12/15/2014
1
PEMROGRAMAN LINEAR BULAT (INTEGER LINEAR PROGRAMMING - ILP) Apa yang dimaksud dengan Pemrograman Bulat ?
METODE SIMPLEKS
Solusi yang didapat optimal, tetapi mungkin tidak integer. 2
1
12/15/2014
INTEGER LINEAR PROGRAMMING
Misalnya saja kita ingin menentukan solusi optimal dari satu lini perakitan televisi, yang memproduksi beberapa tipe televisi.
Mengganggu batasan
Pembulatan matematis ?
ILP
3
INTEGER LINEAR PROGRAMMING
Jika model mengharapkan semua variabel basis bernilai integer (bulat positif atau nol), dinamakan pure integer programming. Jika model hanya mengharapkan variabel-variabel tertentu bernilai integer, dinamakan mixed integer programming. Jika model hanya mengharapkan nilai nol atau satu untuk variabelnya, dinamakan zero one integer programming.
4
2
12/15/2014
SOLUSI INTEGER PROGRAMMING PENDEKATAN PEMBULATAN
Pendekatan ini mudah dan praktis dalam hal usaha, waktu dan biaya. Pendekatan pembulatan dapat merupakan cara yang sangat efektif untuk masalah integer programming yang besar dimana biaya-biaya hitungan sangat tinggi atau untuk masalah nilai-nilai solusi variabel keputusan sangat besar. Contohnya, pembulatan nilai solusi jumlah pensil yang harus diproduksi dari 14.250,2 menjadi 14.250,0 semestinya dapat diterima. Sebab utama kegagalan pendekatan ini adalah bahwa solusi yang diperoleh mungkin bukan solusi integer optimum yang sesungguhnya. Solusi pembulatan dapat lebih jelek dibanding solusi integer optimum yang sesungguhnya atau mungkin merupakan solusi tak layak. 5
PENDEKATAN PEMBULATAN
Maksimumkan
Z =
Dengan syarat
Minimumkan
10 X1 + 5 X1 + X1 ;
Z =
Dengan syarat
Maksimumkan Dengan syarat
100 X1 +
200 X1 + 10 X1 + 3 X1 + X1 ;
Z =
80 X1 + 4 X1 + X1 + X1 ;
90 X2 7 X2 ≤ 10 X2 ≤ X2 ≥
70 50 0
Masalah 1
100 12 0
Masalah 2
12 15 0
Masalah 3
400 X2 25 X2 ≥ 2 X2 ≥ X2 ≥
100 X2 2 X2 ≤ 5 X2 ≤ X2 ≥
6
3
12/15/2014
PERBANDINGAN
ANTARA SOLUSI DENGAN METODE SIMPLEKS TANPA PEMBA-
TASAN BILANGAN BULAT, PEMBULATAN KE BILANGAN BULAT TERDEKAT DAN SOLUSI INTEGER OPTIMUM YANG SESUNGGUHNYA UNTUK KETIGA MASALAH
:
DIATAS ADALAH
Masalah
Solusi dengan Metode simpleks
Dgn pembulatan terdekat
Bulat optimum sesungguhnya
1
X1 = 5,38 X2 = 2,31 Z = 746,15
X1 = 5 X2 = 2 Z = 680
X1 = 7 X2 = 0 Z = 700
2
X1 = 1,82 X2 = 3,27 Z = 1.672,73
X1 = 2 X2 = 3 Z tak layak
X1 = 3, X2 = 3 X1 = 5, X2 = 2 Z = 1.800
3
X1 = 2,14 X2 = 1,71 Z = 343
X1 = 2 X2 = 2 tak layak Z
X1 = 0 X2 = 3 Z = 300 7
PENDEKATAN GRAFIK Pendekatan ini identik dengan metode grafik LP dalam semua aspek, kecuali bahwa solusi optimum harus memenuhi persyaratan bilangan bulat. Maksimumkan Dengan syarat
Z =
100 X1 + 10 X1 + 5 X1 + X1 ;
90 X2 7 X2 ≤ 70 10 X2 ≤ 50 X2 non negatif integer
8
4
12/15/2014
PENDEKATAN GRAFIK
Model ini serupa dengan model LP biasa. Perbedaanya hanya pada kendala terakhir yang mengharapkan bahwa variabel terjadi pada nilai non negatif integer.
Solusi grafik masalah ini ditunjukkan pada gambar dibawah ini. Ruang solusi layak adalah OABC. Solusi optimum masalah LP ditunjukkan pada titik B, dengan X1 = 5,38 dan X2 = 2,31 serta Z = 746,15. Untuk mencari solusi integer optimum masalah ini, garis Z (slope = -9/10) digeser secara sejajar dari titik B menuju titik asal.
Solusi integer optimum adalah titik integer pertama yang bersinggungan dengan garis Z. Titik itu adalah A, dengan X1 = 7 dan X2 = 0 serta Z = 700.
9
PENDEKATAN GRAFIK
X2 10 10X1 + 7X2 = 70 Z = 746,15
5
C
Z = 700
B 5X1 + 10X2 = 50 O
A 7
10
X1
10
5
12/15/2014
PENDEKATAN GOMORY (CUTTING PLANE ALGORITHM) ALGORITHM)
Langkah-langkah prosedur Gomory diringkas seperti berikut : 1. Selesaikan
masalah integer programming dengan menggunakan metode simpleks. Jika masalah sederhana, ia dapat diselesaikan dengan pendekatan grafik, sehingga pendekatan Gomory kurang efisien. 2. Periksa solusi optimum. Jika semua variabel basis memi-liki nilai integer, solusi optimum integer telah diperoleh dan proses solusi telah berakhir. Jika satu atau lebih variabel basis masih memiliki nilai pecah, teruskan ke tahap 3. 3. Buatlah suatu skala Gomory (suatu bidang pemotong atau cutting plane) dan cari solusi optimum melalui prosedur dual simpleks. Kembali ke tahap 2.
11
KENDALA GOMORY DALAM PURE INTEGER PROGRAMMING
Tabel optimum masalah LP dibawah ini merupakan tabel solusi optimum kontinyu. Basis
X1
Xm
W1
Wn
Solusi
Z
0.....
0
c1 . . . . .
cn
b0
X1 . . . Xm
1..... . . . 0
0 . . . 1
a11. . . . . . . . am1
a1n . . . amn
b1 . . . b1 12
6
12/15/2014
KENDALA GOMORY DALAM PURE INTEGER PROGRAMMING
Variabel Xi (i =1,…, m) menunjukkan variabel basis. Variabel Xj (j = 1,..., n) adalah variabel non basis.
Perhatikan persamaan ke i dimana variabel Xi diasumsikan bernilai non integer. Xi = bi – Σ aij Wj , dimana b non integer
Kemudian pisahkan bi dan aij menjadi bagian yang bulat dan bagian pecah non negatif seperti berikut : bi = bi + f i jadi f i = bi - bi , dimana 0 ≤ f i ≤ 1 aij = aij + f i jadi f i = aij - aij , dimana 0 ≤ f ij ≤ 1
13
KENDALA GOMORY DALAM PURE INTEGER PROGRAMMING
bi
bi
fi
aij
aij
f ij
3/2 7/8 7/3
1 0 2
½ 7/8 1/3
7/3 -1 - 2/5
-3 -1 -1
2/3 0 3/5
Kendala Gomory yang diinginkan adalah :
Sg - f ij Wj = - f i , Sg adalah variabel slack Gomory ke g.
Pada umumnya, persamaan kendala yang berhubungan dengan solusi pecah dipilih untuk menghasilkan suatu kendala Gomory. Namun, sebagai aturan main biasanya dipilih persamaan yang memiliki fi, maksimum.
14
7
12/15/2014
TABEL BARU SETELAH PENAMBAHAN KENDALA GOMORY MENJADI :
X1
Xm
W1
Wn
Sg
Z
0.....
0
c 1. . . . .
cn
0
b0
X1 . . . Xm
1..... . . . 0
0 . . . 1
a11. . . . . . . . am1
a1n . . . amn
. . . . amn
b1 . . . b1
Sg
0.....
0
- fi1
- fin
1
- fi
Basis
Solusi
15
KENDALA GOMORY DALAM PURE INTEGER PROGRAMMING
Jika diperoleh solusi primal optimum tetapi tidak layak maka digunakan metode dual simpleks.
Proses pembentukan kendala Gomory berakhir jika solusi baru semua berupa bilangan bulat.
Jika tidak, suatu kendala Gomory baru dibuat lagi dari tabel yang dihasilkan dan metode dual simpleks digunakan lagi untuk mengatasi ketidak layakan.
Jika pada setiap iterasi metode dual simpleks menunjukkan bahwa tidak ada solusi layak, berarti masalah itu tidak memiliki solusi integer yang layak. 16
8
12/15/2014
KENDALA GOMORY DALAM PURE INTEGER PROGRAMMING
Maksimumkan
Z =
Dengan syarat
7 X1 +
9 X2
- X1 + 7 X1 + X1 ;
3 X2 ≤ 6 X2 ≤ 35 X2 non negatif integer
Solusi kontinyu optimumnya diperoleh dalam tabel berikut :
Basis
X1
X2
S1
S2
Solusi
Z
0
0
28/11
15/11
63
X2 X1
0 1
1 0
7/22 - 1/22
1/22 3/22
7/2 9/2 17
KENDALA GOMORY DALAM PURE INTEGER PROGRAMMING
Karena solusi tidak bulat, suatu kendala Gomory ditambahkan pada tabel itu. Kedua persamaan (X1 dan X2) pada masalah ini memiliki nilai f i yang sama, yaitu f 1 = f 2 = ½ , sehingga salah satu dapat digunakan, misalkan digunakan persamaan X2 , ini menghasilkan :
X2 + 7/22 S1 + 1/22 S2 = 7/2 atau X2 + (0 + 7/22) S1 + (0 + 1/22) S2 = (3 + ½)
Sehingga kendala Gomorynya adalah :
Sg1 - 7/22 S1 – 1/22 S2 = - ½
18
9
12/15/2014
KENDALA GOMORY DALAM PURE INTEGER PROGRAMMING
Tabel baru setelah penambahan kendala Gomory menjadi : Basis
X1
X2
S1
S2
Sg1
Solusi
Z
0
0
28/11
15/11
0
63
X2 X1
0 1
1 0
7/22 - 1/22
1/22 3/22
0 0
7/2 9/2
Sg1
0
0
- 7/2
- 1/22
1
-½
Dengan memakai metode dual simpleks diperoleh tabel baru yaitu : Basis
X1
X2
S1
S2
Sg1
Solusi
Z
0
0
0
1
8
59
X2 X1 S1
0 1 0
1 0 0
0 0 1
0 1/7 1/7
1 - 1/7 - 22/7
3 32/7 11/7
19
KENDALA GOMORY DALAM PURE INTEGER PROGRAMMING
Karena solusi baru masih pecah, suatu kendala Gomory bary ditambahkan. Karena persamaan X1 memiliki f 1 terbesar (f 1 = 4/7), maka X1 dituliskan dalam bentuk : X1 + (0 + 1/7) S2 + (0+ 6/7) Sg1 = (4 + 4/7), Menghasilkan kendala Gomory kedua : Sg2 – 1/7 S1 – 6/7 Sg1 = - 4/7, kemudian tambahkan pada tabel :
Basis
X1
X2
S1
S2
Sg1
Sg2
Solusi
Z
0
0
0
1
8
0
59
X2
0
1
0
0
1
0
3
X1
1
0
0
1/7
- 1/7
0
32/7
S1
0
0
1
1/7
- 22/7
0
11/7
Sg2
0
0
0
- 1/7
- 6/7
1
- 4/7
20
10
12/15/2014
KENDALA GOMORY DALAM PURE INTEGER PROGRAMMING
Dengan menggunakan dual simpleks diperoleh hasil :
Yang menghasilkan solusi bulat optimum X1 = 4, X2 =3 dan Z = 55
Basis
X1
X2
S1
S2
Sg1
Sg2
Solusi
Z
0
0
0
0
2
7
55
X2
0
1
0
0
1
0
3
X1
1
0
0
0
-1
1
4
S1
0
0
1
0
-4
1
1
Sg2
0
0
0
1
6
-7
4 21
METODE BRANCH DAN BOUND Metode Branch dan Bound telah menjadi kode komputer standar untuk integer programming, dan penerapan- penerapan dalam praktek tampaknya menyarankan bahwa metode ini lebih efisien dibanding dengan pendekatan Gomory. Teknik ini dapat diterapkan baik untuk masalah pure programming maupun mixed integer programming.
22
11
12/15/2014
LANGKAH-LANGKAH METODE BRANCH DAN BOUND UNTUK MASALAH MAKSIMASI DAPAT DILAKUKAN SEPERTI BERIKUT
:
1.
Selesaikan LP dengan metode simpleks biasa
2.
Teliti solusi optimumnya. Jika variabel basis yang diharapkan bulat adalah bulat, solusi optimum bulat telah tercapai.
3.
Nilai solusi pecah yang layak dicabangkan ke dalam sub-sub masalah. Tujuannya adalah untuk menghilangkan solusi kontinyu yang tidak memenuhi persyaratan bulat dalam masalah itu.
4.
Untuk setiap sub-masalah, nilai solusi optimum kontinyu fungsi tujuan ditetapkan sebagai batas atas. Solusi bulat terbaik menjadi batas bawah (pada awalnya, ini adalah solusi kontinyu yang dibulatkan ke bawah). Sub-sub masalah yang memiliki batas atas kurang dari batas bawah yang ada, tidak diikut sertakan pada analisa selanjutnya. Suatu solusi bulat layak adalah sama baik atau lebih baik dari batas atas untuk setiap sub masalah yang dicari. Jika solusi yang demikian terjadi, suatu sub masalah dengan batas atas terbaik dipilih untuk dicabangkan. Kembali ke langkah 3.
23
METODE BRANCH DAN BOUND
Untuk memperoleh gambaran yang lebih jelas tentang metode Branch dan Bound, perhatikan contoh masalah berikut : Maksimumkan Dengan syarat
Z =
3 X1 +
5 X2
2 X1 + X1
4 X2 ≤ 25 ≤ 8 2 X2 ≤ 10 X2 non negatif integer
X1 ;
Solusi optimum kontinyu masalah ini adalah X1 = 8, X2 = 2,26 dan Z = 35,25.
Solusi ini menunjukkan batas atas awal. 24
12
12/15/2014
METODE BRANCH DAN BOUND
Batas bawah adalah solusi yang dibulatkan ke bawah X1 = 8, X2 = 2 dan Z = 34. Dalam metode Branch dan Bound, masalah itu dibagi ke dalam dua bagian untuk mencari nilai solusi bulat yang mungkin bagi X1 dan X2. Variabel dengan nilai solusi pecah terbesar dipilih. Karena pada solusi ini hanya X2 yang memiliki bagian pecah, ia dipilih. Untuk menghilangkan bagian pecah dari nilai X2 = 2,25, dua kendala baru dibuat. Kendala-kendala ini mewakili dua bagian baru dari masalah itu. Dua nilai bulat terdekat terhadap 2,25 adalah 2 dan 3. Sehingga diperoleh dua masalah baru melalui dua kendala mutually exclusive, X2 ≤ 2 dan X2 ≥ 3, yang akan diuraikan berikut ini se-bagai bagian A dan B. Kendala-kendala ini secara efektif menghi-langkan semua nilai pecah yang mungkin bagi X2, antara 2 dan 3. Pengaruhnya mereka mengurangi ruang solusi layak sehingga angka solusi bulat yang dievaluasi pada masalah ini makin sedikit 25
METODE BRANCH DAN BOUND
Bagian A : Maksimumkan
Z =
Dengan syarat
3 X1 +
5 X2
2 X1 + X1
4 X2 ≤ ≤ 2 X2 ≤ X2 ≤ X2 ≥
X1 ;
25 8 10 (berlebih) 2 0
Bagian B : Maksimumkan Dengan syarat
Z =
3 X1 +
5 X2
2 X1 + X1
4 X2 ≤ ≤ 2 X2 ≤ X2 ≥ X2 ≥
X1 ;
25 8 10 3 0
26
13
12/15/2014
METODE BRANCH DAN BOUND
Bagian A dan B diselesaikan tanpa pembatasan bilangan bulat dengan metode simpleks. Solusi simpleksnya adalah :
Bagian A : X1 = 8, X2 = 2 dan Z = 34 Bagian B : X1 = 6,5, X2 = 3 dan Z = 34,5
Bagian A menghasilkan suatu solusi yang semuanya bulat. Untuk bagian A batas atas dan bawah adalah Z = 34. Solusi pecah bagian B membenarkan pencarian lebih lanjut karena menghasilkan nilai fungsi tujuan yang lebih besar dari batas atas bagian A. Sangat mungkin bahwa pencarian lebih lanjut dapat menghasilkan suatu solusi yang semuanya bulat dengan nilai fungsi tujuan melebihi batas atas bagian A = 34.
Bagian B dicabangkan ke dalam dua sub bagian, B1 dan B2, pertama dengan kendala X1 ≤ 6 dan yang lain dengan X2 ≥ 7.
27
METODE BRANCH DAN BOUND
Sub Bagian B1 : Maksimumkan
Z
Dengan syarat
=
3 X1 +
5 X2
2 X1 + X1
4 X2 ≤ ≤ 2 X2 ≤ X2 ≥ ≤ X2 ≥
X1 X1 ;
25 8 (berlebih) 10 3 6 0
Sub Bagian B2 : Maksimumkan Dengan syarat
Z =
3 X1 +
5 X2
2 X1 + X1
4 X2 ≤ ≤ 2 X2 ≤ X2 ≥ ≥ X2 ≥
X1 X1 ;
25 8 10 3 7 0
28
14
12/15/2014
METODE BRANCH DAN BOUND
Solusi simpleksnya adalah :
Sub-bagian B1 : X1 = 6, X2 = 3,25 dan Z = 34,25 Sub-bagian B2 : tidak layak.
Karena sub-bagian B1 menghasilkan nilai fungsi tujuan yang lebih besar dari 34 (batas atas bagian A), maka harus dicabangkan lagi ke dalam dua sub masalah, dengan kendala X2 ≤ 3 dan X2 ≥ 4. Kedua kendala sub masalah diberi nama bagian B1a dan B2b.
29
METODE BRANCH DAN BOUND
Bagian B1a : Maksimumkan
Z
=
Dengan syarat
3 X1
+
5 X2
2 X1 X1
+
X1 X1
;
4 X2 ≤ ≤ 2 X2 ≤ X2 ≥ X2 ≤ ≤ X2 ≥
3 X1
+
5 X2
2 X1 X1
+
4 X2
25 8 10 (berlebih) 3 3 6 0
Bagian B1b : Maksimumkan Dengan syarat
Z
=
2 X2 X2 X2 X1 X1
;
X2
≤ ≤ ≤ ≥ ≥ ≤ ≥
25 8 10 3 (berlebih) 4 6 0
30
15
12/15/2014
METODE BRANCH DAN BOUND
Solusi optimum dengan metode simpleks adalah :
Sub-bagian B1a : X1 = 6, X2 = 3 dan Z = 33 Sub-bagian B1b : X1 = 4,25, X2 = 4 dan Z = 33,5
Kedua solusi itu memiliki batas atas ( Z = 33 dan Z = 33,5) yang lebih buruk dibanding dengan solusi yang dihasilkan oleh bagian A. Karena itu, solusi bulat optimum adalah X1 = 8, X2 = 2 dan Z = 34 yang dihasilkan oleh bagian A.
Jika pencarian telah diselesaikan, solusi bulat dengan fungsi tujuan tertinggi (dalam masalah maksimasi) dipilih sebagai solusi optimum. 31
METODE BRANCH DAN BOUND
Kelemahan dasar dari metode ini adalah bahwa diperlukan pemecahan masalah LP untuk setiap pencabangan. Dalam masalah yang besar dapat memakan banyak waktu. Karena itu dalam prosedur pencabangan dan pencarian, analisa selanjutnya dihentikan jika : 1. Hasil
dari sub-problem lebih jelek dibanding dengan batas atas yang sudah diidentifikasi
2. Pencabangan selanjutnya
menghasilkan solusi tak layak.
32
16
12/15/2014
METODE BRANCH DAN BOUND
SELURUH PROSEDUR BRANCH
DAN
BOUND UNTUK :
CONTOH YANG LALU
DAPAT DIGAMBARKAN SEPERTI BERIKUT
0
Solusi bulat optimum X1 = 8 X2 = 2 Z = 34 2 X1 = 6 X2 = 3,25 Z = 34,25
X1 = 8 X2 = 2,25 Z = 35,25 X1 = 6,5 X2 = 3 Z = 34,5
Tak layak
inferior
inferior
33
17