Számítógépes Hálózatok 5. gyakorlat
Feladat 0 • Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x4+x3+x+1! Mi lesz a 4 bites kontrollösszeg? • A fenti üzenet az átvitel során sérül, a vevő adatkapcsolati rétege az 110110111110110001111001 bitsorozatot kapja. Történt-e olyan hiba az átvitel során, amit a generátor polinommal fel lehet ismerni? Ha nem, akkor ennek mi lehet az oka?
Gombos Gergő
Számítógépes hálózatok
2
Feladat 0 • Számolja ki a CRC kontrollösszeget az 11011011001101000111 üzenetre, ha a generátor polinom x4+x3+x+1! Mi lesz a 4 bites kontrollösszeg? – 1001
• A fenti üzenet az átvitel során sérül, a vevő adatkapcsolati rétege az 110110111110110001111001 bitsorozatot kapja. Történt-e olyan hiba az átvitel során, amit a generátor polinommal fel lehet ismerni? Ha nem, akkor ennek mi lehet az oka? – 0 maradék, 11011 többszöröse adódik hozzá az átvitelhez
Gombos Gergő
Számítógépes hálózatok
3
Gyakorló feladat 1. Egyetlen paritás-bit által nyújtottnál nagyobb biztonságot akarunk elérni, így olyan hibaészlelő sémát alkalmazunk, amelyben két paritás-bit van: az egyik a páros, a másik a páratlan bitek ellenőrzésére. – Mekkora ezen kód Hamming-távolsága? – Mennyi egyszerű és milyen hosszú löketszerű hibát képes kezelni?
Gombos Gergő
Számítógépes hálózatok
4
Gyakorló feladat 1. Egyetlen paritás-bit által nyújtottnál nagyobb biztonságot akarunk elérni, így olyan hibaészlelő sémát alkalmazunk, amelyben két paritás-bit van: az egyik a páros, a másik a páratlan bitek ellenőrzésére.
– Mekkora ezen kód Hamming-távolsága? d(S)=2 (minden bit a paritást is váltja) – Mennyi egyszerű és milyen hosszú löketszerű hibát képes kezelni? 1-bit hiba felismerhető, de nem javítható 4k (k≥1 egész) hosszú burst-hiba nem ismerhető fel (10101010|11) 2l (l≥1 egész) hosszú burst-hiba nem mindig ismerhető fel (10101|01)
Gombos Gergő
Számítógépes hálózatok
5
Adatkapcsolati réteg (ismétlés) • Feladatai – jól definiált szolgálati interfész biztosítása a hálózati rétegnek(3 fajta); – átviteli hibák kezelése; – adatforgalom szabályozása (elárasztás elkerülése)
Gombos Gergő
Számítógépes hálózatok
6
Csúszó ablak példa • Küldő (S) ablak mérete 2. • Fogadó ablak méret = 1 • Go-Back-N
• S: 00|01 R: 00, R:01 (00,01 -et vár) • R: ACK00, ACK01 S • S: 02|03 R: 03 (02,03 -at vár) • R: NACK02 S • S: 02|03 R:02, R:03 (02,03 -at vár)
Gombos Gergő
• • •
Küldő (S) ablak mérete 2. Fogadó ablak méret >=1 Selective Repeat S: 00|01 R: 00|01 (00,01 –et vár) • R: ACK00, ACK01 S •
S: 02|03 R: 03 (02,03 –at vár) • R: NACK02, ACK03 S • S: 02 R:02 (02 –őt vár) •
Számítógépes hálózatok
7
Gyakorló feladat 3. A Go-Back-N és Selective Repeat esetén legfeljebb hány csomagot küldhet a küldő egyszerre, illetve legfeljebb hány csomag lehet egyidejűleg elküldött, de nem nyugtázott, ha a sorszámok tere 16 elemű (pl. sorszámok 0-tól 15-ig)? Gondoljon a legkedvezőtlenebb pillanatokban elveszett nyugtákra. Mutasson egy példát erre az esetre.
Gombos Gergő
Számítógépes hálózatok
8
Gyakorló feladat 3. A Go-Back-N és Selective Repeat esetén legfeljebb hány csomagot küldhet a küldő egyszerre, illetve legfeljebb hány csomag lehet egyidejűleg elküldött, de nem nyugtázott, ha a sorszámok tere 16 elemű (pl. sorszámok 0-tól 15-ig)? Gondoljon a legkedvezőtlenebb pillanatokban elveszett nyugtákra. Mutasson egy példát erre az esetre. Go-Back-N 15 ablak meret S: |00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|00|01|02|03|04|05|..|15| R: |00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|00|01|02|03|04|05|..|15|
Selective Repeat 8 ablak meret S: |00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|00|01|02|03|04|05|..|15| R: |00|01|02|03|04|05|06|07|08|09|10|11|12|13|14|15|00|01|02|03|04|05|..|15|
Gombos Gergő
Számítógépes hálózatok
9
MAC alréteg • A csatorna kiosztás történhet – statikus módon (FDM, TDM) • N darab felhasználót feltételezünk, a sávszélet N egyenlő méretű sávra osztják, és minden egyes sávhoz hozzárendelnek egy felhasználót. • N darab felhasználót feltételezünk, az időegységet N egyenlő méretű időrésre –úgynevezett slot-ra–osztják, és minden egyes réshez hozzárendelnek egy felhasználót.
– dinamikus módon • verseny vagy ütközés alapú protokollok (ALOHA, CSMA, CSMA/CD) • verseny-mentes protokollok (bittérkép-alapú protokollok, bináris visszaszámlálás) • Korlátozott verseny protokollok (adaptív fa protokollok)
Gombos Gergő
Számítógépes hálózatok
10
Protokollok • Aloha
– mindenki küld amikor csak akar – Ütközés esetén véletlen ideig várakozik
• 1-persistens CSMA
– Keret leadása előtt belehallgat a csatornába:
• Ha foglalt, akkor addig vár, amíg fel nem szabadul. Szabad csatorna esetén azonnal küld. (perzisztens) • Ha szabad, akkor küld.
• Nem-perzisztens CSMA
– Keret leadása előtt belehallgat a csatornába:
• Ha foglalt, akkor véletlen ideig vár (nem figyeli a forgalmat), majd kezdi előröl a küldési algoritmust. (nem-perzisztens) • Ha szabad, akkor küld.
Gombos Gergő
Számítógépes hálózatok
11
Protokollok • P-perzisztens CSMA – Adás kész állapotban az állomás belehallgat a csatornába: • Ha foglalt, akkor vár a következő időrésig, majd megismétli az algoritmust. • Ha szabad, akkor p valószínűséggel küld, illetve 1-p valószínűséggel visszalép a szándékától a következő időrésig. Várakozás esetén a következő időrésben megismétli az algoritmust. Ez addig folytatódik, amíg el nem küldi a keretet, vagy amíg egy másik állomás el nem kezd küldeni, mert ilyenkor úgy viselkedik, mintha ütközés történt volna.
• CSMA/CD – Minden állomás küldés közben megfigyeli a csatornát, ha ütközést tapasztalna, akkor megszakítja az adást, és véletlen ideig várakozik, majd újra elkezdi leadni a keretét Gombos Gergő
Számítógépes hálózatok
12
Gyakorló feladat 4. Tekintsünk egy csatornát véletlen közeg-hozzáférési protokollal. A csatorna egyik végén van A állomás, a másik végén B és C. A propagációs késés a csatorna két vége között t0. (Tegyük fel, hogy B és C között a késés 0.) Az egyes állomások a következő időpontokban akarnak adatot átvinni: tA=0, tB=t0/2, tC=3t0/2. A keretek generálási ideje Tgen=3t0. Ábrázolja a következő hozzáférési protokollok viselkedését: a. Aloha b. Nem-perzisztens CSMA illetve c. Nem-perzisztens CSMA/CD.
Gombos Gergő
Számítógépes hálózatok
13
Gyakorló feladat 4. • Aloha: – mindenki küld amikor csak akar – Ütközés esetén véletlen ideig várakozik
• Non-persistnet CSMA: belehallgatunk a csatornába, ha üres akkor küldünk, ha foglalt, akkor véletlen ideig várunk majd újra próbáljuk. • Non-persistent CSMA/CD: Azt is figyeljük amit küldünk, így ha interferencia van, akkor nem küldünk tovább
Gombos Gergő
Számítógépes hálózatok
14
Gyakorló feladat 5. Egy végtelen populációjú réselt ALOHA-rendszer mérései azt mutatják, hogy a rések 10%-a tétlen. a. Mekkora a G csatornaterhelés? b. Mekkora az áteresztő képesség? c. Túlterhelt-e a csatorna?
Megj.: Annak valószínűsége hogy nincs csomag egy adott pillanatban: P0 = e-G Maximális átvitel: S(G) = G * P0 = G * e-G
Gombos Gergő
Számítógépes hálózatok
15
Gyakorló feladat 5. Egy végtelen populációjú réselt ALOHA-rendszer mérései azt mutatják, hogy a rések 10%-a tétlen. a. Mekkora a G csatornaterhelés? 0,1 = e-G 0,1 = 1/eG eG = 10 G ≈ 2,3 a. Mekkora az áteresztő képesség? S(G)=Ge-G S(G)=0,23 a. Túlterhelt-e a csatorna? Igen (G>1)
Gombos Gergő
Számítógépes hálózatok
16
Bináris visszaszámlálás protokoll • Forgalmazni kívánó állomás elkezdi a bináris címét bitenként elküldeni a legnagyobb helyi értékű bittel kezdve. • Feladja a küldést ha van nála nagyobb sorszámú • Mok és Ward módosítás – Minden sikeres átvitel után ciklikusan permutáljuk az állomások címét.
Gombos Gergő
Számítógépes hálózatok
17
Gyakorló feladat 6. Szimuláljuk a bináris visszaszámlálás protokollt 8 állomás esetén, ahol az állomás azonosítók rendre a {C, H, D, A, G, B, E, F} halmaz elemei, ez a sorrend a prioritási sorrend is. Ez esetben a virtuális azonosítókat 3 biten ábrázolhatjuk. Tegyük fel, hogy A, C, D és E állomások akarnak egy-egy csomagot átvinni. (Nézze meg mi módosulna a Mok- és Ward-féle változat esetén.)
Gombos Gergő
Számítógépes hálózatok
18
Gyakorló feladat 6. C – 111, H – 110, D – 101, A – 100, G – 011, B – 010, E – 001, F – 000
idő 1
2
A
1
0
C
1
1
D
1
0
E
0
Gombos Gergő
3
4
5
6
1
0
0
1
0
1
7
8
9
1
adat
10
11
0
adat
Adat
adat
0
0
Számítógépes hálózatok
19
Gyakorló feladat 6. (Mok – és Ward) 0. idő: C – 111, H – 110, D – 101, A – 100, G – 011, B – 010, E – 001, F – 000 3. idő: H – 111, D – 110, A – 101, G – 100, B – 011, E – 010, F – 001, C – 000 6. kör: H – 111, A – 110, G – 101, B – 100, E – 011, F – 010, C – 001 , D – 000 8. kör: H – 111, G – 110, B – 101, E – 100, F – 011, C – 010 , D – 001 , A – 000
idő 1
2
A
1
0
C
1
1
D
1
0
E
0
Gombos Gergő
3
4
5
1
0
1
1
6
7
8
1
adat
9
10
1
adat
11
Adat 0
adat 0
Számítógépes hálózatok
20
Adaptív fa bejárás • 1943 –Dorfmana katonák szifiliszes fertőzöttségét vizsgálta • Működés – – – –
0-adik időrésben mindenki küldhet. Ha ütközés történik, akkor megkezdődik a fa mélységi bejárása. A rések a fa egyes csomópontjaihoz vannak rendelve. Ütközéskor rekurzívan az adott csomópont bal illetve jobb gyerekcsomópontjánál folytatódik a keresés. – Ha egy bitrés kihasználatlan marad, vagy pontosan egy állomás küld, akkor a szóban forgó csomópont keresése befejeződik.
Gombos Gergő
Számítógépes hálózatok
21
Gyakorló feladat 7. •
Adaptív fabejáró protokoll alkalmazásával tizenhat állomás verseng egy csatorna használatáért. Ha az összes olyan állomás, amelynek prímszáma van, egyszerre kerül adásra kész állapotba, akkor mennyi bit-résre van szükség a versengés feloldására?
Gombos Gergő
Számítógépes hálózatok
22
Gyakorló feladat 7.
2,3, 2,3, 5,7, 5,7 11,1 3 Gombos Gergő
2,3
2,3
2
3
5,7
Számítógépes hálózatok
5
7
11,1 11 3
13
23
Gyakorló feladat 8. Egy megosztott kábel használati jogáért 2n állomás egy csoportja verseng adaptív fabejárás protokoll használata mellett. Egy adott pillanatban kettő közülük adásra kész lesz. Minimálisan illetve maximálisan hány időrés szükséges a fa bejárásához?
Gombos Gergő
Számítógépes hálózatok
24
Gyakorló feladat 8. • Minimális: 3 lépés • Maximális: (log2 2n)*2 + 1
Gombos Gergő
Számítógépes hálózatok
25
Vége