Turunan Fungsi Aljabar A. Turunan sebagai Limit Fungsi
π(π‘)
βπ‘ = π‘2 β π‘1 jika dan hanya jika π‘2 = βπ‘ + π‘1 π= = =
π(π‘2 )βπ(π‘1 ) π‘2 βπ‘1 π(βπ‘+π‘1 )βπ(π‘1 ) βπ‘ π(βπ‘+π‘1 )βπ(π‘1 )
= lim
, karena melengkung maka
βπ‘ π(βπ‘+π‘1 )βπ(π‘1 ) βπ‘
βπ‘β0
= πβ²(π‘1 ) π = lim
π(βπ₯+π₯)βπ(π₯)
βπ₯β0
βπ₯
= πβ²(π₯) πβ²(π₯) = lim
βπ₯β0
π(βπ₯+π₯)βπ(π₯) βπ₯
Definisi (Pengertian) Misalkan fungsi π: π β π
dan π β π
, maka fungsi π dapat diturunkan di titik π₯ jika π(βπ₯+π₯)βπ(π₯) ππ(π₯) ππ¦ dan hanya jika lim ada. Turunan dapat dinotasikan πβ²(π₯), π¦β², ππ₯ , atau ππ₯ . βπ₯ βπ₯β0
Contoh: Jika diketahui π(π₯) = 3π₯ 2 , maka tentukan πβ²(π₯)! Diketahui: π(π₯) = 3π₯ 2 Ditanya: πβ²(π₯) ? Jawab: π(π₯) = 3π₯ 2 π(βπ₯) = 3(βπ₯)2 π(π₯ + βπ₯) = 3(π₯ + βπ₯)2
1
π(βπ₯ + π₯) β π(π₯) βπ₯β0 βπ₯ 3(π₯+βπ₯)2 β3π₯ 2 = lim βπ₯
πβ²(π₯) = lim
βπ₯β0
= lim
βπ₯β0
= lim
βπ₯β0
= lim
βπ₯β0
= lim
βπ₯β0
= lim
βπ₯β0
= lim
βπ₯β0
= lim
βπ₯β0
3(π₯+βπ₯)(π₯+βπ₯)β3π₯ 2 βπ₯ 3(π₯ 2 +2π₯βπ₯+βπ₯ 2 )β3π₯2 βπ₯ 3π₯ 2 +6π₯βπ₯+3βπ₯ 2 β3π₯ 2 βπ₯ 3π₯ 2 β3π₯ 2 +6π₯βπ₯+3βπ₯ 2 βπ₯ 6π₯βπ₯+3βπ₯ 2 βπ₯ βπ₯(6π₯+3βπ₯) βπ₯ 6π₯+3βπ₯ 1
= lim 6π₯ + 3βπ₯ βπ₯β0
= 6π₯ + 3(0) = 6π₯ Jadi, πβ²(π₯) = 6π₯ B. Turunan Fungsi Aljabar Teorema (Penjabaran dari definisi) Jika π(π₯) = ππ₯ π , maka πβ²(π₯) = πππ₯ πβ1 Bukti: Misal: π(π₯) = ππ₯ π πβ²(π₯) = π lim [
π(βπ₯+π₯)π βπ(π₯)π βπ₯
βπ₯β0
π₯ π +ππ₯ πβ1 βπ₯+
= π lim [
]
π(πβ1) πβ2 π₯ βπ₯ 2 +β―+ππ₯βπ₯ πβ1 +βπ₯ π βπ₯ π 2
βπ₯
βπ₯β0
π₯ π βπ₯ π +ππ₯ πβ1 βπ₯+
= π lim [
π(πβ1) πβ2 π₯ βπ₯ 2 +β―+ππ₯βπ₯ πβ1 +βπ₯ π 2
βπ₯
βπ₯β0
ππ₯ πβ1 βπ₯+
= π lim [
π(πβ1) πβ2 π₯ βπ₯ 2 +β―+ππ₯βπ₯ πβ1 +βπ₯ π 2
βπ₯
βπ₯β0
βπ₯(ππ₯ πβ1 +
= π lim [
βπ₯
ππ₯ πβ1 +
= π lim [
π(πβ1) πβ2 π₯ βπ₯+β―+ππ₯βπ₯ πβ2 +βπ₯ πβ1 2
1
βπ₯β0
= π lim [ππ₯ πβ1 + βπ₯β0 πβ1
= π [ππ₯
= π[ππ₯ πβ1 ] = πππ₯ πβ1 = πππ₯ πβ1
+
]
]
π(πβ1) πβ2 π₯ βπ₯+β―+ππ₯βπ₯ πβ2 +βπ₯ πβ1 ) 2
βπ₯β0
]
]
]
π(πβ1)
π₯ πβ2 βπ₯ + β― + ππ₯βπ₯ πβ2 + βπ₯ πβ1 ] 2 π(πβ1) πβ2 π₯ (0) + β― + ππ₯(0)πβ2 + (0)πβ1 ] 2
Contoh: Jika diketahui π(π₯) = 3π₯ 2 , maka tentukan πβ²(π₯)! Diketahui: π(π₯) = 3π₯ 2 2
Ditanya: πβ²(π₯) ? Jawab: π(π₯) = 3π₯ 2 πβ²(π₯) = 2 β
3π₯ 2β1 = 6π₯ Jadi, πβ²(π₯) = 6π₯ C. Operasi Turunan 1) Penjumlahan Turunan Teorema (Penjabaran dari definisi) Jika π(π₯) + π(π₯), maka πβ²(π₯) + πβ²(π₯) Bukti: Misal: π¦ = π(π₯) + π(π₯) {π(βπ₯+π₯)βπ(π₯)}+{π(βπ₯+π₯)βπ(π₯)} π¦ β² = lim [ ] βπ₯ βπ₯β0
π¦ β² = lim [ βπ₯β0
π¦ β² = lim [
π(βπ₯+π₯)βπ(π₯) βπ₯ π(βπ₯+π₯)βπ(π₯) βπ₯
βπ₯β0
+
π(βπ₯+π₯)βπ(π₯)
] + lim [ βπ₯β0
π¦ β² = πβ²(π₯) + πβ²(π₯)
]
βπ₯ π(βπ₯+π₯)βπ(π₯) βπ₯
]
Contoh: Jika diketahui π(π₯) = 3π₯ 2 dan π(π₯) = 2π₯ 2 , maka tentukan πβ²(π₯) + πβ²(π₯)! Diketahui: π(π₯) = 3π₯ 2 π(π₯) = 2π₯ 2 Ditanya: πβ²(π₯) + πβ²(π₯) ? Jawab: π(π₯) + π(π₯) = 3π₯ 2 + 2π₯ 2 πβ²(π₯) + πβ²(π₯) = 2 β
3π₯ 2β1 + 2 β
2π₯ 2β1 = 6π₯ + 4π₯ = 10π₯ Jadi, πβ²(π₯) + πβ²(π₯) = 10π₯ 2) Pengurangan Turunan Teorema (Penjabaran dari definisi) Jika π(π₯) β π(π₯), maka πβ²(π₯) β πβ²(π₯) Bukti: Misal: π¦ = π(π₯) β π(π₯) {π(βπ₯+π₯)βπ(π₯)}β{π(βπ₯+π₯)βπ(π₯)} π¦ β² = lim [ ] βπ₯ βπ₯β0
β²
π¦ = lim [ βπ₯β0
π¦ β² = lim [ β²
βπ₯β0
π(βπ₯+π₯)βπ(π₯) βπ₯ π(βπ₯+π₯)βπ(π₯) βπ₯
β
π(βπ₯+π₯)βπ(π₯)
]
βπ₯ π(βπ₯+π₯)βπ(π₯)
] β lim [ βπ₯β0
βπ₯
]
π¦ = πβ²(π₯) β πβ²(π₯) Contoh: Jika diketahui π(π₯) = 3π₯ 2 dan π(π₯) = 2π₯ 2 , maka tentukan πβ²(π₯) β πβ²(π₯)! Diketahui: π(π₯) = 3π₯ 2 π(π₯) = 2π₯ 2 Ditanya: πβ²(π₯) β πβ²(π₯) ? 3
Jawab: π(π₯) β π(π₯) = 3π₯ 2 β 2π₯ 2 πβ²(π₯) β πβ²(π₯) = 2 β
3π₯ 2β1 β 2 β
2π₯ 2β1 = 6π₯ β 4π₯ = 2π₯ Jadi, πβ²(π₯) β πβ²(π₯) = 2π₯ 3) Perkalian Turunan Teorema (Penjabaran dari definisi) Jika π(π₯) β
π(π₯), maka [π(π₯) β
π(π₯)]β² = πβ²(π₯)π(π₯) + π(π₯)πβ²(π₯) Bukti: Misal: π¦ = π(π₯) β
π(π₯) π(βπ₯+π₯)β
π(βπ₯+π₯)βπ(π₯)β
π(π₯) π¦ β² = lim [ ] βπ₯ βπ₯β0
β²
π¦ = lim [ βπ₯β0
π¦ β² = lim [ βπ₯β0
π¦ β² = lim [ βπ₯β0
π¦ β² = lim [
π(βπ₯+π₯)β
π(βπ₯+π₯)+0βπ(π₯)β
π(π₯)
]
βπ₯ π(βπ₯+π₯)β
π(βπ₯+π₯)βπ(βπ₯+π₯)β
π(π₯)+π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)
βπ₯ {π(βπ₯+π₯)β
π(βπ₯+π₯)βπ(βπ₯+π₯)β
π(π₯)}
βπ₯ βπ₯β0 π(βπ₯+π₯)β
π(βπ₯+π₯)βπ(βπ₯+π₯)β
π(π₯)
π¦ β² = lim [ βπ₯β0
π¦ β² = lim [ βπ₯β0
π¦ β² = lim [ βπ₯β0
π¦ β² = lim [
]
βπ₯ {π(βπ₯+π₯)β
π(βπ₯+π₯)βπ(βπ₯+π₯)β
π(π₯)}+{π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}
βπ₯ π(βπ₯+π₯){π(βπ₯+π₯)βπ(π₯)}
+
βπ₯ π(βπ₯+π₯){π(βπ₯+π₯)βπ(π₯)} βπ₯ π(βπ₯+π₯){π(βπ₯+π₯)βπ(π₯)}
βπ₯β0
βπ₯
π¦ β² = lim [π(βπ₯ + π₯)] lim [ βπ₯β0
+
+
+
βπ₯ {π(βπ₯+π₯)βπ(π₯)}π(π₯)
]
]
]
βπ₯ π(π₯){π(βπ₯+π₯)βπ(π₯)}
βπ₯β0 π(βπ₯+π₯)βπ(π₯) βπ₯
π¦ β² = π(π₯)πβ²(π₯) + π(π₯)πβ²(π₯) π¦ β² = π(π₯)πβ²(π₯) + π(π₯)πβ²(π₯) π¦ β² = πβ²(π₯)π(π₯) + π(π₯)πβ²(π₯)
{π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}
βπ₯ π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)
]
] + lim [
βπ₯β0
]
βπ₯ π(π₯){π(βπ₯+π₯)βπ(π₯)} βπ₯
]
] + lim [π(π₯)] lim [ βπ₯β0
βπ₯β0
π(βπ₯+π₯)βπ(π₯) βπ₯
]
Contoh: Jika diketahui π(π₯) = 3π₯ 2 dan π(π₯) = 2π₯ 2 , maka tentukan [π(π₯) β
π(π₯)]β²! Diketahui: π(π₯) = 3π₯ 2 π(π₯) = 2π₯ 2 Ditanya: [π(π₯) β
π(π₯)]β² ? Jawab: [π(π₯) β
π(π₯)]β² = πβ²(π₯)π(π₯) + π(π₯)πβ²(π₯) = (2 β
3π₯ 2β1 )(2π₯ 2 ) + (3π₯ 2 )(2 β
2π₯ 2β1 ) = (6π₯)(2π₯ 2 ) + (3π₯ 2 )(4π₯) = 12π₯ 3 + 12π₯ 3 = 24π₯ 3 Jadi, [π(π₯) β
π(π₯)]β² = 24π₯ 3
4
4) Pembagian Turunan Teorema (Penjabaran dari definisi) π(π₯) π(π₯) πβ²(π₯)π(π₯)βπ(π₯)πβ²(π₯) Jika π(π₯), maka [π(π₯)] β² = [π(π₯)]2 Bukti: π(π₯) Misal: π¦ = π(π₯) π(βπ₯+π₯) π(π₯) β π(π₯)
π¦ β² = lim [π(βπ₯+π₯) βπ₯ βπ₯β0
β²
π¦ = lim [
π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯) π(βπ₯+π₯)β
π(π₯)
βπ₯
βπ₯β0
π¦ β² = lim [
] ]
π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)
π(βπ₯+π₯)β
π(π₯) βπ₯β0 π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)
π¦ β² = lim [ βπ₯β0
π¦ β² = lim [ βπ₯β0
β²
π¦ = lim [
βπ₯ π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)
β
1 βπ₯
] 1
β
π(βπ₯+π₯)β
π(π₯)] 1
] lim [π(βπ₯+π₯)β
π(π₯)]
βπ₯ βπ₯β0 π(βπ₯+π₯)β
π(π₯)+0βπ(π₯)β
π(βπ₯+π₯)
βπ₯β0
1
] lim [π(βπ₯+π₯)β
π(π₯)]
βπ₯
βπ₯β0
π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)+π(π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯) 1 ] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯β0 βπ₯β0 {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}+{π(π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)} 1
π¦ β² = lim [ π¦ β² = lim [
] lim [
π¦β² = π¦β² = π¦β² = π¦β² = π¦β² = π¦β² =
π¦ β² = [ lim [
π(βπ₯+π₯)βπ(π₯) βπ₯
βπ₯β0
] lim [π(π₯)] β lim [π(π₯)] lim [ βπ₯β0
βπ₯β0
1
βπ₯β0
π(βπ₯+π₯)βπ(π₯) βπ₯
]] lim [
1
βπ₯β0 π(βπ₯+π₯)β
π(π₯)
π¦ β² = [πβ²(π₯)π(π₯) β π(π₯)πβ²(π₯)] π(π₯)β
π(π₯) 1
π¦ β² = [πβ²(π₯)π(π₯) β π(π₯)πβ²(π₯)] [π(π₯)]2 π¦β² = Contoh:
]
βπ₯ βπ₯β0 π(βπ₯+π₯)β
π(π₯) {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}β{βπ(π₯)β
π(π₯)+π(π₯)β
π(βπ₯+π₯)} 1 lim [ ] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯β0 βπ₯β0 {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}β{π(π₯)β
π(βπ₯+π₯)βπ(π₯)β
π(π₯)} 1 lim [ lim [ ] ] βπ₯ βπ₯β0 βπ₯β0 π(βπ₯+π₯)β
π(π₯) {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)} {π(π₯)β
π(βπ₯+π₯)βπ(π₯)β
π(π₯)} 1 lim [ β ] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯ βπ₯β0 βπ₯β0 π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯) π(π₯)β
π(βπ₯+π₯)βπ(π₯)β
π(π₯) 1 lim [ β ] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯ βπ₯β0 βπ₯β0 {π(βπ₯+π₯)βπ(π₯)}π(π₯) π(π₯){π(βπ₯+π₯)βπ(π₯)} 1 lim [ β ] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯ βπ₯β0 βπ₯β0 {π(βπ₯+π₯)βπ(π₯)}π(π₯) π(π₯){π(βπ₯+π₯)βπ(π₯)} 1 β lim [ lim [ ] [ ]] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯ βπ₯β0 βπ₯β0 βπ₯β0 βπ₯β0
πβ²(π₯)π(π₯)βπ(π₯)πβ²(π₯) [π(π₯)]2 π(π₯)
Jika diketahui π(π₯) = 3π₯ 2 dan π(π₯) = 2π₯ 2 , maka tentukan [π(π₯)] β²!
Diketahui: π(π₯) = 3π₯ 2 π(π₯) = 2π₯ 2 π(π₯) Ditanya: [π(π₯)] β² ?1 π(π₯)
Jawab: [π(π₯)] β² = = = =
πβ²(π₯)π(π₯)βπ(π₯)πβ²(π₯) [π(π₯)]2 (2β
3π₯ 2β1 )(2π₯ 2 )β(3π₯ 2 )(2β
2π₯2β1 ) [2π₯ 2 ]2 (6π₯)(2π₯ 2 )β(3π₯ 2 )(4π₯) 4π₯ 4 12π₯ 3 β12π₯ 3 4π₯ 4
5
]
0
= 4π₯ 4 =0 π(π₯)
Jadi, [π(π₯)] β² = 0 D. Teorema LβHopital Teorema (Penjabaran dari definisi) Jika π β 0 dan π₯ β π, maka π(π₯) πβ²(π₯) lim = lim π₯βπ π(π₯) π₯βπ πβ²(π₯) Bukti: π(π₯) Misal: π¦1 = π(π₯) β²
π¦1 = lim [ βπ₯β0
β²
π¦1 = lim [
π(βπ₯+π₯) π(π₯) β π(βπ₯+π₯) π(π₯)
βπ₯
π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯) π(βπ₯+π₯)β
π(π₯)
βπ₯
βπ₯β0
π¦1 β² = lim [
] ]
π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)
π(βπ₯+π₯)β
π(π₯) βπ₯β0 π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)
π¦1 β² = lim [ βπ₯β0
π¦1 β² = lim [ βπ₯β0
π¦1 β² = lim [ βπ₯β0
π¦1 β² = lim [ βπ₯β0
π¦1 β² = lim [
βπ₯ π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)
1
β
βπ₯] 1
β
π(βπ₯+π₯)β
π(π₯)]
] lim [
] lim [
βπ₯
π¦1 β² = π¦1 β² = π¦1 β² = π¦1 β² = π¦1 β² =
]
βπ₯β0 π(βπ₯+π₯)β
π(π₯)
]
π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)+π(π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯) 1 ] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯β0 {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}+{π(π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)} 1
] lim [
]
βπ₯ βπ₯β0 π(βπ₯+π₯)β
π(π₯) {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}β{βπ(π₯)β
π(π₯)+π(π₯)β
π(βπ₯+π₯)} 1 lim [ ] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯β0 βπ₯β0 {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}β{π(π₯)β
π(βπ₯+π₯)βπ(π₯)β
π(π₯)} 1 lim [ lim ] [ ] βπ₯ βπ₯β0 βπ₯β0 π(βπ₯+π₯)β
π(π₯) {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)} {π(π₯)β
π(βπ₯+π₯)βπ(π₯)β
π(π₯)} 1 lim [ β ] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯ βπ₯β0 βπ₯β0 π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯) π(π₯)β
π(βπ₯+π₯)βπ(π₯)β
π(π₯) 1 lim [ β ] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯ βπ₯β0 βπ₯β0 {π(βπ₯+π₯)βπ(π₯)}π(π₯) π(π₯){π(βπ₯+π₯)βπ(π₯)} 1 lim [ β lim ] [ ] βπ₯ βπ₯ βπ₯β0 βπ₯β0 π(βπ₯+π₯)β
π(π₯) {π(βπ₯+π₯)βπ(π₯)}π(π₯) π(π₯){π(βπ₯+π₯)βπ(π₯)} 1 [ lim [ ] β lim [ ]] lim [π(βπ₯+π₯)β
π(π₯)] βπ₯ βπ₯ βπ₯β0 βπ₯β0 βπ₯β0 βπ₯β0
π¦1 β² =
1
βπ₯ βπ₯β0 π(βπ₯+π₯)β
π(π₯) π(βπ₯+π₯)β
π(π₯)+0βπ(π₯)β
π(βπ₯+π₯) 1
π(βπ₯+π₯)βπ(π₯) 1 π¦1 β² = [ lim [π(βπ₯+π₯)βπ(π₯) ] lim [π(π₯)] β lim [π(π₯)] lim [ ]] lim [ ] βπ₯ βπ₯ π(βπ₯+π₯)β
π(π₯) βπ₯β0
βπ₯β0
βπ₯β0
1
β²
π¦1 = [πβ²(π₯)π(π₯) β π(π₯)πβ²(π₯)] π(π₯)β
π(π₯) 1
π¦1 β² = [πβ²(π₯)π(π₯) β π(π₯)πβ²(π₯)] [π(π₯)]2 π¦1 β² =
πβ²(π₯)π(π₯)βπ(π₯)πβ²(π₯) β― (1) [π(π₯)]2 πβ²(π₯)
Misal: π¦2 = πβ²(π₯) π(βπ₯+π₯) π(π₯) β π(π₯)
π¦2 = lim [π(βπ₯+π₯) βπ₯β0
βπ₯
]
π(βπ₯+π₯) π(π₯) β π(βπ₯+π₯) π(π₯)
β²
π¦2 = lim [ lim [ βπ₯β0 βπ₯β0
βπ₯
]] 6
βπ₯β0
βπ₯β0
β²
π¦2 = lim [ lim [
π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯) π(βπ₯+π₯)β
π(π₯)
βπ₯
βπ₯β0 βπ₯β0
π¦2 β² = lim [ lim [
]]
π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)
π(βπ₯+π₯)β
π(π₯) βπ₯β0 βπ₯β0 π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)
π¦2 β² = lim [ lim [ βπ₯β0 βπ₯β0
π¦2 β² = lim [ lim [ βπ₯β0 βπ₯β0
π¦2 β² = lim [ lim [
βπ₯ π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)
π¦2 =
]]
] lim [π(βπ₯+π₯)β
π(π₯)]]
βπ₯
βπ₯β0
{π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}+{π(π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯)}
βπ₯β0 βπ₯β0
π¦2 β² = lim [ lim [ βπ₯β0 βπ₯β0
π¦2 β² = lim [ lim [
] lim [
π¦2 β² = lim [ lim [
1
]]
βπ₯ βπ₯β0 π(βπ₯+π₯)β
π(π₯) {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}β{βπ(π₯)β
π(π₯)+π(π₯)β
π(βπ₯+π₯)} 1
βπ₯ {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)}β{π(π₯)β
π(βπ₯+π₯)βπ(π₯)β
π(π₯)}
βπ₯β0 βπ₯β0
] lim [
βπ₯β0 π(βπ₯+π₯)β
π(π₯) 1
] lim [
βπ₯ βπ₯β0 π(βπ₯+π₯)β
π(π₯) {π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)} {π(π₯)β
π(βπ₯+π₯)βπ(π₯)β
π(π₯)} 1
β
βπ₯
βπ₯β0 βπ₯β0
π¦2 β² =
1
] lim [
π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯)+π(π₯)β
π(π₯)βπ(π₯)β
π(βπ₯+π₯) 1 lim [ lim [ ] lim [π(βπ₯+π₯)β
π(π₯)]] βπ₯ βπ₯β0 βπ₯β0 βπ₯β0
π¦2 β² = lim [ lim [
π¦2 β² =
1
β
π(βπ₯+π₯)β
π(π₯)]]
βπ₯ βπ₯β0 π(βπ₯+π₯)β
π(π₯) π(βπ₯+π₯)β
π(π₯)+0βπ(π₯)β
π(βπ₯+π₯) 1
βπ₯β0 βπ₯β0
β²
1
β
βπ₯]]
]]
] lim [
βπ₯
]]
βπ₯β0 π(βπ₯+π₯)β
π(π₯)
]]
π(βπ₯+π₯)β
π(π₯)βπ(π₯)β
π(π₯) π(π₯)β
π(βπ₯+π₯)βπ(π₯)β
π(π₯) 1 lim [ lim [ β ] lim [π(βπ₯+π₯)β
π(π₯)]] βπ₯ βπ₯ βπ₯β0 βπ₯β0 βπ₯β0 {π(βπ₯+π₯)βπ(π₯)}π(π₯) π(π₯){π(βπ₯+π₯)βπ(π₯)} 1 lim [ lim [ β ] lim [π(βπ₯+π₯)β
π(π₯)]] βπ₯ βπ₯ βπ₯β0 βπ₯β0 βπ₯β0
π¦2 β² = lim [[ lim [ βπ₯β0
{π(βπ₯+π₯)βπ(π₯)}π(π₯)
βπ₯β0
βπ₯
π(π₯){π(βπ₯+π₯)βπ(π₯)}
] β lim [ βπ₯β0
βπ₯
]] lim [
1
]]
βπ₯β0 π(βπ₯+π₯)β
π(π₯)
π(βπ₯+π₯)βπ(π₯) π(βπ₯+π₯)βπ(π₯) 1 π¦2β² = βπ₯β0 lim [[ lim [ ] lim [π(π₯)] β lim [π(π₯)] lim [ ]] lim [ ]] βπ₯ βπ₯ βπ₯β0 βπ₯β0 βπ₯β0 βπ₯β0 βπ₯β0 π(βπ₯+π₯)β
π(π₯)
1 π¦2β² = βπ₯β0 lim [[πβ²(π₯)π(π₯) β π(π₯)πβ²(π₯)] ( ) ( )] π π₯ β
π π₯ 1
π¦2 β² = [πβ²(π₯)π(π₯) β π(π₯)πβ²(π₯)] π(π₯)β
π(π₯) 1
π¦2 β² = [πβ²(π₯)π(π₯) β π(π₯)πβ²(π₯)] [π(π₯)]2 π¦2 β² =
πβ²(π₯)π(π₯)βπ(π₯)πβ²(π₯) β― (2) [π(π₯)]2
Dari (1) dan (2) πβ²(π₯)π(π₯)βπ(π₯)πβ²(π₯) πβ²(π₯)π(π₯)βπ(π₯)πβ²(π₯) π¦1 β² = dan π¦2 β² = , maka [π(π₯)]2 [π(π₯)]2 π(π₯)
πβ²(π₯)
Jika π¦1 β² = π¦2 β² , maka lim π(π₯) = lim πβ²(π₯) π₯βπ
Contoh:
π₯βπ
Jika diketahui π(π₯) = π₯ 3 β 7π₯ 2 β 8π₯ β 12 π(π₯) pada saat π₯ = 2, maka tentukan [π(π₯)] β²!
Diketahui: π(π₯) = π₯ 3 β 7π₯ 2 β 8π₯ β 12 π(π₯) = π₯ β 2 π(π₯) Ditanya: [π(π₯)] β² ? Jawab: π(π₯) = π₯ 3 β 7π₯ 2 β 8π₯ β 12 πβ²(π₯) = 3π₯ 2 β 14π₯ β 8 π(π₯) = π₯ β 2 πβ²(π₯) = 1
7
dan
π(π₯) = π₯ β 2
Cara1 π(π₯) πβ²(π₯)π(π₯)βπ(π₯)πβ²(π₯) [π(π₯)] β² = [π(π₯)]2 = = = = = = = =
(3π₯ 2 β14π₯β8)(π₯β2)β(π₯ 3 β7π₯ 2 β8π₯β12)(1) [π₯β2]2 (3π₯ 3 β6π₯ 2 β14π₯2 +28β8π₯+16)β(π₯ 3 β7π₯ 2 β8π₯β12) (π₯β2)(π₯β2) 3π₯ 3 β6π₯ 2 β14π₯ 2 +28β8π₯+16βπ₯ 3 +7π₯2 +8π₯+12 π₯ 2 β4π₯+4 3π₯ 3 βπ₯ 3 β6π₯ 2 β14π₯ 2 +7π₯ 2 β8π₯+8π₯+28+16+12 2π₯ 3 β13π₯ 2 +56
π₯ 2 β4π₯+4
π₯ 2 β4π₯+4 2(2)3 β13(2)2 +56 (2)2 β4(2)+4 16β52+56 4β8+4
20 0
, tidak terdefinisi
Cara2 π(π₯) πβ²(π₯) lim π(π₯) = lim πβ²(π₯) π₯β2
π₯β2
= lim
3π₯ 2 β14π₯β8
π₯β2
1
= lim 3π₯ 2 β 14π₯ β 8 π₯β2
= 3(2)2 β 14(2) β 8 = 12 β 28 β 8 = β24 π(π₯) β²
Jadi, [π(π₯)] = β24 E. Aplikasi Turunan 1) Gradien Contoh: Jika diketahui fungsi π(π₯) = π₯ 3 + 3π₯ 2 dan memotong sumbu π di titik (2,0), maka tentukanlah gradiennya! Diketahui: π(π₯) = π₯ 3 β 3π₯ 2 memotong sumbu π di titik (2,0) Ditanya: π ? Jawab: π(π₯) = π₯ 3 + 3π₯ 2 πβ²(π₯) = 3π₯ 2 + 6π₯ πβ²(2) = 3(2)2 + 6(2) = 12 + 12 = 24 π = 24 Jadi, π = 24 1
Jika diketahui fungsi π(π₯) = 3 π₯ 3 β 3π₯ 2 tentukan koordinat titik singgung pada gradien β9! 1 Diketahui: π(π₯) = 3 π₯ 3 β 3π₯ 2 π = β9 Ditanya: koordinat titik singgung ? 1 Jawab: π(π₯) = 3 π₯ 3 β 3π₯ 2 Contoh:
8
πβ²(π₯) = π₯ 2 β 6π₯ jika dan hanya jika π = π₯ 2 β 6π₯ β9 = π₯ 2 β 6π₯ jika dan hanya jika π₯ 2 β 6π₯ = β9 π₯ 2 β 6π₯ + 9 = 0 (π₯ β 3)(π₯ β 3) = 0 π₯β3=0 π₯=3 1 π(π₯) = π₯ 3 β 3π₯ 2 3 1 3 π¦ = π₯ β 3π₯ 2 3 1 π¦ = (3)3 β 3(3)2 3 π¦ = 9 β 27 = β18 Jadi, koordinat titik singgung (3, β18) 2) Fungsi Naik dan Turun
Untuk setiap π₯1 , π₯2 β π ο· Fungsi π dikatakan naik jika π₯1 < π₯2 , maka π(π₯1 ) < π(π₯2 ) ο· Fungsi π dikatakan turun jika π₯1 > π₯2 , maka π(π₯1 ) > π(π₯2 ) Contoh: Seorang nelayan melihat seekor lumba-lumba sedang berenang mengikuti kecepatan perahu mereka. Lumba-lumba tersebut berenang cepat, terkadang menyelam dan tiba-tiba melayang ke permukakaan air laut. Pada saat nelayan tersebut melihat lumba-lumba menyelam maka ia akan melihatnya melayang ke permukaan 15 detik kemudian dan kembali ke permukaan air laut setelah 3 detik di udara. Demikan pergerakan lumba-lumba tersebut diamati berperiode dalam beberapa interval waktu pengamatan.
9
3) Titik Stasioner Syarat mencapai nilai stasioner jika πβ²(π₯) = 0 Contoh:
1
5
Jika π(π₯) = 3 π₯ 3 β 2 π₯ 2 + 6π₯, maka tentukanlah titik stasionernya! 1
5
Diketahui: 3 π₯ 3 β 2 π₯ 2 + 6π₯ Ditanya: titik stasioner ? 1 5 Jawab: π(π₯) = 3 π₯ 3 β 2 π₯ 2 + 6π₯ πβ²(π₯) = π₯ 2 β 5π₯ + 6 jika dan hanya jika π₯ 2 β 5π₯ + 6 = 0 (π₯ β 2)(π₯ β 3) = 0 π₯ β 2 = 0 atau π₯ β 3 = 0 π₯ = 2 atau π₯ = 3 Jadi, titik stasionernya adalah (2,0) dan (3,0) 4) Kecepatan dan Percepatan ππ₯ ππ£ π£ = ππ‘ dan π = ππ‘ Keterangan: π₯ = jarak π‘ = waktu π£ = kecepatan π = percepatan Contoh: Diketahui: Ditanya: Jawab: ππ₯ π£ = ππ‘
Jika diketahui jarak yang ditempuh oleh benda adalah (2π‘ 3 ) meter dan pada saat π‘ = 5 detik, maka tentukan kecepatan dan percepatannya! π₯ = 2π‘ 3 pada saat π‘ = 5 detik π£ dan π ?
π(2π‘ 3 )
= ππ‘ = 6π‘ 2 = 6(5)2 = 150 meter/detik π=
ππ£ ππ‘ π(6π‘ 2 )
= ππ‘ = 12π‘ = 12(5) = 60 meter/detik 2 Jadi, kecepatan adalah 150 meter/detik dan percepatan 60 meter/detik 2 5) Maksimum dan Minimum Untuk menentukan nilai maksimum dan minimum fungsi dalam interval tertutupdilakukan dengan langkah-langkah sebagai berikut. 10
a) Menentukan nilai fungsi pada batas interval. b) Menentukan nilai stasioner apabila stationer dicapai pada xdi dalam interval. c) Menentukan nilai minimum dan maksimum berdasarkan hasil dari (a) dan (b). Jika π(π₯) = βπ₯ 3 + 6π₯ 2 dan pada interval β1 < π₯ < 3, maka tentukanlah nilai maksimum dan minimum! Diketahui: π(π₯) = βπ₯ 3 + 6π₯ 2 interval β1 < π₯ < 3 Ditanya: nilai maksimum dan minimum ? Jawab: Nilai fungsi pada batas interval π(β1) = β(β1)3 + 6(β1)2 = 1 + 6 = 7 π(3) = β(3)3 + 6(3)2 = β27 + 54 = 27 Contoh:
Nilai stasioner π(π₯) = βπ₯ 3 + 6π₯ 2 πβ²(π₯) = β3π₯ 2 + 12π₯ jika dan hanya jika β3π₯ 2 + 12π₯ = 0 β3π₯(π₯ β 4) = 0 β3π₯ = 0 atau π₯ β 4 = 0 π₯ = 0 atau π₯ = 4 Nilai maksimum dan minimum π(0) = β(0)3 + 6(0)2 = 0 + 0 = 0 π(4) = β(4)3 + 6(4)2 = β64 + 96 = 32 Sehingga pada interval β1 < π₯ < 3 diperoleh π(β1) = 7 π(3) = 27 π(0) = 0 Jadi, nilai maksimumnya 27 dan nilai minimumnya 0 Contoh:
Jika sebuah peluru ditembakkan dari permukaan tanah dengan jarak awal (βπ‘ 3 + 6π‘ 2 ) meter dengan sudut elevasi 45Β°, π = 10 meter/detik 2 , dan pada saat π‘ = 3 detik, maka berapa jarak maksimum yang dicapai peluru! Diketahui: π₯0 = (βπ‘ 3 + 6π‘ 2 ) meter πΌ = 45Β° π = 10 meter/detik 2 pada saat π‘ = 3 detik Ditanya: π₯πππ₯ ? Jawab: π₯0 = βπ‘ 3 + 6π‘ 2 π£0 = β3π‘ 2 + 12π‘ = β3(3)2 + 12(3) = β27 + 36 = 9 π₯πππ₯ = = =
π£0 2 sin 2πΌ π (9)2 sin 2(45Β°) 10 81 sin 90Β° 10 81(1)
= 10 = 8,1 meter Jadi, jarak maksimum yang dicapai peluru adalah 8,1 meter 11