SELAMAT DATANG ……. Engineer’s Gahtering;
• LIGHTN ING PROTECTION & GROUNDING SYSTEM • ( Lightning Research Center School for Electrical Engineering & Informatics of ITB) • Jakarta, 06 Desember 2014
Pembicara : Prof.Dr.Dipl.Ing.Ir. Reynaldo Zoro LIGHTNING RESEARCH CENTER (LRC) Sekolah Teknik Elektro & Informatika (STEI)- ITB
Riwayat Pendidikan : 1975 - S1 Teknik Tenaga Listrik ITB 1982 - S2 High Voltage Engineering – Technical University (TU) Munich – Germany 1990 – S2 Teknik Tegangan Tinggi – Fakultas Pasca Sarjana (FPS) ITB 1999 – S3 TU Munich & FPS ITB 2
Karir Pendidikan & Penelitian : 1978 – Staff Dosen pada Kelompok Keilmuan Teknik Ketenagalistrikan - STEI – ITB 1992 – Kepala Stasiun Penelitian Petir ITB Gn.Tangkuban Perahu 1995 – 2002 ; Direktur Perusahaan PT.Lapi Elpatsindo milik ITB 2002 – Ketua Himpunan Ahli Listrik Tegangan Tinggi Indonesia (HALTI) 2003 – 2008 Ketua Laboratoriun Teknik Tegangan Tinggi ITB 2011 – Kepala Pusat Penelitian Petir (Lightning Research Center) – STEI ITB 2013 – Guru Besar (Profesor) dalam bidang “Sistem Deteksi & Proteksi Petir”
3
Jabatan Profesional : 1996 – Anggota Tim Standarisasi Ditjen Listrik & Pengembangan Enersi (DLPE) -ESDM 1996 – Anggota CIGRE (Himpunan Ahli Teknik Tegangan Tinggi International) – France 1996 – Angg. Tim Standarisasi IEC (International Electrotechnical Commission) TC (Technical Committee) -81: Lightning, Geneva, Swiss 2007 – Anggota Komite Nasional (KomNas) IEC – BSN (Badan Standarisasi Nasional) 2008 – Chairman of Scentific Committee for Indonesian Lightning Society (ILS) 4
Lightning Flashes
Dr. P. Hasse: IEC Standards on External and Internal Lightning Protection: IEC 62305-1 ... 5, Singapore, 14 February, 2003
Latar belakang 1. Indonesia terletak pada khatulistiwa yang mempunyai hari-guruh sangat tinggi dengan aktivitas 100 sampai 200 hari-guruh per tahun. 2. Industri di Indonesia menggunakan semakin banyak peralatan dan sistem yang canggih menggunakan komponen elektronik dan mikroprosesor dan sangat sensitif terhadap PEdP (Pulsa Elektromagnetik dari Petir) atau LEMP (Lightning Electromagnetic Pulse) 3. Karakteristik petir di Indonesia yang berbeda dengan karakteristik petir di luar negeri yang dijadikan standar oleh Badan Standarisasi dunia pada umumnya. 6
Latar belakang (Cont’d) 4. Sangat sedikitnya informasi tentang Sistem Proteksi Petir dan Sistem Penentu Lokasi dan Pelacak Petir khususnya di negara tropis seperti Indonesia disamping sangat kurangnya “Awareness” atau kesiagaan terhadap kemungkinan bahaya petir. 5. Banyaknya instalasi-instalasi penting dan berbahaya yang menjadi target mudah (easy target) bagi sambaran petir karena strukturnya yang tinggi dan pada lokasi yang terbuka. 7
Lightning on modern society? Modern Society Production Function : Man Power and Equipment, Safety, Security and reliability
PREVENTION
Infrastructure
CB Cloud
Damage Destructions Lightning Characteristics
Facilities, Electric Power, Telecommunication, Data Processing , Instrumentation, Control
Single Simultaneous Panic Catastrophic
Lightning Protection System
Lightning Detection System
1. External Protection 2. Internal Protection
1. Real Time : Detection Process, Emergency Planning, Safety, Prediction 2. Historical : LPS Design, Fault Analysis, Reliability, Preventive Maintenance 8
Ciri masyarakat modern • Masyarakat modern membutuhkan : – Sistem tenaga listrik arus bolak-balik dan atau searah – Sistem telekomunikasi – Sistem proses data (komputer) beserta jaringannya yang luas – Sistem instrumentasi dan kontrol
9
Fungsi sosial masyarakat modern • bandar udara dan pelabuhan laut • jalan tol • rumah sakit • sistem telekomunikasi • pembangkitan, pengaturan, penyaluran dan pendistribusian tenaga listrik • intelligent building (berbasis mikroprosesor) pada gedunggedung tinggi,
• pusat pengolahan data beserta jaringannya • sistem kontrol pada mesinmesin industri • stasiun relay radio, televisi dengan tower dan stasiun bumi, • sistem pertahanan militer • instalasi lain dengan peralatan yang menggunakan komponen elektronik dan mikroprosesor
10
IEC Standards on External and Internal Lightning Protection System : IEC 62305 - 2006 Parts 1 ... 5
Field of Application The standards IEC 62305 Parts 1 to 4 are applicable for design, installation, inspection, and maintenance of lightning protection systems for structures (disregarded their height), their installations and contents as well as the persons inside.
The actual protection standards (parts 3,4 and 5) are preceded by two generally valid standards (parts 1 and 2) : IEC 62305-1 informs about the danger of lightning, about the lightning characteristics (annex A), about the derived parameters for simullating the effects of lightning (annexe B and C) and about the test parameters simulating the effects of lightning on LPC components (Annex D). Furthermore it gives a survey of the whole standard series for lightning protection, where procedures and principles of protection are explained, on which the following parts are based. •IEC 62305-2 uses a risk analysis in order to determine the necessity of lightning protection and then technically and economically optimal protection measures can be chosen which are described in detail in the actual protection standard
The criteria for design, installation and maintenance of lightning protection measures are considered in three separate groups: -
a first group which refers to protection measures to reduce physical damages and life hazard due to lightning flashes to the structure is reported in IEC 62305-3,
-
a second group which refers to protection measures to reduce failure of electrical and electronic systems in a structure is reported in IEC 62305-4,
-
a third group which refers to protection measures to reduce damage and loss of services entering the structure, namely electrical and telecommunication lines is reported in IEC 62305-5.
Ancaman petir pada masyarakat modern SAMBARAN LANGSUNG
SAMBARAN TIDAK LANGSUNG
•Induksi •Konduksi •Elevasi Tegangan •Vessel •Tower •Stack •Kabel •Bangunan •Rigs Minyak •Lapangan Golf •Manusia, dll….
• Listrik
• Telekomunikasi • Komputer dan Jaringan • Instrumen dan Kontrol seperti, DCS, CCTV, dll... • Sistem Grounding dan •Bonding
15
Proses terbentuknya awan petir 1. Dibutuhkan udara naik (Up-draft) keatas akibat pemanasan permukaan tanah atau sifat orografis permukaan tanah 2. Dibutuhkan partikel aerosol (mengambang) yang hygroskopis (menyerap air) dari garam laut atau partikel industri yang naik bersama up-draft 3. Dibutuhkan udara lembab yang naik keatas untuk pembentukan partikel es (hailstone) di awan 16
Pembentukan sel bermuatan listrik pada awan petir 15,0 17
KM
12,5 0
10,0
C -30
7,5
5,0
0
2,0
0
28 t
Pelepasan muatan listrik dari awan • Begitu ujung lidah petir bergerak mendekat ke tanah, kuat medan listrik pada ujung-ujung struktur diatas tanah akan meningkat dan terjadi ionisasi udara yang menuju ke awan
18
Bagaimana petir terbentuk? • Leader & streamer bertemu pada lompatan akhir, sekitar 10 meter • Return stroke melalui jalur yg sudah terionisasi • Total muatan yang dipindahkan pada sambaran balik sekitar 5 -200 coulomb dalam 0.05 -1.5 detik • Petir ikutan melalui jalur yang sama
19
Formula Empiris ; JARAK SAMBAR • Amstrong dan Whitehead; 0.8
• Rs = 6.7 I
(m) ; I (kA)
• Love ( Standard IEC 62305/2006): 0.65
• Rs = 10.0 i
(m) ; I (kA) 20
Pertumbuhan muatan di ujung lidah petir dan di tanah PUSAT MUATAN NEGATIF PADA AWAN BERMUATAN
LIDAH PETIR DENGAN INTI PLASMA
r
PETIR PENGHUBUNG
MUATAN POSITIF YANG DIINDUKSIKAN
21
Jarak Sambar Rs (striking distance) antara titik temu dan objek tertinggi pada Striking distance = Rs
Stepped leader
Connecting leader Air Terminal ESE
Central Plaza Bld Hong Kong
Return stroke setelah lidah pelopor mencapai tanah INTI PLASMA LIDAH PETIR PEMBUNGKUS MUATAN
RETURN STROKE
WAKTU 23
Strike! Stepped Leader Downward Leader Return Stroke Competing Upward Leader
24
Mekanisme sambaran pada permukaan tanah datar CLOUD BASIS 30 ….1 2 70 40 18ms 4ms 6ms 8ms 10ms 12ms 14ms 16ms 20ms 2ms ms ms ms µs ms BASE DU NUAGE dart leader
return stroke
return stroke
1 to 2 km
dart leader
CLOUD BASIS
return stroke
GROUND
GROUND
Time
Static picture 25
Mekanisme sambaran pada struktur tinggi CLOUD BASIS 2 46 810 1214 18 16 20 msms ms ms ms ms ms ms ms ms
70 µs
40 ms dart leader
return stroke
GROUND Time
2 ms
30 ms
CLOUD BASIS
1 ms
dart leader
return stroke
return stroke
GROUND Static picture 26
Four different cloud-to-ground flashes* + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + +
+ + + + + + + + ++ + + + + + + + + + + + + + + + + + + + +
+ + ++
+ + ++ + + + + + +
+
+
+
+
+
+
+
+
downward negative leader + + + + + + + + ++ + + + + + + + + + + + + + + + ++ + + + + + + + + ++ + ++ + +
+
+
+
+
+
+
upward positive leader + + + + + + + + ++ + + + + + + + + + + + + + + + + + + + + + + ++
+
+ +
+
+
+
+
+
+
downward positive leader *)according to K. Berger (1978)
+
+
+
+
+
+
+
upward negative leader 27
Lightning photography
Intra Cloud & Cloud to air discharge
Cloud to Ground discharge 28
Lightning photography (Cont’d)
Downward discharge Upward discharge 29
Hari guruh -thunderstormdays • Isokeraunic level (IKL) dipetakan oleh badan meteorologi dunia dan juga oleh Badan Meteorologi dan Geofisika Indonesia • Hari guruh maksimum di beberapa negara : – Eropa : 30 hari guruh – Amerika : 100 hari guruh – Jepang : 80 hari guruh – Korea : 80 hari guruh – Australia : 80 hari guruh – Indonesia : 200 hari guruh 30
31
Kerapatan sambaran (Flash Density) • Seiring dengan perkembangan teknologi deteksi petir, besaran hari guruh (IKL) hampir tidak pernah digunakan dalam Sistem Proteksi Petir • Kerapatan sambaran (Ground Flash Density – GFD atau Number of Flash to Ground – Ng) adalah jumlah sambaran petir ke tanah per kilometer persegi per tahun • Data GFD ini lebih akurat dari hari guruh, yang hanya menggunakan pengamatan/ pendengaran langsung saja. 32
33
34
Kerapatan sambaran petir di Kota Depok, Jawa Barat • Ng = 35-40 sambaran/km2/t hn (maksimum) Pada daerah pengamatan 20 x 20 km2 Gambar - 17 35
Global lightning worldwide 1999
36
LIGHTNING CHARACTERISTICS diukur dengan cara sbb : • Observation in situ : Natural Lightning • Triggered Lightning : Rocket Initiated Lightning • Laboratory : Long Sparks • Electromagnetic Measurement : Lightning Detection or Location System • Modeling : Numerical Simulation 37
Stasiun Penelitian Petir ITB – di daerah Tropis Gn.Tangkuban Perahu - Natural Lightning
38
Pengujian Air Terminal ESE – 1 di SPP Gunung Tangkuban Perahu ( 2 tower )
Di foto dari jarak 1000 meter Untuk pemodelan upward streamer
Stasiun Pengukuran Petir – sub tropis Prof. Karl Berger, di Mt San Salvatore, Switzerland
40
Statistik arus puncak (i) tropis dan sub-tropis Gambar - 20 85%
Probabilitas
4
40 kA
5
18 kA
30 kA Arus Puncak Petir
Europe by Karl Berger, measured at Mt San Salvatore, Switzerland : (1) petir pertama total, (2) petir negatif, (3) petir positif. Indonesia by Reynaldo Zoro, measured at Mt Tangkuban Perahu : (4) petir negatif, (5) petir positif 41
Statistik kecuraman arus petir (di/dt) Gambar - 21 tropis dan sub-tropis 2
85%
4
1
Pro ba bili tas
18 kA/us
5
12 kA/us 25kA/us Kecuraman Arus Petir
(1) Europe by Karl Berger, measured at Mt San Salvatore, Switzerland. (2) Indonesia by Reynaldo Zoro, measured at Mt Tangkuban Perahu 42
Ancaman, gangguan dan kerusakan akibat PENGARUH petir pada infrastruktur
43
Direkt lightning strike Effect: Fire hazard A direct strike on a building without an external lightning protection installation Because of -- the specific energy W/R -- the charge Q
W 2 i dt R 0
and
Q idt 0
The energy of the lightning current heated up the part of the building immediately. Also material could hurl out at the point of strike.
Direkt lightning strike Effect: Destroying of a part of the roof Danger for persons by fallen concrete
Tank Explosion due to lightning
Pertamina UP IV Cilacap, 25 October 1995
46
Direct lightning strike ; Effect: Destroying of a wind turbin Lightning hits the turbine blade Indirect effect: Because of the unbalance of the rotor the whole turbine fall down!
WTC Twin Tower with upward leader
48
Damage to electronic equipment in Germany :
causes in 1998 (indemnities), analysis of 7737 cases of
damage
Source : Württembergische Feuerversicherung AG, Stuttgart
49
Statistik kerugian perusahaan asuransi akibat klaim petir 14
SOURCE : TELA VERSICHERUNGS AG MUNCHEN
12
%
10 8 6 4 2 0 1978'
1980'
1982'
1984'
1986'
1988'
1990'
1992'
TAHUN
Source : Tela Versicherungs AG, Munchen 50
Lightning in USA : lost and cost The National Weather Service reports lightning damage at an annual $35 million. This is incorrect. Lightning costs are underreported and the hazard is underrated. Losses in the USA reach $5-6 billion per year and include :
• RESIDENTIAL FIRES. Lightning causes 26,500 house fires amounting to $147.3 million in losses annually (Rp. 1.8 Trilliun) (Association of US Fire Chiefs, 1995 Report ). 51
Lightning in USA : lost and cost (Cont’d) • INSURANCE CLAIMS IN THE HOMEOWNER SECTOR.
Lightning losses are in excess of one billion dollars annually and represent five percent of all residential claims (Insurance Information Institute, NY). (5% is 200.000 USD = Rp. 2,4 Trilliun) On average, lightning results in one insurance claim for every fifty-seven lightning strikes (Holle, Lopez, Arnold & Endres, 1995 IAGCLSE Proc.).
52
Ancaman sambaran petir pada mahluk hidup
1. Touch Voltage 2. Indirect Strike 3. Direct Strike 4. Side Flash 5. Step Voltage
53
Ancaman pada mahluk hidup…. Step Voltage
Death s V I 2 d (d s )
d Vs Transient paralysis 54
Lightning also strikes people, causing serious injury and burns and sometimes even death : On June 14, 1991, during one of the world’s most prestigious golf competitions, the US Open, a spectator was killed by a lightning bolt !
55
More recently in October 2002, the footballer, Herman Gavaria died after being struck while taking part in a training session with fellow players from the Cali club in Colombia.
56
57
Lightning desperation position
58
ANCAMAN DAN KERUSAKAN PADA INSTALASI LISTRIK, COMPUTER & JARINGANNYA, CONTROL, TELEKOMUNIKASI SAMBARAN PETIR TIDAK LANGSUNG (INDIRECT STRIKES)
Mekanisme tegangan lebih pada peralatan
60
Ancaman petir pada sistem dan instalasi tenaga listrik ABC Company
MCR
Data
Telephone
110 kV 400/230 V
TV
Mobile phone
61
Damage to electronic equipment in Germany : causes in 1998 (indemnities), analysis of 7737 cases of damage
Source : Württembergische Feuerversicherung AG, Stuttgart
62
63
64
65
Sambaran petir tidak langsung (konduksi) pada peralatan elektronik Gambar - 25
66
SISTEM PROTEKSI PETIR & GROUNDING TERHADAP SAMBARAN PETIR LANGSUNG (DIRECT STRIKES)
Konsep sistem proteksi petir Lightning Protection System
External LPS
Internal LPS
Air terminal / Finial Down conductor Grounding system
Arrester Shielding Bonding
68
SISTEM PROTEKSI PETIR EKSTERNAL Perlindungan Objek terhadap bahaya sambaran Petir Langsung dengan konsep Electromagnetic dan konsep Early Streamer System : 1. Finial atau Air Terminal 2. Down Conductor atau Hantaran Turun 3. Sistem Pentanahan atau Grounding System
1
DOWN CONDUCTOR 2
GROUNDING SYSTEM
3
FINIAL
Komponen sistem proteksi eksternal pada bangunan dan jaringan tenaga listrik 1
1
2
2 3 1
3 1. Terminal Udara
2
2. Penghantar Turun
3
3. Sistem Grounding
71
Komponen sistem proteksi eksternal 1 1 2 3 2
1. Terminal Udara 2. Penghantar Turun 3
3. Sistem Grounding 72
Design Methods for Lightning Protection - 1 • Franklin Rod
Design Methods for Lightning Protection - 2 • Faraday Cage
Design Methods for Lightning Protection - 3 • Rolling Sphere
The areas touched by the sphere are deemed to require protection
Protected volume
Trajectory of the center of the Rolling Sphere
rs
rs
rs
The Rolling Sphere concept Numerical models
Entwurf der Fangeinrichtung mit der Blitzkugelmethode
R R
R
DIN V ENV 61024-1 (VDE V 0185 Teil 100) 1996-08: Anhang B S1329
Fangeinrichtung
1329.ppt / 22.01.98 / ESC
Air termination – Protection methods Three methods for the definition of the air termination: 1. Rolling sphere method 2. Mesh method 3. Protective angle method rod Air- termination Mesh size M h h1
2
1
R
2
Protective angle
Down conductor
Rolling sphere
The rolling sphere method could be used for all buildings. Earthing system The method of protective angle is used for buildings with easily form, but it is limited for buildings with hights as you could see in the next table.
The mesh method is used for planning the protection of flat roofs. Quelle: DIN V VDE 0185 Teil 3-3 Seite 81
Metoda rolling sphere
79
Anwendung Blitzkugelverfahren
S1337
1337. ppt / 19.01.98 / CG
Anwendung Blitzkugelverfahren
S1338
1338c.
Fangeinrichtung für hohe Gebäude Maschenverfahren Maschenweite und Blitzkugelradius r entsp. der Blitzschutzklasse
Fangeinrichtung
r Höhe entsp. der Blitzschutzklasse
Bei seitlichen Außen-flächen der baulichen Anlage in Höhen, die größer als der Radius der entsp. Blitzkugel (Tab. 3) sind, muß eine Fangeinrichtung, z. B. unter Berücksichtigung des Maschenverfahrens errichtet werden.
Schutzwinkel entsp. der Blitzschutzklasse
DIN V ENV 61024-1 (VDE V 0185 Teil 100) 1996-08 Anhang B.3 S1346
1346.ppt /
Design Methods for Lightning Protection - 4 • Collection Volume
Application of CVM to practical structures (c) Key to three-dimensionalisation of the CVM • Electric field modelling of 3D structures
Electric field intensification
Intensification of the E-field is a function of the geometry’s height and degree of sharpness
ERITECH®
Collection formed by Equal Probability Locus and Spherical Surface
The Collection Volume Design Concept
Example – Lightning Protection System Incorporating New Technology Air Terminal
DYNASPHERE
DYNASPHERE
Static Thunderstorm Phase
Dynamic Thunderstorm Phase
Controlled Triggering Phase
Contoh instalasi CVT di SPP-ITB
95
96
DYNASPHERE
PIPE GSP 1"
CABLE DOWN CUNDUCTOR ISOLATOR 20 KV
Instalasi Collective Volume Terminal dan Peralatan Ukur Arus
ISOLATOR 20 KV
BC
MAGNETIC TAPE APM PIPE GSP 1/2" CURRENT TRANSFORMER
CABLE RG-8/U FOAM CABLE DOWN CONDUCTOR
INSULATION XLPE INSULATION SCOTH NO. 33 SCREEN METAL INSULATION PVC
FINIAL Sambaran Petir ke samping CVT menara (antena), menyebabkan kerusakan pada peralatan didalam radio room, ke Finial ; Aman
2 STROKES
ESE - 2
Down conduc tor DSDC
Sambaran petir di catat APM & dideteksi juga oleh Jadpen
3 STROKES
Counter 1 Gambar - 30 Hit ke finial ; ON Hit ke samping menara ; OFF Counter 2 ; Hit disamping atau di finial
2 STROKES (COUNTER 1)
COUNTER 2 (5 STROKES)
EQUIPMENT LCC LCC
ELECTRICAL SUPPLY 300 m
Counter 3 ; hit disamping & finial ; OFF hit dari luar ; ON SUBSTATION
LCC
98
Radius attractive (RA)
99
PENGHANTAR TURUN (DOWN CONDUCTOR)
Down conductor • Adalah saluran konduktif yang menghantarkan arus petir dari titik sambar di terminal udara ke tanah (sistem grounding) • Komponen down conductor dapat yang bersifat natural (struktur metal pada bangunan yang terhubung secara elektrik) atau dipasang khusus. • Dimensi minimum down conductor menurut bahan (IEC 62305) : – Cu – Fe – Al
: 16 mm2 : 50 mm2 : 25 mm2 101
SPP untuk bangunan dgn atap bergerigi. Semua ukuran harus sesuai dengan tingkat proteksi yang dipilih. 102
Susunan penghantar petir dengan finial berbentuk jaringan 103
Pemasangan dari SPP eksternal untuk bangunan besar. Jarak antara masingmasing hantaran turun dan ukuran jaring harus sesuai dengan tingkat proteksi yang dipilih.
104
Development of an external lightning protection system
Lightning protection system (LPS) External lightning protection
• Down Conductor
Down conductors – natural components Using of the reinforcement as a down conductor and screening against LEMP
6 Test joint 7 Clamp tested with lightning current
Quelle: DIN V VDE V 0185 T3-4, Bild 64
a
1 Connection between air termination and down conductor 2 Air termination 3 Reinforcement 4 Down conductor and ring conductor 5 Equipotential bonding bar for the internal lightning protection
a
1
b
2 3 8 7 5 4 6 5
Down conductors – natural components Example for the usage of the concrete buttress as a down conductor.
The down conductors have to be connected with the reinforcement inside the concrete buttress.
Down conductors – natural components Example for the usage of the metal facade as a down conductor.
The vertical metal elements must be connected at the connection points by screws or rivets.
Konvensional vs ESE
DOUBLE SHIELDED WIRE
DETAIL TOWER AND FARADAY CAGE BOX
Double shielded down conductor (penghantar turun perisai ganda) • Karakteristik Rancangan : – Induktansi rendah per unit panjang sehingga impedansi surja rendah – Tegangan jatuh pada down conductor menjadi kecil – Mengontrol dengan baik distribusi kuat medan listrik didalam kabel untuk memperkecil kuat medan listrik saat dialiri impuls petir – Tidak ada bahaya side flash 114
Penampang double shielded down conductor
115
Perbandingan karakteristik down conductor Characteristic
Bare Copper
E1*
E2*
6.7
4.5
33n
22n
750
1100
50
50
Resistance (m /m)
0.4
0.5
Upper termination withstand (kV)
200
200
Impedance () Inductance (H/m)
Cooper tape
N2XSY (single)
230 1
963n (0.963)
0.5
Capacitance (F/m) Cross sectional area of conductor (mm2)
50
25 x 3 (75)
50
116
SISTEM GROUNDING pada Bangunan & Struktur
GROUNDING SYSTEM Kenapa harus ada Grounding? • Diharuskan oleh STANDAR • Keamanan Personil
– Menghilangkan beda tegangan antara alat yang tidak dilalui arus (tutup & frame) dan antara peralatan dengan tanah.
• Proteksi Peralatan
– Menjalankan proteksi arus lebih jika ada gangguan ke ground (50/60Hz event)
• Mengalirkan arus Petir(5kHz - 500kHz) • ESD (Electrostatic Discharge) • Kontrol derau (Computer Grounding)
118
Energi dari Petir?
Gambar – 41
Grounding untuk instalasi LPS • Menurut IEC 62305 / 2006 : – Bentuk dan dimensi dari sistem grounding lebih penting dari pada nilai resistans (tahanan pentanahan) dari elektroda pentanahan – Bagaimanapun juga, secara umum, nilai pentanahan yang rendah direkomendasikan – Dari sisi proteksi petir, single integrated dari komponen pentanahan beberapa sistem sangat bermanfaat dan cocok untuk segala bentuk kegunaan (proteksi petir, proteksi tegangan rendah sistem tenaga, sistem telekomunikasi) – Sistem pentanahan yang tidak boleh disatukan dengan alasan tertentu harus diinterkoneksi ke sistem melalui sela penyama tegangan (spark - gap) 120
Grounding untuk instalasi LPS • Ukuran minimum material grounding menurut IEC 62305 : – Cu : 50 mm2 – Fe : 80 mm2
• Tipe grounding didalam standard adalah :
– Konduktor yang ditanam horizontal dalam tanah dengan kedalaman minimum 0.5 m (Ring) – Batang tembaga yang ditancapkan tegak lurus ke tanah (Driven Rod) - Radial – Kombinasi dari Keduanya (ring – radial) – Grounding Fondasi 121
Bentuk grounding • Grounding batang tembaga dan baja
122
Bentuk grounding (lanjutan) • Grounding dengan beberapa batang
123
RANCANGAN GROUNDING • Grounding Radial, Radial 1 buah
124
RANCANGAN GROUNDING
• Grounding dalam
125
RANCANGAN GROUNDING • Grounding pada daerah sempit dan dekat lalu-lintas manusia
126
External LPS
127
External LPS
Is this grounding system ? NO ! WHY ?? 129
Contoh Sistem Proteksi Petir pada “bangunan terintegrasi”
www.dehn.de
130
Earthing system Strap conductor for the connection between the reinforcement
Earthing system Strap conductor of the foundation earth at the lowest point of the reinforcement
134
www.erico.com
135
Pamakaian Beton Fondasi dan kolom struktur untuk sistem pentanahan.
136
137
138
SISTEM PTOTEKSI PETIR & BONDING TERHADAP SAMBARAN PETIR TIDAK LANGSUNG (INDIRECT STRIKES)
SISTEM PROTEKSI PETIR INTERNAL pada Peralatan dan Perangkat didalam ruangan
INTERNAL LPS Lightning protection zone concept LPZ - concept LPZ 0
A
LPZ 0
B
external LPS
structure representing shield 1
LPZ 1
room representing shield 2
LPZ 2
lokal bonding bar 2 at the boundary of LPZ 1 and LPZ 2
bonding bar 1 at the boundary of LPZ 0 A , 0 B and LPZ 1
e.g. computer room cables line bonding of shield 2
According to IEC 62305-3/2006
earth termination system
Lightning protection zone concept lightning protection zone 0A
lightning protection zone 0B protection zone 1
protection zone 2 SPD C
protection zone 1 protection zone 2
protection zone 3
SPD D mains
protection zone 1 protection zone 2 SPD B
RA
SPD C
protection zone 3
SPD D
SPD: surge protective device decoupling element (conductor length)
Lightning protection zone concept (lanjutan) zone 0 zone 0 zone 2 zone 1 zone 0
zone 2
iL
iL
zone3 zone3 zone 0
iL
Mekanisme tegangan lebih pada peralatan
144
Coupling of voltage surges (lightning flash near an object)
Flash near a building
Effects : Inductive coupling Caused by: Maximum steepness of the lightning current
Conductor loop
Lightning arresters
Conductor loop
Lines running parallel
di dt max A magnetic field is formed around every conductor through which a current flows. If conductor loops are located in the vicinity of a conductor in which lightning current is flowing, the law of induction states that a voltage will be induced.
Mekanisme kopling galvanik
iB
improvement ! iB2
iB2 iB1
UE = RE1 x iB1 potential equalization & surge voltage protection
iB2 iB2 146
Process controller protected with transient barriers
Coordination of Protection for power line
Sistem bonding dan sistem pentanahan pada instalasi di dalam bangunan dengan menggunakan komponen besi beton pada dinding dan fondasi sebagai komponen SPP “ Natural”
Lightning protection system according to IEC 62305-4/2006 Source: P. Hasse: Overvoltage protection of low voltage systems. 2nd Edition, IEE London/UK
Wall Reinforcement Used for Shielding of the Boundaries of Building and as Down LPZ 0 to LPZ 1 Conductor System to LPZ 2
Air-Terminations for Roof Structures
Reinforcement of Ceiling Used as Building Shield
LPZ 0 230/400 V Overvoltage SPD for Telecommunication and Data
Bonding of Air Terminations to the Reinforcement Metal Frame as Building Shield
LPZ 1
S1041_c
Reinforcement for Room Shielding Lightning Current Arrester for Data Line
Equipotential Bonding for Services, e. g. Heating, Earthing Ventilation, System Sanitary Equipment Reinforcement in Cellar Floor Used Dr. P. Hasse: IEC Standards on External for Shielding of the Building and as Part of and Internal Lightning Protection: IEC the Earthing System Foundation Earth Electrode 62305-1 ... 5, Singapore, 14 February, 2003
230/400 V, 50 Hz Lightning Current Arrester
EBB
Lightning Current Arrester for Telecommunication Line
Service Entrance
LPZ 2
Pemakaian konsep LPZ
www.dehn.de
Lightning Protection System at a Plan
Contoh proteksi pada instrumentasi (Cont’d)
Beyond Standard ? Due to tropical lightning characteristics Existing standard beyond standard innovation 155
Convensional vs Isolated down conductor
156
APPLICATIONS TO THE PROTECTION OF ELEVATED STRUCTURES
Photo : Alex Hermant
Electric field V/m
Electric field distribution on an elevated structure.
Protection failure of the corners and edges of a structure
Attractive radius of a corner
Attractive radius of an edge
Roof of building
Attractive area
Upper view of the attractive area of rectangular structure.
Electric field V/m
Electric field distribution on a complex structure during a thunderstorm. Results
PAU Building Building name
Inter University Center- ITB (PAU–ITB)
Owner
ITB
Country
Indonesia
City
Bandung
Latitude
06˚ 53’ 17” S , 107˚ 36’ 36” E
Flash density
8.06
Ground flash density
7.06
Keraunic level
120
Altitude
768 m
Height
Width
Length
Roof area
40.8 m
43.2 m
72.6 m
2264.6 m2
Electrogeometri Analysis of PAU Building
RA DI US
OF RO LL IN G
SP HE RE
ROLLING SPHERE
PROTECTIVE AREA PAU - ITB GROUND
SIDE VIEW SCALE 1 : 1
OF PR OT EC TI VE
RA DI US
PROTECTIVE AREA
AR EA
Electrogeometri Analysis of PAU Building
PAU - ITB
TOP VIEW SCALE 1 : 1
Installation Of Prevectron ESE
Lightning research on PAU building
PAU – ITB building from south side
Panel berisi alat ukur Lightning Evet Counter (LEC) Dan Arus Puncak Petir (APM) pada kaki tower Di Gd. PAU ITB
Gambar - 33
RUMAH TINGGAL SINGLE POLE 8 MTR, AIR TERMINAL TIPE ESE
RUMAH TINGGAL BOX LEC, LEC
Gedung Kantor Utama PT. Dahana, Subang, Jabar
173
Box berisi ; APM (Alat Ukur Arus Puncak Petir) & LEC (Lightning Event Counter)
174
WTC Twin Tower Upward leader
175
Lightning striking an aircaft
176
Terimakasih…. Prof.Dr. Reynaldo Zoro Lightning Research Center School of Electrical Engineering and Informatics, Institut Teknologi Bandung Alamat : Gd. Kerjasama PLN-ITB Jl. Ganesha 10 Bandung 40132 Telp/Fax 022 2500995 E-mail :
[email protected] [email protected] 177