugyanakkor a neolit település közvetlen fedőjéből a pollen vizsgálatok során jelentős mennyiségű fuzitpellet jelenik meg [8]. Betemetés a talajrétegbe. A neolit település romjai idővel betemetődtek, minek után a paticsdarabokban is jelen vannak a csernozjomra jellemző pedológiai elváltozások: pórusok kitöltése finomszemű agyaggal és a karbonátos hintés, valamint a paticsanyag agyagásvány-szintű maturizációja.
4. Őskörnyezeti következtetések: klíma, környezet és közösség Éghajlat. A hosszúházak ÉNy-DK iránya arra enged következtetni, hogy ezek az építmények a domináns szél irányába és nem erre merőlegesen lettek építve. A paticsdarabok méreteiből feltételezhető, hogy a falvastagság nem haladta meg a 30-35 cm-t. Összehasonlítva az Alföld későbbi döngöltfal-építményeivel [9], az itt lakókat az ún. mogyoró-kori optimum végén nem fenyegette a hosszú, zimankós tél. A közvetlen környezet. A település a hosszú házak építésekor már lakott volt: erre utal a paticsba került cserép-törmelék, a hamu, a faszén-darabok és gyapjúszálak. Az anyagba bekerült humuszos talajrögök a közelben megbontott (művelt?) földekre utalnak. A pollenspektrum [8] és az építkezéshez használt mogyoró és fűz használata közeli vizes területekre utalnak. Ugyancsak valószínű a vízhordás, közeli szabad vízfelületekről. Közösségi életforma. Lesimított belső falazat, szigetelő és ugyanakkor pórusos-szellős falak, huzamosabb ideig használt tűzhelyek, elvezetett füst (kátránycseppek) – mindezek arra utalnak, hogy a hosszú házakat használók nem nélkülözték a komfort bizonyos fokát. A már száraz pórusokba lerakódó gipszkristályok is azt is jelzik, hogy a házakat – nem kis lélekszámban – huzamosan, életvitelszerűen lakhatták. Pusztulás (pusztítás?) és újrakezdés. Az archeológiai észlelések (és a pollen-analízis) alapján feltételezhető, hogy a lelőhelyen többször is voltak pusztító tüzek, de a vizsgált paticsanyag nem bizonyítja a település totális leégését A település elnéptelenedé-
építôanyag § Journal of Silicate Based and Composite Materials
sét követően az alkalmas természetes környezet később is adott helyet az emberi jelenlétnek, a bronzkortól egészen a honfoglalásig és mondhatni, napjainkig.
5. Köszönetnyilvánítás A tanulmány szerzői ezúton nyilvánítják köszönetüket Hofman Józsefnek, a somotai ásatást szervező Salisbury Kft. menedzserének és munkatársainak, akik a vizsgált anyagot is a rendelkezésünkre bocsátották. Ugyancsak köszönetünket fejezzük ki dr. Kónya Péternek a Magyar Földtani és Geofizikai Intézet fázisanalitikai laboratóriumától, dr. Kerék Barbarának és Kutasi Géza fúrómesternek az intézet Környezetföldtani Osztályáról a tanulmány elkészítése során nyújtott segítségükért. Irodalomjegyzék [1] Garrison, J. W. (2013): Adobe, its characteristics, the material, its deterioration, its coatings. – nla.gov.au/anbd.bib-an21450113. [2] Molnár, V. (2004): A vályog- és favázas vályogépítészet. – Doktori (PhD) értekezés, Nyugat-Magyarországi Egyetem, Faipari Mérnöki Kar, 126 p., Sopron [3] Austin, G. (2013): Adobe as building material – New Mexico Bureau of Mines and Mineral Resources. 70 p New Mexico
[4] Kalmár, I. – Bologa, V. (1986): Căsoiul de pe Obcină – Tehnica unor construcţii tradiţionale [Pásztorkunyhó a hegyháton – a hagyományos építkezés technikája] – XI. Festival obiceiurilor de iarnă, Sighetul Marmaţiei, ed. Muzeului Judrţean, pp. 9–21., Baia Mare [5] Kocserha, I. – Gömze, L. N. (2012): Csúszóréteg kialakulása agyagkeverék extrudálásakor. – Építőanyag, 64. évfolyam, 3-4. szám, pp. 50–53. [6] Pollack, E. – Richter, E. (1952): Technik des Lehmhaus. – Bauamt Verlag, 225 p. Berlin. [7] Gömze, L. A. – Gömze, L. N. (2008): Relations between the material structure and drying properties of ceramic bricks and roof tiles. – Építőanyag, Vol. 60. No. 4., pp. 102–107. [8] Farkas, Z. – Kocsis-Buruzs, G. – Kalmár, J. (2017): Geological observations and paleo-environmental reconstruction in the area of Somota archaeological site, Berettyóújfalu – In press, Carpathian Journal of Earth and Environmental Sciences, Vol. 12., No. 2., Baia Mare. [9] Csicsely, Á. (2011): A vályogépítés életciklusainak rövid bemutatása. – Építőanyag, 63. évfolyam, 3-4. szám, pp. 42–47. Ref.: Kalmár, János – Kocsis-Buruzs, Gábor: Neolitikumi hosszúházak paticsanyaga és őskörnyezeti vonatkozásai Építőanyag – Journal of Silicate Based and Composite Materials, Vol. 68, No. 3 (2016), 105–109. p. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.18
title picture: shutterstock.de
26-30th June 2016, Munich/Germany
ECCM17 has been closed. – It was a very successful and unforgettable event for the high quality of scientific contributions! We say thank you to all of you and hope you enjoyed the conference and also the evening events and the venue of Munich. We are looking forward to meeting you again in future composite events. Organising Commitee of the ECCM17
Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
109
építôanyag § Journal of Silicate Based and Composite Materials
About what is happening in the stomach after swallowing human river pebbles, gravel, chalk, clay and tablets drugs Aleksandr URAKOV Izhevsk State Medical Academy urakoval@live.ru Natalia URAKOVA Izhevsk State Medical Academy urakovanatal@male.ru Alexey RESHETNIKOV Izhevsk State Medical Academy areshetnikov@list.ru Anton KASATKIN Institute of Thermology ant-kasatkin@yandeks.ru Maxim KOPYLOV Izhevsk State Medical Academy kopilov@inbox.ru Dmitry BAIMURZIN Izhevsk State Medical Academy nevi_dimko@male.ru
Natalia A. Urakova, Assistant of the Department of Obstetrics and Gynecology of Izhevsk State Medical Academy, Russia, PhD in Medical Science 2005. Scientific interests: obstetrics and gynecology, physical and chemical pharmacology, infrared thermography, hypoxia, new materials in medicine.
Érkezett: 2016. 10. 23. Received: 23. 10. 2016. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.19
Aleksei P. RESHETNIKOV Director of the Dental Clinic «ReSto», Russia, PhD in Medical Science 2010. Scientific interests: dentistry, physical and chemical pharmacology, infrared thermography, new materials in medicine
Abstract It was found that pharmaceutical companies produce drugs in tablet form, physical or physical-chemical properties that are radically different from those of the properties of natural food lumps, in that adults convert food in the mouth before swallowing. It was shown that the conventional shape, color, size, volume, specific gravity, hardness, osmotic and acid activity of modern tablets impair the physical and physicochemical properties of the liquid content of the stomach is much stronger than such building materials, such as chalk, clay, sand, river pebbles and gravel. Keywords: human, pills, drugs, clay, chalk, gravel, pebbles, physical-chemical properties
1. Introduction Today, it is tablets that are the most common and heavily advertised forms of medications. Powerful advertising of tabletform medications made people directly associate medications with tablets [1]. Therefore, today most people think of medications as tablets, and that is why tablets are in greater demand by consumers than injectable ampoules, ointment tubes, and capsules with powder (Fig. 1). In Hungary, it is pills that enjoy the best sales among other forms of medications.
Aleksandr L. Urakov, MD Head of Department of General and Clinical Pharmacology Izhevsk State Medical Academy (since 1988) in Izhevsk, Russia. Since then 36 doctors and biologists from the department have successfully defended dissertations (PhD) under the supervision Prof. Urakov. He is author or coauthor 170 patents, 15 books and more than 300 scientific papers.
Anton A. KASATKIN Assistant of the Department of General and Clinical Pharmacology of Izhevsk State Medical Academy, Russia, PhD in Medical Science 2010. Scientific interests: physical and chemical pharmacology, infrared thermography, new materials in medicine.
Maxim V. KOPYLOV Aspirant of the Department of General and Clinical Pharmacology of Izhevsk State Medical Academy, Russia, Scientific interests: stomatology, physical and chemical pharmacology, infrared thermography, new materials in medicine. Dmitry BAIMURZIN Aspirant of the Department of General and Clinical Pharmacology of Izhevsk State Medical Academy, Russia, Scientific interests: stomatology, physical and chemical pharmacology, infrared thermography, new materials in medicine.
natural stones. Typically, these artificially made stones look like white or gray circular shaped disks. Before we studied physical and chemical properties of more than 50 tablets and found that physical and chemical properties and aggregate state of modern tablets are very similar to comparable pieces of chalk, clay and/ or compressed salt. Therefore, all modern tablets are harder than high quality food, so they sink in gastric juice [4, 5, 6]. However, a man is not a bird whose stomach is tailored for stones to grind down solid food (Fig. 2).
Fig. 1. The amount of production was the largest with tablets, which made up 52.1%, followed by capsules (5.6%), injectable solutions (5.6%), and powders and granules, etc. (5.4%). These four categories made up 68.7% of total. (http://www.mhlw.go.jp/topics/yakuji/2011/nenpo/dl/insathu_e.pdf) 1. ábra A legnagyobb mennyiségben tablettákat gyártanak (52,1%), ezt követik a kapszulák (5,6%), injekciós oldatok (5,6%), porok, granulátumok és egyebek (5,4%). Ez a négy kategória a teljes mennyiség 68,7%-át teszi ki. (http://www.mhlw.go.jp/topics/yakuji/2011/nenpo/dl/insathu_e.pdf)
Let us consider tablets in the framework of competitive materials and technology processes. Surprisingly, modern tablets are manufactured by compressing powders, as they were a hundred years ago [2]. Therefore, they are hard and resemble 110
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
Fig. 2 A general view of the contents of the stomachs of domestic hens (1 and 2) after opening the stomach 2. ábra Házi tyúk gyomrának tartalma a gyomor felnyitását követően
építôanyag § Journal of Silicate Based and Composite Materials
Human body is not capable to swallow natural and artificial stones. That is why human stomach is not adapted for stones of any size and shape, including silica sand, crushed stone and river pebbles. Similarly, human stomach is not adapted for medical stones, or tablets (Fig. 3).
Fig. 3. The image of the stomach mucosa of a living person (man, age 48 years), obtained from the inside using endovideoscopy 3. ábra Élő személy gyomorfalának képe endovideoszkópiás felvételen (48 éves férfi)
It is paradoxical, but true. Our results have shown that silica sand, river pebbles and crushed stones have less damaging impact on the human stomach than modern tablet-form medications [3, 7]. A person can stay healthy after swallowing a tablet-size grain of sand, pebbles and crushed stones. However, a man will not stay healthy after swallowing comparable number of most modern tablets [8, 9, 10]. Nevertheless that this fact still does not scare humankind. It seems like people are hypnotized and do not realize that tabletform medications are much more aggressive than natural stones and food [11, 12]. People do not want to see that tabletform medications are as hard as rocks, so when a person chew the tablets, he may break his jaw, prosthesis, tooth, crowns, implants, braces or fillings and injure his gums, tongue and palate. When swallowing the tablets without chewing, one can damage his esophagus and stomach, and even get ulcers [3, 13]. Our results show that tablets quality standard does not consider their hardness. Therefore, every manufacturer has the right to make tablets of any hardness, moreover, he is entitled not to define it or inform the consumer about it. Worse yet, today, the drugs manufacturers do not control the osmotic and acidic impact of tablets and their local irritant effect on the mucous membranes of the mouth and stomach. However, all of them manufacture tablets with extremely high hyperosmotic and acid activity, as if they operate in collusion with each other. Therefore, almost all modern tablets demonstrate high physical and chemical aggressiveness and therefore have acute local irritant and burning effects. All this contributes to the development of drug-caused iatrogenesis, such as gingivitis, stomatitis, gastritis, gastric ulcers and tooth decay [3]. Many of these adverse consequences caused by taking tablets are easily detected with a thermal imaging camera by defining local hyperthermia area.
worldwide. We analyzed their shape, color, weight, diameter, height, volume, acidity and osmolarity. Conventional methods and equipment for drugs quality control were used for this purpose. Additionally, we measured the tablets hardness by Rockwell hardness test method. We also measured hardness at specific load in Brinell scale (in HB units). At the same time, we monitored the dynamics of food and tablets movement inside the body, and analyzed viscosity, temperature, acidity and osmolarity of gastric contents. The studies were conducted using a plastic model of the stomach. For this purpose, we used a clear, colorless 1000 ml plastic container. To imitate food, we introduced 180 g of oatmeal, and 150 ml of milk and/or water into the container. After putting food and tablets, we added 150 ml of natural gastric juice with pH 0.8-1.2. All substances were introduced into the vessel at a temperature of +37 °C. In a parallel series of experiments in the stomach cavity of the input pieces of chalk, clay, gravel and river pebbles of similar size (Fig. 4).
Stones
Fig. 4. General view of the tablets and stones introduced into the model of the stomach cavity 4. ábra A gyomorüreg modelljében felhasznált tabletták és kavicsok általános képe
3. Results and discussion It is shown that all the tablets, food and water go down to the bottom of artificial gastric reservoir and move inside its cavity because of gravity, as well as river sand, pieces of chalk, clay, gravel and pebbles. We found that corrected specific gravity of all modern tablets is greater than 1 g/cm3 and therefore all the tablets sink in gastric juice, water and milk. We also found that if the container is placed vertically, all the tablets fall in one place, and then lie still in the bottom of the cavity like river pebbles in a glass of water, despite of the liquid being added (Fig. 5).
2. Materials and methods In the laboratory settings, we studied physical and physicalchemical properties of more than 50 tablets of various medications produced by different pharmaceutical companies
Pills
1
2
3
Fig. 5. Influence of gravity and water on placement in the stomach cavity tablets (1 and 2) and stones (3) 5. ábra A gravitáció és a víz hatása tabletták (1 és 2) valamint kavicsok (3) elhelyezkedésére a gyomorüregben
Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
111
építôanyag § Journal of Silicate Based and Composite Materials
However, unlike the pebbles and crushed stones, tablets have aggressive impact on gastric mucosa, they corrode the stomach wall, and may lead to ulcers. The tablets that are most blamed for causing ulcers in the stomach wall are aspirin and its analogs which are known as non-steroidal anti-inflammatory agents. Our results indicate that in the medication name present wickedness. We were the first to see the truth about physiological form of modern tablets. With our theoretical, laboratory and clinical research, we were able to get rid of this pharmaceutical delusion. Today we are sure that manufacturing tablets in a circular disk form is a mistake. This form of tablets is not compatible with the specifics of human digestive system. Disk form of tablets is useful only for manufacturers and sellers. However, we do not have standard even for this form of tablets. Surprisingly, today there is no standard not only for the form of tablets, but also for their sizes. Therefore, different manufacturers produce tablets in different forms and size. Our results show that modern tablets differ in diameter and height by up to 3 times, and by up to 10 times in volume. We decided to analyze the shape and size of the object, which people usually swallow after thorough chewing of food in their mouth. In science, this object is known as food bolus. For this purpose, we studied the shapes and sizes of food lumps formed in the oral cavity in adult healthy people when chewing fresh bread. We found that natural bolus has a form of an olive with its largest diameter up to 1 cm, and maximum length of 2 cm [14]. This olive is dark, has close to zero hardness and medium elasticity, it is porous and has a specific gravity of less than 1 g/ cm3, besides, it lacks osmotic aggressiveness towards contents of the mouth and stomach (Fig. 6)
Fig. 6. Range value of diameter and volume of tablets and food bolus 6. ábra Átmérő és térfogat terjedelme tabletták és összerágott étel esetén
Man is capable to swallow soft and elastic olives, but not hard disks [15]. Besides, we found that there is no standard for tablets chewing resistance and disintegration in gastric juice, so they are manufactured with varying chewing resistance and disintegration characteristics. All this increases the range of nonspecific physical-chemical effects of tablets inside the mouth and stomach. In particular, our results showed that modern tablets differ in chewing resistance by up to 5000 times (Fig. 7). So today, no one knows the true hardness of each tablet. Therefore, today no one knows what will crumble first while chewing, a tablet or a tooth. 112
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
Fig. 7. Hardness of 19 tablets of various drugs 7. ábra 19 különböző gyógyszertabletta keménysége
The results of our experiments showed that under the simulated conditions, the mixture of oatmeal porridge, gastric juice, and water had the following physical-chemical characteristics: ■■ Viscosity - in the range of 200 - 500 centipoise, ■■ Acidity - in the range of pH 4.5 - 8.0, ■■ Osmolarity - in the range of 240 - 340 mOsmol / l of water. Then, we introduced into the mixture 20 small river pebbles in the form of circular disks with the diameter of about 6-20 mm, height of 2-6 mm and volume of 0.1-1.0 cm3, and during one hour after that the physicochemical properties of the contents remained virtually unchanged. Different results were obtained after we introduced 20 tablets of similar shapes and sizes into a similar mixture of cereal, water and gastric juice. In 30 minutes after putting them in this mixture, the contents had the following physicochemical characteristics: ■■ Viscosity - 100 - 300 centipoise; ■■ Acidity - pH 6.0 - 7.1; ■■ Osmolarity - 240 - 340 mOsmol / l of water. In 30 minutes after adding 20 tablets to the empty plastic container (modelling taking tablets in the fasting state), tablets disintegrated halfway. The container contents appeared as suspension with non-decomposed pieces of tablets and had the following physicochemical properties: ■■ Viscosity value 0 - 10 centipoise; ■■ Acidity - pH 2.0 - 3.3; ■■ Osmolarity - 340 - 600 mOsmol / l of water. Thus, pharmaceutical companies manufacture tablet-form medications with physical or physical-chemical properties, which are entirely different from those of natural food bolus, which we have in our mouth before swallowing. It was shown that conventional shape, color, size, volume, specific gravity, hardness, osmotic and acidic properties of tablets affect the physical and physical-chemical properties of oral and gastric cavities contents. It is proved that improper physical and physical-chemical characteristics of modern tablets result in reduced medication safety for the digestive system, and increase their non-specific physical and physical-chemical aggressiveness when ingesting.
4. Conclusions The human digestive system happily accept pills only if their physical and physicochemical properties will not differ
építôanyag § Journal of Silicate Based and Composite Materials
corresponding properties of natural food lumps produced in the oral cavity of the quality of food. References [1] Urakov, A. L. et al. (2007): Newton’s Binomial as a “formula” development of medical pharmacology. Institute of Applied Mechanics Ural branch of the Russian Academy of Sciences, Izhevsk, 192 p. [2] Urakov, A. L. – Reshetnikov, A. P.: Specific deforming the hardness of the tablets is another indicator of the quality of medicines. (2014) Success of Modern Natural Science, no. 9 (2), pp. 33 - 37 [3] Urakov, A.L. – Urakova, N.A. – Reshetnikov, A.P., et al.: Enterokolit, gastrit, stomatit, gingivit i karies vyzyvayut tabletki atsetilsalitsilovoi kisloty. (2008). Med. Almanac, no. 2, pp. 45 – 48 [4] Urakov, A. L. – Strelkov, N. S. – Lipanov, A. M. – Dementiev, V. B. – Urakova, N. A. et al.: Physical-chemical and hydrodynamical ways of increasing safety of intestine.(2007) Chemical Physics and Mesoscopics, no. 9 (3), pp. 231-238 [5] Urakova N. A. et al.: Floating tablet. (2005) Invention RU Patent 2254121 C2 [6] Urakov, A. L.: The change of physical-chemical factors of the local interaction with the human body as the basis for the creation of materials with new properties. (2015) Épitőanyag – Journal of Silicate Based and Composite Materials, no 67 (1), pp. 2 - 6 [7] Korovyakov, A. P., et al.: Individual’nye osobennosti upravleniya protsessom fizicheskogo peremeshcheniya tverdykh i zhidkikh lekarstvennykh form vnutri zheludka. (2003) Eksperimental’naya i klinicheskaya gastroenterologiya, no. 1, pp. 30 - 32 [8] Strelkov, N. S., et al.: Clinical features of passive intragastric pharmacokinetic binding, enveloping, absorbent and antacid drugs. (2002). Morphological newsletter, no. 3, pp. 95-96. [9] Urakov, A. L. – Strelkov, N. S. – Urakova, N. A. et al.: Ultrasound as a method of study travel medical imaging solid forms in the stomach.(2008). Eksperimentalnaia i klinicheskaia gastroenterologiya, no. 2, pp.27-29 [10] Urakov, A. L. – Urakova, N. A.: Using aftheregularitiesof the gravitational intracavitary pharmacokinetics of drugs for controlling the process of their distibution inside the cavities by means of changing the position of the patients. (2006). Biomeditcina, no. 4, pp. 66-67. [11] Urakov, A. L. – Urakova, N. A. – Mihailova, N. A. – Reshetnikov, A. P.: Nonspecific properties of tablets, affecting the transport and action of drugs in the oral cavity, stomach, and intestine. (2007). Meditsinskaia pomoshc, no. 5, pp. 49 – 52
International Concrete Conference & Exhibition
CENTRAL EUROPE 2017
www.iccx.org
[12] Urakov, A. L. (2014): Development of new materials and structures based on managed physico-chemical factors of local interaction. In L. A. Gömze (Editor) 3rd International Conference on Competitive Materials and Technology Processes, Miskolc-Lillafüred, Hungary, pp.9. [13] Urakov A. L. – Urakova N. A. – Kozlova T. S.: Local toxicity of drugs as an indicator of the likely aggressiveness of the local application. (2011) Bullitin of Ural Academy Medical Sciences, no. 1 (33), pp. 105 – 108 [14] Urakov, A., et al.: Artificial food bolus and method forinstant assessment of dento-facial health with using artificial food bolus.(2014) Invention RU Patent 2533840 C2 [15] Nikitiuk D. B. – Reshetnikov A. P. – Nasirov M. R.: How to protect the human digestive system from the aggressive action of tableted drugs.(2016). Modern problems of science and education. no. 2. URL: http://science-education.ru/ru/article/view?id=24185 (date of the application: 22.10.2016). Ref.: Urakov, Aleksandr – Urakova, Natalia – Reshetnikov, Alexey – Kasatkin, Anton – Kopylov, Maxim – Baimurzin, Dmitry: About what is happening in the stomach after swallowing human river pebbles, gravel, chalk, clay and tablets drugs Építőanyag – Journal of Silicate Based and Composite Materials, Vol. 68, No. 3 (2016), 110–x113. p. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.19
Mi történik a gyomorban folyami kavics, mészkő, agyag és gyógyszer tabletták lenyelését követően Megfigyelhető, hogy a gyógyszergyártó cégek a gyógyszereket olyan tabletták formájában gyártják, amelyek fizikai és fizikokémiai jellemzőikben nagymértékben eltérnek a természetes ételtől, amelyet a páciens megrág a lenyelést megelőzően. Kimutatható, hogy a hagyományos alakú, méretű, térfogatú, sűrűségű, keménységű, ozmotikus aktivitású, kémhatású modern tabletták negatív irányban változtatják a gyomornedv fizikai és fiziko-kémiai tulajdonságait. Ezek a változások erőteljesebbek annál, mintha építőanyag (mészkő, agyag, homok, folyami kavics) kerülne a gyomorba. Kulcsszavak: ember, tabletta, gyógyszer, agyag, mészkő, kavics, fiziko-kémiai jellemzők
The preparations for the ICCX Central Europe 2017 are almost complete and the participants can look forward once again to a highly interesting and extensive offering, which the organisers of the ICCX Central Europe have put together. A high-class, two-day conference programme is on the agenda, rounded off by the exhibition to accompany the conference with over 100 booths. Further highlights of the ICCX Central Europe 2017 are the Concrete Block Centre and the workshops to be held by some of the exhibiting companies. With a half-day technical course on the day following the conference, an additional offering has been created that hadn’t existed at this year’s ICCX Central Europe. The venue for the next ICCX Central Europe, which will take place on 8 and 9 February 2017, will once again be the Hotel Ossa Congress & Spa, situated to the south of Warsaw. A shuttle service will once again enable an uncomplicated transfer from the airport to the Congress Hotel and, of course, back again. https://iccx.org/central-europe/event-details-en
Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
113
építôanyag § Journal of Silicate Based and Composite Materials
Research of mechanical and cutting properties, wear and failure mechanisms of nanostructured multilayered composite coating Ti-TiN-(NbZrAl)N Alexey Vereschaka Moscow State Technological University STANKIN Andrey Kutin Moscow State Technological University STANKIN Nikolay Sitnikov Federal State Unitary Enterprise “Keldysh Research Center” Gaik Oganyan Moscow State Technological University STANKIN Oleg Sharipov Moscow State Technological University STANKIN Érkezett: 2016. 10. 30. Received: 30. 10. 2016. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.20
Abstract The paper studies mechanical properties (in particular, adhesion characteristics), as well as wear and failure pattern of nano-structured multilayered composite coating Ti-TiN-(NbZrAl)N. Cutting properties of a carbide tool with the above coating are studied in turning of steel C45, in comparison with an uncoated tool and a tool with reference coating TiN. It was found that tool life of the tool with the coating under study is 2.7–3.6 times higher than tool life of the uncoated tool and 1.8–2.2 times higher than that tool life of the tool with coating TiN. The conducted microstructural studies have shown a significant difference in wear and failure mechanisms and, in particular, in mechanisms of cracking, for the coating under study and the coating TiN. Failure mechanism of coating in the course of the study of strength of adhesion bonds is consistent with its failure mechanism during the study of cutting properties. Keywords: nanoscale multilayered coatings, tool life, carbide tool, wear mechanism, crack formation
1. Introduction In recent years, modifying surface coatings, in particular, wear-resistant coatings for metal cutting tools have been a subject of numerous studies. A series of innovative coatings has been developed and studied to significantly improve reliability and tool life of cutting tools, enhance cutting conditions, and hence increase the processing efficiency. Meanwhile, ordinary mono-layered coatings of the first generation (in particular, coatings TiN and TiAlN) are still actively used in the manufacture of metal cutting tools. Out of various types of wear-resistant coatings, developed and implemented in recent years, multilayered composite coatingswith gradient structure, as well as multi-component coatings should be noted [1-14]. The objective of this study was to conduct a comparative analysis of wear and failure mechanisms of a reference monolayered coating TiN in comparison with nano-structured multilayered composite coating Ti-TiN-(NbZrAl)N. The coating Ti-TiN-(NbZrAl)N under study has a threelayered architecture [1-4], including adhesive sublayer Ti, intermediate layer TiN, and wear-resistance layer (NbZrAl)N. Nano-structured multilayered composite coating Ti-TiN(NbZrAl)N was selected as an object of the study due to the following factors [1,3,4]: ■■ a good combination of high hardness and resistance to brittle fracture, which was shown by the coatings on the basis of system (NbZrAl)N during earlier studies; 114
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
Alexey Vereschaka Dr.-Ing, Ass. Prof. Scientific interests: Wearresistant, corrosion-resistant, tribological modifying coatings for various applications (metal cutting tools, friction pair, medical implants, etc.). Andrey Kutin Dr. sc. tech, Professor, Head of production engineering department of the Moscow state university of technology Stankin. Scientific interests: new technologies in digital production, precision cutting, production modelling. Participant of several CIRP international conferenses. Member of editorial board of the journal Russian engineering research. Nikolay Sitnikov Dr.-Ing. Scientific interests: shape memory effect, the crystalline state, amorphous state, nikelid titanium, nanotechnology Gaik Oganyan Dr.-Ing, Ass. Prof. Scientific interests: Research of cutting properties of cutting tools. Oleg Sharipov Dr.-Ing, Ass. Prof. Scientific interests: metal cutting, simulation, planning.
■■ a role of coating Ti, confirmed during earlier studies, as an optimal adhesive sublayer that provides good adhesion both between tool substrate and coating and between adhesive and intermediate layers of coating; ■■ good results in tool life of metal cutting tool with the above coating shown during tests conducted earlier [1,3,4]. One of the objectives of this research was to study failure mechanism of nano-layered multi-component systems operating under conditions of high thermal and mechanical stresses arising in the cutting zone. The tests of wear-resistant coatings conducted earlier, including such elements as Nb, Zr, Al, and Ti in various combinations showed high hardness of such coatings, their brittle fracture behaviour and high wear resistance of metal cutting tools with such coatings. Holleck et al [5] found that in the ternary nitride systems of Group IV–VI transition metals, continuous ranges of solid solutions (MeIx MeII1−x )N with NaCl-type face centered cubic structures exist. Such solid solutions may be considered as quasi-binary systems of two cubic nitrides, e.g. d-(MeI)N and d-(MeII)N. Boxman et al [6] presented the results of the studies of the properties of the ternary nitride coatings of (Ti,Zr)N, (Ti,Nb) N and (Zr,Nb)N. The phase composition analysis shows that in all cases a single-phase composition was formed (δ-(Ti,Zr) N, δ- (Ti,Nb)N). Coating had a columnar structure, whereas in the case of (Ti,Nb)N the coating is built of equiaxed grains.
építôanyag § Journal of Silicate Based and Composite Materials
Beresnevet et al [7] and Maksakova et al [8] presented results of the studies of properties of the coatings on the basis of system (TiZrNb)N. X-ray diffraction spectra have shown that the main phase is the phase with face-centered cubic crystal lattice; meanwhile, cutting properties of carbide tool with coatings under study, as well as patterns of their wear and failure are not considered in these studies. A series of studies have tested the properties of multicomponent nano-structured coatings [9-12]. Braic et al [9,10] studied the properties of nitride system (TiZrNbHfTa)N, which composition, in addition to Zr, Nb and Ti, also includes Hf and Ta. Pogrebnjak et al [11] and Blinkov et al [12] considered the study of the properties of multi-composite coatings on the basis of nitride systems (TiHfZrVNb)N, which composition also includes Hf and V, as well as systems (TiAlCrZrNb)N and (TiAlCrZrNb)N, which composition is modified through introduction of Al and Cr. It should be noted that the above studies were focused only on coatings with mono-layered architecture, including coatings with nano-scale structure.
2. Experimental details 2.1 Deposition method For coating deposition, a vacuum-arc VIT-2 unit was used, which was designed for the synthesis of coatings on substrates of various tool materials [1-3,13]. The unit was equipped with an arc evaporator with filtration of vapour-ion flow, which in this study were named as filtered cathodic vacuum arc deposition (FCVAD) [1-4,13,14], which were used for deposition of coatings on tool of significantly reduces the formation of droplet phase during the formation of coating. Coatings were deposited through fused cathode (85%Zr+15%Nb) (on standard arc evaporator), cathode 99.8% Ti (on standard arc evaporator) and cathode 99.8% Al (on arc evaporator with filtration of vapour-ion flow). 2.2 The adhesion characteristics study The adhesion characteristics were studied on a Nanovea scratch-tester, which represents a diamond cone with apex angle of 120° and radius of top curvature of 100 µm. The tests were carried out with the load linearly increasing from 0.05 N to 40 N. Crack length was 5 mm. Each sample was subjected to three test repetitions. The obtained curves were used to determine two parameters: the first critical load, LC1, at which first cracks appeared in coating, and the second critical load, LC2, which caused the total failure of coating. The indenter displacement (mm), the normal force Ln (N) and the level of acoustic emission (intensity in relative units) were registered during the tests. In the formation of the coating cracking, peeling, chipping and other damage, the acoustic emission signal has bursts, since the destruction of flowing at a high speed, energy is released, which generates elastic (acoustic) waves. 2.3 Study of cutting properties The studies of cutting properties of the tool made of different grades of carbide with developed NMCC was conducted on a lathe CU 500 MRD in longitudinal turning of steel C45 (HB 200).
The study used cutters with mechanical fastening of inserts made of carbide (78% WС-14% TiC- 8% Co) with square shape (SNUN ISO 1832:2012) and with the following figures of the geometric parameters of the cutting part: γ = –8°; α= 6°; K = 45°; λ = 0; R = 0.8 mm. The study was carried out at the following cutting modes: f = 0.2 mm/rev; аp = 1.0 mm; vc = 200 and 300 m∙min-1. Flank wear-land values (VBc) were measured with toolmaker’s microscope MBS-10 as the arithmetic mean of four to five tests and a value of VBc= 0.45-0.5 mm was taken as failure criteria. 2.4 Microstructural studies For microstructural studies of samples of carbide with coatings, a raster electron microscope FEI Quanta 600 FEG was used. The studies of chemical composition were conducted with the use of the same raster electron microscope. To perform X-ray microanalysis, the study used characteristic X-ray emissions resulting from electron bombardment of a sample.
3. Results and discussion 3.1 The adhesion characteristics study As a result of the conducted studies, it was found out that coating completely failed at load LC2 equal to 30-33 N. Meanwhile, the first cracks started to formunder load (LC1) equal to 17-20 N (see Fig. 1).
Fig. 1. Curve and panorama of a crack on progressive load scratch test of carbide sample with coating Ti-TiN-(NbZrAl)N. 1. ábra Lineáris karcolási vizsgálat eredménye és képe karbid mintán Ti-TiN(NbZrAl)N bevonattal.
Fig. 2. Pattern of failure of coating Ti-TiN-(NbZrAl)N on progressive load scratch test. The arrow indicates the direction of motion of the indenter, 1 - substrate, 2 - adhesive sublayer, 3 - intermediate layer, 4 - wear-resistant layer. 2. ábra Ti-TiN-(NbZrAl)N bevonat tönkremeneteli képe lineáris karcolási vizsgálat során. A nyíl jelzi az alaktest mozgási irányát. 1 – alapréteg, 2 – adhezív alsó réteg, 3 – köztes réteg, 4 – kopásálló réteg
Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
115
építôanyag § Journal of Silicate Based and Composite Materials
A typical feature of the process of destruction of coating is failure of adhesive bonds not only between substrate and coating, but also between separate layers and sublayers of the coating (see Fig. 2). Meanwhile, the most extensive areas of failure of adhesive bonds are observed in the system of adhesive sublayer-substrate, less extensive areas of failure of adhesive bonds in the system of adhesive sublayer-intermediate layer, and, finally, the most durable adhesive bonds are observed in the system of intermediate layer-wear-resistant layer. It should be noted that coating TiN started to fail under load of 13-15 N (LC1), and its total failure occurred at load (LC2) of about 25 N. 3.2 Cutting tests The results of cutting tests were processed using parametric identification of exponential stochastic multiplicative mathematical model by least squares method. Used formula of the form: VB=C(1)∙vcA(1,1)∙TA(1,2) (1) Curves obtained by mathematical processing of the experimental data are shown in Fig. 3.
and by 3.6 times longer than tool life of an uncoated tool. At cutting speed of 300 m∙min-1, the tool with the above coating showed the tool life, 1.83 times longer than tool life of a tool with coating TiN, and 2.75 times longer than tool life of an uncoated tool. Thus, the difference in tool life decreased at higher cutting speeds. 3.3 Study of mechanism of adhesive-fatigue wear of carbide tool with developed NMCC Wear and failure patterns of reference coating TiN and nanostructured multilayered composite coating Ti-TiN-(NbZrAl) N have a number of significant differences. For coating TiN, abrasion wear was typical, as well as adhesive-fatigue wear with formation of distinct transverse through cracks, in some cases extending into substrate structure (Figs. 4a, 5a, 6a). Meanwhile, for coating Ti-TiN-(NbZrAl)N, it is typical when transverse cracks turn into longitudinal delamination, in some cases, with tear-out of fragments of coating between two transverse cracks (Figs. 4b and 5b). Active formation of transverse cracks, including through cracks, is observed only in areas around microdroplets embedded in the structure of the coating (Figs. 6b and 7). A massive pick-up of the material being machined is formed in the area of coating failure, and in some cases, charging of the material being machined in areas of chipping of carbide substrate is observed (Fig. 4b).
a
a
b
Fig. 3. Dependence of wear VB on cutting time at dry turning of steel C45 at ap = 1.0 mm; f = 0.2 mm/rev; vc= 200 m∙min-1 (a) vc= 300 m∙min-1 (b) 1 – Uncoated; 2- TiN; 3 - Ti-TiN-(NbZrAl)N. 3. ábra Kopás (VB) mértéke a megmunkálási idő függvényében (C45 acél); paraméterek: ap = 1.0 mm; f = 0.2 mm/rev; vc= 200 m∙min-1 (a) vc= 300 m∙min-1 (b) 1 – bevonat nélkül; 2- TiN; 3 - Ti-TiN-(NbZrAl)N.
Based on the obtained results, the following can be noted. At both cutting speeds of 200 and 300 m∙min-1, the tool with nano-structured multilayered composite coating Ti-TiN(NbZrAl)N showed better wear resistance. The tool life of a tool with the above coating at cutting speed of 200 m∙min-1 was by 2.2 times longer than tool life of a tool with coating TiN, 116
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
b
Fig. 4. Wear and failure pattern of the system coating-substrate on rake face of tool: coating TiN (a) and nano-structured multilayered composite coating Ti-TiN(NbZrAl)N (b) in turning of steel C45 at the following cutting modes: Vc=200, f=0.25, ap=1 mm 4. ábra Kopás és tönkremenetel bevonat-alapréteg rendszerben a megmunkáló szerszám homlokfelületén: TiN (a) és nanoszerkezetű többrétegű TiTiN-(NbZrAl)N kompozit (b) bevonat esetén – C45 acél, megmunkálási paraméterek: Vc=200, f=0.25, ap=1 mm
építôanyag § Journal of Silicate Based and Composite Materials
a
Fig. 7. Influence of microdroplets embedded into the structure of the coating on the process of cracking in nano-structured multilayered composite coating Ti-TiN(NbZrAl)N 7. ábra A nanoszerkezetű többrétegű Ti-TiN-(NbZrAl)N kompozit bevonatban kialakuló mikrozárványok hatása a repedésképződési folyamatra
b
Fig. 5. Pattern of crack formation in coating TiN (a) and multilayered composite nano-structured coating Ti-TiN-(NbZrAl)N (b) on rake face of tool in turning of steel C45 at the following cutting modes: Vc=200, f=0.25, ap=1 mm 5. ábra Repedésképződés TiN (a) és nanoszerkezetű többrétegű Ti-TiN-(NbZrAl)N kompozit (b) bevonat esetén a megmunkáló szerszám homlokfelületén – C45 acél, megmunkálási paraméterek: Vc=200, f=0.25, ap=1 mm
a
b
c
d
a
b
Fig. 6. Pattern of crack formation in coating TiN (a) and nano-structured multilayered composite coating Ti-TiN-(NbZrAl)N (b) in turning of steel C45 at the following cutting modes: Vc=200, f=0.25, ap=1 mm 6. ábra Repedésképződés TiN (a) és nanoszerkezetű többrétegű Ti-TiN-(NbZrAl)N kompozit (b) bevonat esetén – C45 acél, megmunkálási paraméterek: Vc=200, f=0.25, ap=1 mm
Fig. 8.
Wear and failure pattern of coating on tool flank wear land in turning of steel C45 – coating (Vc=200 m/min, f=0.25 mm/rev, ap=1 mm) (a), – coating TiN (Vc=300 m/min, f=0.25 mm/rev, ap=1 mm) (b), – coating Ti-TiN-(NbZrAl)N (Vc=200 m/min, f=0.25 mm/rev, ap=1 mm) (c), – coating Ti-TiN-(NbZrAl)N (Vc=300 m/min, f=0.25 mm/rev, ap=1 mm) (d).
8. ábra Kopás és tönkremeneteli módok a megmunkáló szerszám palást felületén (C45 acél) – bevonat (Vc=200 m/min, f=0.25 mm/rev, ap=1 mm) (a), – bevonat TiN (Vc=300 m/min, f=0.25 mm/rev, ap=1 mm) (b), – bevonat Ti-TiN-(NbZrAl)N (Vc=200 m/min, f=0.25 mm/rev, ap=1 mm) (c), – bevonat Ti-TiN-(NbZrAl)N (Vc=300 m/min, f=0.25 mm/rev, ap=1 mm) (d).
Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
117
építôanyag § Journal of Silicate Based and Composite Materials
Following the analysis of wear and failure patterns of coating on flank wear land of the tool, the following conclusions can be drawn: ■■ a typical pattern of coating wear is abrasive and adhesivefatigue wear, without visible signs of brittle fracture; ■■ at cutting speed Vc=200 m/min, the tests show penetration of the material being machined into the area of contact tool material-coating. Such penetration is more definite for coating TiN (Fig. 8a) and less for coating Ti-TiN-(NbZrAl)N (Fig. 8c). At machining with cutting speed Vc=300 m/min, no similar penetration is observed (Fig. 8b,d); ■■ in the structure of coating Ti-TiN-(NbZrAl)N, longitudinal delamination occurred which do not result in failure of coating.
4. Conclusions The paper studied mechanical and cutting properties, as well as wear and failure pattern of nano-structured multilayered composite coating Ti-TiN-(NbZrAl)N. It was found that tool life of the tool with the coating under study is 2.75-3.6 times higher than tool life of an uncoated tool and 1.83-2.2 times higher than that tool life of a tool with coating TiN. During the study of strength of adhesive bonds between coating and substrate, as well as between different layers of coating, it was found that with sufficiently good strength of adhesive bonds (it has been found that total failure of coating occurs at load of 30-33 N), there are areas of relatively weak adhesive bonds, where failure of coating starts and develops. These areas primarily include zone of the border of substrate-adhesive sublayer and zone of the border of adhesive sublayer-intermediate layer. The data of microstructural analysis of failure pattern of coating in the process of cutting of the material being machined are in general consistent with the data of study of strength of adhesive bonds. In particular, the study shows chipping of coating in area of the border of adhesive sublayer-intermediate layer, but it does not proves failure of adhesive bonds at the border of substrate-adhesive sublayer (Fig. 5b). Based on the above, it can be concluded that the increase in strength of adhesive bonds at the border of adhesion sublayer (Ti)-intermediate layer (TiN) should result in a general increase in performance properties of the coating. Such an increase is possible through varying of parameters for coating deposition process (temperature, gas pressure, etc.) and through changing of elemental composition of intermediary layer of coating.
5. Acknowledgements This research was made under financial support of Russian Ministry of education and science, project task N 9.2664.2014/K References [1] Vereshchaka, A. A. – Vereshchaka, A. S. – Mgaloblishvili, O. – Morgan, M. N. – Batako, A. D. (2014): Nano-scale multilayeredcomposite coatings for the cutting tools. International Journal of Advanced Manufacturing Technology, Vol. 72-1, pp. 303-317. http://dx.doi.org/10.1007/s00170-014-5673-2 [2] Grigoriev, S. N. – Vereschaka, A. A. – Vereschaka, A. S. – Kutin A. A. (2012): Cutting tools made of layered composite ceramics with nanoscale multilayered coatings. Procedia CIRP. Vol. 1, pp. 318 – 323. http://dx.doi.org/10.1016/j.procir.2012.04.054 [3] Volkhonskii, A. O. – Vereshchaka, A. A. – Blinkov, I. V. – Vereshchaka A. S. – Batako, A. D. (2016): Filtered cathodic vacuum Arc deposition of nano-layered composite coatings for machining hard-to-cut materials. International Journal of Advanced Manufacturing Technology. Vol. 84, pp. 1647–1660. http://dx.doi.org/10.1007/s00170-015-7821-8 [4] Vereschaka, A. А. – Volosova, M. A. – Batako, A. D. – Vereshchaka A. S. – Mokritskii, B. Y. (2016): Development of wear-resistant coatings compounds for high-speed steel tool using a combined cathodic vacuum arc deposition. International Journal of
118
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
Advanced Manufacturing Technology. Vol. 84, pp. 1471 –1482. http://dx.doi.org/10.1007/s00170-015-7808-5 [5] Holleck, H. (1984): Binäre und ternäre Carbid- und Nitridsysteme der Übergangsmetalle. Gebruder Borntraeger, Berlin (In German) [6] Boxman, R. L. – Zhitomirsky, V. N. – Grimberg, I. – Rapoport, L. – Goldsmith, S. – Weiss, B. Z. (2000): Structure and hardness of vacuum arc deposited multi-component nitride coatings of Ti, Zr and Nb. Surface and Coatings Technology. Vol. 125, pp. 257–262. http://dx.doi.org/10.1016/S0257-8972(99)00570-8 [7] Beresnevet, V. M. – Grankin, S. S. – Novikov, S. Yu. – Nyemchenko, U. S. – Sobol, O. V. – Turbin, P. V. (2014): Tribotechnical Properties of the Coatings (Ti-Zr-Nb)N. Journal of Nano- and Electronic Physics. Vol. 6-4, 04011 [8] Maksakova, O. V. – Grankin, S. S. – Bondar, O. V. – Kravchenko, Ya. O. – Yeskermesov, D. K. – Prokopenko, A. V. – Erdybaeva, N. K. – Zhollybekov, B. (2015): Nanostructured (Ti-Zr-Nb)N coatings obtained by vacuumarc deposition method: structure and properties. Journal of Nano- and Electronic Physics. Vol. 7-4, 04098 [9] Braic, V. – Vladescu, A. – Balaceanu, M. – Luculescu, C. R. – Braic, M. (2012): Nanostructured multi-element (TiZrNbHfTa)N and (TiZrNbHfTa)C hard coatings. Surface & Coatings Technology.Vol. 211, pp. 117–121. http://dx.doi.org/10.1016/j.surfcoat.2011.09.033 [10] Braic, V. – Balaceanu, M. – Braic, M. – Vladescu, A. – Panseri, S. – Russo, A. (2012): Characterization of multi-principal-element (TiZrNbHfTa) N and (TiZrNbHfTa)C coatings for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials. Vol. 10, pp. 197–205. http://dx.doi.org/10.1016/j.jmbbm.2012.02.020 [11] Pogrebnjak, A. D. (2013): Structure and properties of nanostructured (Ti-Hf-Zr-V-Nb)N coatings. Journal of Nanomaterials. Vol. 2013, 780125 http://dx.doi.org/10.1155/2013/780125 Blinkov, I. V. (2011): Phase composition and properties of wear [12] resistant Ti-Al-Cr-Zr-Nb-N coatings manufactured by the Arc-physical deposition method. Inorganic Materials: Applied Research. Vol. 2-3, pp. 261-267. http://dx.doi.org/10.1134/S2075113311030038 Vereshchaka, A. A. – Vereshchaka, A. S. – Bublikov, J. I. – [13] Aksenenko,A. Y. – Sitnikov, N. N. (2016): Study of properties of nanostructured multilayer composite coatings of Ti-TiN-(TiCrAl)N and Zr-ZrN-(ZrNbCrAl)N. Journal of Nano Research. Vol. 40, pp. 90-99. http://dx.doi.org/10.4028/www.scientific.net/JNanoR.40.90 Vereshchaka, A. S. – Vereshchaka, A. A. – Sladkov, D.V. – [14] Aksenenko, A. Yu. – Sitnikov, N. N. (2016): Control of structure and properties of nanostructured multilayer composite coatings applied to cutting tools as a way to improve efficiency of technological cutting operation. Journal of Nano Research. Vol. 37, pp. 51-57. http://dx.doi.org/10.4028/www.scientific.net/JNanoR.37.51 Ref.: Vereschaka, Alexey – Kutin, Andrey – Sitnikov, Nikolay – Oganyan, Gaik – Sharipov, Oleg: Research of mechanical and cutting properties, wear and failure mechanisms of nano-structured multilayered composite coating Ti-TiN-(NbZrAl)N Építőanyag – Journal of Silicate Based and Composite Materials, Vol. 68, No. 3 (2016), 114–118. p. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.20
Nano-szerkezetű, többrétegű Ti-TiN-(NbZrAl)N kompozit bevonatok mechanikai és megmunkálhatósági jellemzői, kopásállósága és tönkremeneteli módjai A cikk bemutatja a nano-szerkezetű, többrétegű Ti-TiN(NbZrAl)N kompozit bevonatok mechanikai jellegzetességeit, különös tekintettel az adhéziós jellemzőkre, illetve a kopási és tönkremeneteli módokat. A megmunkálási jellemzőket karbid megmunkáló szerszám bevonatain tanulmányozták (C45 acél), referencia TiN bevonattal és bevonat nélküli esettel összehasonlítva. A vizsgálatok eredményei szerint a nanoszerkezetű, többrétegű Ti-TiN-(NbZrAl)N kompozit bevonattal ellátott szerszám élettartama 2,75-3,6-szor hosszabb, mint a bevonat nélküli szerszámé, és 1,83-2,2-szer hosszabb, mint a referencia TiN bevonattal ellátott szerszámé. A mikroszerkezeti jellemzők vizsgálata számottevő eltérést tárt fel a kopási és tönkremeneteli folyamatokban. Kulcsszavak: nano-szerkezetű többrétegű bevonatok, szer szám élettartam, karbid szerszám, kopási mechanizmus, repedésképződés
építôanyag § Journal of Silicate Based and Composite Materials
Dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity
About EGU EGU, the European Geosciences Union, is Europe’s premier geosciences union, dedicated to the pursuit of excellence in the Earth, planetary, and space sciences for the benefit of humanity, worldwide. It was established in September 2002 as a merger of the European Geophysical Society (EGS) and the European Union of Geosciences (EUG), and has headquarters in Munich, Germany. It is a non-profit international union of scientists with over 12,500 members from all over the world. Membership is open to individuals who are professionally engaged in or associated with geosciences and planetary and space sciences and related studies, including students and retired seniors. The EGU has a current portfolio of 17 diverse scientific journals, which use an innovative open access format, and organises a number of topical meetings, and education and outreach activities. Its annual General Assembly is the largest and most prominent European geosciences event, attracting over 11,000 scientists from all over the world. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, as well as energy and resources. www.egu.eu Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
119
építôanyag § Journal of Silicate Based and Composite Materials
Synthesis and characterization of Zirconia-Yttria nanoparticles in t’ phase by sol-gel and spray drying Gerardo Manuel Rodríguez Torres Instituto de Investigación en Metalurgia y Universidad Michoacana de San Nicolás de Hidalgo rodriguezg671124@hotmail.com Juan Zarate Medina jzarate@umich.mx María Eugenia Contreras García eucontre@gmail.com
Materiales,
Érkezett: 2016. 11. 02. Received: 02. 11. 2016. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.21
Abstract The synthesis of Zirconia-Yttria nanoparticles in phase t’, non-transformable tetragonal phase of the zirconia, is important for the reinforcement of different ceramic matrixes with nanometric and submicronic structures, in order to enhance the mechanical resistance of the composite obtaining a better and homogeneus stress distribution. The objective of this research is to obtain the phase t’ by sol-gel synthesis and spray drying of the gel suspension. The precursors used in this study were: zirconium oxychloride octa-hydrate and yttrium oxide which was dissolved in hydrochloric acid and water, after salts hydrolysis, the suspension subsequently undergo to spray drying and the obtained spherical nanostructured aggregates were calcined at 650 °C. Non transformable tetragonal composition employed was 7.5YSZ (7.5% mol YO1.5), according to the equilibrium diagram of ZrO2-YO1.5 system. The products obtained were characterized by XRD and SEM, verifying obtaining the phase t’ and analyzing the microstructure of the obtained particles. From XRD results, it was determined that calcination temperature was enough for the obtention of the t’ phase. Its results were compared with obtained by controlled precipitation route of the same composition at high temperatures. Keywords: Yttria stabilized Zirconia nanoparticles, sol gel - spray drying process, non transformable tetragonal phase t’
1. Introduction It is called the sol-gel process to any process involving a solution or sol that undergoes a transition from sol to gel [1], this technique is one of the most widely used for the synthesis of different ceramic materials [1-4]. Likewise, the sol-gel process used to obtain Yttria stabilized zirconia is very attractive due to its low cost and ease of production at the industrial level [5], especially the synthesis of nano-particles of Zirconia-Yttria in the non-transformable tetragonal phase (t’), since the product is used for the reinforcement of different ceramic matrices with nano-metric and sub-micrometric structures, improving the mechanical strength of the ceramic material, providing a better distribution of the stresses in the compound [6]. The composition range in the ZrO2-YO1.5 system, for which the non-transformable tetragonal phase (t’) is stable, is between 7.5 and 10 mol% of YO1.5 [7]. In the case of thermal barrier coatings in gas turbines, the composition of the phase (t’) used is in the range of 7.6 ± 1 mole% of YO1.5 (7YSZ) [8]. The synthesis of powders in phase t’ is usually carried out with temperatures of calcination exceeding 1000 °C, however, in this research the powders have been treated at lower temperature of 650 °C, after having undergone a process of spray drying, obtaining the tetragonal t’ phase. The volume fraction of the monoclinic phase of the materials synthesized with the sol-gel process with both induced and natural precipitation at temperatures of 1300 °C, 1000 °C and 650 °C were calculated by the expression used by Zhu et al [10], involving the peak intensities t’(111), m(-111) and m(111). 120
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
Gerardo Manuel Rodríguez Torres MSc since 1997, PhD student at the Universidad Michoacana de San Nicolás de Hidalgo (UMSNH) since 2015, Title of PhD work is “Influence of the Addition of Stabilized Zirconia Particles in the Mechanical Properties of Micro Concretes made with Submicrometric Portland Composite Cement”. Teaching Experience: Introduction to Materials Science, Construction Materials and Road Construction Workshop. Work Experience: Manager of project in the company impact engineering of quality SA de CV Mexico, with more than 150 executive projects in road infrastructure area in period 2006-2013. Juan Zarate Medina Lecturer and Researcher, research interests: Synthesis and Processing of Ceramics and Compounds, and Materials Characterization, Work Experience: Titular Researcher C, at “Universidad Michoacana de San Nicolás de Hidalgo”, UMSNH, since 2002. MSc Program Coordinator from 2009 to 2011, PhD Program Coordinator since 2015. Publications: 30+ publications in JCR Journals in the field of Ceramics Materials and Composites. Graduated supervisor: 12 MSc and 2 PhD thesis in the UMSNH.
María Eugenia Contreras García Doctor of Sciences since 2000, Titular C Professor and Researcher at the Ceramic Materials Department of the Metallurgy and Materials Research Institute on the Universidad Michoacana de San Nicolás de Hidalgo since 1988 and Level 2 National Researcher since 2001. Specialized on Ceramic Synthesis and Processing Techniques such as ceramic powder processing via sol-gel and chemical techniques, focused on nanostructured ceramics processing and functional ceramics including: structural ceramics, bioceramics, magnetic ceramics, optoelectronic ceramics, catalytic and photocatalytic ceramics, macro-mesoporous ceramics all of them in bulk and in thin films. She is author and co-author of more than 100 international indexed papers, two book chapters and editor in one. She is member of several scientific societies and regional director of the Mexican Academy of Crystallography.
2. Materials and experimental procedure Zirconium oxychloride octahydrate with 99% purity and yttrium oxide with 99.9% purity were used as raw materials in the synthesis process. The yttrium oxide was dissolved in hydrochloric acid and water. After the salts were hydrolyzed, the suspension was spray-dried and the obtained spherical nano-structured aggregates were calcined at 650 °C, 1000 °C and 1300ºC, in an oven at controlled heating temperature. The characteristics of the materials used as raw materials are shown in Table 1. Material
Purity %
Chemical formula
Molar weight, g/mol
Zirconium oxychloride octahydrate
99
ZrOCl2 · 8H2O
322.25
Yttrium oxide
98
Y2O3
225.81
-
HCl
36.46094
De-ionized
H2O
18.01528
Hydrochloric acid Water
Table 1. Raw materials used in the synthesis by sol-gel. 1. táblázat A szol-gél szintézis során felhasznált alapanyagok.
építôanyag § Journal of Silicate Based and Composite Materials
Phase identification was performed using the X-ray diffraction (XRD) technique, in a BRUKER equipment, D8 ADVANCE DAVINCHI model of CuKα radiation. The analyses were done using monochromatic X-ray radiation with a graphite monochromator. Scanning from 20 to 85 (2θ) degrees, with a step size of 0.02 degrees and a continuous time per step of 0.06 seconds. Also, microstructure and particle size were analyzed by field emission scanning electron microscopy (FESEM) technique, in a JEOL JSM 7600F microscope. The grinding process of the Yttria stabilized Zirconia was carried out using a planetary ball mill (PBM), RETSCH PM 100 model, maximum capacity in volume of 500 ml and speed of 650 RPM, with possibility of rotation in both senses. 3/8” ball diameter was used for this study. Yttria-stabilized Zirconia, doped at x mole% YO1.5 (x = 7.5) in its non-transformable phase t’, was synthesized by the sol gel technique. The resultant suspension was subjected to spray drying with a higher and lower degree of precipitation, resulting in two types of suspensions: with induced precipitation and with natural precipitation. In order to determine the calcination temperature, the thermal treatment was carried out at three calcination temperatures, 650 °C, 1000 °C and 1300 °C, evaluated thereby. The degree of sintering, the particle size, as well as the volume fraction of the monoclinic phase were estimated from SEM and XRD results. 2.1. Sol-gel technique with induced precipitation Yttrium oxide was first dissolved with hydrochloric acid and water at a temperature of 70 °C, on the other hand, the zirconium oxychloride was dissolved with water for 15 minutes and then both solutions were added with continuous stirring, then 25% by weight of ammonium hydroxide was added dropwise to avoid agglomeration and monitoring the pH, keeping the pH approximately at 7. The suspension was subjected to spray drying process, and then the sample was subjected to heat treatment at 1000 °C and 1300 °C for one hour. In both cases the heating rate was 5 °C/min [6]. 2.2. Sol-gel technique with natural precipitation In this process, after dissolving both salts in water, the solution was spray-dryed and the obtained powder was subjected to heat treatment at 650 °C, 1000 °C and 1300 °C. The heat treated sample at 650 °C was maintained for 10 hours and for the samples treated at 1000 °C and 1300 °C for only one hour, maintaining in both cases the heating rate at 5 °C per minute. At low temperature, above 300 °C, the transformation of the amorphous phase into the meta-stable tetragonal phase is presented. Although this phase is stable at temperature range between 1100 °C and 2370 °C, it is obtained at low temperature due to the great loss of structural water from the amorphous [9]. After the synthesis of ZrO2 stabilized with Yttria, the morphology and phase composition were studied by SEM and XRD. The products synthesized with heat treatment at 650 °C were characterized by XRD and SEM, to verify the stability of the t’ phase, the degree of sintering and the particle size. The powder obtained after spray drying was subjected to a milling process by PBM with the following milling parameters: weight ratio between balls and sample of 3:1, speed of 200 rpm and time of 5 hours, obtaining a nano-metric particle size. After the grinding process the powders were again characterized by XRD and SEM. after grinding the obtained powder was subjected to a second thermal
treatment, at the same conditions, in order to diminish the amount of monoclinic phase. The methodological process for the synthesis of Yttria-stabilized Zirconia in t’ phase with heat treatment at 650 °C and nano-metric particle size, can be observed in Fig. 1.
Fig. 1. Experimental procedure diagram for synthesis, grinding and characterization of Zirconia stabilized with Yttria in phase t’ at 650°C of heat treatment [9] 1. ábra Kísérleti eljárási diagram cirkóniummal stabilizált ittrium t’ fázis szintéziséhez, őrléséhez, jellemzéséhez, 650 °C hőkezelés esetén [9]
3. Results and discussion Fig. 2 shows the diffraction pattern of samples with composition of YSZ with 7.5% mol YO1.5 obtained from sol-gel synthesis with and without induced precipitation; In both cases, calcinated samples at 1000 °C and 1300 °C for 1 hr. This pattern corresponds to the tetragonal non-transformable phase called t’, which is confirmed with detail in the range of 70 to 77 degrees of 2 Theta, where the characteristic reflexions of planes (004)t’ and (400)t’ are present, which differentiate this phase with the cubic [6]. This composition is very close to the minimum acceptable of Yttria content without present transformation to the monoclinic phase, according to Schaedler et al [7]. On the other hand, the results of XRD of the samples obtained from the synthesis by sol-gel without induced precipitation and at 650 °C with permanence of 1, 5 and 10 hr, are presented in Fig. 3. X-ray diffraction reveals that the desired phase (t’) is obtained by both methods; however, at all calcination temperatures, the monoclinic phase was found, except in samples thermally treated at 1000 °C and 1300 °C and without induced precipitation, as can be seen in Table 2, which shows the volume fraction of the monoclinic phase for all the samples. Sample
Monoclinic phase volume fraction (%)
Zr-10 Zr-10 Zr-10 T-1000- T1000- T1300- T-1300(before (after C SC C SC (calcined grinding) grinding) after grinding) 5.5
42.7
9.5
4.3
0
2.1
0
Table 2. Monoclinic phase volume fraction for the different samples. 2. táblázat Monoklin fázis térfogataránya a különböző mintákban.
In Table 2 it can be seen that the t’ phase of the sample calcinated at 650 °C under a low energy milling process presented a transformation to the monoclinic phase, increasing Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
121
építôanyag § Journal of Silicate Based and Composite Materials
the volume fraction of the monoclinic phase of 5.5% to 42.7%. It can be deduced from the above that if a calcined sample at a higher temperature is subjected to a grinding process, it would be necessary to increase the energy supplied in the process to obtain the nano-metric particle size. This is due to the formation of sintering necks, as it is shown in Figs. 4 and 5. It is also observed that for the synthesis processes natural precipitation and calcinated at 1000 °C and 1300 °C, the monoclinic phase does not appear, in addition to presenting a higher degree of sintering, due to a more homogeneous distribution of the salts and the lower diameters of the first products of condensation, than in the case of the synthesis with induced precipitation. In this case, it is evident that more grinding energy is required to obtain the nano-metric size.
Fig. 2. Yttria stabilized Zirconia in phase t’, synthesized by the sol-gel technique with and without condensation process, calcined at 1000 °C and 1300 °C. a) Diffraction pattern of phase t’ of Zirconia stabilized with Yttria., b) Detail in the range of 70° - 77° of 2Theta 2. ábra Ittriummal stabilizált cirkónium t’ fázis; szol-gél szintézis, kondenzálással és anélkül, kalcinálás 1000 °C és 1300 °C hőmérsékleten. a) A t’ fázis röntgendiffraktogramja b) Diffraktogram részlet 70° - 77° 2Theta értékek között
Figs. 4 and 5 show the morphology of the powders obtained by spray-drying and calcined at 1000 °C and 1300 °C. It can be observed the nano-metric particle size developed from spray drying and partially sintered by the calcination process. A difference in morphology of the calcination products is also observed because by the sol-gel method with natural precipitation produce a mostly packaged material, with a higher degree of sintering. Whereas by the sol-gel with induced precipitation a material with lower degree of sintering was obtained (Fig. 5). Hardened powders were obtained at both calcination temperatures, 1000 °C and 1300 °C, in both processes, sol-gel with natural precipitation and sol-gel with induced precipitation. It can be concluded that the homogeneity in the solution and smaller size of the first condensation products for the process with natural condensation are important factors that improve densification and optimize the sintering process. 122
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
Fig. 3. a) Yttria stabilized Zirconia in phase t’, synthesized by sol-gel technique without condensation and calcined at 650 °C with permanence of 1, 5 and 10 hr, b) detail between 26° and 35° of 2Theta For Zr-10 3. ábra a) Ittriummal stabilizált cirkónium t’ fázis; szol-gél szintézis, kondenzálás nélkül, kalcinálás 650 °C hőmérsékleten, 1, 5 és 10 óra időtartammal b) Zr-10 diffraktogram részlete 26° - 35° 2Theta értékek között
Fig 4. Yttria stabilized Zirconia in phase t’ morphology, synthesized by sol-gel technique without condensation, calcined at a) 1000 °C and b) 1300 °C. SEM 4. ábra. Ittriummal stabilizált cirkónium t’ fázis morfológiája (SEM); szol-gél szintézis, kondenzálás nélkül, kalcinálási hőmérséklet a) 1000 °C és b) 1300 °C
Fig 5. Yttria stabilized Zirconia in phase t’, synthesized by the sol-gel technique with condensation: a) 1000 °C and b) 1300 °C. SEM 5. ábra Ittriummal stabilizált cirkónium t’ fázis; szol-gél szintézis, kondenzálás nélkül, kalcinálási hőmérséklet a) 1000 °C és b) 1300 °C (SEM)
In the case of samples synthesized by the sol-gel process with natural precipitation and calcined at 650 °C, phase t’ was also obtained, but with monoclinic phase formation, unlike samples calcined at higher temperature with the same process, SEM micrographs show that the formation of necks by partial
építôanyag § Journal of Silicate Based and Composite Materials
sintering is lowest at low temperature Fig. 6, which indicates that this material is going to be easier for grinding than the calcinated one at higher temperature, however, a larger volume fraction of the monoclinic phase is observed when subjected to the grinding process presents transformation of the tetragonal phase to the monoclinic, having to be subjected to thermal treatment for 10 hours at 650 °C after the grinding process, again recovering part of the tetragonal phase, however, the increase in the volume fraction of the monoclinic phase after the grinding process, before and after calcination, was higher than 70%, as shown in Table 2.
Fig 6. Evolution of the 7YSZ phase in the process of calcination and grinding: a) powder calcined for 10 hr at 650 °C after spray drying, b) powder obtained with milling for 5 hr at 250 rpm and ball diameter of 3/8” c) nano-metric powder recovered by elutriation process after second calcination process at 10 hr 6. ábra A 7YSZ fázis fejlődése a kalcinálási és őrlési folyamatok során a) Por 10 órás 650 °C kalcinálást követően b) Por 5 órás őrlést követően 250 rpm fordulatszámon 3/8” őrlőgolyókkal c) Nano-méretű szemcsék a második 10 órás kalcinálást követően
4. Conclusions It was possible to obtain the metastable non-transformable tetragonal phase of Yttria stabilized Zirconia (t’) by means of the sol-gel synthesis process, with natural condensation and at a temperature of 650 °C, thereby facilitating the grinding process to obtain the nano-metric particle size, on the other hand, the better homogeneity obtained in the solution by the process and the lower size of the first condensation products of synthesis with natural condensation contributes with an important way in obtaining the nano-metric particle size, in addition to optimizing the sintering process. The effect generated by milling on ZrO2 powders stabilized with Yttria (t’) is linked to the tetragonal to monoclinic phase transformation even at low milling speeds, which may be directly related to the low calcination temperature at which this t’ Yttria stabilized Zirconia was synthesized.
5. Acknowledgements The authors acknowledge the financial support for this research provided by the Consejo Nacional de Ciencia y Tecnología (CONACYT) and CIC-UMSNH.
References [1] Klein, L. C. (1985): Sol-Gel Processing of Silicates. Annual Review of Materials Science. Vol. 15, pp. 227-248. http://dx.doi.org/10.1146/annurev.ms.15.080185.001303 [2] Aguilar, D. H. – Torres-Gonzalez, L. C. – Torres-Martinez, L. M. (2000): A Study of the Crystallization of ZrO2 in the Sol-Gel System: ZrO2+SiO2. Journal of Solid State Chemistry. Vol. 158, No. 2, pp. 349-357 http://dx.doi.org/10.1006/jssc.2001.9126 [3] Cho, S. B. – Kim, S. B. – Cho, K. J. – Ohtsuki, C. – Miyazaki, T. (2004): Development of Novel PMMA-Based Bone Cement Reinforced by Bioactive CaO-SiO2 Gel Powder. Key Engineering Materials. Vols. 254-256, pp. 285-288, http://dx.doi.org/10.4028/www.scientific.net/KEM.254-256.285 [4] Cho, S. B. – Kim, S. B. – Cho, K. J. – Kim, I. Y. – Ohtsuki, C. – Kamitakahara, M. (2005): In vitro aging test for bioactive PMMA-based bone cement using simulated body fluid. Key Engineering Materials. Vols. 284–286, pp.153-156 http://dx.doi.org/10.4028/www.scientific.net/KEM.284-286.153 [5] Viazzi, C. – Bonino, J-P. – Ansart, F. – Barnabé, A. (2008): Structural study of metastable tetragonal YSZ powders produced via a sol–gel route. Journal of Alloys and Compounds. Vol. 452, No. 2, pp. 377–383, http://dx.doi.org/10.1016/j.jallcom.2006.10.155 [6] Danna Lizeth Trejo Arroyo (2015): Síntesis y procesamiento de medios de molienda de alúmina reforzada con zirconia a partir de pseudoboehmita sembrada in-situ con semillas de α-alúmina. IIM, UMSNH, Tesis Doctoral. 47 p. [7] Schaedler, T. A. – Leckie, R. M. – Krämer, S. – Evans, A. G. – Levi, C. G. (2007): Toughening of Non-Transformable t’-YSZ by Addition of Titania. Journal of the American Ceramic Society. Vol. 90, No. 12, pp. 3896-3901, http://dx.doi.org/10.1111/j.1551-2916.2007.01990.x [8] Stecura, S. (1985): Optimization of the NiCrAl-Y/ZrO2-Y2O3 thermal barrier system. NASA Report No. TM-86905 1985, Cleveland, OH. [9] Rashad, M. M. – Baioumy, H. M. (2008): Effect of thermal treatment on the crystal structure and morphology of zirconia nanopowders produced by three different routes. Journal of Materials Processing Technology. Vol. 195, No. 1-3, pp. 178–185, http://dx.doi.org/10.1016/j.jmatprotec.2007.04.135. [10] Zhu, C. – Li, P. – Javed, A. – Liang, G. Y. – Xiao, P. (2012): An investigation on the microstructure and oxidation behavior of laser remelted air plasma sprayed thermal barrier coatings. Surface & Coatings Technology. Vol. 206, No. 18, pp. 3739–3746, http://dx.doi.org/10.1016/j.surfcoat.2012.03.026 Ref.: Rodríguez Torres, Gerardo Manuel – Zarate Medina, Juan – Contreras García, María Eugenia: Synthesis and characterization of ZirconiaYttria nanoparticles in t’ phase by sol-gel and spray drying Építőanyag – Journal of Silicate Based and Composite Materials, Vol. 68, No. 3 (2016), 120–123. p. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.21
Cirkónium-ittrium nanorészecskék szintézise és jellemzői t’ fázisban, szol-gél technikával előállítva A cirkónium-ittrium nanorészecskék szintézise t’ fázisban (nem transzformálható tetragonális cirkónium fázis) kiemelt jelentőségű a kerámia mátrixok szubmikron és nano szintű erősítéséhez, a mechanikai jellemzők javításához és a homogénebb feszültségeloszlás eléréséhez a kompozitban. Jelen cikk bemutatja a kutatási eredményeket a t’ fázis előállításához szol-gél technikával. A felhasznált prekurzorok: cirkónium oxiklorid okta-hidrát és ittrium oxid, melyek sósavban és vízben feloldva, a só hidrolízist követően, szuszpenziót alkotnak, majd a beszáradt gömb alakú nanorészecs kék kalcinálása 650 °C hőmérsékleten történik. A kialakuló nem transzformálható tetragonális fázis 7.5YSZ (7.5% mol YO1.5) volt, az ZrO2-YO1.5 rendszer egyensúlyi fázisdiagramja alapján. A kapott termékeket röntgendiffrakcióval és pásztázó elektronmikroszkóppal vizsgálták, amelyekkel azonosították a t’ fázis meglétét és meghatározták a kialakult részecskék jellemzőit. A röntgendiffrakciós vizsgálat igazolta, hogy az alkalmazott kalcinálási hőmérséklet elégséges a t’ fázis kialakulásához. Kulcsszavak: ittriummal stabilizált cirkónium-oxid nanorészecskék, szol-gél technológia, nem transzformálható tetragonális t’ fázis
Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
123
építôanyag § Journal of Silicate Based and Composite Materials
45S5 Bioglass porous scaffolds: structure, composition and bioactivity characterization ME Abad-Javier IIMM UMSNH ibq.mario.abad@outlook.com M Cajero-Juárez IIAF UMSNH cajeromarco@hotmail.com ME Contreras García IIMM UMSNH eucontre@gmail.com Érkezett: 2016. 11. 02. Received: 02. 11. 2016. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.22
Abstract Advanced ceramics development is a promising area in regenerative medicine; although there are different biomaterials with features that make them viable enough, their improvement and optimization is required to produce biomaterials easier to bio assimilate and promote a faster tissue recovery. At this work a nanostructured bioglass based biomimetic scaffold is developed, beginning with the sol-gel synthesis parameters establishment coupled with a spray drying stage. Through X-ray diffraction the crystal Na6Ca3Si6O18 phase was characterized, this phase is common to find in almost every 45S5 bioglass different synthesis processes, also a standard of mammalian hydroxyapatite was prepared to be used as a comparative control in determining the bioglass scaffold bioactivity. Three-dimensional structure was characterized by optical and scanning electron microscopy, coupled to a semi-quantitative technique (EDS) to determine the composition of the synthesized biomaterial. Subsequently, simulated body fluid (SBF) was used as an in vitro system, whose composition emulates the ionic blood concentration to evaluate the scaffold bioactivity. Keywords: Bioglass, bioscaffold, bioactivity, characterization
1. Introduction Tissue engineering has emerged as a promising option for organ regeneration after partially or totally lost as an accident result, diseases, aging, among others. Tissue engineering has the potential to solve problems such as short feasibility time of donated tissues and even the donor’s shortage [1,2]. A biomaterial is defined as a bioactive compound, able to bind chemically and form links with living tissue or be assimilated into the new tissue formation [3, 4], and a bioscaffold is a three-dimensional structure made from a biomaterial, to support and guide cell proliferation. At the same time, in the bioscaffold structure can be incorporated other components able to promote tissue regeneration, such as growth factors or other structure molecules as collagen [1]. The biological activity of bioglass scaffolds is ion release dependent, where calcium, phosphorus and silicon ions can modify osteogenic cells gene expression and vascularization, promoting a higher bone formation rate [3]. Particularly, bioglass bioactivity has been improved by the interconnected porous structure generation, allowing high surface area configurations, favoring their use for bone regeneration and making them candidates for controlled drug release in specific body areas [5-7]. Bone structure consists of several organic and inorganic layers, at the organic fraction can be found collagen, granular proteoglycans, cells and non collagenic proteins [8], while the main inorganic fraction is calcium and hydroxyapatite mineral carbonated, that develops along collagen fibers, forming nanocrystals of 40 nm long with 10 nanometers wide, generating an inorganic nanocomposite; while a 20-30% hydroxyapatite fraction, is in amorphous phase for release ions to the blood [7]. 124
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
ME Abad-Javier Master of sciences since 2014, post-graduate student in Ceramic Biomaterials, Department of Advanced Ceramics, Metallurgy and Materials Research Institute on the Universidad Michoacana de San Nicolás de Hidalgo. He is specialist in sciences of biofunctionalization and synthesis of ceramic materials, and physicochemical analysis of materials and biomolecules based on structure, chemical properties and quantification. His teaching experience include: introduction to bioassays, technical capacitation and analytical methods design. M Cajero-Juárez Doctor in Genetic and Molecular Biology, Titular C Professor and Researcher at the Animal Biotechnology Laboratory of the IIAF on the Universidad Michoacana de San Nicolás de Hidalgo and National Researcher. Specialized on animal genome Manipulation, gene expression on cells and synthetic biology for gene and protein design.
ME Contreras García Doctor of Sciences since 2000, Titular C Professor and Researcher at the Ceramic Materials Department of the Metallurgy and Materials Research Institute on the Universidad Michoacana de San Nicolás de Hidalgo since 1988 and Level 2 National Researcher since 2001. Specialized on Ceramic Synthesis and Processing Techniques such as ceramic powder processing via sol-gel and chemical techniques, focused on nanostructured ceramics processing and functional ceramics including: structural ceramics, bioceramics, magnetic ceramics, optoelectronic ceramics, catalytic and photocatalytic ceramics, macro-mesoporous ceramics all of them in bulk and in thin films. She is author and co-author of more than 100 international indexed papers, two book chapters and editor in one. She is member of several scientific societies and regional director of the Mexican Academy of Crystallography.
The bioglass scaffold design in conjunction with cell therapy have offered a broad overview regarding the tissue replacement, although there are some problems to overcome as the production and support of cells in the biological area and the development of interconnected networks in the advanced ceramics area, due to the compatibility donor-recipient and the microenvironment necessary for generating functional tissue, respectively [9, 10]. Sol-gel synthesis systems coupled with spray drying techniques make it possible to produce bioglass whose composition and mechanical properties comply with the parameters established by different institutions such as the FDA in the United States. Furthermore, the use of these methodologies allows to design nanoparticles aggregates with controlled porosities, standardized diameters and chemical modifiers as silver or polymers, facilitating the experimental design, analysis and helping to overcome the interconnected scaffold structure [11-14]. Nanostructured materials doping has been useful for improve the structural and functional characteristics [14]. Specifically, antimicrobial activity can be conferred upon a biomaterial after doping with silver or copper through the release of these ions in the organism, antimicrobial mechanisms triggers membrane depolarization or generate SOS stress type in bacteria [15-17], however doping in implants is regulated by the ion lethal dose, plus the generated additional costs.
építôanyag § Journal of Silicate Based and Composite Materials
In this paper, the goal is to design a bioglass 45S5 biomimetic scaffold synthesis process and evaluate their in vitro bioactivity, using this biomaterial as ion source to promote the hydroxyapatite development through the hydrolysiscondensation process on the material surface, employing X ray Diffraction (XDR), Scanning Electron Microscopy (SEM), Energy-Dispersive X-Ray Spectroscopy (EDS) and Fourier Transform InfraRed Spectroscopy (FTIR).
2. Materials and Methods 2.1 Synthesis For bioglass mimetic scaffolds synthesis, aggregates of spherical nanoparticles were prepared from the sol-gel technique coupled a spray drying stage. It started with the bioglass 45S5 silver-doped and un-doped synthesis. Bioglass 45S5 was carried out using the sol-gel technique, from an aqueous solution of nitric acid 0.1 M for the tetraethyl orthosilicate hydrolysis, process that took an hour of gentle agitation, then proceeded to add triethyl phosphate, calcium nitrate tetra hydrated, sodium nitrate and silver nitrate (only for the silver-doped bioglass), allowing a 45 minutes agitation period between adding each one, all at room temperature. Ensuring the final ratio of precursors and liquid phase at different concentrations to analyze the structural effect (Table 1). System
Nominal Composition (Wt. %)
BG (g)
H2O (g)
Bioglass
Water
BGs1:1
50
50
100
100
BGs1:3
25
75
50
150
BGs1:6
14.28
85.71
28.56
171.42
BGs1:9
10
90
20
180
7.69
92.307
15.38
184.614
BGs1:12
Table 1. Feed solutions composition. 1. táblázat Felhasznált oldatok összetétele.
2.4 Bioactivity assay The in vitro bioactivity of the bioscaffold obtained was assessed by immerging samples in simulated body fluid (SBF) at 37 °C. The bioscaffold sample sizes were standardized in 5×5 mm and placed in plastic containers, ensuring a static position free of light. The SBF solution was changed every 24 hours during the immersion period. The inorganic ion concentrations of SBF were 142 mM Na+, 5 mM K+, 1 mM Mg2+, 1.3 mM Ca2+, 103 mM Cl-, 27 mM HCO3-, 1 mM HPO42- and 0.5 mM SO42−, only differing the Cl- and HCO3- concentrations to those of human blood plasma, with a pH of 7.40 [18,19]. The bioglass samples were collected after 8 days of incubation. The collected samples were washed in deionized water five times to eliminate the SBF, and then dried at 27 °C for two days and stored in a desiccator. 2.5 Characterization Structural characterization was carried out using a field emission scanning electron microscope JEOL JSM-7600F, where the emission spectrometer energy (EDS) analysis was also performed for chemical composition determination and location in the material surface. For the bioglass’ phases determination a XRD D8 ADVANCE BRUKER DAVINCI CuKα radiation equipment was employed. Identification of functional groups was performed with an infrared spectrum analysis system IR TENSOR 27 BRUKER in attenuated transmittance mode.
3. Results and discussion 3.1 Bioglass synthesis Fig. 1 shows the different particle diameter distributions obtained using the different systems together with the heat treatments proposed, the aggregates diameter was determined from a dynamic light scattering equipment (90-PLUS / BiMAS). This technique determinate the concentration relation with the diameter obtained, larger diameters obtained in systems whose concentration was higher.
2.2 Spray drying Prepared solutions doped and un-doped were carried to a spray drying equipment Yamato ADL40 resulting in the nanosized spheres agglomerated synthesis. The feed solution was introduced using a single-phase system, through a peristaltic pump with a 2.45 mL/min continuous flow. The feed solution was atomized into droplets using pressurized air at 2 bar (2 x 105 Pa). The atomized droplets were evaporated through a hot air stream whose temperature was maintained at 180 °C. The dried granules are collected using a cyclone incorporated into the atomizing equipment and dried at room temperature for 24 hours. 2.3 Heat treatment Bioglass samples were heat treated, giving an initial drying at 40 °C for 24 hours, followed by two calcination stages where the heating rate is 3 °C/min reaching 100 °C at the first plateau for 60 minutes and 500, 600 and 700 °C at the second stage for 180 minutes, followed by a cooling rate of 3 °C/min.
Fig. 1. Bioglass dispersion diameters after different heat treatments. 1. ábra Bioüveg diszperziós átmérők különböző hőkezeléseket követően.
Aggregate diameter decrease was observed in samples without heat treatment (Fig. 1 S/T) from 1106.1 to 702.1 nm, with an almost linear correspondence, however, this relationship was lost once the thermal treatment took place. While the BGs1:9 deploys wide diameter variability, the BGs1:3 system remains Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
125
építôanyag § Journal of Silicate Based and Composite Materials
stable, with a decrease in particle diameter as the maximum treatment temperature is raised. Bioglass spheres can be observed in Fig. 2, corresponding to the system BGs1:3 with and without heat treatment, is observed the correct formation of spheres showing the reasonably homogeneous diameters distribution and morphology of bioglass, contrary to previous works which generate irregular and obliquous aggregates even for a similar atomization technique [20], on the other side, another works has been handled the same technique but with different materials, were the spherical bodies formation is only achieved when sintering treatments are employed due to the structure compaction [13].
decomposition temperature is 570 °C. Every bioglass sample doped and un-doped have shown the corresponding silicon, calcium, phosphorus, sodium and oxygen peaks (Fig. 3b and 3d), and show the combeite (Na6Ca3Si8O18), SiO2 and CaSiO3 phases (Fig. 4) as shown in other synthesis processes where the peaks are associated even with the addition of dopants and after in vitro incubation processes [23,24].
Fig. 3. EDS spectra analysis of bioglass 45S5. (a) Silver-doped bioglass without heat treatment. (b) Silver-doped bioglass after heat treatment at 700 °C, (c) Bioglass without heat treatment, (d) Bioglass after heat treatment at 700 °C. 3. ábra 45S5 bioüveg EDS spektruma. (a) ezüst adalékolt bioüveg hőkezelés nélkül, (b) ezüst adalékolt bioüveg 700°C hőmérsékletű hőkezelést követően, (c) bioüveg hőkezelés nélkül, (d) bioüveg 700°C hőmérsékletű hőkezelést követően.
Fig. 2. SEM image of the Bioglass spheres fabricated by the sol-gel/spray draying process. (a) BGs1:3 before heat treatment, (a) BGs1:3 after heat treatment at 700°C. 2. ábra A szol-gél technikával előállított bioüveg részecskék elektronmikroszkópos képe. (a) BGs1:3 hőkezelés előtt (b) BGs1:3 a 700°C hőmérsékletű hőkezelést követően.
The BGs1:3 sample whose heat treatment was performed up to 700 °C exhibited smooth surfaces and a high dispersion, different to another samples; like the BG1:12 where it can be seen joints formation between spheres after sintering, plus some hollow spheres which collapsed after heat treatment and the same BGs1:3 system generating a coral type structure with a certain level of surface roughness. This set of results corresponds with other works, where the bioglass sintering behavior make particle fusion as common, besides the surface roughness loss below the 800 °C heat treatment, returning the sample roughness and even increasing it, after higher temperature treatments [21,22]. 3.2 Bioglass composition EDS analysis determined a bioglass 45S5 characteristic spectrum [21] in both systems: the native bioglass (BGs1:3) and the silver-doped bioglass (BGsAg1:3). The presence of contamination by precursors (Fig. 3a and 3c), generating a signal electron binding energy of 0.392 keV characteristic of nitrogen atoms founded in both bioglasses without heat treatment, indicating this contamination was eliminated during the heat treatment. The contamination is consequence of incomplete nitrate precursors salts removal during the drying stage; through X-ray diffraction (Fig. 4) it was determined this contamination identity as nitratine (NNaO3), whose 126
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
Fig. 4. XDR spectra analysis of silver-doped bioglass 45S5. (a) Silver-doped bioglass after heat treatment at 700 °C, (b) Silver-doped bioglass without heat treatment. 4. ábra Ezüst adalékolt 45S5 bioüveg röntgendiffraktogramja. (a) ezüst adalékolt bioüveg 700°C hőmérsékletű hőkezelést követően, (b) ezüst adalékolt bioüveg hőkezelés nélkül.
3.3 Scaffold preparation A preliminary trial for the bioglass scaffold synthesis was made by adding a template agent (polystyrene microspheres) to the sol-gel reaction system before the drying stage, leading to the three-dimensional structure required formation, this bioscaffold have interconnectivity in its three-dimensional structure (Fig. 5), where the porogen and precursors condensation processes form collars and pores of different thickness and size, allowing interconnectivity through it. In the macro structure (Fig. 5), it is able to see spongy bone physical
építôanyag § Journal of Silicate Based and Composite Materials
similarity, with large enough pores to contain biological structure, where the larger pores are about 500 micrometers, while there is a population of smaller pores with different diameters [25,26].
Fig. 6. XDR patterns of 45S5 bioglass bioactivity assay treatment in SBF. (a) bioglass control, (b) bioglass scaffold after 8 days incubation collagen, (c) hydroxyapatite control. 6. ábra 45S5 bioüveg röntgendiffraktogramja; bioaktivitás szintetikus plazmafolyadékban. (a) bioüveg kontroll, (b) bioüveg implantátumváz 8 napos kollagén inkubációt követően, (c) hidroxiapatit kontroll.
Fig. 5. SEM images of the bioglass scaffold at different magnifications. (a) 250×, (b) 5000×, (c) 8×, (d) 16×. 5. ábra Bioüveg elektronmikroszkópos felvételei különböző nagyítás mellett. (a) 250×, (b) 5000×, (c) 8×, (d) 16×.
3.4 Bioactivity A bioglass scaffold group of samples were incubated for 8 days in simulated body fluid, these samples were incubated at 37 °C statically, in total absence of light. The simulated body fluid was changed every 24 hours and then washed three times with distilled water, dried at room temperature and analyzed by X-Ray Diffraction (Fig. 6) and infrared transmittance spectrum (Fig. 7). In the bioglass scaffolds infrared analysis (Fig. 6) a gradual reduction of the Si-O-Si peaks can be registered, while the higher peak shifts to a value of 1034 cm-1 which corresponds to the phosphate calcium groups that builds up the hydroxyapatite structure showing the in vitro system effect has over the material to facilitate hydroxyapatite formation, the structural change can be observed at the eight day when the spectrum is virtually identical to the hydroxyapatite control, excepting the position corresponding of the Si-O-Si at position 484 cm-1 band indicating there is still a silicon fraction in the scaffold where one peak near this position would indicate a PO4-3 functional group [27]. XDR pattern of the bioscaffold silver-doped sintered at 700 °C is shown in Fig. 7a intensity and location of the peaks was matched to the combeite pattern, indicating the correct formation of the crystalline phase [23], also the XRD diffraction analysis of the bioscaffold after immersion in SBF for 8 days is shown on Fig. 7b displaying the presence of new peaks correspondent to the hydroxyapatite phase, as evidence of the transition of the combeite phase to an amorphous phase and the presence of cristobalite (SiO2), a secondary product of the hydroxyapatite condensation. As bioactivity control the hydroxyapatite pattern shown on Fig. 7c show the peaks necessary to verify the hydroxyapatite presence on the bioscaffold analyzed, matching in at least 5 peaks.
Fig. 7. FTIR spectra of 45S5 bioglass bioactivity assay treatment in SBF. (a) bioglass control, (b) bioglass scaffold after 8 days incubation collagen, (c) hydroxyapatite control. 7. ábra 45S5 bioüveg FTIR spektruma; bioaktivitás szintetikus plazmafolyadékban. (a) bioüveg kontroll, (b) bioüveg implantátumváz 8 napos kollagén inkubációt követően, (c) hidroxiapatit kontroll.
4. Conclusions It has been synthesized and designed an efficient bioscaffold which bioactivity is enough to produce the bone mineral phase in only eight days using an in vitro system. We have determined the best synthesis conditions to produce bioglass microspheres to be used as bioscaffold precursors, designing a production process able to mimic the three dimensional spongy bone structure, make it able to provide a physiological type environment to promote vascularization.
5. Acknowledgments This research was funded by UMSNH (Universidad Michoacana de San Nicolás de Hidalgo, México) and CICCONACyT (Consejo Nacional de Ciencia y Tecnología, México), Abad-Javier, M.E. received a doctoral grant from CONACyT. Vol. 68, No. 4 § 2016/4 § építôanyag § JSBCM
|
127
építôanyag § Journal of Silicate Based and Composite Materials References [1] Rahamana, M. N. – Day, D. E. – Bal, B. S. – Fu, Q. – Jung, S. B. – Bonewald, L. F. – Tomsia, A. P. (2011): Bioactive glass in tissue engineering. Acta Biomater. Vol. 7, Num. 6, June 2011, pp. 2355-2373, http://dx.doi.org/10.1016/j.actbio.2011.03.016 [2] Langer, R. – Vacanti, J. P. (1993): Tissue engineering. Science. Vol. 260, Num. 5110, May 1993, pp. 920-926, http://dx.doi.org/10.1126/science.8493529 [3] Dawson, E. – Mapili, G. – Erickson, K. – Taqvi, S. – Soy, K. (2008): Biomaterials for stem differentiation. Adv drug deliver Rev. Vol. 60, Num. 2, Jan 2008, pp. 215-228, http://dx.doi.org/10.1016/j.addr.2007.08.037 [4] Jones, J. R. (2009): New trends in bioactive scaffolds: The importance of nanostructure. J Eur Ceram Soc. Vol. 29, Num. 7, April 2009, pp. 12751281, http://dx.doi.org/10.1016/j.jeurceramsoc.2008.08.003 [5] Yun, H. S. – Park, J. W. – Kim, S. H. – Kim, Y. J. – Janq, J. H. (2011): Effect of the pore structure of bioactive balls on biocompatibility in vitro and in vivo. Acta Biomater. Vol. 7, Num. 6, June 2011, pp. 2651-2660, http://dx.doi.org/10.1016/j.actbio.2011.02.014 [6] Yun, H. S. – Kim, S. E. – Hyeon, Y. T. (2007): Design and preparation of bioactive glasses with hierarchical pore networks. Chem Commun. Vol. 7, Num. 21, June 2007, pp. 2139-2141, http://dx.doi.org/10.1039/b702103h [7] Rho, J. Y. – Kuhn-Spearing, L. – Zioupos, P. (1998): Mechanical Properties and the Hierarchical Structure of Bone. Chem Commun. Vol. 20, Num. 2, March 1998, pp. 92-102, http://dx.doi.org/10.1016/S1350-4533(98)00007-1 [8] Clarke, B. (2008): Normal Bone Anatomy and Physiology. Clin J Am Soc Nephrol. Vol. 3, Num. Suppl. 3, November 2008, pp. 131-139, http://dx.doi.org/10.2215/CJN.04151206 [9] Mimeault, M. – Batra, S. K. (2006): Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells. Vol. 24, Num. 11, November 2006, pp. 2319-2345, http://dx.doi.org/10.1634/stemcells.2006-0066 [10] Garreta, E. – Gasset, D. – Semino, C. (2007): Fabrication of a threedimensional nanostructured biomaterial for tissue ingenieering of bone. Journal of Biomolecular Engineering. Vol. 24, Num. 1, February 2007, pp. 75-80, http://dx.doi.org/10.1016/j.bioeng.2006.05.017 [11] Balamurugan, A. – Balossier, G. – Laurent-Maquin, D. – Pina, S. – Rebelo, A. H. S. – Faure, J. – Ferreira, J. M. F. (2008): An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system. Dental Materials. Vol. 24, Num. 10, October 2008, pp. 343-351, http://dx.doi.org/10.1016/j.dental.2008.02.015 [12] Vehring, R. (2008): Pharmaceutical Particle Engineering via Spray Drying. Pharmaceut Res. Vol. 25, Num. 5, May 2008, pp. 999-1022, http://dx.doi.org/10.1007/s11095-007-9475-1 [13] Lukowiak, A. – Lao, J. – Lacroix, J. – Nedelec, J. M. (2013): Bioactive glass nanoparticles obtained through sol-gel chemistry. Chem Commun. Vol. 49, Num. 59, July 2013, pp. 6620-6622, http://dx.doi.org/10.1039/c3cc00003f [14] Kim, J. – Wilhelm, O. – Pratsinis, S. E. (2001): Packaging of Sol-Gel-Made Porous Nanostructured Titania Particles by Spray Drying. J Am Ceram Soc. Vol. 84, Num. 12, December 2001, pp. 2802-2808, http://dx.doi.org/10.1111/j.1151-2916.2001.tb01097.x [15] Dongwei, W. – Wuyong, S. – Weiping, Q. – Yongzhong, Y. – Xiaoyuan, M. (2009): The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohyd Res. Vol. 344, Num. 17, November 2009, pp. 2375-2383, http://dx.doi.org/10.1016/j.carres.2009.09.001 [16] Arce, J. M. – Tatay, A. – Luna, M. L. – Boix, Y. S. – Deltell, J. G. – Barberá, E. G. – Heras, J. B. – Serrano, M. G. (2011): In Vitro Study of the Antimicrobial Properties of a Silver Ion-Releasing Polyurethane Foam. Spanish surgery. Vol. 89, Num. 8, October 2011, pp. 532-538, http://dx.doi.org/10.1016/j.ciresp.2011.02.015 [17] Chatterjee, A. K. – Chakraborty, R. – Basu, T. (2014): Mechanism of antibacterial activity of copper nanoparticles. Nanotechnology. Vol. 25, Num. 13, April 2014, pp. 1-12, http://dx.doi.org/10.1088/0957-4484/25/13/135101 [18] Kokubo, T. – Hushitani, H. – Ohtsuki, C. – Sakka, S. – Yamamuro, T. (1992): Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. J Mater Sci Mater Med. Vol. 3, Num. 2, March 1992, pp. 79-83, http://dx.doi.org/10.1007/BF00705272
128
| építôanyag § JSBCM § 2016/4 § Vol. 68, No. 4
[19] Kokubo, T. – Takadama, H. (2006): How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. Vol. 27, Num. 15, May 2006, pp. 29072915, http://dx.doi.org/10.1016/j.biomaterials.2006.01.017 [20] Vargas, G. E. – Mesones, R. V. – Bretcanu, O. – López, J. M. – Boccaccini, A. R. – Gorustovich, A. (2009): Biocompatibility and bone mineralization potencial 45s5 Bioglass-derived glass-ceramic scaffolds in chick embryos. Acta biomater. Vol. 5, Num. 1, January 2009, pp. 374-380, http://dx.doi.org/10.1016/j.actbio.2008.07.016 [21] Handel, M. – Hammer, T. R. – Nooeaid, P. – Boccaccini, A. R. – Hoefer, D. (2013): 45s5-Bioglass-Based 3D-Scaffolds Seeded with Human Adipose Tissue-Derived Stem Cells Induce In Vivo vascularization in the CAM Angiogenesis Assay. Tissue Engineering. Vol. 19, Num. 23-24, December 2013, pp. 2703-2712, http://dx.doi.org/10.1089/ten.tea.2012.0707 [22] Lefebvre, L. – Chevalier, J. – Gremillard, L. – Zenati, R. – Thollet, G. – Bernache-Assolant, D. – Govin, A. (2007): Structural transformations of bioactive glass 45S5 whith thermal treatments. Acta Biomater. Vol. 55, Num. 10, June 2007, pp. 3305-3313, http://dx.doi.org/10.1016/j.actamat.2007.01.029 [23] Adams, L. A. – Essien, E. R. – Shaibu, R. O. – Oki, A. (2013): Sol-Gel Synthesis of SiO2-CaO-Na2O-P2O5 Bioactive Glass Ceramic from Sodium Metasilicate. New Journal of Glass and Ceramics. Vol. 3, Num. 1, January 2013, pp. 11-15, http://dx.doi.org/10.4236/njgc.2013.31003 [24] Verne, E. – Di Nunzio, S. – Bosetti, M. – Appendino, P. – Brovarone, C. V. – Maina, G. – Cannas, M. (2005): Surface characterization of silver-doped bioactive glass. Biomaterials. Vol. 26, Num. 25, September 2005, pp. 51115119, http://dx.doi.org/10.1016/j.biomaterials.2005.01.038 [25] Chen, Q. Z. – Thompson, I. D. – Boccaccini, A. R. (2006): 45s5 Bioglassderived glass–ceramic scaffolds for bone tissue engineering. Biomaterials. Vol. 27, Num. 11, April 2006, pp. 2414-2425, http://dx.doi.org/10.1016/j.biomaterials.2005.11.025 [26] Eqtesadi, S. – Motealleh, A. – Miranda, P. – Pajares, A. – Lemos, A. – Ferreira, J. M. F. (2014): Robocasting of 45S5 bioactive glass Scaffolds for bone tissue engineering. J Eur Ceram Soc. Vol. 34, Num. 1, January 2004, pp. 107-118, http://dx.doi.org/10.1016/j.jeurceramsoc.2013.08.003 [27] Stanciu, G. A. – Sandulescu, I. – Savu, B. – Stanciu, S. G. – Paraskevopoulos, K. M. – Chatzistavrou, X. – Kontonasaki, E. – Koidis, P. (2007): Investigation of the Hydroxyapatite Growth on Bioactive Glass Surface. Journal of Biomedical & Pharmaceutical Engineering. Vol. 1, Num. 1, 1 pp 34-39. Ref.: ME Abad-Javier – M Cajero-Juárez – Contreras García, ME: 45S5 Bioglass porous scaffolds: structure, composition and bioactivity characterization Építőanyag – Journal of Silicate Based and Composite Materials, Vol. 68, No. 3 (2016), 124–128. p. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2016.22
45S5 Bioüveg porózus implantátumvázak: szerkezet, összetétel és bioaktivitás A regeneratív gyógyászatban előremutató eredményeket értek el kerámia kompozitok fejlesztése során; amellett, hogy különféle bio-anyagokat sikerült kifejleszteni, lehetővé vált kedvezőbb bio asszimilációs tulajdonságú anyagok alkalmazása, amelyeken a szövet regenerálódás gyorsabb. A cikk nano-szerkezetű bioüveg alapanyagú biomimetikus implantátumvázak anyagának fejlesztését mutatja be, amelyeket szol-gél technológiával állítottak elő. A kristályos Na6Ca3Si6O18 fázis vizsgálata röntgendiffrakciós eljárással történt. Ez a fázis megtalálható majdnem minden 45S5 bioüvegben, függetlenül azok gyártási eljárásától. A termék bioaktivitását összehasonlították emlős hidroxiapatit bioaktivitásával. A három dimenziós szerkezet vizsgálata optikai mikroszkópos és pásztázó elektronmikroszkópos vizsgálattal történt, kiegészítve félkvantitatív eljárással (EDS). Az in vitro bioaktivitási vizsgálatokat szintetikus plazmafolyadékban végezték, amelynek összetétele hasonló volt a vér ionos összetételéhez. Kulcsszavak: Bioüveg, bio implantátum váz, bioaktivitás, jellemzők
GUIDELINE FOR AUTHORS The manuscript must contain the followings: title; author’s name, workplace, e-mail address; abstract, keywords; main text; acknowledgement (optional); references; figures, photos with notes; tables with notes; short biography (information on the scientific works of the authors). The full manuscript should not be more than 6 pages including figures, photos and tables. Settings of the word document are: 3 cm margin up and down, 2,5 cm margin left and right. Paper size: A4. Letter size 10 pt, type: Times New Roman. Lines: simple, justified. Title, author The title of the article should be short and objective. Under the title the name of the author(s), workplace, e-mail address. If the text originally was a presentation or poster at a conference, it should be marked. Abstract, keywords The abstract is a short summary of the manuscript, about a half page size. The author should give keywords to the text, which are the most important elements of the article. Main text Contains: materials and experimental procedure (or something similar), results and discussion (or something similar), conclusions. References References are marked with numbers, e.g. [6], and a bibliography is made by the reference’s order. References should be provided together with the DOI if available. Examples: Journals: [6] Mohamed, K. R. – El-Rashidy, Z. M. – Salama, A. A.: In vitro properties of nano-hydroxyapatite/chitosan biocomposites. Ceramics International. 37(8), December 2011, pp. 3265–3271, http://dx.doi.org/10.1016/j.ceramint.2011.05.121 Books: [6] Mehta, P. K. – Monteiro, P. J. M.: Concrete. Microstructure, properties, and materials. McGraw-Hill, 2006, 659 p. Figures, tables All drawings, diagrams and photos are figures. The text should contain references to all figures and tables. This shows the place of the figure in the text. Please send all the figures in attached files, and not as a part of the text. All figures and tables should have a title. Authors are asked to submit color figures by submission. Black and white figures are suggested to be avoided, however, acceptable. The figures should be: tiff, jpg or eps files, 300 dpi at least, photos are 600 dpi at least. Biography Max. 500 character size professional biography of the author(s). CHECKING The editing board checks the articles and informs the authors about suggested modifications. Since the author is responsible for the content of the article, the author is not liable to accept them. Contact Please send the manuscript in electronic format to the following e-mail address: femgomze@uni-miskolc.hu and epitoanyag@szte.org.hu or by post: Scientific Society of the Silicate Industry, Budapest, Bécsi út 122–124., H-1034, HUNGARY We kindly ask the authors to give their e-mail address and phone number on behalf of the quick conciliation.
Copyright
Authors must sign the Copyright Transfer Agreement before the paper is published. The Copyright Transfer Agreement enables SZTE to protect the copyrighted material for the authors, but does not relinquish the author’s proprietary rights. Authors are responsible for obtaining permission to reproduce any figure for which copyright exists from the copyright holder. Építőanyag – Journal of Silicate Based and Composite Materials allows authors to make copies of their published papers in institutional or open access repositories (where Creative Commons Licence Attribution-NonCommercial, CC BY-NC applies) either with: placing a link to the PDF file at Építőanyag – Journal of Silicate Based and Composite Materials homepage or placing the PDF file of the final print.
Építőanyag – Journal of Silicate Based and Composite Materials, Quarterly peerreviewed periodical of the Hungarian Scientific Society of the Silicate Industry, SZTE. http://epitoanyag.org.hu
Magazines
Directories
Conferences
Exhibitions
Awards
Websites
Newsletters
gl bal
cement TM
gl bal
MAGAZINE
cement TM
CONFERENCES
MAGAZINE NEWSLETTER CONFERENCES DIRECTORY NEWSLETTER Global Cement brings you essential DIRECTORY news, events, research and market data on the global cement industry. Global Cement covers all aspects of the cement industry: mining and quarrying, refractories, process optimisation, monitoring, alternative fuels, environment and safety, markets, country reviews, cement prices, trading and shipping and a full review of global cement news. http://www.globalcement.com
Magazines
Directories
Conferences
Exhibitions
Awards
Websites
Newsletters