‘Krap in’t vocht’, voor alle organen:
‘beter door de bocht’
Ron van Ketel Renal Practitioner Reinier de Graafgroep
21/11/2010
Inleiding Infusie Meten is weten Resusitatie Effect op de organen Diuretica/CRRT Strategie Toekomst
Infusie, Hoeveel? Chirurgische patiënten… normale behoefte verdamping
Welke vloeistof? cristalloïden of colloïden? risico’s?
Septische (Sirs) patienten… Shock
Meten is weten: Data patiënt: Vochtbalans en vitale waarden
Lichamelijk onderzoek, (longvelden) beluisteren, cap. refill, oedemen, passive leg raising test, wegen etc.
Laboratorium Beeldvormende diagnostiek Hemodynamische bewaking (Picco/Vigileo)
Resuscitatie: Optimaliseren preload Verhogen einddiastolisch volume Verhogen einddiastolische druk
Eindpunten: Goede diurese Perifeer warm en vlotte capillary refill
Hartfrequente <100 MAP> 70 S(c)vO2 verbeterd Lactaat daalt Voeding doorloopt OF het slagvolume bij vulling niet toeneemt
(A. Manten 2007)
Invloeden op cel niveau:
Toename van preload en slagvolume geven een herstel van RR/ CVD en of UP, deze zijn een indirecte metingen van de Cardic Output, maar geven minder een indicatie van het herstel van de orgaanperfusie.
Factoren die vloeistof therapie onvoorspelbaar kunnen beïnvloeden:
Verandering van:
1.
Effecten van het ernstig ziek zijn
1. Cardiale compliance en contractiliteit
2.
Pre-existente chronische aandoeningen
2. Systemische vaatweerstand regionale bloeddistributie
3.
Medicijngebruik
3. Veneuze capaciteit en capillaire permeabiliteit
Vloeistoffen corrigeren geen vasodilitatie. Ook colloïden lekken naar het interstitium, voorkomen geen weefsel oedeem en geven uiteindelijk weinig vermindering van een overvullingsbeeld. (hoog moleculaire stoffen geven aanleiding tot nierfalen) Overvulling leidt tot weefsel oedeem
Oedeem: verminderd het zuurstof metabolisme verstoord de weefselstructuur obstrueert de capillaire bloedstroom en lymfatische drainage verstoord de cel>cel interactie
draagt dus bij aan orgaan disfunctie
Effect op de organen, Nieren, sterke relatie pos. vochtbalans en ontstaan van acuut nierfalen.
Lever, net als nieren een ‘ingekapseld’ orgaan, kan volume niet in ruimte compenseren, doen dit in ^ interstitieële druk. Darmen, abdominale hypertensie,
IAH verhoogd de renale veneuze druk, geeft verlaging renale bloedflow, verhoging druk capsel van Bouwman, sterke relatie! Long, pulmonaal oedeem ( Facct studie) Hart, vermindering vertriculaire functie, minder 02 afgifte Gastro-intestinaal Gestoorde wondgenezing Gestoorde stolling
Strategie: Diuretica/CRRT Lisdiuretica: Naast lis- ook thiazidediureticum (werkt op opstijgende deel tubili en opvangbuizen (lis diuretica>resistentie) nadeel: ook in combinatie geen extra natrium excretie. Overvulling, verhoging kans op mortaliteit,
een toename van tussen de 5-10 % geeft verslechtering van de orgaanfunctie en slechtere postoperatieve uitkomsten. Indicatie voor CRRT, zodra hemodynamiek dit toelaat, Verwijderd water én natrium.
Strategie: Correctie van vochttekort in de acute situatie Zo mogelijk preload herstellen, voldoende voor C.O.? Bij sepsis en postoperatieve vasodilitatie: risico op overvullen! In plateau fase # basis infuus Inzet cardiovasculaire bewaking, interpretatie en trend! Hoe is de vocht respons? Vasopressoren (innotropie) in een vroeg stadium? Inzet St 02 meting, meer zicht op microcirculatie
Infra rood spectroscopie (NIRS), microvideoscopie(OPS/SDF), doppler)
Dr. Payen: Voorstander van combinatie meten micro en macrocirculatie. Voorbeeld: Inspectra (Hutchinson) geeft info over O2 (getal) verbruik.
(
(Zie bijlagen)
Toekomst ARDS therapie? NPPV+Decap/Novalong+CRRT
Sr 71
Literatuur:
Fluid management in septic acute kidney injury and cardiorenal syndromes Rinaldo Bellomo et al. Cardiorenal syndromes in critical care.karger, 2010. 206-217.
Monitoring the microcirculation in the critically ill patient: current methods and future approaches.De Backer D, Ospina-Tascon G, Salgado D, Favory R, Creteur J, Vincent JL. Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium,
[email protected]. AbstractPURPOSE: To discuss the techniques currently available to evaluate the microcirculation in critically ill patients. In addition, the most clinically relevant microcirculatory alterations will be discussed. METHODS: Review of the literature on methods used to evaluate the microcirculation in humans and on microcirculatory alterations in critically ill patients.RESULTS: In experimental conditions, shock states have been shown to be associated with a decrease in perfused capillary density and an increase in the heterogeneity of microcirculatory perfusion, with non-perfused capillaries in close vicinity to perfused capillaries. Techniques used to evaluate the microcirculation in humans should take into account the heterogeneity of microvascular perfusion. Microvideoscopic techniques, such as orthogonal polarization spectral (OPS) and sidestream dark field (SDF) imaging, directly evaluate microvascular networks covered by a thin epithelium, such as the sublingual microcirculation. Laser Doppler and tissue O(2) measurements satisfactorily detect global decreases in tissue perfusion but not heterogeneity of microvascular perfusion. These techniques, and in particular laser Doppler and near-infrared spectroscopy, may help to evaluate the dynamic response of the microcirculation to a stress test. In patients with severe sepsis and septic shock, the microcirculation is characterized by a decrease in capillary density and in the proportion of perfused capillaries, together with a blunted response to a vascular occlusion test.CONCLUSIONS: The microcirculation in humans can be evaluated directly by videomicroscopy (OPS/SDF) or indirectly by vascular occlusion tests. Of note, direct videomicroscopic visualization evaluates the actual state of the microcirculation, whereas the vascular occlusion test evaluates microvascular reserve.
•Curr Opin Crit Care. 2010 Aug;16(4):377-83. •Microvascular dysfunction in the surgical patient.Vellinga NA, Ince C, Boerma EC. Department of Translational Physiology, Academic Medical Center, Amsterdam, The Netherlands. •AbstractPURPOSE OF REVIEW: This review aims to describe recent research on perioperative microvascular alterations,Cwith an emphasis on direct visualization of the human microcirculation. ri t •RECENT FINDINGS: Despite systemic haemodynamic optimization, perioperative complications are still occurring.CIn surgery, recent studies on both direct visualization of the microcirculation and aindirect quantification of organ r perfusion revealed that both the surgical procedure itself and perioperative e . interventions like anaesthesia, cardiopulmonary bypass, vasoactive drugs and fluid therapy may influence organ perfusion at2the microvascular level. As in sepsis and heart failure, these perioperative microcirculatory abnormalities were 0 0 associated with prognosis. However, whether 9these microcirculatory alterations are culprit or bystander in the process of developing perioperative complications ; 1 remains to be established.SUMMARY: Recent research has elucidated the 3 incidence of perioperative microvascular alterations, as well as its association with prognosis. Future research should furtherS unravel the fascinating and complex interplay between the microcirculationup and perioperative interventions.PMID: 20665963 [PubMed - in process] p l 5 : S 1 1 . E p
Crit Care. 2009;13 Suppl 5:S11. Epub 2009 Nov 30. Near-infrared spectroscopy technique to evaluate the effects of red blood cell transfusion on tissue oxygenation. Creteur J, Neves AP, Vincent JL. Department of Intensive Care, Erasme University Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium. Abstract INTRODUCTION: The aim of this study was to evaluate the effects of red blood cell (RBC) transfusions on muscle tissue oxygenation, oxygen metabolism and microvascular reactivity in critically ill patients using near-infrared spectroscopy (NIRS) technology.METHODS: This prospective, observational study included 44 consecutive patients hospitalized in the 31-bed, medical-surgical intensive care unit of a university hospital with anemia requiring red blood cell transfusion. Thenar tissue oxygen saturation (StO2) and muscle tissue hemoglobin index (THI) were measured using a tissue spectrometer (InSpectra Model 325; Hutchinson Technology Inc., Hutchinson, MN, USA). A vaso-occlusive test was performed before and 1 hour after RBC transfusion by rapid inflation of a pneumatic cuff around the upper arm. The following variables were recorded: THI, the StO2 desaturation slope during the occlusion (%/minute) and the StO2 upslope of the reperfusion phase following the ischemic period (%/second). Muscle oxygen consumption (NIR VO2; arbitrary units) was calculated as the product of the inverse StO2 desaturation slope and the mean THI over the first minute of arterial occlusion.RESULTS: Blood transfusion resulted in increases in hemoglobin (from 7.1 (6.7 to 7.7) to 8.4 (7.1 to 9) g/dl; P < 0.01) and in oxygen delivery (from 306 (259 to 337) to 356 (332 to 422) ml/minute/m2; P < 0.001). However, systemic VO2 was unchanged. RBC transfusion did not globally affect NIRS-derived variables, but there was considerable interindividual variation. Changes in the StO2 upslope of the reperfusion phase after transfusion were negatively correlated with baseline StO2 upslope of the reperfusion phase (r2 = 0.42; P < 0.0001). Changes in NIR VO2 after transfusion were also negatively correlated with baseline NIR VO2 (r2 = 0.48; P = 0.0015). There were no correlations between RBC storage time and changes in StO2 slope or NIR VO2.CONCLUSIONS: Muscle tissue oxygenation, oxygen consumption and microvascular reactivity are globally unaltered by RBC transfusion in critically ill patients. However, muscle oxygen consumption and microvascular reactivity can improve following transfusion in patients with alterations of these variables at baseline.PMCID: PMC2786113 Free PMC Article PMID: 19951383 [PubMed - indexed for MEDLINE]