18 STRUKTURA SPOJŮ PÁJENÝCH PÁJKAMI BEZ OLOVA A JEJÍ VLIV NA VNĚJŠÍ VZHLED SPOJE Jiří Podzemský ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Elektrotechnická fakulta Katedra elektrotechnologie
1. Úvod Elektronika prodávaná v Evropské unii nesmí obsahovat pájku s obsahem olova. Pro výrobce elektrotechnických zařízení je důležitá vysoká kvalita vstupních polotovarů. V případě vodičů, vývodů elektronických součástek a pájecích plošek na deskách plošných spojů je jedním z požadavků, aby měly vysokou smáčitelnost a byly chráněny proti korozi. Aby bylo dosaženo těchto vlastností, pokrývá se povrch pájkou. Jedna z používaných technologií je HASL (Hot air level soldering). Chráněná část je ponořena do roztavené pájky a při vytahování je ofukována horkým vzduchem. Typická tloušťka takto nanesené vrstvy jsou jednotky mikrometrů. Problémem této technologie je, že pájka reaguje s materiálem podkladu (nejčastěji měď, nikl) a vzniká intermetalická vrstva s typickou tloušťkou desetiny mikrometru. Aby bylo dosaženo dobré adheze mezi pájkou a povrchem, vznik této vrstvy je nezbytný. Kromě této vrstvy se ještě vytvářejí v objemu pájky krystalické útvary této intermetalické fáze. Když reaguje pájka obsahující cín s měděným podkladem, vzniká intermetalická sloučenina Cu6Sn5, později se začne vytvářet i Cu3Sn. Pokud ta samá pájka reaguje s niklem, vzniká vrstva Ni3Sn4 a jestliže pájka obsahuje měď, ta se zapojuje do reakce při vzniku Sn-Cu-Ni (přesné složení je obtížné určit). Tvrdost podle Vickerse (kg/mm2) Youngův modul (GPa) Poissonovo číslo (-) Koeficient tepelné roztažnosti (10-6/K) Tepelná vodivost (W/m·K) Odpor (μΩ·cm) Hustota (g/cm3) Tepelná kapacita (J/kg·K)
Cu6Sn5
Cu3Sn
Ni3Sn4
Cu
Ni
378
343
365
50
15
85,6
108,3
133,3
117
213
0,309
0,299
0,330
0,340
0,300
16,3
19,0
13,7
16,0
12,9
34,1
70,4
19,6
386
90,5
17,5
8,9
28,5
1,7
6,8
8,28
8,90
8,65
8,96
8,91
286
326
272
385
439
Tab. 1: Vlastnosti mědi, niklu a jejich intermetalických sloučenin při pokojové teplotě. [1], [2], [3]
Vlastnosti intermetalické fáze se liší od vlastností pájky i podkladového materiálu. Typické pro tyto sloučeniny je vysoká křehkost a vyšší teplota tání než samotné pájky. Další významná vlastnost, zvláště v případě Cu3Sn, je nesmáčivost. Tloušťka intermetalické fáze není statická, ale s časem roste. Rychlost růstu závisí na teplotě a růst pokračuje dokonce i při pokojové teplotě. Je-li vrstva pájky tenká, může ji intermetalická sloučenina celou nahradit a vlastnosti takovéto vrstvy se výrazně liší od té původní. Například vývod součástky pokrytý pájkou pro dosažení lepšího smočení při pájení je pokryt intermetalickou sloučeninou, která je nesmáčivá a má vyšší teplotu tání. Mohlo by se zdát, že problémy jsou jen v případě, že upravený materiál budeme skladovat delší dobu. Jak ale výzkum ukázal, současně s tenkou vrstvou se vytvářejí v objemu krystaly intermetalické fáze ihned po přetavení a mohou vystoupit až k povrchu. Přítomnost intermetalické fáze na povrchu mění jeho reflexivitu. Místa s intermetalickou fází jsou matná. Tento fakt by mohl způsobit problémy například s interpretací optické kontroly korektně zapájených spojů. 2.
Experimenty a hodnocení
Bylo provedeno pozorování kvality pájeného povrchu na čisté mědi a niklu. Pro experiment byly použity nejpoužívanější bezolovnaté pájky Sn-4Ag, Sn-1Cu, Sn-3,8Ag-0,7Cu. Aby bylo možné zjištěné výsledky porovnat, byly stejné experimenty provedeny i s pájkou Sn-37Pb. Proces přirozeného stárnutí byl simulován umělým stárnutím při teplotě 125 °C po dobu 1 000 h. Byl pozorován povrch po přetavení a po umělém stárnutím. Vzorky pro test byly získány s použitím zařízení Meniscograph (přístroj pro měření smáčivosti metodou smáčecích vah). Vzorky pro test byly drátky délky 2 cm o průměru 1 mm. Byly přichyceny do držáku a po dobu 5 s ponořeny do roztavené pájky (s teplotou 248 °C). Aby se předešlo oxidaci a dosáhlo se dobrého smočení byl experiment proveden pod dusíkovou atmosférou (se zbytkovou koncentrací kyslíku 10 000 ppm). Polovina vzorků byla následně podrobena umělému stárnutí (1 000 h, 125 °C). Druhá polovina byla uchována stejnou dobu při pokojové teplotě.
Obr. 1: Výbrus systému vzorků zalitých v pryskyřici (leptáno). Povrch obou skupin byl pozorován ve stejný čas, a to s použitím mikroskopu Olympus SZX7. Poté byly zhotoveny výbrusy a pro zvýraznění intermetalické vrstvy byly vzorky leptány. Pájka byla odleptána s použitím následujícího leptadla: 1 díl kyseliny octové, 1 díl kyseliny dusičné a 4 díly glycerolu. Leptadlo bylo zahřáté na teplotu 80 °C a bylo aplikováno po dobu 10 s. Vnitřní struktura byla pozorována optickým mikroskopem Neophot 32 a elektronovým mikroskopem XL30 ESEM-TMP Philips.
Tloušťka vzniklé intermetalické vrstvy byla měřena s použitím optického mikroskopu Neophot 32 (viz tab. 2 a tab. 3). Tloušťka zformované vrstvy je nižší v případě niklového podkladu (přibližně 2 x tenčí) než měděného. Pro získání celkové vrstvy intermetalické fáze vyrostlé na měděném základním materiálu je potřeba sečíst tloušťku vrstvy 1 a 2 (viz tab.3). V případě stárnutých vzorků s pájkou SAC (Sn-3,8Ag-0,7Cu) je celková tloušťka na mědi 4,4 µm, na niklu to jsou 2 µm. Pro pájku Sn-1Cu se jedná v případě podkladového materiálu měď o 5,7 µm a nikl jen 1,9 µm. Obdobně Sn-4Ag dosahuje na mědi 4,7 µm a na niklu 2,1 µm.Pájka Sn-1Cu formuje na mědi intermetalické vrstvy daleko rychleji než všechny ostatní testované pájky (včetně Sn-37Pb). Typ vzniklých intermetalických vrstev byl zjištěn analýzou EDAX. pájka
podmínky
Sn-37Pb Sn-4Ag Sn-1Cu Sn-3,8Ag-0,7Cu
po přetavení stárnuto po přetavení stárnuto po přetavení stárnuto po přetavení stárnuto
vrstva typ Ni3Sn4 Ni3Sn4 Ni3Sn4 Ni3Sn4 Sn-Cu-Ni Ni3Sn4 Sn-Cu-Ni Sn-Cu-Ni
tloušťka (μm) méně než 0,5 2,8 0,5 2,1 0,6 1,9 méně než 0,5 2,0
Tab. 2: Typ a tloušťka intermetalické vrstvy vzniklé mezi niklovým základním materiálem a pájkou.
pájka Sn-Pb Sn-Ag Sn-Cu SAC
podmínky po přetavení stárnuto po přetavení stárnuto po přetavení stárnuto po přetavení stárnuto
vrstva 1 tloušťka typ (μm) Cu6Sn5 0,5 Cu3Sn 2,7 Cu6Sn5 0,5 Cu3Sn 2,2 Cu6Sn5 0,8 Cu3Sn 3,5 Cu6Sn5 0,8 Cu3Sn 2,2
vrstva 2 tloušťka typ (μm) Cu6Sn5 2,7 Cu6Sn5 2,5 Cu6Sn5 2,2 Cu6Sn5 2,2
Tab. 3: Typ a tloušťka intermetalické vrstvy vzniklé mezi měděným základním materiálem a pájkou. Vrstva 1 je blíže měděnému základnímu materiálu. Pro získání celkové tloušťky je potřeba sečíst tloušťku vrstvy 1 a 2 Na obr. 2 je zachycena struktura spoje pájeného pájkou Sn-1Cu po přetavení. Obrázek byl zhotoven pomocí elektronového mikroskopu. Jak je z něj patrné, kromě tenké vrstvy intermetalika Cu6Sn5 (tloušťka je nižší než 1 µm) se objevil také velký krystal stejného složení velký 8 µm. Vzhledem k tomu, že tloušťka vrstvy pájky se pohybuje od 5 µm do 10 µm, se na po-
vrchu objevily oblasti, ve kterých bylo možné tuto fázi pozorovat. Obdobná struktura byla objevena u všech testovaných pájek.
Obr. 2: Výskyt intermetalické fáze Cu6Sn5 ve struktuře spoje po přetavení. Použita pájka Sn-1Cu. Pájky na mědi Po přetavení se na povrchu objevují malé důlky, které signalizují místa, která nebyla pájkou smočena. Mají malé rozměry a jsou viditelné pouze pod mikroskopem. Nejlesklejší povrch s nejmenším počtem takovýchto míst byl v případě pájky Sn-4Ag. Zbylé dvě bezolovnaté pájky měly nesmočená místa poněkud větší a vidět základní měděný materiál bylo možné i s pomocí lupy. V případě pájky Sn-1Cu bylo dno těchto důlku matné. To může signalizovat, že tato místa byla smočená pájkou, ale tloušťka pájky byla natolik tenká, že se celá přetvořila na intermetalikum Cu6Sn5. Nicméně nesmočená místa byla také pozorována. Obě pájky Sn1Cu a Sn-3,8Ag-0,7Cu nemají povrch tak hladký jako Sn-4Ag (a Sn-37Pb). Na obr. 3 je zachycena vnitřní struktura pájeného spoje po přetavení a po stárnutí. Obr. 3A ukazuje vnitřní strukturu ihned po zapájení. V tomto případě sloučenina Cu6Sn5 vyrostla až k povrchu. Přítomnost intermetalické fáze je viditelná na obr. 3B. Tato místa jsou matná a hrubá. Po umělém stárnutí byla na povrchu kromě Cu6Sn5 pozorovaná i Cu3Sn. Tyto intermetalické fáze se od sebe liší (mimo jiné) barvou (viz obr. 3C). Na povrchu vznikla i zrzavá místa, ve kterých se nesmočená místa mísí s Cu3Sn, které navíc mírně zoxidovalo díky vysoké teplotě při stárnutí (obr. 3D). Po stárnutí se markantně změnila kvalita povrchu. Došlo ke zdrsnění a objevila se místa s různým leskem. Tyto oblasti byly detailně zkoumány a zjistilo se, že se jedná o místa, ve kterých se střídá pájka s intermetalickou fázi. Výsledný vizuální efekt je složen z lesku od pájky a matu od Cu6Sn5. Kromě těchto míst byly na povrchu oblasti složené pouze z Cu6Sn5 nebo Cu3Sn. V místech, kde byla tloušťka pájky tenká, je přítomno Cu3Sn – místo je tmavé. Cu6Sn5 dělá povrch šedým. V případě pájek s obsahem stříbra (Sn-4Ag a Sn-3,8Ag-0,7Cu) byly sledovány výstupky na povrchu (obdobně tomu bylo i v případě niklového podkladu viz obr. 4D). Průměr těchto výstupků byl až 20 µm. Tyto výstupky mohou být způsobeny růstem intermetalické fáze, protože nebyly pozorovány u nestárnutých vzorků. Protože byly pozorovány pouze u pájek s obsahem stříbra, mohlo by se jednat o Ag3Sn. Jiné vysvětlení může být takové, že se jedná o zárodky whiskerů.
A: Vnitřní struktura spoje po přetavení.
B: Povrch spoje po přetavení.
C: Vnitřní struktura spoje po stárnutí.
D: Povrch spoje po stárnutí.
Obr. 3: Vnitřní struktura a povrch pájeného spoje po přetavení a po stárnutí. Pájka Sn-1Cu, měděný podklad. Pájky na niklu Povrch všech vzorků ihned po pájení má dobrou kvalitu, je hladký, lesklý a s velmi malým počtem nesmočených míst. Oproti pájení na mědi pájka Sn-37Pb nevyčnívá kvalitou nad ostatními. Jako nejlepší se jeví Sn-1Cu. Pájky Sn-3,8Ag-0,7Cu a Sn-37Pb jsou o trochu horší. Povrch s největším počtem dolíčků byl zjištěn u Sn-4Ag. Je potřeba dodat, že rozměr dolíčků je menší než u měděného podkladu. Na povrchu pájeném Sn-4Ag byla detekována přítomnost intermetalické fáze, může se jednat buď o Ni3Sn4 nebo o Ag3Sn. Vzhledem k tomu, že pozorovaná oblast byla relativně velká, může se jednat o Ni3Sn4, protože při analyzování vnitřní struktury sloučenina Ag3Sn nedosahovala takových rozměrů (viz obr. 4A). Přítomnost intermetalických sloučenin na povrchu nebyla s použitím optického mikroskopu pozorovatelná (maximální zvětšení 7:1). Výrazné změny nastaly po umělém stárnutí. V místech, kde vrstva pájky nebyla dostatečně tlustá, vystoupila intermetalická vrstva až k povrchu. Tím se změnila struktura povrchu od hladké na hrubou. V případě Sn-1Cu a Sn-37Pb byla pozorována místa, kde se intermetalická fáze Ni3Sn4 mísí s původní pájkou. Ve výsledku je méně lesklá než původní pájka. V případě Sn-3,8Ag-0,7Cu a Sn-4Ag se objevily kromě zmíněných oblastí také místa, která se skládala pouze z intermetalické fáze. Typ vzniklé fáze je Ni3Sn4 pro pájku Sn-4Ag a Sn-Cu-Ni (přesné složení nebylo možné určit) pro pájku Sn-3,8Ag-0,7Cu. Obsahovala-li pájka stříbro, byly opět jako v případě měděného podkladového materiálu pozorovány výstupky na povrchu. Byly rozmístěny náhodně. Může se jednat o Ag3Sn. Tvar vzniklého útvaru naznačuje, že krystal Ag3Sn vyrůstá v blízkosti povrchu a nadzvedává pájku
nad sebou. To, že se nejedná na povrchu o intermetalickou sloučeninu, je dáno lesklostí tohoto útvaru. Také by se mohlo jednat o počáteční fázi whiskeru.
A: Vnitřní struktura spoje po přetavení.
B: Povrch spoje po přetavení.
C: Vnitřní struktura spoje po stárnutí.
D: Povrch spoje po stárnutí.
Obr. 4: Vnitřní struktura a povrch pájeného spoje po přetavení a po stárnutí. Pájka Sn-4Ag, niklový podklad. V případě niklového podkladu se na rozhraní pájky a základního materiálu vytváří intermetalikum se 2 rozdílnými morfologiemi. Obě je možné pozorovat na vzorku zároveň (viz obr. 4A a 4C). Na obr. 4A má intermetalická sloučenina hrbolatou strukturu, kdežto na obr. 4C je hladká. Rozdíl by mohl být způsoben krystalickou strukturou. Na obr. 4A by se mohlo jednat o polykrystalickou strukturu, na obr. 4C o monokrystal. Obě dvě morfologie byly sledovány u všech testovaných pájek. 3. Závěr Z výsledků provedených experimentů a pozorování je patrné, že struktura spoje ovlivňuje kvalitu povrchu. Jak po přetavení, tak i, a to zejména, po stárnutí byla objevena místa na povrchu, kde se vyskytovala intermetalická sloučenina. Tloušťka pájky nanesená coby povrchová úprava je srovnatelná s tloušťkou pájky u zkoumaných vzorků. Fakt, že dochází k růstu intermetalických sloučenin, musí být zohledněn při volbě vhodné povrchové úpravy. Mění se nejenom mechanické, ale také optické vlastnosti povrchu. To může způsobit například problémy při optické kontrole správně zapájeného spoje, kdy bude vlivem rozdílné odrazivosti povrchu správně zapájený spoj vyhodnocen jako vadný. 4. Seznam literatury [1] Fields, R, Low, S.: Fyzikální a mechanické vlastnosti intermetalických sloučenin nejčastěji indikovaných v pájeném spoji. http://www.metallurgy.nist.gov, 2007
[2] Databáze vlastností nových bezolovnatých pájek. Národní institut standardů a technologií, http://www.boulder.nist.gov, 2002 [3] Mikulčák, J, et al: Matematické, fyzikální a chemické tabulky pro střední školy. Praha, 1988