( BADAN PESAWAT UDARA )
1
Aircraft Structural Assembly: FUSELAGE / BODY – Daftar isi Umum. Types of Fuselage Construction Fuselage Structural Members Fuselage Structural Elements Methods of Fuselage Construction Location Numbering Systems Fuselage pesawat – masa depan (futuristik) 2
Asal kata FUSELAGE / BODY (Badan Pesawat): FUSELAGE – berasal dari bahasa Perancis “fuselé” ("spindle-shaped“ artinya: berbentuk cerutu) – atau “fuseler” artinya: membuat aerodinamis atau streamline (ramping)
3
FUSELAGE/BODY (Badan Pesawat): • Bentuk dan Ukuran pesawat terbang berbedabeda tergantung Misi-nya pesawat. • Gambar dibawah ini merupakan pesawat terbang bermesin turbin (jet /pancar gas).
Pesawat Transport
Pesawat Militer 4
PENAMPANG FUSELAGE / BODY • Fuselage, atau Badan pesawat terbang, adalah sebuah tabung berrongga yang memegang semua bagian dari pesawat. • Berrongga gunanya untuk mengurangi berat pesawat. • Airliner/ maskapai penerbangan sipil – mempunyai penampang fuselage lebih lebar agar dapat membawa penumpang sebanyak mungkin. • Pesawat tempur supersonic mempunyai fuselage yang sangat ramping, streamlined, untuk mengurangi hambatan (drag) yang berkaitan dengan terbang dengan kecepatan tinggi. 5
PENAMPANG FUSELAGE / BODY • Pada Airliner, • Para Pilot duduk di cockpit di bagian depan fuselage. • Penumpang & barang (kargo) dibawa di bagian belakang dari Fuselage. • Bahan-bakar (fuel) biasanya dimuat di sayap, ada pula rancangan yang memuat BBM di fuselage (mis. Pesawat Fighter). 6
FUSELAGE / BODY
• Untuk Pesawat Tempur (fighter airplane): cockpit – biasanya diatas fuselage, senjata (weapons) – dibawa di sayap (wing); BBM dan mesin pesawat (engines and fuel ) – terdapat dibagian belakang fuselage. 7
FUSELAGE / BODY • Berat (weight) pesawat udara - didistribusikan ke sepanjang pesawat udara tsb. Fuselage, berikut penumpang (pax) dan kargo – merupakan bagian yang berarti dari berat pesawat. • Titik berat (center of gravity) dari pesawat udara – ialah tempat kedudukan rata-rata dari Berat dan biasanya terletak didalam fuselage. • Selama penerbangan, pesawat udara berputar (rotasi) terhadap C.G. (titik beratnya), karena torsi/ puntiran (torque) yang ditimbulkan oleh elevator, rudder, dan ailerons. • Fuselage harus dirancang-bangun cukup kuat agar mampu memikul beban torsi ini. 8
Fuselage (Body) & Fungsinya: FUSELAGE adalah: Badan Pesawat Terbang
yang dirancang untuk Tempat : 1. Pengendalian Pesawat (cockpit / pilot compartment pada Nose Fuselage) 2. Melindungi dan Memuat Penumpang, Barang / cargo (Passenger Cabin dan Cargo compartment), controls, crews (awak pesawat), accessories, dan equipments / peralatan lainnya; 3. Memasang Wing, Tail, dan Landing Gear (Roda Pendarat). {Note: Landing gear dapat pula dipasang di wing}. 1/25/2011
9
Fuselage (Body) & Fungsinya: FUSELAGE /BODY – Fungsinya – (sambungan) : 4. Tempat pemasangan & support bagi Mesin pada single-engine aircraft (pesawat terbang bermesin tunggal). – Pada multi-engine aircraft (pesawat bermesin ganda), engine bisa dipasang di fuselage, atau di wing, atau di tail. • Non-Aerodynamic Surface – bukan penghasil gaya angkat. 1/25/2011
10
Types of Structures - Fuselage
1: Subsonic 2: High-speed / supersonic 3: High-capacity subsonic
4: High-maneuverability supersonic 5: Flying boat 6: Hypersonic 11
Mach Number
Speed of sound at sea level = 340.29 m / s 12
TYPES OF FUSELAGE CONSTRUCTION Ada 3(tiga) Tipe Konstruksi Fuselage, secara
garis besar, yang pernah digunakan, yaitu Tipe Konstruksi : 1. Geodetik atau Geodesik (Geodetic /Geodesic); 2. Rangka batang /Pipa (Truss /Frame Type); 3. Stressed Skin Structures: Monocoque dan Semi-monocoque. Klasifikasi Fuselage berdasarkan Cara Perpindahan Tegangan (stresses) yang diterima oleh strukturnya. 13
TYPES OF FUSELAGE CONSTRUCTION 1. Konstruksi Geodetik (Geodesic atau Geodetic) Geodesic airframe (atau geodetic) – adalah tipe konstruksi untuk rangka pesawat udara, yang : • Menggunakan kerangka ruang (space frame ) yang dibentuk dari bagian struktur pemikul beban, yang dianyam menyilang secara spiral, seperti keranjang / kurungan ayam. • Prinsipnya adalah – dua busur/lengkungan bola dunia (geodesic arcs) berpotongan membentuk suatu permukaan lengkung /curving surface (the fuselage). 14
TYPES OF FUSELAGE CONSTRUCTION 1. Konstruksi Geodetik (Geodesic or Geodetic) – (samb).
Metode Konstruksi Geodesik utk rangka pesawat terbang (airframe) – pertama kali dikembangkan oleh Barnes Wallis, seorang aeronautical engineer dari Inggris, Ter-inspirasi dari pengalaman sebelumnya menggunakan geodesic wiring harness untuk memegang kantong-gas (gasbags) pada konstruksi kapal udara (airship) komersial, yang pernah di-rancangnya, pada masa Perang Dunia (PD)-1 ke PD-2. Konstruksi tipe ini digunakan juga untuk Wing (sayap) pesawat Thalman T-4 . (Lihat skets-berikut). 15
TYPES OF FUSELAGE CONSTRUCTION 1. Konstruksi Geodetik (Geodesic or Geodetic) – (samb). Sekarang, Tipe konstruksi Geodetik – SUDAH TIDAK DIPAKAI LAGI. Karena : Manfaat dari konstruksi geodesic sebagian diimbangi oleh kesulitan memodifikasi struktur fisik pesawat untuk memungkinkan perubahan panjang, profil, bentangan sayap (wing-span), kesulitan inspeksi, dsb. 16
Geodetic Aircraft Structure
17
Geodesic Airframe Kain Linen penutup rangka (doped fabric skin) – terbakar habis sewaktu perang dunia (PD-II), dan pesawat mendarat dengan selamat.
Vickers Wellington Mark X, HE239 'NA-Y', of No. 428 Squadron RCAF; dated 9 April 1943. [Pesawat militer – pembom Inggris. 18
Konstruksi Geodesic Airframe
Bagian dalam Fuselage, dilihat ke-arah belakang.
Detail konstruksi Geodetik – Fuselage (bahan kayu) 19
Vickers Warwick Geodesic fuselage.
Rear Fuselage airframe (Warwick airfraft) terbuat dari 20 konstruksi Geodetik dari bahan Duralumin
TYPES OF FUSELAGE CONSTRUCTION 2. Truss- atau Framework Type – umumnya dipakai untuk pesawat udara ringan (light) dan tidak bertekanan (non-pressurized).
3. Stressed Skin Structure (struktur kulit yang diketatkan /cangkang-tertekan): a. Monocoque (Bhs Perancis: hanya cangkang / “single shell only”)
b. Semi-monocoque ( kulit yang diperkuat / “stiffened shell” ) 21
TYPES OF FUSELAGE CONSTRUCTION 2. Truss Fuselage construction • Pratt truss • Warren truss 3. Stressed-skin Structure • Monocoque • Semi - Monocoque 4. Pressurized Structure 22
TYPES OF FUSELAGE CONSTRUCTION 1. Truss-type Structures • Had struts and wire-braced wings • Occupants sat in open cockpits • Cockpits fabric-covered
2. Stressed-skin Structures (struktur kulit yang diketatkan) • All of the structural loads are carried by the skin. • Thin wood skin • Or aluminum-alloy sheets (skin) 23
•World War I: •metal tube truss construction •Welded thin-walled metal tube • covered with fabric • lighter weight and stronger •Occupants sat in open cockpits
11/7/2016
Author: Harry L. Whitehead
24
•1920s and 30s:
11/7/2016
•Stressed-Skin construction
Author: Harry L. Whitehead
25
1. TRUSS or FRAMEWORK TYPE of Aircraft FUSELAGE CONSTRUCTION •Pratt Truss •Warren Truss
26
Konstruksi Fuselage – tipe Truss: Truss-type fuselage Construction.
Jack Northrop (Lokheed S-1 Racer) 27
1. Truss or Framework -Type • Fuselage dari Struktur pesawat – dapat dianggap sebagai sebuah: – Balok arah memanjang (lengthwise beam) dan – Berpenampang Tabung (tube) atau Cincin (ring or hoop) . • Dalam Teori Balok (beam theory), fuselage di-rancang untuk dapat menahan beban dalam satu bidang atau lebih. • Awalnya, oleh Octave Chanute: 1832-1910, fuselage dirancang berdasarkan teori Balok (beam theory), belajar dari konstruksi jembatan atau rangka batang (braced28 box structure).
1. Truss or Framework -Type • Empat (4) buah Longerons – ditempatkan pada keempat sudut Fuselage , untuk memikul sebagian besar beban Tekan/kompresi & beban Tarik /tensi (compressive & tensile loads). • Kekurangan utama dari struktur rangka batang (Truss) – adalah bentuknya tidak aerodinamis (streamlined shape).
29
1. Truss-or Framework Types of Fuselage Construction • Rigid framework (kerangka yang kaku) terdiri dari beams, struts, bars, dan wires (kawat) untuk menahan deformasi (perubahan bentuk) akibat beban yang bekerja (applied loads). • Open Truss Structure (Rangka Batang) – digunakan pada tipe rancangan (design) pesawat lebih tua – konstruksi-nya terbuat dari kayu (wood), baja (steel), atau pipa (tubing) aluminium. 30
1. Truss-Type Fuselage Frame 1. Truss-Type Fuselage Construction (konstruksi batang) (rangkarangka batang) • Pipa memanjang, disebut longerons, terbuat dari Baja atau Aluminium (steel or aluminum tubing), di las ditempat untuk membentuk kerangka kokoh (wellbraced framework). • Batang penyangga (struts) Vertical dan horizontal – dilas ke longerons menjadi bentuk struktur segitiga atau persegi bila dilihat dari belakang, yang disebut Rangka Batang (trusses). • Tambahan penopang (struts & wires) – diperlukan untuk menahan tegangan yang mungkin datang dari berbagai arah. 31
1. Truss-Type Fuselage Construction (konstruksi rangka batang) • Untuk mengurangi berat maka pesawat kecil menggunakan pipa aluminium (aluminium alloy) yang di rivet atau di-sekrup menjadi satu bagian dengan bagian lain yang berhadapan membentuk rangka / kerangka. • Strength and rigidity (Kekuatan dan Kekakuan/ rigiditas) – diperoleh dari pengelasan pipa-pipa (menyatukan pipa dengan las) tsb. • Truss-framed fuselage (fuselage rangka batang) biasanya dibungkus dengan fabrik/kain dan diberi dope (cairan penguat) untuk memberikan bentuk halus (smooth aerodynamic shape). 32
Structures That Hold People: To protect the crew and passengers, withstand the stresses created in flight and landing, and mount all other major components •Truss •Pratt
•Longerons •Struts •Wire Stays 11/7/2016
Author: Harry L. Whitehead
33
PRATT TRUSS / GIRDER • Pesawat lama/jaman dulu
• Struktur dari Kayu atau Metal • Bobotnya berat • Sulit untuk dibuat “streamline” • Box dengan longerons tubular
(pipa)/atau batang pejal + batang vertikal Diagonal members of tubing or solid rods
WARREN TRUSS
Longerons + only Diagonal Members Force transfer to every others structure Capable to carry tension + compression Reduce amount of webs work More space , strength , rigidity Better streamline Bagian kekuatan utama dari konstruksi rangka Warren adalah 4buah Longeron. 35
Structures That Hold People:
To protect the crew and passengers, withstand the stresses created in flight and landing, and mount all other major components
•Truss •Warren
•Metal Tubing 11/7/2016
Author: Harry L. Whitehead
36
Stringers
Four longerons
Warren Truss Structure of an airplane
2. Stressed Skin Type a) Monocoque b) Semi - Monocoque 38
Stressed – Skin Type Fuselage Construction Rancangan dari Konstruksi Fuselage Type Monocoque (single shell) mengandalkan pada kekuatan skin atau penutup (covering) untuk menahan beban/tegangan utama.
Rancangan (design) ini dapat dibagi menjadi tiga (3) kelas: 1. Monocoque 2. Semi-monocoque, atau 3. Reinforced Shell (cangkang yang diperkuat) • Tipe struktur fuselage yang paling populer /paling banyak digunakan oleh pesawat udara masa kini, adalah: • Monocoque (French for “ single shell ” atau “hanya cangkang”) dan Semi-monocoque. 39
BEDA - Struktur Konstruksi MONO - & SEMI-MONOCOQUE • Monocoque • Virtually no internal framework • (Nyaris tidak ada kerangka didalamnya)
• Semi-monocoque • Internal arrangement of formers and stringers is used to provide additional rigidity and strength to the skin. • (Susunan dalam dari formers dan stringers digunakan untuk memberikan tambahan kekakuan dan kekuatan kepada skin) 40
Stressed – Skin Type Fuselage Construction • Fig.1-3 : Struktur pesawat dengan kulit yang diketatkan , yang pertama kali (The fist stressed-skin a/c structure ) – pada lapisan diluar terbuat dari kayu tipis yang dibentuk dengan cetakan beton (concrete molds).
41
11/7/2016
Author: Harry L. Whitehead
42
MONOCOQUE In this method, the exterior surface of the fuselage is also
the primary structure. A typical early form of this was built using molded plywood. A later form of this structure uses fiberglass
cloth impregnated with polyester or epoxy resin, instead of plywood, as the
skin. 43
MONOCOQUE – Type of Fuselage Construction (Bhs Perancis) Monocoque : artinya Hanya cangkang (shell only)
Rancangan / design monocoque hanya memakai kulit yang diketatkan atau cangkang bertekanan (stressed skin) untuk menahan hampir semua beban-beban primer (twisting dan bending). Struktur ini dapat sangat kuat tetapi tidak dapat menahan penyok atau deformasi pada permukaannya. Ciri khas ini dapat dengan mudah diperagakan oleh kaleng aluminium tipis dari kemasan minuman ringan: y.i. Dengan memberikan gaya yang cukup besar pada ujung-ujungya tanpa menimbulkan kerusakan. 44
MONOCOQUE Type of Fuselage Construction: Tetapi, jika sisi dari kaleng penyok sedikit saja, kaleng tsb akan rusak (collapse) dengan mudah.
Monocoque Structure (Pure) 45
Monocoque Fuselage Construction
Konstruksi Monocoque murni – terutama terdiri dari : Skin, Formers assy, dan Bulkheads. Formers dan Bulkheads memberikan bentuk bagi fuselage, tapi SKIN - pemikul beban / tegangan (stresses) utama. 46
MONOCOQUE Type of Fuselage Construction: • Pure Monocoque shell (Cangkang Monocoque Murni) – adalah sebuah tabung sederhana berdinding tipis yang tak berpenguat (unstiffened thin tube). • Konstruksi ini tidak efisien – karena lembaran dinding tipis yang tidak berpenopang (unsupported thin sheets) adalah tidak stabil terhadap tekanan (kompresi) dan geseran (shear). • Untuk men-support & menstabilkan skin – diperlukan batang penguat / pengaku (stiffening members), frames, bulkheads, stringers dan longerons. • Sejak tahun 1930-an – diperkenalkan struktur konstruksi pesawat udara SEMI-MONOCOQUE. 47
Cara Membangun Struktur Fuselage tipe Semi-monocoque: This is the Preferred method of constructing an all-aluminum
SEMI-MONOCOQUE
fuselage.
1. First, a series of frames in the shape of the fuselage cross sections are held in position on a rigid fixture, or jig. These frames are then joined with lightweight longitudinal elements called
stringers. 2. These are in turn covered with a skin of sheet aluminum, attached by riveting or by bonding with special adhesives.
Most modern large aircraft are built using this technique, but use several large sections constructed in this fashion which are then joined with fasteners to form the complete fuselage.
48
Figure 1-17. The most common airframe construction is semimonocoque.
49
Konstruksi Struktur Fuselage SEMI-MONOCOQUE Type of Fuselage Construction:
Reinforced Shell (Cangkang yang diperkuat - dengan stringers) 50
SEMI–MONOCOQUE Structure
Lightening Holes
Skin & Stringer dari wing dan fuselage: • Fungsi (guna)-nya sama / ekivalen.
Semi-monocoque construction Semi-monocoque structure memakai Substruktur – untuk melekatkan lembaran tipis (skin) pesawat, yang berfungsi sebagai penguat atau pengaku skin: – Arah Memanjang (Longitudinal Stiffening member yang disebut Longeron, jika hanya beberapa, dan Stringers, jika kecil-kecil dan banyak), dan – Bulkheads dan/atau formers : Penguat arah Melintang (Transverse Frames atau Ribs /rusuk) dengan berbagai ukuran – yang gunanya adalah untuk menahan beban-beban geser (Shear), tekan (Compression), dan tarik (Tension). 52
Semi-monocoque construction • Bagian utama (main section) Fuselage juga termasuk tempat sambungan sayap (wing attachment point), dan Firewall. • Pada Pesawat Bermesin- Tunggal, mesin (engine) biasanya dipasang pada bagian depan fuselage. • Terdapat Partisi Anti-api (fireproof partition) antara bagian belakang mesin dan the cockpit atau kabin untuk melindungi Pilot dan Penumpang dari kebakaran mesin yang tidak sengaja. • Partisi ini disebut Firewall dan biasanya terbuat dari bahan tahan panas (heat-resistant material) seperti stainless steel. 53
Semi-monocoque Fuselage construction
54
Fuselage Structures
Monocoque Construction
Semi-monocoque Construction 55
3. Pressurized Fuselage Structure
56
REINFORCED SHELL – construction: • This is the most commonly used structure in modern all-metal aircraft. •The shape is provided by Bulkheads, Formers, and Stringers, but •The structure is reinforced with Longerons that help carry the Loads. •A sheet-metal skin riveted over the structure – carries a major portion of the flight loads.
•Since 1930s: 3. PRESSURIZED FUSELAGE
•High altitude flight
11/7/2016
Author: Harry L. Whitehead
58
3. Pressurization: CABIN PRESSURIZATION — A condition
where pressurized air is forced into the cabin simulating pressure conditions at a much lower altitude and increasing the aircraft occupants comfort.
dmg/Dec/2009
59
3. Pressurization: Bertekanan (Pressurized) – artinya bahwa udara dipompa kedalam kabin sesudah lepaslandas (takeoff) dan ditetapkan perbedaan tekanan antara udara didalam kabin dan udara diluar kabin. • Perbedaan Tekanan Udara ini (disebut pressure differential, ) – diatur dan dipertahankan. dmg/Dec/2009
60
3. Pressurized Aircraft Structure : • Banyak Pesawat modern beroperasi lebih efisien di tempat yang tinggi (high altitudes) dan memiliki laju pendakian dan penurunan yang tinggi (high rate of climb and decent). • Agar penumpang, awak pesawat dan awak kabin dapat berfungsi secara normal di ketinggian, y.i: – Bernafas, tanpa perlu tambahan oksigen (O ) dan – Bergerak leluasa dikabin, tanpa peralatan khusus, dmg/Dec/2009
61
3. Pressurized Aircraft Structure : • Maka kabin harus bertekanan (pressurized).
• Kekurangan oxigen disebut hypoxia, menyebabkan pengurangan kemampuan untuk berkonsentrasi, hilang kesadaran, dan klimaxnya hilang nyawa (kematian).
dmg/Dec/2009
62
Safety & Comfort for High Altitude Flight : • Sampai dengan ketinggian 10.000 ft (≈ 3,3 km) tekanan udara dan jumlah oksigen diudara masih mencukupi untuk manusia untuk beroperasi tanpa banyak masalah. • Diatas ketinggian ini, kekurangan oksigen menjadi nyata. Sistim tekanan udara di Kabin pesawat dirancang untuk menghasilkan kondisi setara dengan atau lebih kurang dari ketinggian 8.000 feet (2,6 km). • Pada kondisi ini penumpang dan awak kabin masih merasa nyaman, tanpa perlu tambahan oxigen. dmg/Dec/2009
63
3. PRESSURIZED FUSELAGE • Fuselage - adalah struktur utama pada pesawat terbang yang memikul Beban Muatan ( Payload, spt: penumpang, barang/cargo); flight crew: (awak pesawat, awak kabin), peralatan, dan accessories. • Struktur pesawat bertekanan (pressurized aircraft structure) – harus mampu memikul Beban dan/atau Tegangan-tegangan Axial dan Hoop. • Tegangan Axial atau Longitudinal terjadi di fuselage yang bertekanan ( presurrized ) yang cenderung memanjangkan struktur fuselage. • Hoop atau Circumferential stresses – terjadi akibat pembebanan internal pressure pada fuselage dan cenderung mengembangkan penampang fuselage kearah radial. dmg/Dec/2009
64
Hoop atau Circumferential stresses
dmg/Dec/2009
65
Hoop (Circumferential) Stress : • adalah Tegangan yang biasanya dirasakan pada dinding suatu struktur seperti tabung (contohnya: fuselage). • Bekerjanya secara tangensial terhadap perimeter (garis keliling) dari bagian yang melintang (transverse section).
1/22/2011
66
Pressurized & Un-pressurized Areas
dmg/Dec/2009
67
FUSELAGE STRUCTURAL ELEMENTS : Detail : a. Pressure Bulkheads b. Keel Beam c. Longeron, dan/ Stringer (kecil-kecil tapi banyak) d. Floor Beam e. Skins /Plates f. Fuselage-to-Wing attach Fittings g. Gear-to-Fuselage attach Fittings h. Door Hinge (on Fuselage) i. Fuselage Panels j. Frames & Bulkheads 68
FUSELAGE STRUCTURAL ELEMENT & Fungsi-Fungsinya: FUSELAGE – terdiri dari : bagian-bagian yang fungsinya hampir sama dengan Wing sub-assy. • Bedanya adalah Pembebanan yang diderita oleh Fuselage: – Beban Tekanan Aerodynamik pada fuselage relatif rendah, – Fuselage men-support berbagai beban terpusat (concentrated loads) yang besar, seperti: reaksi wing, reaksi tail-plane, reaksi Landing gear, payloads, cargo, engine, dll. – Beban internal pressurization di dalam cabin. 1/25/2011
69
FUSELAGE STRUCTURAL ELEMENT & Fungsi-Fungsinya: FUSELAGE sebagai sebuah BEAM – meliputi : – Longitudinal elemen (longerons dan stringers), – Transverse elemen (frames,formers dan bulkheads), dan – Kulit /penutup luarnya (external Skins).
LONGERONS – memikul sebagian besar (mayoritas) Bending Moment dari fuselage, dan – Dibebani oleh gaya axial akibat momen bending.
FUSELAGE SKIN – memikul Gaya Geser (Shear) akibat aplikasi gaya-gaya external transverse dan torsi, dan cabin pressure. (sedangkan di wing dipikul oleh rib dan spar web). STRINGERS – selain menstabilkan skin juga memikul gaya axial akibat momen bending. 70
FUSELAGE STRUCTURE & Fungsi-Fungsinya: FRAMES - ada dua macam, y.i : a. Frame atau Ring / former, dan b. Bulkhead – jika semua atau sebagian besar permukaan-nya tertutup. Lebih tebal & kuat dari ring Contoh: pressure bulkhead.
A. Fungsi Frames – adalah untuk : – Mempertahankan bentuk fuselage (cross sectional shape). – Mentransfer/menyalurkan Beban Lokal (edge-load / local load) yang tinggi ke skin atau shell. – Menjaga agar tidak terjadi general atau overall instability (buckling) seperti halnya ribs pada wing. 1/25/2011
71
FUSELAGE STRUCTURE & Fungsi-Fungsinya: B. Bulkheads – • Sering dibangun sebagai web yang pejal atau tertutup (as solid webs), meskipun web dengan lubang akses atau rangka batang (access holes or trusses) juga digunakan. • Ditempatkan di titik aplikasi beban terpusat, (wing-fuselage attach fittings), L/G attach, dll) Contoh : • Pressure bulkheads, MLG Bulkhead, 1/25/2011
72
(a) Panel Instability
Fig. 11.1.2 Mode shapes for panel & general instability of stiffened cylinder in Bending. 73
(b) General Instability (General Buckling)
Fig. 11.1.2 Mode shapes for panel & general instability of stiffened cylinder in Bending. 74
Two Basic Types of Frames
(a) Former Frame
(b) Bulkhead 75
Fuselage Structural Members / Components & Fungsi-fungsinya
76
Fuselage Structural Members / Components & Fungsi-nya : a) Skin & Stringer dari wing dan fuselage: -fungsi (guna)nya adalah sama / ekivalen. Stringer memperkaku & menopang skin dari tekuk (buckling), sama spt longeron tapi lebih ringan. b) Longeron, dan Stringer : fungsinya mirip dengan wing beam cap (spar flange) dan stringer : memikul beban axial akibat bending; c) Frames: anggota /member yang melintang, biasanya berbentuk ring (gelang) atau hoop (lingkaran) fungsinya untuk – menahan beban shear dan memperkaku & membentuk fuselage. • Di high stress area, frame dipasang dengan jarak yg rapat dan konstruksinya mungkin lebih tebal. 77
Fuselage Structural Members / Components & Fungsi-nya : d) Bulkhead : • Frame utama (mainframe) gunanya untuk menahan beban geser dan memberi bentuk pada fuselage. • Permukaan solid / pejal, tapi mungkin ada pembukaan (cut-out) untuk pintu (door) & hatches. • Sebagai pembatas daerah bertekanan – untuk pesawat bertekanan (pressurized aircraft), y.i. front & rear pressure bulkheads. Bentuknya flat (rata) atau curve (melengkung) untuk menahan internal pressure. Fuselage Frames/ rings/ bulkheads: fungsinya ekivalen dengan ribs di wing; kecuali tekanan udara (air loads) pengaruhnya lebih besar terhadap design wing-rib dari pada thd fuselage. 78
Fuselage Structural Members /Components & Fungsi-nya : Flat Bulkhead
Pressure Bulkhead Dome Type
Typical Pressure Bulkheads 79
Fuselage Structural Members / Components & Fungsi-nya : The Aft Pressure Bulkhead – is a component of all large commercial aircraft. • It is an airtight bulkhead located between the cabin and the tail of the aircraft. • Its purpose is - to seal the rear of the plane and thus maintain cabin pressure, and as such it is a vital part of the aircraft.
80
Aft pressure bulkhead - Boeing 747
The aft end of the interior of NASA's Boeing 747 Shuttle Carrier Aircraft. The aft pressure bulkhead is the white circular component, and its web-like structure led a humorous NASA technician to add 81 a large stuffed spider to the decor.
Fuselage Structural Members / Components & Fungsi-nya :
Fwd Pressure Bulkhead
Aft Pressure Bulkhead
82
Aft pressure bulkhead - Accident • Japan Airlines Flight 123 crashed after a catastrophic failure of the aft pressure bulkhead. • The failure occurred due to faulty repair of the bulkhead, when a double row of rivets was replaced by a much weaker single row. • Failure of the bulkhead damaged hydraulic pipes passing through. 83
Aft pressure bulkhead - Accident Rear pressure bulkhead B747
Diagram of correct and incorrect repairs of (Bulkhead Repair JAL Fl#123) CORRECT Repir
INCORRECT Repair 84
Floor Structures:
85
Floor Structures: On Small aircraft – floors are : • Simply an Al alloy panel riveted to horizontal cross members, and • Strengthen locally to support seats, controls and cockpit equipments, • May be painted black to reduce internal glare, and on some a/c it may be carpeted. The carpet either being a close fit, or fitted with press studs, or bonded to the floor panel.
Floor Structures: On Larger aircraft – The Floor – : • Is the structure separating the Cabin area from the Baggage area or Cargo hold. This means that – it may nor have additional supports over much of its width from wall-to-wall. • Subjects to considerable bending stress. • May be made of Aluminum alloy or Carbon Fiber (CF) composite or metal honeycomb. This gives the floor reasonable thickness ( to resist bending loads) and to support it on cross-members (beams) usually made of Aluminum alloy. • Usually of I – section, or made up of : top & bottom members separated by web members.
Floor Structures:
Transport Passenger Flooring
Floor Structures: For Passenger aircraft – The floor : • Will house seat rails, and have provision for the fitting of carpets. On Pressurized a/c – the floor area/side wall area contain pressure equalization holes/vents (dado panels), to allow pressure to equalize between the Pax area and cargo bay – area. • Has emergency lighting fitted to assist pax crawling to an exit – in a smoke filled cabin (some a/c have emergency lighting is fitted to isle seats.
Pressure equalization holes/vents (dado panels)
Floor Structures: Fitted to the underside of Floor Structure : • Equipment cables, ducting, control cables, pipelines, electrical cables, smoke detectors, and fire proofing (mandatory for cargo bays).
Methods of Fuselage Construction • Cara Pembuatan (Construction) Struktur Fuselage ada beberapa macam, contohnya : – Modular / sectional – Panelisasi (Panelization)
• Modular /sectional : setiap modul dibuat (manufaktur) tersendiri dan kemudian digabungkan (di rakit /-assembled); • Panelisasi : Panel skin & stringers dibuat & di-subassy lebih dulu, kemudian di gabungkan dengan frames, bulkheads, dst. 93
Methods of Fuselage Construction • Cara Pembuatan (Design & Construction) Struktur Fuselage – dibagi menjadi beberapa section (modul), tergantung ukurannya. – Seperti : Nose Section, Forward Section, Center / Mid Section, Rear /Aft Section.
• Pada pesawat kecil – umumnya dibagi menjadi dua atau tiga section (bagian). • Pesawat lebih besar – terdiri dari beberapa bagian s/d enam bagian /section/module. 94
Methods of Fuselage Construction
Gambar 2.
Struktur Pesawat Bermesin-Ganda, Turbine-powered 95
MANUFACTURING WORK SHARING WING BODY FAIRING V. STABILIZER
O. WING
RUDDER DORSAL FIN END CONE
INBOARD FLAP R. FUSELAGE
ENGINE
ELEVATOR
REAR CONE PORT DOOR RAMP DOOR
C. FUSELAGE CREW DOOR NOSE FUSELAGE
IPTN (PTDI)
LH. OUTBOARDFLAP C. WING LH. AILERON
NOSE RADOME
CASA
O. WING BOX WING TIP
NOSE L / GEAR MAIN L / GEAR
IPTN / CASA
LH. O.W L. EDGE
MAIN L / G FAIRING
96
Methods of Fuselage Construction
97
Methods of Fuselage Construction
Struktur Fuselage Pesawat Kecil – dua sampai tiga section /modul 98
Radome
Radar
Fig.11.7.17 (b):
B747F – Door in Fuselage Nose
100
Nose Loading Design - Cargo
Frame / Former
Front Pressure Bulkhead 102
Wing – Fuselage Intersections / Attachments : Configurations of Wing (Mainplane) and Fuselage Intersection: (a) High Wing: – Wing-to-fuselage joined by Truss Links ; – Carry – through Section
(b) Low Wing: Carry – through Section (c) Mid Wing: Carry – through Section (d) Mid Wing : integral unit of fuselage bulkhead and wing spar.
Wing – Fuselage Intersections
(a) High wing
(c) Mid-wing
(b) Low wing
(d) Mid-wing
Figure: The vertical location of the wing relative to the fuselage
104
Wing & Fuselage Intersections (a) HIGH WING
105
(a) HIGH WING
MLG Bulkhead
Center Fuselage Floor Panel 106
HIGH WING
Retaining Cap
Frame of Body Sleeve Bearing
Lock Clamp
Wing/Body
Rear Attachments
Lock Clamp Sleeve Bearing
A
Method of Attachment
Rear Fitting
Wing/Body Forward Attachments
Forward Fitting
Wing /Body Joint 107
Fuselage Center Section (b) Low Wing • Following Figure shows the fuselage center section floor beams (at the intersection of wing and fuselage) – which is typical for passenger transport airplanes. • Because of the wing box, all floor beams are running longitudinally, which not only support floor Loads but also stabilize the wing upper cover panels. • Seat tracks are installed right on top of these beams and also act as beam caps. 108
Wing – Fuselage Intersections (b) Low Wing
Fuselage Center Section
109
Wing & Fuselage Intersections (c) Mid Wing
110
Mid Wing and Fuselage Connection (d) Mid Wing
111
Typical Transport KEEL beam Location & its Function • Shown in Figure below : – Wing box (center section) goes through the middle of fuselage; – Main landing gear wheel well area is provided in the fuselage where the gears can be retracted into the fuselage;
• The load carried by the lower half of the fuselage skin/stringer panel in the forward and aft fuselage is concentrated in large longitudinal members (called keel beam longerons). 112
Typical Transport Keel beam Location & its Function Keel Beam (or Keelson beam) – is the most highly loaded structure in the fuselage and is designed for: • Transporting low-wing airplane Loads, • Carrying large Fuselage bending moment which occurs in the MLG wheel well area where the lower half of the skin/stringer panel is missing. 113
Typical Transport Keel beam Location & its Function
114
Fig. 11.5.11 Triangular Torque Box Keel beam Design with Breather Web
Breather Web
115
REAR FUSELAGE
116
AIRCRAFT GENERAL DESCRIPTION
REAR CARGO / RAMP DOORS
Ventral Door
Ramp Door 117
Vertical Stabilizer – Aft Fuselage Intersections
Fig. 11.6.3
Configurations of Vertical Stabilizer (Fin) and Aft Fuselage Intersection:
Vertical Stabilizer – Aft Fuselage Intersections
Fig. 11.6.3
Configurations of Vertical Stabilizer (Fin) and Aft Fuselage Intersection:
Empennage – Aft Fuselage Intersections Configurations of Horizontal Stabilizer (Tailplane) and Aft Fuselage Intersection: (a) Permanently fixed Mount (b) Variable – incidence Mount (c) All-moving Tail (Flying Tail) Transport (d) Flying Tail or Taileron Mount – Fighter a/c
Horiz. Stab – Aft Fuselage Intersections
Fig. 11.6.1
Configurations of Horizontal Stabilizer (Tailplane) and Fuselage Intersection:
Penampang FUSELAGE / BODY : • Airliner/ maskapai penerbangan sipil mempunyai penampang fuselage yang lebih lebar agar dapat membawa penumpang sebanyak mungkin. • Pada airliner, para pilot duduk di cockpit di bagian depan fuselage. Penumpang & cargo (barang) dibawa di bagian belakang dari Fuselage. • Bahan bakar (fuel) – biasanya disimpan di wing. 122
Untuk Pesawat Tempur (fighter plane): cockpit biasanya terletak diatas fuselage, senjata (weapon) dibawa di Wing. Mesin dan bahan bakar minyak (BBM) ditempatkan pada fuselage bagian belakang . 123
Penampang (cross-section) Fuselage
124
Penampang Mil Cargo Transport
125
Penampang (cross-section) Fuselage
126
AIRCRAFT GENERAL DESCRIPTION
INTERIOR ARRANGEMENT
127
Cockpit Boeing B-777
Fly-by-wire Fight Flight Control System, LCD monitor 128
Windshields
Windows
129
Tail Skid • A high energy absorbing aircraft tail skid assembly for protecting an aircraft fuselage lower skin portion from damage in the event of a tail strike due to over rotation on take-off of the aircraft. • Fitted to some wheeled aircraft – to prevent damage to the rear fuselage during high noseup attitude take-off or landing 130
Tail Skid 10 – Tail skid assembly 12 –The fuselage 30 – Skid shoe
131
Tail Skid
Image: Boeing 737-900 with a tail-skid which acts like a bumper. 132
An example of major tail-strike incident This incident was the result of the first officer mistakenly entering an aircraft weight figure 100 tonnes lighter than that of the aircraft into his take-off speed calculations. The captain then failed to pick up the error when he checked the calculation, the second officer did not check it and all three pilots failed to notice the difference between their own calculation and that of the flight management computer. As a result, the captain "rotated" the plane to a takeoff angle at 123 knots (221km/h) rather than the correct 151 knots (272km/h). With the plane failing to take off, it tilted 4 degrees more than normal, resulting in its tail striking the runway and dragging for 490m. Source: Singapore Airlines tail-strike incident blamed on pilots - National - NZ Herald News
Image: Major tail-strike damages to 133 a Singapore airlines B747.
134
Aircraft Interior: Passenger Cabin
Delta Airlines : Aircraft Interior Boeing 737-800 aircraft, (a/c capacity 160 seats), Coach class with audio/video entertaintment system 135
A Brand-new Airbus A320 from Virgin America, had mood lighting and in-seat entertainment centers 136
Business Jet Aircraft Interior
137
Aircraft Pax Seat
138
Business Class Cabin
Seat belt
Galley & Lavatory
140
Lavatory
The galley
Different parts of the aircraft A310
Sink /wash basin cockpit
overhead stowage bins
142
A380 Luxurious Interior
First Class Cabin –A380
The Spiral Staircase
Upper Deck A380
cabin floor space.
duty-free shop, onboard
Flight Deck & Passenger Cabin Window Flight Deck Windows / Windshields – fitted to pressurized aircraft must withstand both: – Pressrization Loads, and – Impact Loads from Bird-strikes. • § 25. 571(e): The aircraft, and therefore by implication the windscreen, must be capable of continued safe flight and landing after impact with a 4 lb (2 kg) bird when the velocity of the aeroplane is equal to Vc (design cruise speed) at sea level, or 0,85 Vc at 8000 ft, which ever is the most critical, i.e. The windscreen must be able to withstand impact under these conditions without penetration. 148
Flight Deck & Passenger Cabin Window Passenger Cabin Windows – are : – Designed to be “fail-safe” and – Normally have two panes of acrylic plastic mounted in an airtight rubber seal into a metal window frame. – The inner and outer panes are each capable of taking the full cabin pressurization load. If one panel fails the other will prevent loss of cabin pressure.
149
Pax Cabin Window
150
Airframe Location Numbering Systems Sistem Penomoran Lokasi Kerangka Pesawat Terbang
151
Location Numbering Systems Typically used by many a/c manufacturers : 1. Fuselage Stations (Fus.Sta atau F.S) 2. Buttock Line atau Butt Line (B.L) 3. Water Line (W.L) 4. Aileron Station (A.S) 5. Flap Station (F.S) 6. Nacelle Station (N.C atau Nac.Sta) (see definitions in AC 65-15A, Ch.1, pg: 6. For another’s a/c numbering systems ref. to manufacturer’s SRMs) 152
Typical station diagram Figure 1-4: berbagai Fuselage Stations pada pesawat terbang corporate jet.
Figure 1-8: Fuselage Stations
153
Location Numbering Systems :
154
Location Numbering Systems :
155
Location Designation
156
Location Numbering Systems • A method of locating components on a/c must be established in order that maintenance & repairs can be carried out. • This is done by identifying reference lines and station numbers for fuselage, wing, empennage, etc. • Station numbers (Sta) and and waterlines (WL) are a means of locating airframe structures and components. 157
Location Numbering Systems Fuselage Station Lines – are determined by reference to a zero datum line (fuselage station 0.00) at or near the forward portion of the a/c as defined by the manufacturer. • Station numbers - are given in inches (mm) : – Forward (negative and given “–” or “minus” sign) or – Aft (positive with a “+” or plus” sign) of the zero datum. Station numbers (Sta) and and waterlines (WL) are a means of locating airframe structures and components. 158
Location Numbering Systems Typically used by many a/c manufacturers : 1. Fuselage Stations (Fus.Sta atau F.S) 2. Buttock Line atau Butt Line (B.L) 3. Water Line (W.L) 4. Aileron Station (A.S) 5. Flap Station (F.S) 6. Nacelle Station (N.C atau Nac.Sta) (For another’s a/c numbering systems ref. to manufacturer’s SRMs) 159
Location Numbering Systems – Definitions
Typically used by many a/c manufacturers : (see definitions in AC 65-15A, Ch.1, pg: 6. For another’s a/c numbering systems ref. to manufacturer’s SRMs)
1. Fuselage Stations (Fus.Sta. atau F.S.) or Body Station (B.S) - are:
Numbered in inches (or mm) from a ref. or zero point – known as a ref. Datum;
2. Buttock atau Butt Line (B.L.) – is : a width measurement Left or Right of, and parallel to, the vertical center line, 3. Water Line (W.L.) – is : the measurement of height in inches (or mm) perpendicular from a horizontal plane located a fixed number of inches below the bottom below the bottom of a/c fuselage. 160
Location Numbering Systems – Definitions Typically used by many a/c manufacturers : (see definitions in AC 65-15A, Ch.1, pg: 6. For another’s a/c numbering systems ref. to manufacturer’s SRMs)
4. Aileron Station (A.S.) – is measured outward from, & parallel to, the inboard edge of the aileron, perpendicular to the rear beam of the fuselage. 5. Flap Station (F.S) – is measured perpendicular to rear beam of the wing, and parallel to, and outboard from the inboard edge of the flap. 6. Nacelle Station (N.C atau Nac.Sta.) – is measured either forward of, or behind the front spar of, the wing and perpendicular to the designated water line. 161
FUSELAGE STRUCTURE
Jumlah Frames: 51 buah 162
163
Fatigue Critical Area
164
Aloha Fuselage – Kerusakan akibat Fatigue
•Aloha Airlines “Patio Seating” Boeing 737-297 •April 28, 1988
165
166
Dornier Do X, Kapal yang dapat Terbang Sejarah penerbangan mencatat Dornier Do X buatan Lufthansa, sebuah flying super-boat yang berangkat dari ide pulp-fiksi yaitu kapal laut yang dapat terbang. ‘Kapal’ yang benar-benar terbang ini dibuat di Jerman pada tahun 1929 dan dijuluki Flugschiff. Dengan 14 orang awak dan kapasitas lebih dari 100 penumpang menjadikan ‘kapal’ ini paling kuat dan besar di dunia pada saat itu.
seorang insinyur Jerman sedang mengoperasikan dua belas mesin Flugschiff
Pengembangan Pesawat Masa Depan (Future A/c Development)
169
Future A/c Development – 2050* • Airbus Industrie – mengumumkan di ajang Paris Airshow, Juni 2011, konsep design pesawat penumpang masa depan (futuristik) dengan material yang tengah di-riset/kembangkan: – Dinding fuselage yang transparan, terbuat dari bahan: biopolymer membrane (yang dapat mengatur takaran cahaya, kelembaban dan suhu udara di-kabin yang kira-kira pas untuk penumpang). – Kursi penumpang (pax seat): terbuat dari morphing material atau bionic structure, dilengkapi dengan sirkuit elektronik pengingat (memory) – merekam data bentuk permukaan kursi yang disukai penumpang. *Ref. Majalah Angkasa, no. 12/12-9-2011 170
Transparan Fuselage masa depan (th 2050)
Ref. Majalah Angkasa, no. 12/12-9-2011 171
Transparan Fuselage masa depan (2050)
Ref. Majalah Angkasa, no. 12/12-9-2011
172
Transparan Fuselage masa depan
173
Pax Seat – masa depan (AIRBUS) Kursi Pintar : • Karena Kursi merupakan segalany bagi penumpang, maka Airbus menanam sejumlah s/w: • Kursi (bionic structure) terbuat dari morphing material– yang bentuknya bisa menyesuaikan diri dgn bentuk rebahan yang disukai. • Kursi juga bisa mengenali penumpangnya. 174
Transparan Fuselage masa depan
175
Fasten Seat Belt !
176
Airplane hogging 177
Hogging and Sagging HOGGING • Under hogging action the risers are in compression, preventing shear forces on the hull planking and the subsequent leakage. • Note the deliberate use of compression rather than tension to absorb the troublesome hogging loads. 178
Hogging and Sagging • SAGGING • Sagging is a complete reversal of hogging loads, the risers now in tension. Sagging is generally less critical than hogging since the massive keel carries tension better than the deck.
179
Beban yang ini - tidak diperhitungkan dalam Design
Amphibious aircraft
Canadair CL-415 seaplane with retractable wheels, Ontario, c. 2007 181
Amphibious aircraft • An amphibious aircraft or amphibian is an aircraft that can take off and land on either land or water. • Fixed-wing amphibious aircraft are seaplanes (flying boats and floatplanes) that are equipped with retractable wheels, at the expense of extra weight and complexity, plus diminished range and fuel economy compared to planes designed for land or water only. • Some amphibians are fitted with reinforced keels which act as skiis, allowing them to land on snow or ice with their wheels up and are dubbed Triphibians. 182
Fungsi – Fuselage (Body) : Yang termasuk: – Crews {Awak pesawat terbang adalah: Flight Crews & Cabin Crews/Flight Attendants} dan – Payloads {y.i.: penumpang (passengers / pax), kargo, senjata (weapons), atau bahan bakar (fuel)}.
183
Abbreviation & DEFINITION • Bulkheads - Are frequently constructed as solid webs, although webs with access holes or trusses may be used. (wing rib); • Airliner: Maskapai penerbangan sipil;
184
185